CATALOG DOCUMENTATION

EMAP SURFACE WATERS PROGRAM LEVEL DATABASE
1997-1998 Mid-Atlantic Integrated Assessment Program
Fish Metrics Data

TABLE OF CONTENTS

- 1. DATA SET IDENTIFICATION
- 2. INVESTIGATOR INFORMATION
- 3. DATA SET ABSTRACT
- 4. OBJECTIVES AND INTRODUCTION
- 5. DATA ACQUISITION AND PROCESSING METHODS
- 6. DATA MANIPULATIONS
- 7. DATA DESCRIPTION
- 8. GEOGRAPHIC AND SPATIAL INFORMATION
- 9. QUALITY CONTROL / QUALITY ASSURANCE
- 10. DATA ACCESS
- 11. REFERENCES
- 12. TABLE OF ACRONYMS
- 13. PERSONNEL INFORMATION

1. DATA SET IDENTIFICATION

- 1.1 Title of Catalog Document
 EMAP Surface Waters Stream Database
 1997-1998 Mid-Atlantic Streams
 Stream Fish Metrics Data Summarized by Stream
- 1.2 Authors of the Catalog Entry U.S. EPA NHEERL Western Ecology Division Corvallis, OR
- 1.3 Catalog Revision Date October 2002
- 1.4 Data Set Name FISHMET
- 1.5 Task Group Surface Waters
- 1.6 Data Set Identification Code

147

1.7 Version

001

1.8 Requested Acknowledgment

These data were produced as part of the U.S. EPA's Environmental Monitoring and Assessment Program (EMAP). If you publish these data or use them for analyses in publication, EPA requires a standard statement for work it has supported:

"Although the data described in this article have been funded wholly or in part by the U.S. Environmental Protection Agency through its EMAP Surface Waters Program, it has not been subjected to Agency review, and therefore does not necessarily reflect the view of the Agency and no official endorsement of the conclusions should be inferred."

2.0 INVESTIGATOR INFORMATION

2.1 Principal Investigator Dr. John Stoddard U.S. Environmental Protection Agency NHEERL Western Ecology Division 200 S.W. 35th Street Corvallis, OR 97333

2.2 Investigation Participant- Sample Collection
Oregon State University
State of Virginia
State of West Virginia
State of Maryland
U.S. Environmental Protection Agency
Office of Research and Development
Region III

3.0 DATA SET ABSTRACT

3.1 Abstract of the Data Set

The primary function of the stream fish data are to provide a snapshot of the fish assemblage present in the stream at the time of sampling. The fish community represents an integral component of stream biological integrity and represents a snapshot of a publicly visible reflection of stream quality.

3.2 Keywords for the Data Set Fish assemblage, fish community, fish species identification

4.0 OBJECTIVES AND INTRODUCTION

4.1 Program Objectives

The Environmental Monitoring and Assessment Program (EMAP) was designed to periodically estimate the status and trends of the Nation's ecological resources on a regional basis. EMAP provides a strategy to identify and bound the extent, magnitude and location of environmental degradation and improvement on a regional scale based on a probability-based statistical survey design.

4.2 Data Set Objective

This data set is part of a demonstration project to evaluate approaches to monitoring streams in EMAP. The data set contains the results of multi-habitat sample of the fish assemblage taken during spring low-flow.

4.3 Data Set Background Discussion

The fish community within a stream is an integral component of stream biological integrity and represents a publicly visible reflection of stream quality. This data set contains a list of metrics derived from the species composition within the stream at the time of sampling. The metrics summarize the species relative abundance information by collapsing it into a series of metrics representing trophic guilds, habitat preferences, tolerance capacities and measures of biodiversity.

4.4 Summary of Data Set Parameters

Fish Assemblage metrics include counts of individuals and species collected which can be grouped into several functional classifications, as well as percent of species collected in the same classifications. The classifications include feeding functions such as insectivores and piscivores, species similarities such as minnow species, native/non-native classification, and pollution tolerance or intolerance.

- DATA ACQUISITION AND PROCESSING METHODS
- 5.1 Data Acquisition
- 5.1.1 Sampling Objective

To obtain a sample of the fish assemblage within a stream during a two month sampling window from April through mid-June.

5.1.2 Sample Collection Methods Summary

The assemblage was sampled using single pass with a backpack electrofishing unit distributed in multiple habitats throughout the stream.

- 5.1.3 Sampling Start Date May 1997
- 5.1.4 Sampling End Date September 1998
- 5.1.5 Platform
- 5.1.6 Sampling Gear Backpack electrofishing unit
- 5.1.7 Manufacturer of Instruments
- 5.1.8 Key Variables
- 5.1.9 Sampling Method Calibration
- 5.1.10 Sample Collection Quality Control See Lazorchak, et al. 1998.

5.1.11 Sample Collection Method Reference
Lazorchak, J.M., Klemm, D.J., and Peck D.V. (editors). 1998.
Environmental Monitoring and Assessment Program- Surface Waters:
Field Operations and Methods for Measuring the Ecological
Condition of Wadeable Streams. EPA/620/R-94/004F.
U.S. Environmental Protection Agency, Washington, D.C.

Chaloud, D.J. and D.V. Peck. 1994. Environmental Monitoring and Assessment Program: Integrated Quality Assurance Project Plan for the Surface Waters Resource Group, 1994 Activities. EPA 600/X-91/080, Rev. 2.00. U.S. Environmental Protection Agency, Las Vegas, Nevada.

- 5.1.12 Sample Collection Method Deviations
- 5.2 DATA PREPARATION AND SAMPLE PROCESSING
- 5.2.1 Sample Processing Objective See Lazorchak, et al. (1998) and Chaloud and Peck (1994).
- 5.2.2 Sample Processing Methods Summary See Lazorchak, et al. (1998) and Chaloud and Peck (1994).
- 5.2.3 Sample Processing Method Calibration See Lazorchak, et al. (1998) and Chaloud and Peck (1994).
- 5.2.4 Sample Processing Quality Control
 See Lazorchak, et al. (1998) and Chaloud and Peck (1994).
- 5.2.5 Sample Processing Method Reference See Lazorchak, et al. (1998) and Chaloud and Peck (1994).
- 6. DATA MANIPULATIONS
- 6.1 Name of New or Modified Values None.
- 6.2 Data Manipulation Description See Chaloud and Peck (1994).
- 7. DATA DESCRIPTION
- 7.1 Description of Parameters

	Parameter	Data		Parameter
#	SAS Name	Type	Len Format	Label
81	ALIEN	Num	8	Nonindigenous individuals Metric(0-10)
17	ALIEN9	Num	8	Final IBI Alien Metric Score
71	BENTHIC	Num	8	Benthic species IBI Metric Score
14	BENTHIC9	Num	8	Final IBI NSBENT24 Metric Score
12	CARN9	Num	8	Final IBI PPRISCIN2 Metric Score
70	COLUMN	Num	8	Water column species IBI Metric Score
11	COTTID9	Num	8	Final IBI PCOTTID Metric Score

13	CYPR9	Num	8	Final IBI NSCYPR4 Metric Score
75	GRAVEL	Num	8	Simple lithophil IBI Metric Score
15	GRAVEL9	Num	8	pgravel IBI Metric Score
85	HERBIV	Num	8	Herbivore IBI Metric Score
86	IBI	Num	8	Draft Index of Biotic Integrity
102	IBI_NEW	Num	8	Final IBI Score (McCormick et al)
69	INTOL	Num	8	Intolerant IBI Metric Score
10	INTOL9	Num	8	Final IBInsintol4 IBI Metric Score
76	INVERT	Num	8	Invertivore IBI Metric Score
103	LAT_DD	Num	8	X-Site Latitude (decimal degrees)
104	LON_DD	Num	8	X-Site Longitude (decimal degrees)
7	LWSKM2	Num	8	Log10 watershed area (km2)
80	NALIEN	Num	8	Calc. adjusted proportion of aliens
68	NATFAM	Num	8	Native family IBI Metric Score
59	NATIVFAM	Num	8	Number of families represented
67	NATSP	Num	8	Native species IBI Metric Score
77	NINDIV	Num	8	Abundance IBI Metric Score
82	NOMNI H	Num	8	Adjusted proportion omnivore-herbivores
78	NPTOLE	Num	8	Adjusted proportion of tolerants
			8	
66 46	NREPROS	Num	-	Number of reproductive guilds
	NSANGU	Num	8	Number of anguilla species
54	NSATHER	Num	8	Number of atherin species
90	NSBENT2	Num	8	Number of native bent_inv minus 3 taxa
	NSBENT23	Num	8	Watershed Area Corrected NSBENT2
	NSBENT24	Num	8	Offset & Watershed Corrected NSBENT2
57	NSBHAB	Num	8	Number of benthic habitat species
37	NSCATO	Num	8	Number of sucker species
91	NSCATO2	Num	8	Number of native intolerant Catostomids
38	NSCENT	Num	8	Number of sunfish species
56	NSCOLU	Num	8	Number of water column species
39	NSCOTT	Num	8	Number of sculpin species
40	NSCYPR	Num	8	Number of minnow species
87	NSCYPR2	Num	8	Number of native intolerant cyprinids
98	NSCYPR3	Num	8	Watershed Area Corrected NSCYPR
99	NSCYPR4	Num	8	Offset & Watershed Corrected NSCYPR
41	NSDART	Num	8	Number of darter species
47	NSDRUMX	Num	8	Number of drum species
53	NSESOXX	Num	8	Number of esox species
49	NSFUND	Num	8	Number of fundelis species
52	NSGAMB	Num	8	Number of gambusia species
42	NSICTA	Num	8	Number of ictalurid species
43	NSINTOL	Num	8	Number of intolerant species
96	NSINTOL3	Num	8	Watershed Area Corrected NSINTOL
97	NSINTOL4	Num	8	Offset & Watershed Corrected NSINTOL
45	NSLAMP	Num	8	Number of lamprey species
58	NSLUNK	Num	8	Number of charismatic megafauna
48	NSPERCO		8	Number of percopsis species
50		Num	8	Number of perch species
	NSPPER	Num		
55 =1	NSSALM	Num	8	Number of salmon species
51	NSUMBR	Num	8	Number of umbridae species
65	NTROPH	Num	8	Number of trophic guilds
9	NUMFISH	Num	8	Number of individuals in sample
44	NUMNATSP	Num	8	Number of native species
8	NUMSPEC	Num	8	Total number of fish species

83	OMNI	Num	8	Omnivore IBI Metric Score
16	OMNI9		8	Final IBI Pmacro Metric Score
		Num		
31	PATNG	Num	8	Proportion of ind. as attacher non-guarder
29	PBCLN	Num	8	Proportion of ind bc spwn clear substr.
28	PBCST	Num	8	Proportion of ind. as broadcast spawners
25	PBENT	Num	8	Proportion of fish as benthic insectivores
20	PBENTSP	Num	8	Proportion of benthic hab. sp. in native
6 1	DG1 D11	37		sp.
61	PCARN	Num	8	Proportion piscivore-invert. (piscinv + pisciv)
30	PCGBU	Num	8	Proportion of ind. as clear gravel buriers
92	PCOLD1	Num	8	Proportion of cold water ind.
93	PCOLD2	Num	8	Proportion of cold & cool water ind.
19	PCOLSP	Num	8	Proportion of column sp. in native sp.
88	PCOTTID	Num	8	Proportion of ind. as cottids
89	PCYPTL	Num	8	Proportion of ind. as tolerant cyprinids
22	PEXOT	Num	8	Proportion of ind. as introduced
63	PGRAVEL	Num	8	Proportion of simple lithophils
33	PHERB		8	Proportion of ind. as herbivores
24		Num		Proportion of ind. as native insectivores
62	PINSE	Num	8	-
	PINVERT	Num	8	Proportion of invertivores
74	PISCINV	Num	8	Piscivore-invertivore IBI Metric Score
21	PLUNKSP	Num	8	Proportion of lunker sp. to native sp.
35	PMACRO	Num	8	Proportion of macro-omnivores
34	PMICRO	Num	8	Proportion of micro-omnivores
95	PMICRO2	Num	8	Proportion of micro-omnivores - RHINATRO
27	PNEST	Num	8	Proportion of ind. as nest associates
32	PNTGU	Num	8	Proportion of ind. as nester guarder
60	POMNI_H	Num	8	Proportion omni-herbiv.(pmicro + pmacro +
				herbiv)
26	PPISC	Num	8	Proportion of ind. as carnivores
94	PPISCIN2	Num	8	Proportion of piscivore-insectivSEMOATRO
36	PPISCINV	Num	8	Proportion of piscivore-insectivores
23	PTOLE	Num	8	Proportion of ind. as tolerant
64	PTREPRO	Num	8	Proportion tolerant reproductive guild
				indiv
72	REPRO	Num	8	Reproductive guild IBI Metric Score
4	SAMPLED	Char	30	Site Sampled Code
1	SITE_ID	Char	15 \$	Stream ID
6	SQRTAREA	Num	8	Square root of watershed area (km2)
18	TOLERNT9	Num	8	Final IBI PTOLE Metric Score
84	TOLREPR	Num	8	Tolerant reproductive IBI Metric Score
				(not in IBI)
79	TOLRNT	Num	8	Tolerant individual IBI Metric Score
73	TROPH	Num	8	Trophic guild IBI Metric Score
3	VISIT_NO	Num	8	Visit Number
5	WS_AREA	Num	8	Watershed area (km2)
2	YEAR	Num	8	Sample Year

^{7.1.6} Precision to which values are reported

7.1.7 Minimum Value in Data Set

Name	Min
ALIEN	0
ALIEN9	0
BENTHIC	0
BENTHIC9	0
CARN9	0
COLUMN	0
COTTID9	0
CYPR9	0
GRAVEL	0
GRAVEL9	0
HERBIV	•
IBI	0
IBI_NEW	0
INTOL	0
INTOL9	0
INVERT	0
LAT DD	35.182938
LON_DD	-83.555659
LWSKM2	-1.176056517
NALIEN	0.055555556
NATFAM	0
NATIVFAM	0
NATSP	0
NINDIV	0
NOMNI_H	0
NPTOLE	0
NREPROS	0
NSANGU	0
NSATHER	0
NSBENT2	0
NSBENT23	-11.81958974
NSBENT24	-6.540589744
NSBHAB	0
NSCATO	0
NSCATO2	0
NSCENT	0
NSCOLU	0
NSCOTT	0
NSCYPR	0
NSCYPR2	0
NSCYPR3	-14.29234721
NSCYPR4	-8.005347209
NSDART	0
NSDRUMX	0
NSESOXX	0
NSFUND	0
NSGAMB	0
NSICTA	0
NSINTOL	0
NSINTOL3	-2.689881586

NSINTOL4	-1.219881586
NSLAMP	0
NSLUNK	0
NSPERCO	0
NSPPER	0
NSSALM	0
NSUMBR	0
NTROPH	0
NUMFISH	0
NUMNATSP	0
NUMSPEC	0
OMNI	0
OMNI9	0
PATNG	0
PBCLN	0
PBCST	0
PBENT	0
PBENTSP	0
PCARN	0
PCGBU	0
PCOLD1	0
PCOLD2	0
PCOLSP	0
PCOTTID	0
PCYPTL	0
PEXOT	0
PGRAVEL	0
PHERB	0
PINSE	0
PINVERT	0
PISCINV	0
PLUNKSP	0
PMACRO	0
PMICRO	0
PMICRO2	0
PNEST	0
PNTGU	0
POMNI H	0
PPISC	0
PPISCIN2	0
PPISCINV	0
PTOLE	0
PTREPRO	0
REPRO	0
SQRTAREA	0.2582092175
TOLERNT9	0.2302032173
TOLREPR	
TOLRNT	0
TROPH	0
VISIT_NO	0
WS_AREA	0.066672
WS_AREA YEAR	1997
TEAK	1331

7.1.7 Maximum Value in Data Set

Name	Max
ALIEN	10
ALIEN9	10
BENTHIC	10
BENTHIC9	10
CARN9	10
COLUMN	10
COTTID9	10
CYPR9	10
GRAVEL	10
GRAVEL9	10
HERBIV	•
IBI	92.962806424
IBI NEW	98.909281533
INTOL	10
INTOL9	10
INVERT	10
LAT_DD	42.567163
LON_DD	-74.688136
LWSKM2	5.0118742737
NALIEN	1
NATEM	10
NATIVFAM	11
NATSP	10
NINDIV	10
	10
NOMNI_H	
NPTOLE	1
NREPROS	4
NSANGU	1
NSATHER	1
NSBENT2	16
NSBENT23	9.0621523708
NSBENT24	14.341152371
NSBHAB	19
NSCATO	7
NSCATO2	6
NSCENT	9
NSCOLU	17
NSCOTT	3
NSCYPR	14
NSCYPR2	8
NSCYPR3	6.9263340661
NSCYPR4	13.213334066
NSDART	11
NSDRUMX	1
NSESOXX	2
NSFUND	1
NSGAMB	2
NSICTA	3
NSINTOL	8
NSINTOL3	6.3417729978

NSINTOL4 7.8117729978 NSLAMP 1 NSLUNK 13 NSPERCO 1 NSPPER 1 NSSALM 1 NSUMBR 1 5 NTROPH NUMFISH 3869 NUMNATSP 32 NUMSPEC 33 OMNI 10 OMNI9 10 PATNG 0.6585365854 PBCLN 0.8645833333 PBCST 0.6893854749 PBENT 1 PBENTSP 1 PCARN 1 **PCGBU** 1 PCOLD1 1 PCOLD2 1 PCOLSP 1 PCOTTID 0.8977272727 PCYPTL PEXOT 0.944444444 PGRAVEL PHERB 0.5185810811 PINSE 1 PINVERT 1 **PISCINV** 10 PLUNKSP 1 PMACRO 0.8854166667 PMICRO 1 PMICRO2 0.7816091954 PNEST PNTGU 1

PNTGU 1
POMNI_H 1
PPISC 0
PPISCIN2 1
PPISCINV 1
PTOLE 1
PTREPRO 1
REPRO 10

SQRTAREA 320.58052577

TOLERNT9 10
TOLREPR .
TOLENT 10
TROPH 10
VISIT_NO 3

WS_AREA 102771.8735

YEAR 1998

```
7.2 Data Record Example
7.2.1 Column Names for Example Records
"ALIEN", "ALIEN9", "BENTHIC9", "BENTHIC9", "CARN9", "COLUMN", "COTTID9", "CYPR9",
"GRAVEL", "GRAVEL9", "HERBIV", "IBI", "IBI_NEW", "INTOL", "INTOL9", "INVERT",
"LAT_DD", "LON_DD", "LWSKM2", "NALIEN", "NATFAM", "NATIVFAM", "NATSP", "NINDIV",
"NOMNI_H", "NPTOLE", "NREPROS", "NSANGU", "NSATHER", "NSBENT2", "NSBENT23",
"NSBENT24", "NSBHAB", "NSCATO", "NSCATO2", "NSCENT", "NSCOLU", "NSCOTT", "NSCYPR",
"NSCYPR3", "NSCYPR4", "NSDART", "NSDRUMX", "NSESOXX", "NSFUND", "NSGAMB",
"NSICTA", "NSINTOL", "NSINTOL3", "NSINTOL4", "NSLAMP", "NSLUNK", "NSPERCO",
"NSPPER", "NSSALM", "NSUMBR", "NTROPH", "NUMFISH", "NUMNATSP", "NUMSPEC", "OMNI",
"OMNI9", "PATNG", "PBCLN", "PBCST", "PBENT", "PBENTSP", "PCARN", "PCGBU", "PCOLD1",
"PCOLD2", "PCOLSP", "PCOTTID", "PCYPTL", "PEXOT", "PGRAVEL", "PHERB", "PINSE",
"PINVERT", "PISCINV", "PLUNKSP", "PMACRO", "PMICRO", "PMICRO2", "PNEST", "PNTGU",
"POMNI_H", "PPISC", "PPISCIN2", "PPISCINV", "PTOLE", "PTREPRO", "REPRO",
"SAMPLED", "SITE_ID", "SQRTAREA", "TOLERNT9", "TOLREPR", "TOLRNT", "TROPH",
"VISIT_NO", "WS_AREA", "YEAR"
          Example Data Records
10,10,7.2736214704,10,0,4.891021517,0,10,0.25,0,.,51.484390079,54.331689591,0,
8.8985206317,0,38.247943,-81.886602,-0.661344334,1,5.7838153636,1,6.87674532,
0.8,0.975,0,1,0,0,0,1.6958565863,6.9748565863,1,0,0,0,1,0,2,0,3.6706388347,
9.9576388347,0,0,0,0,0,0,0,0,-0.09933714,1.3706628599,0,1,0,0,0,0,2,40,2,2,10,
10,0,0,0,0,0.5,0.975,0.025,0,0,0.5,0,1,0,0.025,0,0,0,10,0.5,0,0.025,0.025,0,
0.975,0.025,0,0,0.975,1,0.975,6.2029424391,"Yes","MAIA97-001",0.4670117772,
0,.,0,10,1,0.2181,1997
10,10,10,10,3.1028678256,9.5872619625,0,10,5.8762886598,6.6044321779,.,
1,6.7265165472,5,10,5.82,0.7663230241,0.295532646,4,0,0,8,3.6812842899,
8.9602842899,10,2,1,5,9,0,6,2,0.8087398825,7.0957398825,5,1,0,0,0,0,2,
```

10,10,10,10,3.1028678256,9.5872619625,0,10,5.8762886598,6.6044321779,.,
83.002629956,70.626067805,6.997547567,10,10,38.550017,-82.144807,1.633596705,
1,6.7265165472,5,10,5.82,0.7663230241,0.295532646,4,0,0,8,3.6812842899,
8.9602842899,10,2,1,5,9,0,6,2,0.8087398825,7.0957398825,5,1,0,0,0,0,2,
0.7182771072,2.1882771072,0,9,0,0,0,5,291,19,19,9.5790378007,10,
0.1271477663,0.0309278351,0.0034364261,0.2749140893,0.5263157895,
0.2164948454,0.206185567,0,0,0.4736842105,0,0.560137457,0,0.587628866,
0.0859106529,0.264604811,0.5395189003,10,0.4736842105,0,0.147766323,
0.147766323,0.2233676976,0.4089347079,0.2336769759,0,0.0274914089,
0.2164948454,0.704467354,0.412371134,10,"Yes","MAIA97-002",6.5584068187,
3.8561610211,.,3.2836960672,8.3333333333,1,43.0127,1997

9.09090909,6.2405986038,9.2307692308,8.0492534201,5.1303098707,9,0,0,3.1363636364,0,.,76.031357531,.,7.5,10,9.5454545455,39.067885,-81.388766,3.5996374953,0.9090909091,8.888888889,8,8,4.4,0.5636363636,0.6954545455,4,0,0,9,-0.471307549,4.8076924508,12,6,5,3,9,0,3,3,-8.069743707,-1.782743707,2,1,0,0,0,2,3,0.7053453675,2.1753453675,1,9,0,0,0,0,5,220,20,22,7.0454545455,0,0.0181818182,0.1954545455,0.1772727273,0.390909099,0.5454545455,0.0454545455,0.0954545455,0,0.0136363636,0.4545454545,0,0.09090909,0.3136363636,0.1590909091,0.0863636364,0.4772727273,4.5454545455,0.4545454545,0.259090901,0.0181818182,0.0181818182,0.004545454545,0.2227272727,0.4363636364,0,0.0454545455,0.0454545455,0.3045454545,0.4,10,"Yes","MATA97-003",63.069407005,9.6859263186,.,7.7272727273,8.3333333333,1,3977.7501,1997

- 8. GEOGRAPHIC AND SPATIAL INFORMATION
- 8.1 Minimum Longitude
- -83 Degrees 33 Minutes 20 Seconds West (-83.555659 Decimal Degrees)
- 8.2 Maximum Longitude
- -74 Degrees 41 Minutes 17 Seconds West (-74.688136 Decimal Degrees)
- 8.3 Minimum Latitude
- 35 Degrees 10 Minutes 58 Seconds North (35.182938 Decimal Degrees)
- 8.4 Maximum Latitude
- 42 Degrees 34 Minutes 1 Seconds North (42.567163 Decimal Degrees)
- 8.5 Name of Area or Region

Mid Atlantic: EPA Region III which includes Delaware, Maryland, New York, Virginia, and West Virginia

- 9. QUALITY CONTROL / QUALITY ASSURANCE
- 9.1 Data Quality Objectives See Chaloud and Peck (1994)
- 9.2 Quality Assurance Procedures See Chaloud and Peck (1994)
- 9.3 Unassessed Errors

NA

- 10. DATA ACCESS
- 10.1 Data Access Procedures
- 10.2 Data Access Restrictions
- 10.3 Data Access Contact Persons
- 10.4 Data Set Format
- 10.5 Information Concerning Anonymous FTP
- 10.6 Information Concerning WWW
- 10.7 EMAP CD-ROM Containing the Data
- 11. REFERENCES

Lazorchak, J.M., Klemm, D.J., and Peck D.V. (editors). 1998. Environmental Monitoring and Assessment Program- Surface Waters: Field Operations and Methods for Measuring the Ecological Condition of Wadeable Streams. EPA/620/R-94/004F. U.S. Environmental Protection Agency, Washington, D.C.

Chaloud, D.J. and D.V. Peck. 1994. Environmental Monitoring and Assessment Program: Integrated Quality Assurance Project Plan for the Surface Waters Resource Group, 1994 Activities. EPA 600/X-91/080, Rev. 2.00. U.S. Environmental Protection Agency, Las Vegas, Nevada.

12. TABLE OF ACRONYMS

13. PERSONNEL INFORMATION
Project Manager
Dr. John Stoddard
U.S. Environmental Protection Agency
NHEERL Western Ecology Division
200 S.W. 35th Street
Corvallis, OR 97333
541-754-4441
541-754-4716(FAX)
stoddard.john@mail.cor.epa.gov

Quality Assurance Officer
Dave Peck
U.S. Environmental Protection Agency
NHEERL Western Ecology Division
200 s.W. 35th Street
Corvallis, OR 97333
541-754-4426
541-754-4716(FAX)
peck.david@mail.cor.epa.gov

Information Management, EMAP-Surface Waters Marlys Cappaert
CSC c/o U.S. Environmental Protection Agency NHEERL Western Ecology Division
200 S.W. 35th Street
Corvallis, OR 97333
541-754-4467
541-754-4716(FAX)
cappaert.marlys@mail.cor.epa.gov