Status of the Third RF Cavity Upgrade for the IPNS RCS

J. C. Dooling, F. R. Brumwell, M. K. Lien, G. E. McMichael, M. E. Middendorf, and M. R. Moser

Argonne National Laboratory, Argonne, IL 60439, USA

presented at the

Second-Harmonic/Low-Impedance Amplifier Collaboration Meeting July 4, 2003 ISIS, Rutherford Appleton Laboratory, Chilton, UK

RCS Third Cavity Upgrade—Rationale

- Provide a backup rf cavity—improve reliability.
- Increase current limit—more neutrons
 - More and/or faster experiments
 - Better resolution

Rapid Cycling Synchrotron

- Circumference=42.9 m
- Two cavities
- 21 kV, rf accel. voltage
- 3rd cavity planned in L6
- 30 Hz
- Began operation in 1981

IPNS RCS

Physical Description RCS Voltage and Magnetic Field Programs

Physical Description, con't

RCS bunch frequency, pulsewidth, B_{f} , and current

- 50 MeV, injection
- 3.7x10¹² protons injected
- 450 MeV, 3.2x10¹² protons extracted
- Combined function magnets
- Pulsed quads
- Sextupoles
- Tunes:
 - 2.20 horizontal
 - 2.35 vertical

Physical description, con't Cavity-cavity phase modulation (PM) adds stability

Simulation results with second harmonic (SH)

- Simulation with fund. only and SH, zero phase
- Comparison of predictorcorrector model and CAPTURE_SPC[†] (also second order) with no space-charge yields essentially identical results.
- [†]Y. Cho, E. Lessner, K. Symon, Proc. EPAC, 1228(1994).

Loss and Efficiency capture and early acceleration

- Initial testing with SH, try SH early then switch to fundamental frequency program
 - J. Norem, et al., IEEE Trans. NS, <u>30</u>, 3490(1983).
 - CB PS rise time 2.5 ms
- Initial phasing tied to fundamental
- New ferrite not needed for this

For simulations: $\Delta E_{inj}=0.4 \text{ MeV}$ $\Delta p/p=0.4\%$

J. Norem's proposal

• PM not included!

Comparison of CAPTURE_SPC and HP elliptical line densities

With new ferrite, can extend SH for the full acceleration cycle (4.4-10.3 MHz)

possible phasing strategies--

Simulation suggests current increase as much as 60 percent with full SH

Loss limit operation predicted by CAPTURE_SPC using θ -ramp from 8-10 ms (δ =0.55)

CAPTURE_SPC simulation for full SH and phase ramp

3rd cavity operational issues

- How far can present ferrite be pushed (~6 MHz)?
- Cavity response time (relatively slow CB PS) for frequency switch over
- Idling—once 3rd cavity is in, can we turn it off without too much parasitic losses
- Stability—with SH, will the PM scrambler still be necessary?
- Phasing—determine the optimum phase vs. t

– Hopefully we can glean some of this from ISIS studies

Recent results

- Good news—Pre-driver and driver are working up to design power levels~15 kW into 50- Ω loads.
- Bad news is the final is not completed yet
- Good news is that the final is almost complete as later pictures will show
 - Still need crowbar (talking to DTI—fast opening sw.)
 - Filament choke using ferrite design is presently being constructed in our shop

Driver Schematic

Driver Data-amplitude vs. frequency

Driver Data-amplitude vs. time

Final schematic

Final Cabinet is now in the RF Test Stand Area

Two-turn ferrite filament choke

Filament choke prototype data

4x7 turn .289" prototype choke coil, data supplied by J. Russell, CCI, 3/5/03

 $C = 34 10^{-12}$ F $L := \frac{1}{\omega_{POS}^2 \cdot C}$ $L = 4.2124 \times 10^{-5}$ H

Ferrite filament choke—impedance stays inductive, is not as peaked, and has a significant resistive component

C := $4.8 \cdot 10^{-12}$ L := $\frac{1}{\omega_{\text{res}}^2 \cdot \text{C}}$ L = $1.6102 \times \cdot 10^{-4}$

RF Test Stand Cabinets

SS, PreDriver, and Driver Amplifiers

• Final Grid and Filament PS

RF Test Stand —inside the ZGS tunnel

RF Final Diagnostics

- Plate current on each tube (shunt resistor, 0.1 Ω, 50 W)
- Total plate current return to the NWL PS (shunt resistor, 0.1 Ω , 100 W)
- Fast current on each side of the gap (Pearson CTs)
- Gap voltage (cap. divider)
- Thermocouples on both 10 kW, 50- Ω loads at the final input for calorimetry (RTDs)

Acknowledgement

This work would not be possible without the dedication and hard work of the IPNS Accelerator Operations Group; as well as support from the ANL IPNS and MSD Divisions, and the DOE.

