Update on same-side tagging for B_s -mixing

A. Rakitin Lancaster University

July 13, 2006 *B*-mixing and Lifetime Meeting

http://www-d0.fnal.gov/~rakitin/d0_private/tex/2006.Jul.13.Bmix/tr.pdf

Short introduction

To know if B-meson oscillated we need to know

- B-flavor at decay \Leftarrow can be inferred from trigger lepton charge
- *B*-flavor at production \Leftarrow obtained from OST (jet-charge, soft-lepton) or SST

I am going to talk about SST

Outline of the analysis:

- Use **four** p17 MC samples (increase the statistics w.r.t. last talk):
 - $B_s \rightarrow \mu D_s, D_s \rightarrow \phi \pi, (x_s=25)$, requests 29892, 29893 (150K events)
 - $B_s \rightarrow \mu \mu, (x_s = 25)$, requests 29215, 29216, 29283 (166K events)
 - $\bar{B_s} \rightarrow \mu \mu, (x_s = 25)$ requests 29213, 29214, 29282, (121K events)
 - $B_s \rightarrow \mu D_s X, D_s \rightarrow K_S K, (x_s = 25)$ requests 23838 (180K events)
- Look at tracks in cone $\cos \alpha > 0.8$ around $\vec{p}(B_s)$ (for consistency with OST)
- Use one of the following for same-side tagging:
 - Charge of one track selected with some kinematic algorithm
 - Charges of kaons coming from K^{*0} or pions from Λ (two-track taggers)
 - Average charge of all tracks around $\vec{p}(B)$, like "jet-charge" (many-track taggers)
- Choose a few best same-side taggers
- Combine them into "Comb. SST" algorithm and compute combined εD^2
- Apply both "Comb. SST" and "Comb. OST" to data and compute total εD^2

One-track taggers:

The following taggers are used:

- w.r.t $\vec{p}(B_s K)$
- $\Delta R \equiv \sqrt{\Delta \phi^2 + \Delta \eta^2}$ and angle α are taken between $\vec{p}(B_s)$ and $\vec{p}(K)$
- θ^* decay angle of B_sK -system, *i.e.* angle between directions of $\vec{p}(B_sK)$ and $\vec{p}(B_s)$ in reference frame of B_sK system

A. Rakitin, Lancaster University, B-mixing and Lifetime Meeting, July 13, 2006

Two-track taggers:

Using charge of kaon coming from $K^{*0} \to K\pi$ and $\Lambda \to p\pi$:

- Reconstruct $0.862 < m(K^{*0} \rightarrow K\pi) < 0.922$ with auto-reflection being outside of this mass window, so that we know which track is kaon
- ${\displaystyle ~ \ensuremath{ \ensuremath{\ensuremath{ \ensuremath{ \ensuremath{ \ensuremath{ \ensuremath{$
 - see if they improve tagging performance
- Particles reconstructed out of tracks in cone $\cos \alpha > 0.8$ around $\vec{p}(B_s)$
- B_s daughters are, obviously, excluded

A. Rakitin, Lancaster University, B-mixing and Lifetime Meeting, July 13, 2006

Many-track taggers:

Using weigted-average charge of all the tracks around $\vec{p}(B_s)$

Thirty-one tagger used:

$$Q_{jet}(p_t,\kappa) = \frac{\sum q \cdot p_t^{\kappa}}{\sum p_t^{\kappa}}$$

$$Q_{jet}(p_t^{rel},\kappa) = \frac{\sum q \cdot (p_t^{rel})^{\kappa}}{\sum (p_t^{rel})^{\kappa}}$$

$$Q_{jet}(p_L^{rel},\kappa) = \frac{\sum q \cdot (p_L^{rel})^{\kappa}}{\sum (p_L^{rel})^{\kappa}}$$

- $\kappa = 0.0, 0.1, 0.2, ... 1.0$ - p_t^{rel} and p_L^{rel} here are \perp and || components of SST candidate's momentum $\vec{p}(K)$ w.r.t $\vec{p}(B_s)$

Obtaining true dilution in MC

For each tagger we measure numbers of events in which:

- tag charge corresponds to true B_d -flavor at production ("Right Tag")
- tag charge is opposite to true B_d -flavor at production ("Wrong Tag")
- no tag was found ("No Tag")

Mistag rate $p = \frac{N_{WT}}{N_{RT} + N_{WT}}$

True dilution $D = 1 - 2p = \frac{N_{RT} - N_{WT}}{N_{RT} + N_{WT}}$

Previous (low-statistics) results

Tagger	RT	WT	NT	arepsilon,%	D,%	$\varepsilon D^{2},\%$
Min. p_t^{rel}	1300 ± 36	1112 ± 33	284 ± 17	89.5 ± 0.6	7.8 ± 2.0	0.544 ± 0.263
Max. p_L^{rel}	1266 ± 36	1146 \pm 34	284 ± 17	89.5 ± 0.6	5.0 ± 2.0	0.221 ± 0.173
Max. p_t	1260 ± 35	1152 \pm 34	284 ± 17	89.5 ± 0.6	4.5 ± 2.0	0.179 ± 0.156
Min. ΔR	1293 ± 36	1119 ± 33	284 ± 17	89.5 ± 0.6	7.2 ± 2.0	0.466 ± 0.245
Max. $\cos lpha$	1281 ± 36	1131 ± 34	284 ± 17	89.5 ± 0.6	6.2 ± 2.0	0.346 ± 0.213
Min. $ \Delta \vec{P} $	1272 ± 36	1140 \pm 34	284 ± 17	89.5 ± 0.6	5.5 ± 2.0	0.268 ± 0.189
Min. $m(B_sK)$	1250 \pm 35	1162 \pm 34	284 ± 17	89.5 ± 0.6	3.6 ± 2.0	0.119 ± 0.128
Min. $\cos \theta^*$	1268 ± 36	1144 \pm 34	284 ± 17	89.5 ± 0.6	5.1 ± 2.0	0.236 ± 0.178
Max. $\cos \theta^*$	1297 \pm 36	1115 ± 33	284 ± 17	89.5 ± 0.6	7.5 ± 2.0	0.509 ± 0.255
Random track	1281 ± 36	1131 ± 34	284 ± 17	89.5 ± 0.6	6.2 ± 2.0	0.346 ± 0.213

"Min. p_t^{rel} " seems to be the best one-track tagger...

True dilutions in all 4 MC for one-track taggers

Tagger	RT	WT	NT	arepsilon,%	D,%	$\varepsilon D^2,\%$
Min. p_t^{rel}	262644 ± 512	240178 ± 490	116774 \pm 342	81.2 ± 0.0	4.5 ± 0.1	0.162 ± 0.010
Max. p_L^{rel}	263285 ± 513	239537 ± 489	116774 \pm 342	81.2 ± 0.0	4.7 ± 0.1	0.181 ± 0.010
Max. p_t^-	263870 ± 514	238952 ± 489	116774 \pm 342	81.2 ± 0.0	5.0 ± 0.1	0.199 ± 0.011
Min. ΔR	267795 ± 517	235027 ± 485	116774 \pm 342	81.2 ± 0.0	6.5 ± 0.1	0.345 ± 0.014
Max. $\cos lpha$	267412 ± 517	235410 ± 485	116774 \pm 342	81.2 ± 0.0	6.4 ± 0.1	0.329 ± 0.014
Min. $ \Delta \vec{P} $	263809 ± 514	239013 ± 489	116774 \pm 342	81.2 ± 0.0	4.9 ± 0.1	0.197 ± 0.011
Min. $m(B_sK)$	265779 ± 516	237043 ± 487	116774 \pm 342	81.2 ± 0.0	5.7 ± 0.1	0.265 ± 0.012
Min. $\cos \theta^*$	266163 ± 516	236659 ± 486	116774 \pm 342	81.2 ± 0.0	5.9 ± 0.1	0.279 ± 0.013
Max. $\cos \theta^*$	258955 ± 509	243867 ± 494	116774 \pm 342	81.2 ± 0.0	3.0 ± 0.1	0.073 ± 0.007
Random track	261105 ± 511	241717 ± 492	116774 \pm 342	81.2 ± 0.0	3.9 ± 0.1	0.121 ± 0.009

True dilutions in all 4 MC for two-track taggers

Let's choose uncorrelated "Lambda" and " $K^{*0"}$ (non-opt)

A. Rakitin, Lancaster University, B-mixing and Lifetime Meeting, July 13, 2006

True dilutions in all 4 MC for many-track taggers

Weighted with p_t :

Tagger	RT	WT	NT	arepsilon,%	D, %	$arepsilon D^{2},\%$
Aver. Q	197545 \pm 444	172167 ± 415	249884 ± 500	59.7 ± 0.1	6.9 ± 0.2	0.281 ± 0.013
$Q_{jet}(p_t, \kappa = 0.1)$	188330 ± 434	163042 ± 404	268224 ± 518	56.7 ± 0.1	7.2 ± 0.2	0.294 ± 0.013
$Q_{jet}(p_t,\kappa=0.2)$	188129 ± 434	162808 ± 403	268659 ± 518	56.6 ± 0.1	7.2 ± 0.2	0.295 ± 0.013
$Q_{jet}(p_t,\kappa=0.3)$	189392 ± 435	163607 ± 404	266597 ± 516	57.0 ± 0.1	7.3 ± 0.2	0.304 ± 0.013
$Q_{jet}(p_t,\kappa=0.4)$	192047 ± 438	165993 ± 407	261556 ± 511	57.8 ± 0.1	7.3 ± 0.2	0.306 ± 0.013
$Q_{jet}(p_t,\kappa=0.5)$	195423 ± 442	168852 ± 411	255321 ± 505	58.8 ± 0.1	7.3 ± 0.2	0.313 ± 0.013
$Q_{jet}(p_t,\kappa=0.6)$	198826 ± 446	172039 ± 415	248731 ± 499	59.9 ± 0.1	7.2 ± 0.2	0.312 ± 0.013
$Q_{jet}(p_t,\kappa=0.7)$	202067 ± 450	175233 ± 419	242296 ± 492	60.9 ± 0.1	7.1 ± 0.2	0.308 ± 0.013
$Q_{jet}(p_t,\kappa=0.8)$	205351 ± 453	178374 \pm 422	235871 ± 486	61.9 ± 0.1	7.0 ± 0.2	0.306 ± 0.013
$Q_{jet}(p_t,\kappa=0.9)$	208375 ± 456	181533 ± 426	229688 ± 479	62.9 ± 0.1	6.9 ± 0.2	0.298 ± 0.013
$Q_{jet}(p_t,\kappa=1.0)$	211435 ± 460	184584 ± 430	223577 ± 473	63.9 ± 0.1	6.8 ± 0.2	0.294 ± 0.013

True dilutions in all 4 MC for many-track taggers

Weighted with p_t^{rel} :

Tagger	RT	WT	NT	arepsilon,%	D, %	$arepsilon D^{2},\%$
Aver. Q	197545 \pm 444	172167 ± 415	249884 ± 500	59.7 ± 0.1	6.9 ± 0.2	0.281 ± 0.013
$Q_{jet}(p_t^{rel},\kappa=0.1)$	188202 ± 434	163781 ± 405	267613 ± 517	56.8 ± 0.1	6.9 ± 0.2	0.273 ± 0.013
$Q_{jet}(p_t^{rel},\kappa=0.2)$	188421 ± 434	164974 \pm 406	266201 ± 516	57.0 ± 0.1	6.6 ± 0.2	0.251 ± 0.012
$Q_{jet}(p_t^{rel},\kappa=0.3)$	190866 ± 437	168265 ± 410	260465 ± 510	58.0 ± 0.1	6.3 ± 0.2	0.230 ± 0.012
$Q_{jet}(p_t^{rel},\kappa=0.4)$	194136 ± 441	172415 ± 415	253045 ± 503	59.2 ± 0.1	5.9 ± 0.2	0.208 ± 0.011
$Q_{jet}(p_t^{rel},\kappa=0.5)$	197372 ± 444	176549 ± 420	245675 ± 496	60.3 ± 0.1	5.6 ± 0.2	0.187 ± 0.011
$Q_{jet}(p_t^{rel},\kappa=0.6)$	200681 ± 448	180750 ± 425	238165 ± 488	61.6 ± 0.1	5.2 ± 0.2	0.168 ± 0.010
$Q_{jet}(p_t^{rel},\kappa=0.7)$	203989 ± 452	184728 ± 430	230879 ± 480	62.7 ± 0.1	5.0 ± 0.2	0.154 ± 0.010
$Q_{jet}(p_t^{rel},\kappa=0.8)$	207201 ± 455	188658 ± 434	223737 ± 473	63.9 ± 0.1	4.7 ± 0.2	0.140 ± 0.009
$Q_{jet}(p_t^{rel},\kappa=0.9)$	210377 ± 459	192350 ± 439	216869 ± 466	65.0 ± 0.1	4.5 ± 0.2	0.130 ± 0.009
$Q_{jet}(p_t^{rel},\kappa=1.0)$	213159 ± 462	195837 \pm 443	210600 ± 459	66.0 ± 0.1	4.2 ± 0.2	0.118 ± 0.008

Best $\kappa = 0.0$

A. Rakitin, Lancaster University, B-mixing and Lifetime Meeting, July 13, 2006

True dilutions in all 4 MC for many-track taggers

Weighted with p_L^{rel} :

Tagger	RT	WT	NT	arepsilon,%	D, %	$\varepsilon D^{2},\%$			
Aver. Q	197545 \pm 444	172167 ± 415	249884 ± 500	59.7 ± 0.1	6.9 ± 0.2	0.281 ± 0.013			
$Q_{jet}(p_L^{rel},\kappa=0.1)$	188378 ± 434	163099 ± 404	268119 ± 518	56.7 ± 0.1	7.2 ± 0.2	0.293 ± 0.013			
$Q_{jet}(p_L^{rel},\kappa=0.2)$	188263 ± 434	163068 ± 404	268265 ± 518	56.7 ± 0.1	7.2 ± 0.2	0.292 ± 0.013			
$Q_{jet}(p_L^{rel},\kappa=0.3)$	190070 ± 436	164648 ± 406	264878 ± 515	57.2 ± 0.1	7.2 ± 0.2	0.294 ± 0.013			
$Q_{jet}(p_L^{rel},\kappa=0.4)$	193133 ± 439	167339 ± 409	259124 ± 509	58.2 ± 0.1	7.2 ± 0.2	0.298 ± 0.013			
$Q_{jet}(p_L^{\overline{r}el},\kappa=0.5)$	196695 \pm 444	170455 ± 413	252446 ± 502	59.3 ± 0.1	7.1 ± 0.2	0.303 ± 0.013			
$Q_{jet}(p_L^{rel},\kappa=0.6)$	200279 ± 448	173930 ± 417	245387 ± 495	60.4 ± 0.1	7.0 ± 0.2	0.299 ± 0.013			
$Q_{jet}(p_L^{rel},\kappa=0.7)$	203674 ± 451	177589 ± 421	238333 ± 488	61.5 ± 0.1	6.8 ± 0.2	0.288 ± 0.013			
$Q_{jet}(p_L^{rel},\kappa=0.8)$	207043 ± 455	180880 ± 425	231673 ± 481	62.6 ± 0.1	6.7 ± 0.2	0.285 ± 0.013			
$Q_{jet}(p_L^{rel},\kappa=0.9)$	210187 ± 458	184304 \pm 429	225105 ± 474	63.7 ± 0.1	6.6 ± 0.2	0.274 ± 0.013			
$Q_{jet}(p_L^{rel},\kappa=1.0)$	213312 ± 462	187417 ± 433	218867 ± 468	64.7 ± 0.1	6.5 ± 0.2	0.270 ± 0.013			
-	jet 0.3	∳ · · ∳ · · ∳							

Best $\kappa = 0.5$

A. Rakitin, Lancaster University, B-mixing and Lifetime Meeting, July 13, 2006

Best many-track tagger

- The best tagger is $Q_{jet}(p_t, \kappa = 0.5)$
- We will use this tagger only, skipping the remaining 30

Chosen taggers

- So, we've chosen four taggers: "Min. ΔR ", " K^{*0} ", "Lambda" and " $Q_{jet}(p_t,\kappa=0.5)$ "
- Let's obtain one combined tagging variable for them

Combination of *B*-flavor taggers:

- Combination algorithm (developed by Guennadi *et al.* for OST):
 - Find uncorrelated discriminating variables x_i

with p.d.f. $f_i^b(x_i)$ and $f_i^{\overline{b}}(x_i)$ being different for b and \overline{b} quarks

- Define tagging variables $y_i = \frac{f_i^b(x_i)}{f_i^{\bar{b}}(x_i)}$; $y_i > 1 b$ -quark, $y_i < 1 \bar{b}$ -quark
- Define combined tagging variable $y = \prod y_i$
- Compute combined dilution for each event $d = \frac{1-y}{1+y}$
- Obtain combined ϵD^2

rightarrow Where to obtain p.d.f.'s?

- For OST they were taken from B_d sample
- For SST we have to take them from Monte Carlo

P.d.f's for chosen taggers:

Chosen variables are:

- $x_1 = q \cdot \Delta R$
- $x_2 = q \cdot (m(K^{*0}) 0.862)/(0.922 0.862)$
- $x_3 = q \cdot (m(\Lambda) 1.105) / (1.125 1.105)$
- $x_4 = Q_{jet}$

where \boldsymbol{q} is charge of the tag

Ratios of p.d.f's for chosen taggers:

"Lambda"

• Green circles – ratios of p.d.f.'s for \overline{b} -quark to p.d.f.'s for b-quark

" K^{*0} "

"Min. ΔR "

- Combined variable $y = \prod y_i$ is a product of all the ratios y_i ($y > 1 \overline{b}$ -quark, y < 1 b-quark)
- Combined dilution d for each event computed as d = ^{1-y}/_{1+y} (d < 0 b̄-quark, d > 0
 b-quark)

" $Q_{jet}(p_t, \kappa = 0.5)$ "

Combined dilution d

- d distribution has large discrimination power between b and \overline{b} quarks
- Events with low d have lower discrimination power \implies skip them, |d| > 0.086
- Resulting $\varepsilon D^2 = 0.442 \pm 0.016\%$ to be compared to:
 - $\epsilon D^2(\text{Min}.\Delta R) = 0.345 \pm 0.014$ %
 - $\epsilon D^2(K^{*0}) = 0.017 \pm 0.003$ %
 - $\epsilon D^2(\text{Lambda}) = 0.010 \pm 0.002$ %
 - $\epsilon D^2(Q_{jet}(p_t, \kappa = 0.5)) = 0.313 \pm 0.013$ %

Measuring SST dilution in data:

- Divide sample of N events into five subsamples:
 - N_1 events tagged only by first tagger with *true* dilution D_1
 - N_2 events tagged only by second tagger with *true* dilution D_2
 - N_{12} events tagged by both taggers identically with *true* dilution $D_{12} = \frac{D_1 + D_2}{1 + D_1 D_2}$
 - \bar{N}_{12} events tagged by both taggers differently with *true* dilution $\bar{D}_{12} = \frac{|D_1 D_2|}{1 D_1 D_2}$
 - N_{NT} events not tagged by both taggers
- A simple formula holds: $D_1D_2 = \frac{N_{12} \bar{N}_{12}}{N_{12} + \bar{N}_{12}}$
- Use one (more trustworthy) *true* dilution from other sources and measure another (D0 Note 4991: $D_{OST} = 44.3 \pm 2.2$)
- Calculate $\epsilon D^2 = \frac{1}{N} (N_1 \mathsf{D}_1^2 + N_2 \mathsf{D}_2^2 + N_{12} \mathsf{D}_{12}^2 + \bar{N}_{12} \bar{\mathsf{D}}_{12}^2)$

Measuring SST dilution in data:

	N_1	N_2	N_{NT}	N_{12}	\bar{N}_{12}	$\frac{N_{12} - N_{12}}{N_{12} + \bar{N}_{12}}$	D_{OST}	D_{SST}^{meas}	D_{12}^{calc}	\bar{D}_{12}^{calc}	$\varepsilon D^2(calc), \%$
Min. p_t^{rel}	21255±198	376±22	2786±61	1440±50	1425±49	$0.005 {\pm} 0.024$	44.3 ± 2.2	1.2 ± 5.5	45.2±4.9	43.4±5.0	2.343±0.345
Max. p_L^{rel}	21255±198	376±22	$2786{\pm}61$	1521 ± 51	1334±48	$0.066 {\pm} 0.024$	44.3 ± 2.2	$14.8 {\pm} 5.6$	55.5±4.4	$31.6 {\pm} 5.7$	4.181±1.327
Max. p_t	$21255 {\pm} 198$	376±22	2786±61	$1498 {\pm} 51$	1354±48	$0.050 {\pm} 0.024$	44.3 ± 2.2	11.4 ± 5.6	53.0±4.5	34.7±5.5	3.416±1.038
Min. $ \Delta \vec{P} $	21255 ± 198	376±22	2786±61	1517 ± 51	1337±48	$0.063 {\pm} 0.024$	44.3 ± 2.2	14.3±5.6	55.1±4.4	32.1±5.7	4.052±1.283
Min. ΔR	$21255{\pm}198$	376±22	$2786{\pm}61$	$1503 {\pm} 51$	$1354{\pm}48$	$0.052{\pm}0.024$	44.3 ± 2.2	11.7 ± 5.6	53.3±4.5	34.3±5.5	3.496±1.068
Max. $\cos \alpha$	$21255 {\pm} 198$	376±22	$2786{\pm}61$	$1505{\pm}51$	$1355{\pm}48$	$0.052{\pm}0.024$	44.3 ± 2.2	$11.8 {\pm} 5.6$	53.3±4.5	34.3±5.5	3.508±1.073
Min. $\cos \theta^*$	$21255{\pm}198$	376±22	$2786{\pm}61$	$1526{\pm}51$	1327±48	$0.070 {\pm} 0.025$	44.3 ± 2.2	$15.8 {\pm} 5.6$	56.1±4.3	30.7±5.8	4.430±1.412
Max. $\cos \theta^*$	$21255{\pm}198$	376±22	$2786{\pm}61$	$1438{\pm}50$	1426±49	$0.004 {\pm} 0.024$	44.3 ± 2.2	$1.0{\pm}5.5$	45.1±4.9	43.5±5.0	2.339±0.341
Min. $m(B_sK)$	21255 ± 198	376±22	2786±61	1465 ± 50	1400±48	$0.023 {\pm} 0.024$	44.3 ± 2.2	5.1 ± 5.5	48.3±4.7	40.1±5.2	$2.555 {\pm} 0.550$
Random	21255 ± 198	376±22	2786±61	1419±50	1435±49	-0.005 ± 0.024	44.3 ± 2.2	-1.2 ± 5.5	43.3±5.0	45.3±4.9	2.338±0.345

Disagreement to be understood...

A. Rakitin, Lancaster University, B-mixing and Lifetime Meeting, July 13, 2006

	N_1	N_2	N_{NT}	N ₁₂	\bar{N}_{12}	$\frac{N_{12} - N_{12}}{N_{12} + \bar{N}_{12}}$	D_{OST}	D_{SST}^{meas}	D_{12}^{calc}	\bar{D}_{12}^{calc}	$\varepsilon D^2(calc), \%$
Aver. Q	$15447 {\pm} 165$	$1150 {\pm} 44$	8602±125	1087±42	997±40	$0.043 {\pm} 0.028$	44.3 ± 2.2	9.7±6.3	$51.8 {\pm} 5.0$	36.1±6.0	$2.910 {\pm} 0.744$
$Q_{jet}(p_t,\kappa=0.1)$	$14532 {\pm} 159$	1251±46	9511±132	1031±41	950±38	$0.041 {\pm} 0.028$	44.3 ± 2.2	9.2±6.4	51.4 ± 5.1	36.6±6.1	$2.818 {\pm} 0.682$
$Q_{jet}(p_t,\kappa=0.2)$	$14492 {\pm} 159$	1261±46	9555±133	1029±41	939±38	$0.046 {\pm} 0.028$	44.3 ± 2.2	10.4±6.4	52.3 ± 5.1	35.6±6.1	$2.947 {\pm} 0.758$
$Q_{jet}(p_t,\kappa=0.3)$	$14601 {\pm} 160$	1277±46	9447±132	1032±41	932±38	$0.051 {\pm} 0.028$	44.3 ± 2.2	$11.6 {\pm} 6.4$	53.1 ± 5.1	34.5±6.2	$3.107 {\pm} 0.841$
$Q_{jet}(p_t,\kappa=0.4)$	$14803 {\pm} 161$	$1246 {\pm} 45$	9249±129	$1056{\pm}41$	935±38	$0.060 {\pm} 0.028$	44.3 ± 2.2	13.7±6.4	$54.6 {\pm} 5.0$	32.6±6.3	3.427 ± 0.987
$Q_{jet}(p_t,\kappa=0.5)$	15070 ± 162	1201±44	8978±128	1088±42	948±39	$0.069 {\pm} 0.028$	44.3 ± 2.2	$15.6 {\pm} 6.3$	56.0±4.8	30.8±6.4	3.790±1.128
$Q_{jet}(p_t,\kappa=0.6)$	$15338 {\pm} 164$	$1158 {\pm} 44$	8713±125	1113±43	962±39	$0.073 {\pm} 0.028$	44.3 ± 2.2	16.5 ± 6.3	56.7±4.8	30.0±6.4	3.990±1.206
$Q_{jet}(p_t,\kappa=0.7)$	$15689 {\pm} 166$	1118±43	8360±123	1150±43	966±39	$0.087 {\pm} 0.028$	44.3 ± 2.2	19.6±6.3	58.8±4.6	27.0±6.6	4.737±1.450
$Q_{jet}(p_t,\kappa=0.8)$	$16027 {\pm} 168$	1078±42	8021±121	1167±44	992±40	$0.081 {\pm} 0.027$	44.3 ± 2.2	18.4±6.2	58.0±4.7	28.2±6.5	4.486±1.376
$Q_{jet}(p_t,\kappa=0.9)$	$16345 {\pm} 170$	1043±41	7704±118	1175±44	1018±40	$0.071 {\pm} 0.027$	44.3 ± 2.2	16.1±6.2	56.4±4.7	30.3±6.3	4.020±1.230
$\overline{Q_{jet}}(p_t,\kappa=1.0)$	16618±172	1002±40	7429±116	1205±45	1027±41	0.080±0.027	44.3 ± 2.2	18.0±6.2	57.7±4.6	28.6±6.4	4.477±1.385

A. Rakitin, Lancaster University, B-mixing and Lifetime Meeting, July 13, 2006

	N_1	N_2	N_{NT}	N_{12}	\bar{N}_{12}	$\frac{N_{12} - N_{12}}{N_{12} + \bar{N}_{12}}$	D_{OST}	D_{SST}^{meas}	D_{12}^{calc}	\bar{D}_{12}^{calc}	$\varepsilon D^2(calc), \%$
$Q_{jet}(p_t^{rel}, 0.1)$	14541±159	1251±46	9504±132	1039±41	946±38	$0.047 {\pm} 0.028$	44.3 ± 2.2	10.6±6.4	52.4±5.1	35.4±6.1	2.977±0.769
$Q_{jet}(p_t^{rel}, 0.2)$	14598±160	1236±46	9444±131	$1066 {\pm} 41$	934±38	$0.066 {\pm} 0.028$	44.3 ± 2.2	14.9±6.4	55.6±4.9	31.5±6.4	3.626 ± 1.056
$Q_{jet}(p_t^{rel}, 0.3)$	14776±161	1205±45	9268±129	1075±42	952±39	$0.061 {\pm} 0.028$	44.3 ± 2.2	13.7±6.3	54.7±4.9	32.6±6.3	3.437±0.983
$Q_{jet}(p_t^{rel}, 0.4)$	15062 ± 163	1170±44	8981±128	1079±42	987±39	$0.045 {\pm} 0.028$	44.3 ± 2.2	10.1±6.3	52.0±5.0	35.8±6.0	2.936±0.752
$Q_{jet}(p_t^{rel}, 0.5)$	15449±165	1086±43	8595±125	1129±43	1022±40	$0.050 {\pm} 0.027$	44.3 ± 2.2	11.3±6.2	52.9±4.9	34.8±6.0	3.111±0.835
$Q_{jet}(p_t^{rel}, 0.6)$	15837±167	1049±42	8207±122	1147±43	1040±40	$0.049 {\pm} 0.027$	44.3 ± 2.2	11.0±6.1	52.7±4.9	35.0±6.0	3.095±0.836
$Q_{jet}(p_t^{rel}, 0.7)$	$16085 {\pm} 169$	990±41	7958±120	1183±44	1057±41	$0.056 {\pm} 0.027$	44.3 ± 2.2	12.7±6.1	54.0±4.8	33.5±6.0	3.360±0.952
$Q_{jet}(p_t^{rel}, 0.8)$	16378±171	954±40	7667 ± 117	1201±44	$1069 {\pm} 41$	$0.058 {\pm} 0.027$	44.3 ± 2.2	13.2±6.0	54.3±4.8	33.1±6.0	3.454±0.999
$Q_{jet}(p_t^{rel}, 0.9)$	16720±173	927±39	7330±114	1224±45	1071±42	$0.067 {\pm} 0.027$	44.3 ± 2.2	15.0±6.0	55.6±4.7	31.4±6.1	3.827±1.150
$Q_{jet}(p_t^{rel}, 1.0)$	16996±174	874±38	7055±112	1249±45	1099±42	0.064±0.026	44.3 ± 2.2	14.4±6.0	55.2±4.6	31.9±6.0	3.732±1.110

	N_1	N_2	N_{NT}	N_{12}	\bar{N}_{12}	$\frac{N_{12} - N_{12}}{N_{12} + \bar{N}_{12}}$	D_{OST}	D_{SST}^{meas}	D_{12}^{calc}	\bar{D}_{12}^{calc}	$\varepsilon D^2(calc), \%$
$Q_{jet}(p_L^{rel}, 0.1)$	$14535 {\pm} 159$	1255±46	9510±132	$1035{\pm}41$	944±38	$0.046 {\pm} 0.028$	44.3 ± 2.2	10.4±6.4	52.3±5.1	35.6±6.1	2.949±0.756
$Q_{jet}(p_L^{rel}, 0.2)$	14502±159	1265±46	9543±132	1040±41	931±38	$0.056 {\pm} 0.028$	44.3 ± 2.2	12.5±6.4	53.8±5.0	33.6±6.3	3.237±0.897
$Q_{jet}(p_L^{rel}, 0.3)$	14720±160	1256±46	9334±131	$1058 {\pm} 41$	924±38	$0.068 {\pm} 0.028$	44.3 ± 2.2	15.3±6.4	55.8±4.9	31.1±6.4	3.702±1.096
$Q_{jet}(p_L^{rel}, 0.4)$	14911 ± 161	1212±45	9139±130	1077±42	952±39	$0.062 {\pm} 0.028$	44.3 ± 2.2	14.0±6.3	54.9±4.9	32.3±6.3	3.490±1.005
$Q_{jet}(p_L^{rel}, 0.5)$	$15192{\pm}163$	1183±44	8856±127	1098±42	958±39	$0.068 {\pm} 0.028$	44.3 ± 2.2	15.3±6.3	55.8±4.8	31.1±6.4	3.750±1.114
$Q_{jet}(p_L^{rel}, 0.6)$	15497±165	1141±43	8544 ± 125	1119±43	973±39	$0.070 {\pm} 0.028$	44.3 ± 2.2	15.7±6.3	56.1±4.8	30.7±6.3	3.857±1.158
$Q_{jet}(p_L^{rel}, 0.7)$	15777±167	1107±43	8271±122	1144±43	983±40	$0.076 {\pm} 0.028$	44.3 ± 2.2	17.1±6.3	57.1±4.7	29.4±6.4	4.166±1.273
$Q_{jet}(p_L^{rel}, 0.8)$	$16099 {\pm} 169$	1046±41	7944±120	$1165 {\pm} 44$	1019±40	$0.067 {\pm} 0.027$	44.3 ± 2.2	15.1±6.2	55.7±4.8	31.3±6.2	3.788±1.137
$Q_{jet}(p_L^{rel}, 0.9)$	16443±171	1018±41	7602±117	1180±44	1036±41	$0.065 {\pm} 0.027$	44.3 ± 2.2	14.7±6.2	55.4±4.8	31.6±6.2	3.750±1.133
$Q_{jet}(p_L^{rel}, 1.0)$	16721±173	997±40	7326±114	1199±45	1036±41	0.073±0.027	44.3 ± 2.2	16.4±6.2	56.6±4.7	30.1±6.3	4.116±1.272

Summary

- Investigated 44 different SST algorithms with four Monte Carlo samples
 - 10 one-track taggers
 - 3 two-track taggers
 - 31 many-track tagger
- Taggers in groups are correlated to each other
- Selected one best tagger from each group:
 - "Min. ΔR "
 - "*K**0"
 - "Lambda"
 - " $Q_{jet}(p_t, \kappa = 0.5)$ "
- \bullet Combine four SST algorithms \implies combined dilution d has the largest discrimination power
- Resulting tagging power $\varepsilon D^2 = 0.442 \pm 0.016\%$
- Used double-tagged events to measure SST dilution directly from data
 - Disagreement between Monte Carlo and data is to be understood