Up: Main Previous: Acknowledgments


Bibliography

1
D.P. Bentz, Three-dimensional computer simulation of cement hydration and microstructure development, J Am Ceram Soc 80 (1) (1997) 3-21.

2
O.M. Jensen, P.F. Hansen, Autogenous deformation and change of the relative humidity in silica fume-modified cement paste, ACI Mat J 93 (6) (1996) 539-543.

3
J. Baron, H. Van Damme, Betons: la nouvelle frontiere est au niveau moleculaire, in: Revue Francaise de Genie Civil, Vol. 2 (4), 1998, pp. 407-415.

4
R.D. Hooton, P. Pun, T. Kojundic, P. Fidjestol, Influence of silica fume on chloride resistance of concrete, in: Proc. of the PCI/FHWA International Symposium on High Performance Concrete, 1997, pp. 245-256.

5
K. Byfors, Influence of silica fume and flyash on chloride diffusion and pH values in cement paste, Cem Conc Res 17 (1987) 115-130.

6
K. Tori, M. Kawamura, Pore structure and chloride ion permeability of mortars containing silica fume, Cem Conc Comp 16 (1994) 279-286.

7
AASHTO T 277-83, Standard method of test for rapid determination of the chloride permeability of concrete, American Association of State Highway and Transportation Officials, Washington, DC (1983).

8
O.M. Jensen, P.F. Hansen, A.M. Coats, and F.P. Glasser, Chloride ingress in cement paste and mortar, Cem Conc Res 29 (9) (1999) 1497-1504.

9
E.J. Sellevold, D.H. Bager, E.K. Jensen, and T. Knudsen, Silica fume cement paste- Hydration and pore structure, in: O.E. Gjorv, K.E. Loland (Eds.) Condensed Silica Fume in Concrete, University of Trondheim, Norway, 1982, pp. 19-50.

10
P. Lu, G. Sun, J.F. Young, Phase composition of hydrated DSP cement pastes, J Am Ceram Soc 76 (1) (1993) 1003-1007.

11
H.F.W. Taylor, Cement Chemistry, Thomas Telford, London, 1997.

12
V. Baroghel-Bouny, Texture and moisture properties of ordinary and high-performance cementitious materials, in: Proc. of the International RILEM Conference "Concrete: from Material to Structure", 1998, pp. 144-165.

13
T.C. Powers, T.L. Brownyard, Studies of the physical properties of hardened portland cement paste, J Am Conc Inst 43 (1947) 101, 249, 469, 549, 669, 845, 993

14
T.C. Powers, T.L. Brownyard, Studies of the physical properties of hardened portland cement paste, PCA Bulletin 22, Portland Cement Association p. 22.

15
D.P. Bentz, E.J. Garboczi, D.A. Quenard, V. Baroghel-Bouny, H.M. Jennings, Modelling drying shrinkage of cement paste and mortar: Part I. Structural models from nanometers to millimeters, Mat Struct 28 (1995) 450-458.

16
A.J. Allen, R.C. Oberthur, D. Pearson, P. Scholfield, C.R. Wilding, Development of the fine porosity and gel structure of hydrating cement, Phil Mag B 56 (3) (1987) 263-288.

17
E.J. Garboczi, D.P. Bentz, Computer simulation of the diffusivity of cement-based materials, J Mat Sci 27 (1992) 2083-2092.

18
S. Phillipot, J.-P. Korb, D. Petit, G. Counio, H.J. Zanni, Analysis of the microporosity of reactive powder concrete by proton nuclear relaxation, Chim Phys 95 (1998) 332-336.

19
J.-P. Korb, D. Petit, S. Philippot, H. Zanni, V. Maret, M. Cheyrezy, Nuclear relaxation of water confined in reactive powder concrete, in: P. Colombet (Ed.) Resonance spectroscopy of cement-based materials, Springer-Verlag, Berlin, 1997, pp. 333-343.

20
A. Delagrave, J. Marchand, M. Pigeon, Influence of microstructure on the tritiated water diffusivity of mortars, Adv Cem Based Mat 7 (1998) 60-65.

21
D.P. Bentz, C.J. Haecker, An argument for using coarse cements in high performance concrete, Cem Conc Res 29 (4) (1999) 615-618.

22
O.M. Jensen, Chloride ingress in cement paste and mortar measured by electron probe micro analysis, Technical Report, Series R, No 51, Technical University of Denmark (1998).

23
V. Matte, M. Moranville, Durability of reactive powder composites: influence of silica fume on the leaching properties of very low water/binder pastes, Cem Conc Comp 21 (1999) 1-9.

24
E.J. Garboczi, Finite element and finite difference programs for computing the linear electric and elastic properties of digital images of random materials, NISTIR 6269, U.S. Department of Commerce, December, 1998.

25
V.G. Papadakis, Supplementary cementing materials in concrete- activity, durability, and planning, Final Report- Project No ERBFMGICT961387, Danish Technological Institute, January, 1999.

26
D.P. Bentz, V. Waller, and F. deLarrard, Prediction of adiabatic temperature rise in conventional and high-performance concretes using a 3-D microstructural model, Cem Conc Res 28 (2) (1998) 285-297.

27
R. Mills, V.M.M. Lobo, Self-Diffusion in Electrolyte Solutions, Elsevier, Amsterdam (1989) p. 317.

28
B. Christensen, Microstructural studies of hydrating portland cement-based materials using impedance spectroscopy, Ph. D. thesis, Northwestern University (1993).

29
D.P. Bentz, E.J. Garboczi, Percolation of phases in a three-dimensional cement paste microstructural model, Cem Concr Res 21 (1991) 325-344.

30
D.P. Bentz, E.J. Garboczi, Simulation studies of the effects of mineral admixtures on the cement paste-aggregate interfacial zone, ACI Mat J 88 (5) (1991) 518-529.

31
M.A. Ehlen, BridgeLCC 1.0 Users Manual, NISTIR 6298, U.S. Department of Commerce, April 1999.



Up: Main Previous: Acknowledgments