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Abstract

At first glance, Delaunay triangulation using Bowyer-Watson algorithm seems to be inherently sequential, but by ex-
ploiting Delaunay triangulation properties, it is possible to parallelize this kernel very efficiently. This report presents
both coarse grained and fine grained multithreaded algorithm. Coarse grained multithreading uses optimistic concur-

rency control mechanism, whereas fine grained multithreaded algorithm exploit hardware supported multithreading
being commercially available on Intel SMT processors.



Chapter 1

| ntroduction

The Delaunay triangulation (DT) have been extensively studied and many robust sequential implementations are avail-
able. [4] In literature, there are many theoretical parallel algorithms for DT, but their reliable implementation and
availability are not very impressive. DT falls under the category of irregular applications, which pose different set
of problems for both shared memory and distributed memory machines. Because of the dynamic and unpredictable
nature of DT algorithm, a naive implementation may suffer from excessive synchronization in both architectures. On
distributed memory machines, distributed data management becomes a major performance issue.

There are many DT algorithms such as incremental, divide-and-conquer and sweepline algorithm which have been
used in both sequential and parallel environments. Perhaps the easiest among them is Bowyer-Watson incremental
method [1], in which vertices are added one-by-one and at each stage Delaunay properties are maintained.

In this paper, | will present an efficient implementations of Bowyer-Watson Delaunay triangulation using threads.
The first implementation is Coarse grained multithreading which is based on the heuristic that threads can work in
spatially distant domains and conflicts will be rare. If any conflicts occurs, they can be resolved at later time, The
second approach is based on the observation that numerically the most expensive part of DT is cavity calculation and
therefore parallelization must be exploited in the kernel.

This paper is organized as follows: section 11, describes the basic Bowyer-Watson algorithm, section 11 gives a brief
overview of coarse grained approach, section IV describes about the fine grained approach and finally section V
presents the conclusions.

1.1 Basic Algorithm

The basic Bowyer-Watson algorithm is an incremental algorithm in which vertices are inserted one-by-one. When
a new vertex is inserted in an existing mesh, all the elements that violate the Delaunay empty circumcircle property
form a Cavity. The elements in this cavity are removed and new elements are formed using new vertices as an apex
of the cavity. This process is continued till all the vertices are inserted into the mesh. The pseudo code of sequential
Bowyer-Watson is as follows:



Bowyer_Watson_Kernel(M,, vertezQ)

1=0

while (lvertex@.empty()) do
V., < vertex@.pop() //This vertex becomes the apex of cavity
Es — SearchSource(M;,V,)
&, — {c,c € M, that violates the Delaunay Property}
En « {c,c anewelementc ¢ M; and include V,}
M'H—l — Mz - g’u + g’n
t—1+1

enddo

The efficiency of the DT kernel depends on the following three factors:

1. Point location: Given a vertex V,, a point location algorithm finds the element in the existing mesh M that
includes the vertex. This element will always violate the Delaunay empty sphere property and therefore acts as
a seed for the growth of the cavity. For DT, point location is carried out using either random walk technique
or using spatial trees such as K-D trees as background mesh. In mesh generation, a vertex is inserted at the
circumcenter of the bad elements, therefore a good hint for point location is already known.

2. Cavity Creation: Given a mesh M; and the source element £s of a cavity, the cavity is expanded either as
breadth-first (BFS) or depth-first (DFS) strategy starting from source element. All the elements that violate the
Delaunay property are included in the violation set &,,.

3. Data Structures: DT algorithm require efficient lookup, insert and delete operations from its data structures.
For this purpose, we use map, hashmap and set data structures from STL.

1.2 Coarse Grained Multithreading(CGM) Approach

In the CGM method, multiple cavities are expanded in parallel by multiple threads during the transaction phase in
which the global data structures are used only for identifying the cavities. Since most of the operations on data are
read-only in this phase, we avoid using locks which is the main reason behind performance degradation in multi-
threaded implementation. Conflict resolution phase and commit phase constitutes a very small fraction of the overall
computation execution time and are carried out by a single thread. Experiments show that it is possible to achieve
more than 95% efficiency for both 2D and 3D kernels.

1.2.1 Optimistic Concurrency Control

Optimistic Concurrency Control (OCC) have been widely used in databases and operating systems. A good and brief
information can be found in [3]. This method works on the following assumptions

e Each task is a transaction with the computational resources.
e The number of tasks are quite huge and any conflicts among them are rare during transactions.

o If the conflicts occurs, the task can be recomputed.



o If the conflicts are rare, the speculative execution without locking pay very high dividends.

This model of concurrency control is well suited for DT using incremental algorithm. In DT, calculation of cavity
for each new vertex is considered as one task, number of vertices for many practical mesh generation is very large
(10% — 10'2), many good spatial heuristic strategies can reduce the conflicts and strict order of vertex insertion is not
very important. With these ideal conditions, we apply OCC method for mesh generation.

The OCC method have three distinct phases Transaction Phase, Validation Phase and Commit Phase. During the
transaction phase, concurrent tasks are executed without locking. In the validation phase, all the tasks are scanned for
possible conflicts identified and in the commit phase, all the successful transactions are made persistent. These three
phases are shown in the figure 1.1.

Read Validation Write
Execution

Figure 1.1: Three phases of Optimistic Transactions

1.2.2 Multithread Delaunay Triangulation Kernel (MDTK)

In this section, | describe all the three phases of OCC method that are applied to DT kernel. The figure 1.2 shows both
sequential and multi-threaded flow chart of the basic algorithm.

e Transaction Phase: The main executing thread, creates a fixed number of threads and passes three arguments
to each thread (1) A pointer to the mesh object (2) set of vertices that are assigned to the thread (3) starting
sequencelD. Each thread searches for the source and expand the cavity for each of the vertices assigned to
it. An expanded cavity includes three element set violationSet, newElementSet and protectionSet. violationSet
contains the elements of the mesh that violate the Delaunay property, newElementSet contains new elements that
will be created if the cavity is committed in the phase 11l and protectionSet are the elements that are protecting
the cavity (described later). Each thread runs concurrently even in the presence of possible conflicts that are
resolved later.

e Validation Phase: When all the threads have completed their work, they are joined and, the validation process
starts. This phase require sequential execution and therefore executed by a single main thread. This phase
identifies conflicts and assign valid/invalid flag to each cavity. Each cavity in the order of increasing sequencelD
assign its sequencelD to all its elements i.e violatioSet and protectionSet if it is not marked. If all the cavity
elements possess the same sequencel D, which signifies that no conflict has taken place. If any one of the element
in the cavity has lower sequencelD, means that conflict has occurred with the previous cavities. A conflicting
cavities releases all its sequencelDs and marked invalid. Only the valid cavities proceed towards committing
phase.

e Commit Phase: This phase is also performed by a single thread as (1) it require global data structure updates
(2) and the execution time is very small compared to creating new threads for this phase. The violationSet
elements are marked removed and appended to the objectpool, newElementSet elements are made persistent, all
the sequencelD of protectionSet elements are set to default value and memory pool of elements is checked and
refilled. The apex vertices of invalid cavities and threads are returned back to their respective pools for reuse in
the next round of transactions.



When the conflicts occurs, the vertex can be inserted at the front or back of the vertex queue.

e Insert conflicting vertex in the end of the queue: This is very simple to implement and this strategy forgets
everything about the cavity and all the computations done with it.

o Insert conflicting vertex in the front of the queue: Many cavities fail because they overlap with protectionSet of
other cavity. If this cavity is inserted in the front of the vertexQ, then at least we can take advantage of searching
the source of the cavity next time based on its previous search, hoping that at least one of the elements from the
previous protectionSet still survive in the mesh. Also, the cavity expansion could be minimized, if we can skip
Delaunay test properties on the elements, which still exist in the mesh. From the experiments and intuitions,
feel that the optimization gained from this approach may not be significant, if good KD trees for point location
is used. Although it might make significant improvement, if the random walk algorithm is used.

The C++ implementation of the core MDTK is as follows:

1 while( 'vertexQ.empty() ) {

2 numSpawned = 0;

3 //

4 // Expansion phase: It involves mostly "Read only" operation, therefore
5 // many cavities can be expanded concurrently.

6 //

7 for(int tid = 0; tid < numThreads; tid++) {

8 vertex_assigned.clear();

9

10 for( int i = 0; 1 < numCavitiesPerThread; 1++){

11 if( vertexQ.empty() ) break;

12 vertex_assigned.push_back( vertexQ.front() );

13 vertexQ.pop_Ffront();

14 3}

15

16 start_id = tid*numCavitiesPerThread;

17 BWKernel *newkernel = new BWKernel(outGrid, vertex_assigned, start id);
18 iT( newkernel ) {

19 bwkernel [numSpawned] = newkernel;

20 bwkernel [numSpawned]->setBoundingBox( &rootBox );
21 bwkernel [numSpawned]->start();

22 numSpawned++;

23 numCavities += vertex_assigned.size();

24 }

25 }

26 //

27 // Validation Phase: Check for conflicts among the cavities ..
28 //

29 vector<Cavity*> vcavity;

30 for(int tid = 0; tid < numSpawned; tid++) {

31 bwkernel[tid]->join();

32 vcavity = bwkernel[tid]->getCavities();

33 for( int j = 0; j < vcavity.size(); j++)

34 vcavity[jJ]->resolve_conflicts();



35 }

36 //

37 // Commit Phase : All the valid cavities are committed now.
38 //

39 conflicts.clear();

40 for(int tid = 0; tid < numSpawned; tid++) {

41 vcavity = bwkernel[tid]->getCavities();

42 for( int j = 0; j < vcavity.size(Q); J++){

43 vcavity[j]->release();

44 if( vcavity[jJ]->getStatus() == Cavity::BLOCKED ) {
45 vertexQ.push_back( vcavity[j]->getApex() );

46 numSetbacks++;

47 } else

48 vcavity[j]->commit();

49 delete vcavity[j];

50 }

51 delete bwkernel[tid];

52 }

53 }

1.2.3 Changesfrom Sequential Code

In the section, | describe the changes that | performed, to obtain scalable MDTK algorithm. Some changes are essential
and some changes which were required for MT also improved the sequential non-multithreaded version.

Identification of Conflict Region

The main issue in moving from sequential code to parallel code is to identify the conflicts and then resolve them. To
identify the Conflict region we look for DT properties and data structure modification requirements (Figure 1.3)

According to DT properties, if each edge (or face) is Delaunay, then the entire mesh is Delaunay or vice-versa.
Therefore, all the elements that share an edge( or face) with the cavity elements should be restricted and no new
point insertion are allowed in those elements.These elements are strictly protected in order to maintain the Delaunay
property and therefore grouped in strictSet.

The current data structures store vertex-element adjacency information. When a cavity is committed, all the vertices
that form the outer boundary of the cavity, require changes in their adjacency information. Since, we are not allowed
to use locks, all the elements that share the cavity vertices, become part of conflicting region. Elements which are in
this set but not in the strictSet, are grouped in relaxSet. These are relaxed because any conflict with this set does not
require recalculation of the cavity, but can be delayed for data structures changes.

Scalable multiprocessor memory allocation

Standard memory allocation functions such as malloc and calloc are suitable only for single-threaded applications.
These functions utilize single heap and thus only one thread can allocate/deallocate memory at a time. The perfor-



mance of multithreaded application is severely affected by this contention of the resource. Hoard is a fast, highly
scalable memory allocator library for multithreaded applications which maintains per-processor heaps and one global
heap. Each thread can access only its heap and the global heap. When a per-processor heap’s usage drop below a
certain fraction, Hoard transfer a large fixed-size chunk of its memory from the per-processor heap to the global heap
where it is then available for reuse by another processors. Hoard also reduces false sharing and memory fragmenta-
tion. We experimented with other multithreaded memory allocation library such as ptmalloc and mtmalloc. The results
shows that Hoard significantly outperforms other libraries as much as 5-10 times. For more information, please refer
to Hoard [2].

Object Reuse through Memory pool

DT is dynamic algorithm in which many objects are created and destroyed dynamically. For large size applications, re-
cycling can effectively reduce new/delete operations. A simple, single-threaded templated memory pool class provide
a good solution for this application.

template<class T>
class MemoryPool
{
public:
MemoryPool ( size_t size = EXPANSION_SIZE );
“MemoryPool () ;

inline void* alloc( size_ t size);
inline void free( void *elem);
private:
MemoryPool<T> *next;
enum { EXPANSION_SIZE = 512};
void expand_freelist( Iint nsize = EXPANSION_SIZE );

}

New objects are requested from the pool. Whenever a new object is requested, the pool returns the head of the list and
whenever an object is deleted the object is inserted at the end of the pool. The size of the pool can be changed by the
user.

In this application, we apply this technique at various places. Although, it improves the sequential algorithm also, but
it is important for MT implementation for retriangualtion to go in parallel as described below.

e A thread object is instantiated whenever a set of vertices are inserted in the mesh. Once the cavity for each
vertex is identified, the thread object is deleted. For large number of vertices, this incur cost of object creation
and deletion, which can be minimized by using the pool of threads.

e During re-triangulation of the cavity, old simplexes are deleted from the data structure and new simplexes are
created and inserted into the data structures as described earlier. In multithreaded implementation, whenever
possible, we try to avoid using new and delete by recycling the objects that have been marked deleted. In
the present application, the objectpool is expanded in the 111 stage by single thread. It is highly unlikely that
objectpool will run out of objects when required in the stage | (they can still be created at the expense of
performance slight performance loss ). With this approach, the re-triangulation stage also involve mostly Read
only operations.



1.24 Standard Template Library

We use Standard Template Library as an extremely useful blackbox. In our application, STL is used extensively,
therefore its performance in multithread application is critical. STL was primarily designed for single-threaded appli-
cations, therefore we must consider the following issues

e STL use reference counting for performance considerations. Reference counting may uses mutex or read-writer
locks to lock the counter value.

e For each data container, STL provide an argument for allocator which is customizable by the users. Different
implementations of STL uses different default allocators. For example, SGI STL uses alloc as default allocator,
which uses standard memory functions for allocation and deallocation purpose. Hoard library solves this
problem, but different implementation may choose other allocator, therefore portability becomes an issue.

o During the transaction phase, we want to avoid locking as much as possible because this phase mostly involves
read-only operations from global memory. Using const iterators for container traversal, and using const qualifier
whenever possible help compiler in optimizing the application.

125 Experimentsand Results

The entire application is written in C++ and the results are obtained using Sun Ultra2, 450MHz, 4096MB RAM with
quad CPU configuration available at Sciclone Cluster at the College of William and Mary. The compilation was done
with Sun CC with -O5 optimization flag.

The standard Pthread library is written in C and our entire data structures have been written in C++. We adopted
CommonC++ which provide very high level pthreads function in C++.

For experiments | generated random points using drand48() of different size (10 — 10%). At present, the user need to
provide an input for number of cavities that is assigned to each thread. This parameter amortizes the cost of threads
creation cost, but as this number goes up, it also creates more conflicts and therefore will require more recalculations.
Since, in general, this number depends on the input, a good number can be found by performing some experiments.
For all the test cases, | found that four cavities per thread produced the best execution time. In 3D, this number may
be less, as each thread have more work to do than in 2D.

e Is optimism good ? In this experiment, we wanted to know what fraction of cavity creation suffer setbacks as
the number of threads grow. The figure 1.5 shows that the conflicts are dominant in the start, but as the number
of elements in the mesh increases, they start decreasing. For reasonably large mesh, we found that number of
setbacks are less than 5%, which make the initial assumption correct that conflicts are rare.

e Memory allocator performance In this experiment, we used standard malloc, mtmalloc and hoard library
functions. Although, we have changed our application, we did not want to change STL and other libraries. The
figure in 1.6 shows that hoard is the best memory allocator for MT applications.

e Effect of Granularity This test was performed to know the number of cavities which should be assigned to
each thread( See figure 1.7 ). On quad CPU machine, the first set contains the execution time using 1-5 cavities
per thread, and the second set shows the execution time using 8 threads and assigning 1-5 cavities per thread.



1.3 Fine Grained Multithreading (FGM) Approach

With the FGM approach, parallelization is exploited at the level of cavity creation. It is based on the observation
that in Bowyer-Watson DT algorithm, numerically, the most expensive computation is the cavity identification and
refilling. Cavity identification step involves searching the triangle rooted at a given element £, that violate the delaunay
properties. Because of the local properties of the DT algorithm, searching is carried out using depth first search (DFS)
or breadth first search (BFS). Both BFS and DFS searching can be efficiently parallelized in the presence of efficient
hardware or software multithreading support.

e Factory Class In a given DT algorithm, for each newly inserted vertices, a new cavity has to be formed and
retriangulated, therefore, a pool of cavities are instantiated at the beginning and reused. The scheduling of
threads and context switching are expensive with standard Posix thread library. therefore, a customized Factory
class have been used which manages scheduling of the task transparently to the users.

e Spinlocks In the presentimplementation, at least six locks to protect the shared data. We use efficient spin locks
instead of standard Posix mutex.

e Multiprocessor memory allocator Standard memory allocators require locks which are expensive. In the present
algorithm, each thread allocate memory during the search operation, therefore we used Hoard library for mem-
ory allocation purpose.

Cavity :: expansion ( Triangle *source, Point *newpoint )
{
if( lcavity _expansion_factory.initialized() )
cavity expansion_factory = create new_factory();
cavity expansion_factory->start_working(Q);

cavity expansion_factory->wakeup();
factory_ breadth_first_search(source, newpoint);
cavity expansion_factory->sleep();

}
Cavity :: factory atomic work bfs( Triangle *tri, int side,

cavity expansion *parent, Point *apexCoords )
{

Triangle *neighbor = tri->neis[side];

if(neighbor) {
if (lisSelected(neighbor)) {
if( isRejected(neighbor) ) {
addltem(tri, neighbor, side, apexCoords );
} else {
double ori = in_circle(neighbor->points[0]->coord.xy,
neighbor->points[1]->coord.xy,
neighbor->points[2]->coord.xy,
apexCoords);
if(ori >=0) {
setSelected(neighbor);



cavity expansion *child = new cavity expansion(this, neighbor, parer
apexCoords);
cavity_expansion_factory->add_work( child );
} else {
setRejected( neighbor );
addltem(tri, neighbor, side, apexCoords );

}
}
}
} else {
addltem(tri, neighbor, side, apexCoords);
}
}
Cavity :: factory breadth_first _search( Triangle *source, Point *p)
{
apexCoords = p;
setSelected(source);
cavity expansion *root = new cavity_expansion(this, base, NULL, xy, areaBound, angle
cavity expansion_factory->add_work( root );
cavity expansion_factory->parent_barrier( root );
}

With both BFS and DFS searching methods, it is likely that a single element may be reached by two different threads.
If we do not allow two threads to access the elements then we need to protect the element with efficient mutex and
we do, then when all threads have completed their searching, we have to remove the duplicate elements to finalize the
cavity. The performance of the first method depends on the cost of mutexes whereas the performance of later depends
on the cost of sorting the element.

Once the cavity expansion start, the factory is woken up and become ready to accept work. The factory accepts work
unit which is an object and include all the work performed by the thread. Each work unit can create more work and
add to the factory object. This way a factory work unit are organized into tree structure. The factory does not return
until all the work from its children is complete.

The performance of the above module depends on mutexes which protect the data and the memory allocation for the
new work unit. In isSelected, isRejected, additem, setSelected and setRejected protect the data using locks.

1.4 Conclusions

Optimistic Concurrency Control is well suited for mesh generation algorithm such as Bowyer Watson incremental
algorithm. The experiments show that this method is scalable, reliable and most importantly requires minor modi-
fications in the existing sequential code. Efficient implementation of memory allocators, thread safe STL and good
heuristic are essential for obtaining good performance of this algorithm in multithreaded environments.
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Performance of Memory Allocators
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