

Infrared Image

- Deduced mass from six stellar orbits
- 3.7+/-0.2x10⁶ M_{sun}
- Enclosed within 45 AU
- Density 8x10¹⁶ M_{sun} pc⁻³

(Ghez et al. 2005)

Radio Image

- Discovered in 1974
- Size < 1AU (Bower et al. 2004)
- Proper motion:
 - > 10% of the dynamical mass (Reid & Brunthaler 2004)
 - Stellar density 10²² M_{sun} pc⁻³
- Massive black hole

Spectrum of Sgr A*

- Extremely faint
- Optically thin and thick regime
- Peak in sub-mm
- Variability detected in almost all wavelengths
- Phenomenological question:
 - Is the variability correlated?
 - Will it address the emission mechanism?

Outline

- Light curves in NIR, X-rays wavelengths
- Cross correlation: NIR vs X-ray/γ-ray
- Explain the X-ray /soft γ-ray emission by ICS
- Power spectrum of NIR emission
- Nonthermal filaments

Multi-wavelength Observations of Sgr A* (Other Non-thermal Sources in the Galactic Center)

F. Yusef-Zadeh

X-Ray (XMM)

- G. Belanger
- •A. Goldwurm
- •F. Melia
- •B. Warwick

Radio

(VLA+ATCA)

• D. Roberts

• G. Bower

Near-IR (HST)

- H. Bushhouse
- C. Heinke
- M. Wardle
- S. Shapiro
- A, Goldwurm

Sub-millimeter (CSO, SMT)

- D. Dowel
- B. Vila Vilaro
- L. Kirby

Soft γ-Ray (INTEGRAL)

- G. Belanger
- A. Goldwurm
- M. Renaud
- R. Terrier
- F. Melia
- N. Lund
- J. Paul
- G. Skinner

Two Epochs of Observations of SgrA* in 2004

Sub-mm

mm

Radio

X/γ-ray

September Campaign

- NIR Light Curves of SgrA* (blue, red, green)
- Amp: 10 % to 25% or 3 to 5 times the quiescent flux (11-14 mJy)
- **Duration**: multiple peaks, lasting from 20 minutes to hours
- Flare activity: overall fraction of activity is about 30-40% of the observed time (background 8.9 mJy)
- Spectrum: Unknown

NIR variability in 1.6, 1.87 (Pa α line), 1.9 μ m

- X-ray Light Curves of Sgr A* (2-10 keV)
- **Amp**: 35 times the quiescent X-ray flux
- Duration: multiple peaks, lasting from 10 minutes to 3 hours
- Spectrum:
 - Power-law with α = 0.6+/0.5
 - L(2-10 keV)=7.7 x10³⁵ erg/s
- Flare activity: Two clusters of flares in one weak

Belanger et al. 2005a

NIR (1.6-1.9µm) vs. X-Ray (September Campaign)

Simultaneous X-ray and NIR flare

- NIR due to Synchrotron: τ_{nir} = 40min, Beq=10G, E_e=1.1 GeV
- X-Rays due to Synchrotron: τ_{nir} =1min, B=10G, E_e=10 GeV
- X-Rays due to ICS: diameter=10R_{sch}, F_{850μm}=4Jy, E_e=1GeV
- $E_{\text{predict}} = 2x10^{-12} \text{ erg/cm2/s/keV}, \quad E_{\text{obs}} = 1.2x10^{-12} \text{ erg/cm2/s/keV}$

NIR Flares with and without X-ray Counterparts

- The softer (steeper) the particle spectrum, the higher the Xray flux
- The harder (flatter) the particle spectrum, the weaker the Xray emission

X-ray Flux as a function of spectral index

Flare 2

Flare 1

INTEGRAL and XMM Variability

- INTEGRAL:
 - 20-30 keV light curve of IGR J17456-290
- Cross Correlation
 - During the 2 bright SgrA* flares seen with XMM INTEGRAL was in the radiation belts (Belanger et al. 2005b)

First IBIS / ISGRI Images of the Galactic Center

- Six known high-energy sources in the central 2 ° × 2° of the Galaxy
- Detection of IGR J1746-290 coincident with Sgr A*
- A significant excess (8.7 σ) at ~ 1' from Sgr A* (4.7 σ in 40-100 keV)
- Power-law α = 2.04 +/- 0.98 and L(20-120 keV) = 4.8 10³⁵ erg/s

Soft γ -ray Flux as a function of spectral index

- The spectral index in NIR ranges ~ 2-4
- The population of particles producing NIR emission can explain the soft γray emission

- Lomb-Scargle periodogram searches for periodicity
- Monte Carlo simulation of red noise – P(f) ~ f¹ – using the observed statistics
- HST Sgr A*, second obs Flux residuals 0 10.01 -0.02 2 10 0 4 6 8 Time, hours 50 HST Filter 40 Power 00 50 10 0 n 0.5 1 1.5 2 Period, hours

0.02

- Significant power with a period of ~ 1.3h and ~ 30min
- a/M=0
 - (r/M)_{orbit} = 6R_{sch}
 - The same scale size as the region of the seed photons for ICS

Period, hours

Ē

1

1

Radio (7mm) vs X-ray (March Campaign)

- Lag time between Xray/NIR flare and submm peak 4-5 hours
- Time delay between Xray/NIR and radio peak is one day
- An expanding synchrotron source in an optically thick medium
- As the electrons cool, the synchrotron selfabsorption frequency moves to longer wavelengths
- Delay as a function of frequency expected

Radio Time Lags Between 7mm and 13mm

Conclusions

- Flare correlation: simultaneous vs delayed
- Correlation between a near-IR and X-ray/soft γ-ray flare: the same population of particles can explain
- An expanding synchrotron self-absorbed blob: outflow
- Evidence for a NIR flare with quasi-periodic 1-1.3h and 30min behavior
- The flow always fluctuates even in its quiescent phase:
 - ICS may account for steady X-ray/γ-ray source