Automotive Composites Consortium Focal Project 4: Automotive Components from Structural Composites

> Presenter - Donald Vesey Member – ACC Board of Directors

Principal Investigators: Libby Berger – General Motors (Underbody) John Jaranson – Ford (Seat) February 27, 2008

This presentation does not contain any proprietary or confidential information.

Approach

- Guide, focus, and showcase the technology research of the four ACC working groups (Materials, Processing, Joining, and Energy Management).
- Design and fabricate structural automotive components with reduced mass and cost, and with equivalent or superior performance to existing components.
- Develop new composite materials and processes for the manufacture of these high volume components, as well as methods for structural joining and assembly to dissimilar materials.
- This project will encompass two components and the materials and processes necessary to meet our objectives.
 - Structural Underbody
 - Second Row Seat
- Each with unique goals relative to:
 - Volume per annum
 - Physical size
 - Materials
 - Technology Development

Structural Composite Underbody

- While composite floorpans are currently in use in mainstream automotive production, none currently are designed to be structural in terms of carrying cras loads. This project will demonstrate:
 - 2 ½ minute cycle time (100k vehicles, 2 shift production)
 - Structural joining and assembly
 - Oriented fibers in high volume applications

Project Approach

- Phase 1 is the selection of a design concept and a material and process system (MPS) – completed Nov. 1, 2007
 - Preliminary design and analysis
 - Determination of properties for 3 MPS's
 - Technical Cost Model
- Phase 2 will be full design, incorporating other components of the Multi-Material Vehicle, as available, based on the donor vehicle. 1Q09
- Phase 3 will be fabrication of the underbody and assembly into the donor vehicle. 4Q10

CAE Performance Assessment

Phase 1 Load Cases:

- Body-in-White (BIW) static torsional and bending stiffness
- BIW first bending and torsional modal response
- EuroNCAP/IIHS 40 mph Frontal Offset Deformable Barrier (ODB)
- FMVSS214 33.5 mph Side Impact
- FMVSS301 50 mph Rear Offset Impact

Crash requirements were found to overshadow the vehicle level stiffness requirements

40 mph Frontal ODB: Composite Proposals

- Based on the results of >135 ODB simulations, the most effective methods for achieving acceptable performance and mass reduction were:
 - Optimizing the local material thickness and orientation
 - Adding a high-elongation core material to the laminate with a thickness of up to 2.5mm in strategic regions of the floor
 - Allowing the driveshaft to telescope an additional 70mm
 - Reducing the thickness of the steel underbody rail components
 - Reducing the ribbing height and deleted the ribbing in some locations

Front ODB – Predicted Deformed Shape for Proposed Composite Underbody

Only localized damage predicted – acceptable failure

Mass Comparison: Steel vs. Composite

- Mass summary for fiberglass fabric based design with a 2.5mm thick high strain-to-failure high-elongation core
- Mass reduction depends on material assumptions
- Stiffness increase from composite floorpan allows decrease in rails, as well as further anticipated mass compounding

	Description	Total (Floor & Rails)			Floor Only			Rails Only			
Trial		Mass Reduction		Mass Reduction		Mass Reduction					
		kg	kg	%	kg	kg	%	kg	kg	%	
1098	Baseline steel	68.5	0	0%	44.9	0	0%	23.6	0.0	0%	
1103	Fiberglass fabric, 2.5mm core, reduced rail thickness, telescoping driveshaft	53.9	-14.6	-21%	33.6	-11.3 1	-25%	20.3	-3.3	-14%	
Significant additive mass reduction					Primary mass reduction			Secondary mass reduction			

Material and Process Trials

- SMC
 - Random material to 61 wt% glass
 - Compounded glass fabric material
 - Compounded material with highelongation core
- DLFT
 - Random polyamide to 50 wt%
 - Glass fabric molded with random
- LFI
 - Random material to 60 wt%
 - Fabric reinforcement still under development
- Best mechanical properties are for SMC with fabric
- Thermal properties of SMC are significantly higher than for polyamide DLFT

MPS Selection

- Cost model does not show major differences between the 3 processes
 - Assumes lower cost nylon will work
- SMC is the only process that has so far demonstrated ability to mix random with high content fabric
- Fabric/core saves the mos mas
- Carbon fabric saves about 3 kg more mass than glass, but at a cost of about \$250 more at current carbon pricing.
- Select SMC glass fabric, with cor if it can meet th temperature requirements, as our mainstream MPS
- Continue to develop the LFI and TP processes and evaluate the benefits they would have to a structural composite underbody

Assembly and Joining

Weld-bonding

- A combination of welding and bonding
- Welds have two functions
 - Peel stoppers
 - Fixturing for cure
- Joints perform better than either welding or bonding alone
- Study underway to compare static and dynamic weldbonded joint behavior
 - With ORNL TMAC facility
- Mixed material joint durability project (proposed with ORNL)
 - CLTE mismatch
 - Environmental exposure
 - Creep
 - Fatigue

Accomplishments

- Crash requirements found to overshadow the vehicle level stiffness requirements
- Preliminary design shows mass savings of up to 14.6kg in floorpan and rails
- Innovative materials and processes demonstrated in SMC and DLFT
 - Use of compounded fabric in SMC
 - Use of fabric in DLFT
 - Addition of high-elongation core
- SMC with glass fabric and high elongation core selected as Material and Process System

Composite Seat Team

- Chrysler
 - Jerry Olszewski
 - Jeremy Panasiewicz
 - Becky Joitke
- Ford
 - John Jaranson
 - Dan Houston
- General Motors
 - Pete Foss
 - Chuck Mentzer

- Supplier Partners
 - Altair Engineering
 - Chelexa Design
 - EPFL
 - MSX International

Project Assumptions/Scope

Vehicle Level

- 2nd Row Outboard Seat only
- Minivan/Crossover/SUV Comparator Vehicles
 - Land Rover LR 3
 - Chrysler Town & Country (Stow N Go)
 - Chevrolet GMT800
- Up to 340k upa Volume

Structures Level

- Back Frame and Cushion Frame only
- Carry-over Headrest Design
- Mechanisms and legs not included (except as related to attachments and joints)
- Seat Integrated Restraint to be included.

Materials Level

- Thermoplastics and Thermosets included
- Glass reinforcement with local carbon as required
- Metal reinforcements included.

Stretch Research/Approach

Design

- Parts Integration of Structural and Appearance parts.
 - Seat back structure
 - Load Floor Structure
 - Load Floor Appearance
- Hard Point Design
 - Belt Attachment
 - Pivot Points
 - Head Restraint Attachments

Structure/Materials/Process

- Orientated Fibers in High Volume
- Carbon and Glass hybrids
- Thermoset and Thermoplastic Materials.

Design Approach

- Design and CAE Analysis to determine optimal design of the seat structure
 - Include material considerations in optimization
- Cost Modeling to determine appropriateness of design and material selection

Verification and Prove-out

- Development manufacturing processes for materials and part design
- Build and test prototypes
- Verify cycle time and cost assumptions.

Current Design

Design

- Parts Integration of Structural and Appearance parts.
 - Seat back structure
 - Load Floor Structure
 - Load Floor Appearance
- Hard Point Design
 - Belt Attachment
 - Pivot Points
 - Head Restraint Attachments

Structure/Materials/Process

- Orientated Fibers in High Volume
- Carbon and Glass hybrids
- Thermoset and Thermoplastic Materials.

Standard Seat SIR Seat

CAE Analysis

- Current designs meet worst case load requirements
 - FMVSS 207/210 Belt Load
 - ECE0017 Carg Retention
 - 25g Occupied Front Impact
 - 20g Occupied Rear Impact

Weight Status

Focal Project 4	Weights (kg)								
Composite Seat	Complete Seat	Riser	Headrest	Soft Trim	Hardware	Cushion Str	Back Str		
Comparators									
DCX Stow N Go (non-SIR)	33.02	15.34	0.89	3.59	6.79	4.62	1.79		
Ford LR3 (non-SIR)	23.65	8.79	0.63	2.78	3.36	4.28	3.81		
GM GMT900 (non-SIR)	22.41	9.29	0.69	3.37	2.29	3.47	3.30		
Average (no DCX)	23.03	9.04	0.66	3.08	2.83	3.88	3.56		
Targets - 30% Weight Save	20.46	8.80	0.63	3.00	2.83	2.71	2.49		
Current Design Status									
Composite Std Seat	20.52	8.80	0.63	2.78	2.63	2.70	2.98		
%Weight Save	11%	3%	5%	10%	7%	30%	16%		
Weight Save (kg)	2.5	0.2	0.0	0.3	0.2	1.2	0.6		
Composite SIR Seat	22.30	8.80	0.63	2.78	3.59	2.89	3.10		

Specifc Gravity Assumptions

Steel Carbon/Nylon

7.8 1.3

Cost Modeling

- EPFL is creating TPP4 versions of the seatback for comparison.
 - Glass filled Polypropylene
 - Non-appearance
 - Seatback only
 - Both Standard and SIR
- Preliminary cost modeling is complete.
 - ACC Carbon fiber seat looks to be cost prohibitive.
 - Additional work needs to be completed to get complete cost picture.

