pmc logo imageJournal ListSearchpmc logo image
Logo of procbJournal HomepageAboutSubmitAlertsEditorial Board
Proc Biol Sci. 1999 October 7; 266(1432): 1953.
doi: 10.1098/rspb.1999.0872.
PMCID: PMC1690315
Genome economization and a new approach to the species concept in bacteria
T. Vellai, A. L. Kov cs, G. Kov cs, C. Ortutay, and G. Vida
Abstract
The direct experimental evidence presented here shows that Escherichia coli cells can lose a part of their DNA during prolonged starvation. Under stringent conditions cells with a reduced DNA content achieve reproductive advantage over those that maintain their original genome size. Thus, the majority or nearly all of the cells of a long-starved bacterial population undergo genome size reduction. The loss of DNA seems to occur at random in different cells of a population and, thus, their DNA content may vary significantly from one another. The heterogeneity at the DNA level seems to be reflected in conspicuous morphological variability as well. We suggest that, in evolutionary terms, the general dynamics of bacterial genome organization involve two contrasting mechanisms: genome economization (size reduction by DNA loss) and genome loading (acquisition of exogenous DNA and its maintenance in the genome). The former, strengthening the so-called r strategy, might have resulted in the limited genome size of prokaryotes ranging up to 9.5 Mb. The latter explains the widespread horizontal, interspecific gene transfer (general genetic mixing) in bacteria. In the light of the above findings we propose a species concept in bacteria which is comparable to the biological species concept based on reproductive incompatibility.
Full Text
The Full Text of this article is available as a PDF (229K).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
  • Andersson, SG; Kurland, CG. Reductive evolution of resident genomes. Trends Microbiol. 1998 Jul;6(7):263–268. [PubMed]
  • Andersson, SG; Zomorodipour, A; Andersson, JO; Sicheritz-Pontén, T; Alsmark, UC; Podowski, RM; Näslund, AK; Eriksson, AS; Winkler, HH; Kurland, CG. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature. 1998 Nov 12;396(6707):133–140. [PubMed]
  • Aravind, L; Tatusov, RL; Wolf, YI; Walker, DR; Koonin, EV. Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet. 1998 Nov;14(11):442–444. [PubMed]
  • Bergthorsson, U; Ochman, H. Distribution of chromosome length variation in natural isolates of Escherichia coli. Mol Biol Evol. 1998 Jan;15(1):6–16. [PubMed]
  • Blattner, FR; Plunkett, G, 3rd; Bloch, CA; Perna, NT; Burland, V; Riley, M; Collado-Vides, J; Glasner, JD; Rode, CK; Mayhew, GF; Gregor, J; Davis, NW; Kirkpatrick, HA; Goeden, MA; Rose, DJ; Mau, B; Shao, Y. The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453–1474. [PubMed]
  • Bridges, BA. Microbial genetics. Hypermutation under stress. Nature. 1997 Jun 5;387(6633):557–558. [PubMed]
  • Chistoserdova, L; Vorholt, JA; Thauer, RK; Lidstrom, ME. C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. Science. 1998 Jul 3;281(5373):99–102. [PubMed]
  • Fischer, D; Teich, A; Neubauer, P; Hengge-Aronis, R. The general stress sigma factor sigmaS of Escherichia coli is induced during diauxic shift from glucose to lactose. J Bacteriol. 1998 Dec;180(23):6203–6206. [PubMed]
  • Fonstein, M; Haselkorn, R. Physical mapping of bacterial genomes. J Bacteriol. 1995 Jun;177(12):3361–3369. [PubMed]
  • Huisman, GW; Kolter, R. Sensing starvation: a homoserine lactone--dependent signaling pathway in Escherichia coli. Science. 1994 Jul 22;265(5171):537–539. [PubMed]
  • Jensen, KF; Pedersen, S. Metabolic growth rate control in Escherichia coli may be a consequence of subsaturation of the macromolecular biosynthetic apparatus with substrates and catalytic components. Microbiol Rev. 1990 Jun;54(2):89–100. [PubMed]
  • Kusano, K; Sunohara, Y; Takahashi, N; Yoshikura, H; Kobayashi, I. DNA double-strand break repair: genetic determinants of flanking crossing-over. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1173–1177. [PubMed]
  • Lawrence, JG; Ochman, H. Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9413–9417. [PubMed]
  • Marr, AG. Growth rate of Escherichia coli. Microbiol Rev. 1991 Jun;55(2):316–333. [PubMed]
  • Martin, W. Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. Bioessays. 1999 Feb;21(2):99–104. [PubMed]
  • Matic, I; Rayssiguier, C; Radman, M. Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell. 1995 Feb 10;80(3):507–515. [PubMed]
  • Smith, JM; Dowson, CG; Spratt, BG. Localized sex in bacteria. Nature. 1991 Jan 3;349(6304):29–31. [PubMed]
  • Milkman, R. Recombination and population structure in Escherichia coli. Genetics. 1997 Jul;146(3):745–750. [PubMed]
  • Milkman, R; Bridges, MM. Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. Genetics. 1990 Nov;126(3):505–517. [PubMed]
  • Moyer, Craig L; Morita, Richard Y. Effect of Growth Rate and Starvation-Survival on Cellular DNA, RNA, and Protein of a Psychrophilic Marine Bacterium. Appl Environ Microbiol. 1989 Oct;55(10):2710–2716. [PubMed]
  • Muñoz, R; García, E; López, R. Evidence for horizontal transfer from Streptococcus to Escherichia coli of the kfiD gene encoding the K5-specific UDP-glucose dehydrogenase. J Mol Evol. 1998 Apr;46(4):432–436. [PubMed]
  • Seto, S; Miyata, M. Cell reproduction and morphological changes in Mycoplasma capricolum. J Bacteriol. 1998 Jan;180(2):256–264. [PubMed]
  • Smith, CL; Econome, JG; Schutt, A; Klco, S; Cantor, CR. A physical map of the Escherichia coli K12 genome. Science. 1987 Jun 12;236(4807):1448–1453. [PubMed]
  • Solomon, JM; Grossman, AD. Who's competent and when: regulation of natural genetic competence in bacteria. Trends Genet. 1996 Apr;12(4):150–155. [PubMed]
  • Stouthamer, AH; Kooijman, SA. Why it pays for bacteria to delete disused DNA and to maintain megaplasmids. Antonie Van Leeuwenhoek. 1993 Jan;63(1):39–43. [PubMed]
  • Stewart, GJ; Carlson, CA. The biology of natural transformation. Annu Rev Microbiol. 1986;40:211–235. [PubMed]
  • Vellai, T; Vida, G. The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells. Proc Biol Sci. 1999 Aug 7;266(1428):1571–1577. [PubMed]
  • Vellai, T; Takács, K; Vida, G. A new aspect to the origin and evolution of eukaryotes. J Mol Evol. 1998 May;46(5):499–507. [PubMed]
  • Woese, C. The universal ancestor. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6854–6859. [PubMed]
  • Zambrano, MM; Siegele, DA; Almirón, M; Tormo, A; Kolter, R. Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science. 1993 Mar 19;259(5102):1757–1760. [PubMed]