

European Experience using FO for ISS Modules

1St ESA – NASA Working Meeting Optoelectronics : Fiber Optic System Technologies in Space

Giuliano Canovai, Karim Mellab ESA-ESTEC : HME-MC

European Involvement in ISS

- HME MC has been involved with the following ISS Modules :
 - Columbus
 - Node 2 and Node 3
 - Cupola
- For all these elements Fiber Optics connections have been used for :
 - High Rate Data Links
 - Video Links
 - Audio Links
- The reason for having FO links are :
 - Commonality with the rest of the ISS modules
 - EMC harsh environment (total station power is about 80kW)
 - Long distance for inter-module communications
 - High bandwidth needed for Video and HRDL(late 80's, 125 Mbps was considered high bandwidth)

Columbus Architecture

Columbus has 68 FO cables (HRDL, Video, Audio)

Node 2 Architecture

Node 2 has 56 FO Connectors containing 1200 (HRDL, Video, Audio)

Node 3 Architecture

Node 3 has 35 FO Connectors containing 326 termini (HRDL, Video, Audio)

Cupola Architecture

Cupola has 8 FO cables (Audio only)

FO Material Source (1)

- ISS Fiber Characteristics:
 - All FO equipment used for the ISS has followed a NASA qualification.:
 - NASA standard for ISS is covered by SSQ 21654 :
 - General Specification for Cable, Single Fiber, Multimode, Space Quality,
 - ESA has adapted the NASA standard for material selection and building process.

Parameter	Dim.	Medium Characteristics
Fiber Type	-	graded index, Multimode
Operating Wave length (min/max)	nm	1270/1380
Fiber Core Diameter (min/max)	μm	98/102
Fiber Cladding Diameter (min/max)	μm	138/142
Numerical Aperture (min/max)	-	0.28/0.32
Attenuation max @ 1290 \pm 10 nm	dB/Km	≤ 4
Modal Bandwidth @ 1290 \pm 10 nm	MHz x Km	200
Minimum Bend Radius	mm	50

FO Material Source (2)

- Fiber Cable
 - It has been qualified (mechanical and radiation aspects) by Boeing
 - The procurement centralised for all ISS Modules
 - Manufacturer Brand Rex Co.
- Termini / Connectors
 - Termini have been developed and Qualified for ISS by ITT Canon
 - Termini are fitted into Size 16 contacts of multi-contacts round Mil-C-38999 connectors

Manufacturing Process

- European Industry working for ISS has followed manufacturing process developed by ITT Canon,
- Specific training was needed at US for qualification operators and inspectors
- Manufacturing Process Flow:

Fiber Acceptance Criteria

• Under Magnification of 200 during assembly process:

 Under Magnification of 10 for acceptance

Encountered Problems (1)

- Material Defects
 - FO cable has presented cracks and bubbles from the supplier
 - → loss of transmission power and risk of connection breaking during ORU replacement. (ORU = On-Orbit Replaceable Unit).
 - \rightarrow Re-qualification process needed and inspection process improved
- Connectors Alignment
 - Due to the large number of fibers to pass through modules, multipole connectors used for feed through connectors.
 - → Very difficult to achieve good alignment for all termini in a connector simultaneously.
 - Due the large number of interconnection (between modules), link budget were under strict controls by NASA.

Encountered Problems (2)

- Cleanliness:
 - Due to cleanliness issue discovered during production and integration, an ad-hoc tool and procedure were developed (camera capable for termini inspection up to 200x see picture)

Encountered Problems (3)

- Termini Damaged and Repair
 - Similar problem was encountered for termini damage.
 - Un-suitable acceptance method was used (10X magnification)
 - Improved of acceptance procedure using 200X magnification

Installation Specificity (1)

- Dedicated precautions to be taken into account for Harness installation :
 - Bending radius
 - Bundles rigidity
 - Mating / Demating

Spaceflight

Harness installation in Stand-offs very Crowded.

. loordwijk 5/6 October 2005

Conclusions

- ISS for Europe, was the first large experience with operational FO links.
- European Industry succeeded to gain expertise in the field of manufacturing and installing FO harness on a large scale.
- Evolution of acceptance/installation procedures thanks to inspection technology improvement.
- At the time of the technology selection (late 80s) FO was the best possible solution to cope with long distance, high bandwidth and EMC environment.
- →For a performance point of view FO was the best choice for ISS, however strict and controlled qualification methods are necessary based on gained experience.