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Abstract. In this paper we discuss the problem of verifying and computing optimal controls of
systems whose dynamics is governed by differential systems with a discontinuous right-hand side. In
our work, we are motivated by optimal control of mechanical systems with Coulomb friction, which
exhibit such a right-hand side. Notwithstanding the impressive development of nonsmooth and set-
valued analysis, these systems have not been closely studied either computationally or analytically.
We show that even when the solution crosses and does not stay on the discontinuity, differentiating
the results of a simulation gives gradients that have errors of a size independent of the stepsize. This
means that the strategy of “optimize the discretization” will usually fail for problems of this kind.

We approximate the discontinuous right-hand side for the differential equations or inclusions by
a smooth right-hand side. For these smoothed approximations, we show that the resulting gradients
approach the true gradients provided that the start and end points of the trajectory do not lie on the
discontinuity and that Euler’s method is used where the step size is “sufficiently small” in comparison
with the smoothing parameter. Numerical results are presented for a crude model of car racing that
involves Coulomb friction and slip showing that this approach is practical and can handle problems
of moderate complexity.
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1. Introduction. Consider a block on a table subject to Coulomb friction on
the contacting surface, pulled by a force g(t) [13, 31, 28]: The differential equation
for this system is

m
dv

dt
∈ −µN Sgn(v) + g(t),(1.1)

where Sgn is a set-valued function given by

Sgn(z) =





{+1}, z > 0,
[−1,+1], z = 0,
{−1}, z < 0.

(1.2)

The quantity N is the normal contact force ( = mg for a block of mass m) and µ the
coefficient of Coulomb friction.

We note that Sgn is a maximal monotone set-valued map [2, 4]: a set-valued map
F : Rn → P(Rn) is maximal monotone if F is monotone (yi ∈ F (xi) for i = 1, 2 implies
that (y2−y1)

T (x2−x1) ≥ 0), and for any set-valued map G where graphF ⊆ graphG
and G is monotone, F = G.

A differential inclusion

dx

dt
∈ F (x), x(0) = x0
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Fig. 1.1. Block sliding on a table

with F and x0 given has unique solutions if F satisfies a one-sided Lipschitz condition:
there is a constant L ≥ 0 where

yi ∈ F (xi) for i = 1, 2 implies (y2 − y1)
T (x2 − x1) ≤ L ‖x2 − x1‖

2.(1.3)

If F is upper semi-continuous [3] with closed, convex values and satisfies this one-sided
Lipschitz condition, then x 7→ F (x) + Lx is a maximal monotone map. In fact the
solution operator St: R

n → R
n, where St(x0) = x(t) for given x0 is Lipschitz with

Lipschitz constant eL t [4].
Prior work has been done on theoretical aspects of nonsmooth optimal control

problems, including [8, 9, 18, 17, 15]. However, none of this work deals with dis-
continuous dynamics. The work of Clarke [8, 9] deals with nonsmooth but Lipschitz
dynamics and objective functions, while that of Frankowska [18, 17, 15] deals with
set-valued but Lipschitz dynamics. Both approaches develop a maximum principle
generalizing the well-known Pontryagin maximum principle [26] for optimal control.

Thus, this previous work of Clarke, Frankowska, and others cannot be directly
applied to systems that have Coulomb friction. Indeed, there might not be a natural
maximum principle that can be applied to Coulomb friction problems. Furthermore,
we give examples to show that the strategy of “optimizing the discretization” is un-
likely to work for such problems.

Numerical work on optimizing systems with dynamics like (1.1) includes [22, 11,
36, 34]. Of these, Glowinski and Kearsley [22] used pattern search to carry out the
optimization, with the simulation carried out using a regularized version of a discrete
variational inequality obtained via a time-discretization of their multidimensional ver-
sion of (1.1). Driessen and Sadegh [11] set up the entire dynamics as a mixed integer–
linear program after using a standard time-discretization. The integer variables were
used to represent the values of the “Sgn” function at each time-step. Ventura and
Martinez [36] used a hybrid neural network/evolutionary computation approach to
computing optimal controls. We note that the examples considered by Ventura and
Martinez had very small friction forces (e.g., |F | ≤ µN = 5×10−4). Van Willigenburg
and Loop [34] used adjoint equations to compute gradients so that a conventional con-
strained optimization routine could be applied (BCPOL from IMSL in this paper).
However, there is reason to believe that the adjoint functions computed by Van Willi-
genburg and Loop are not, in fact, correct, as the authors did not take into account
that the discontinuity in the right-hand side (1.1) causes a discontinuity in the adjoint
functions. This phenomenon of discontinuous adjoint functions has been noticed by
Driessen and Sadegh [11] and is discussed in depth below.

We mention two examples of analytical investigation of optimal control problems
with Coulomb friction. The first is the work of Lipp on the brachistochrone problem
with Coulomb friction [24], although the slip is assumed to always be in a fixed
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direction so that the dynamics is continuous, although not smooth. The second is the
work of Kim and Ha [23], who investigate a specific two-dimensional problem with
Coulomb friction and find, for their simple system, that the adjoint variables have a
jump; they compute the size of that jump.

There has been some success with optimizing static systems with Coulomb fric-
tion. In particular, Outrata et al. [25, Ch. 11] discuss using a bundle method of
Lemarechal to optimize the friction coefficients for a contact problem.

As can be noticed in all of the above examples for optimal control of (1.1), gradient
information either is not used or is probably incorrect.

Some authors have considered the problem of computing correct parametric sen-
sitivities. The work of Barton et al. [20, 33], for example, develops a “jump formula”
for the sensitivities as the trajectory crosses a discontinuity. However, our work is
different in the three important ways from that work.

1. The models considered by Barton et al. implicitly assume that the trajectory
does not stay on the discontinuity for any length of time. This is commonly
not true for discontinuous systems such as arise with Coulomb friction. We
analyze such systems in depth in Section 6.

2. The same references contain the observation, which we also emphasize here,
that in the case of numerical simulation, the derivatives are not computed
correctly if the switching time is not accurately identified. However, we take
this observation further in the context of optimal control, by showing that
systems of the type described here whose derivative is computed by a fixed-
step time-stepping procedure may exhibit local minima that accumulate to
arbitrary points in the neighborhood of the actual minimum.

3. The models considered by Barton et al. also refer to differential algebraic
equation that are index one on the smooth portions, whereas the differential
algebraic equations that are equivalent to our model are index two.

Furthermore, in this paper we show that adjoints computed by smoothing the right-
hand side of the differential equation will converge to the true adjoints, satisfying the
relevant “jump conditions”.

1.1. Organization of the paper. In Section 2 we look at the “optimize the
discretization” strategy and show that it fails for problems of the same kind as (1.1)
whether explicit, implicit, or partly implicit time-discretizations are used. In Section 3
we presented the model differential inequality and we discuss the implications of the
one-sided Lipschitz Assumption. In Section 4 a smoothing approach is introduced,
and some general properties of this approach are developed. This class of systems
contains systems of type (1.1). As a result we develop a rule for computing the jumps
in the adjoint functions for systems of this type. In Sections 5 and 6 we show that
provided the step-size goes to zero faster than the smoothing parameter, then the
gradients and adjoints computed for Euler’s method converges to the exact gradients
for the discontinuous system. In Section 7 a crude model of a racing car is developed
involving Coulomb friction, which is used as a test model. Numerical results are
obtained via a smoothing approach that shows the practicality of the approach for a
problem of moderate complexity.

1.2. Notation. Regarding the notation for gradients and Jacobians, most vec-
tors are considered to be column vectors unless otherwise specified. For a function
f : Rm → R

n, ∇f(x) is an n × m matrix so (∇f(x))ij = ∂fi/∂xj(x). This means
that for scalar functions (n = 1), ∇f(x) is a row vector. However, if f is a func-
tion of one variable (m = 1), ∇f(x) = f ′(x) is a column vector. This means that
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f(x+∆x) = f(x)+∇f(x)∆x+o(‖∆x‖) for any differentiable f , regardless of whether
f is scalar- or vector-valued.

Note that we use C to denote a quantity that depends only on the data of the
problem (that is, it does not depend on the other parameters introduced, such as the
smoothing parameter σ, the step size h, the time t, or the step number k). These
quantities can differ on each appearance. Since we use asymptotic notation, we remind
the reader that f(s) = O(g(s)) (as s ↓ 0) means that there are constants C > 0 and
s0 > 0 where for 0 < s < s0, |f(s)| ≤ C g(s). Also f(s) = o(g(s)) means that
lims↓0 f(s)/g(s) = 0. Furthermore, f(s) = Ω(g(s)) means that there are C > 0 and
s0 > 0 where for 0 < s < s0, f(s) ≥ C |g(s)|. Finally, f(s) = ω(g(s)) means that
lims↓0 g(s)/f(s) = 0.

2. “Optimize the discretization” strategy. Consider first the simple differ-
ential inclusion

dx

dt
∈ −Sgn(x), x(0) = 1.(2.1)

The exact solution is unique and is easily checked to be x(t) = (1 − t)+ where z+ =
max(z, 0) is the positive part of z. We can discretize this equation using the explicit
Euler method or a partially explicit Euler method. If we set tk = t0 +k h where h > 0
is the time step and xk is our approximation to x(tk), the discrete-time trajectories
will satisfy

xk+1 ∈ xk + hF (xk + θ(xk+1 − xk)).(2.2)

The parameter θ ∈ [0, 1] indicates how implicit the method is: θ = 0 corresponds to
the explicit Euler method, θ = 1

2 corresponds to the mid-point rule, and θ = 1 corre-
sponds to the fully implicit Euler method [1]. Solutions of the discretized problem are
known to converge to solutions of the continuous time differential inclusion (2.1) (see
[32, 31, 30]). However, we will shortly see that even though the numerical trajectories
converge (St,h(x0) → St(x0) as h ↓ 0), the gradients do not (∇St,h(x0) 6→ ∇St(x0))
even where St is smooth.

Note that if Lh < 1, then there is only one solution to (2.2).
For θ < 1, the main problem is one of “chattering”: the numerical solutions will

jump from one side of the discontinuity in dx/dt ∈ −Sgn(x). For xk > h, xk+1 =
xk −h, and for xk < −h, xk+1 = xk −h. But if |xk| ≤ h, then xk + θ(xk+1 −xk) = 0.
That is,

xk+1 =
1 − θ

θ
xk.

For 0 < θ ≤ 1
2 , this results in oscillation around x = 0 that does not go to zero as

k → ∞. This is chattering. A similar process occurs at θ = 0, but then the choice of
xk+1 is not unique.

For 1
2 < θ < 1 there is still oscillation, but it decays exponentially in k. Thus

∇St,h(1) → ∇St(1) as h ↓ 0 for t strictly greater or strictly less than one. This is
arguably acceptable, because St(1) is not differentiable at t = 1.

For θ = 1 there is no oscillation, and the computed gradient of zero would be
correct.

We now look at another example, where even choosing θ = 1 will result in large
errors in the gradient, even far from the time when the discontinuity is reached.

4



Consider the differential inclusion

dx

dt
∈ (1 + α) − Sgn(x), x(0) = −1,(2.3)

with α > 0. The exact solution has x(t) = −1 + (2 + α)t for 0 ≤ t ≤ 1/(2 + α), and
x(t) = α(t− 1/(2+α)) for t ≥ 1(2+ /α). For x(0) = x0 with x0 ≈ −1, the solution is
nearly as simple: x(t) = x0+(2+α)t for 0 ≤ −x0/(2+α), and x(t) = α(t+x0/(2+α))
for t ≥ −x0/(2 + α). This means that ∂x(2)/∂x0 = α/(2 + α) at x0 = −1.

This differential inclusion should be easier to handle because it crosses the dis-
continuity, rather than staying on it as occurs in (2.1).

The discretization (2.2) for (2.3) is

xk+1 ∈ xk + h (1 + α) − hSgn(xk + θ(xk+1 − xk)).(2.4)

If xk + θ(xk+1 − xk) < 0, then xk+1 = xk + (2 + α)h; if xk + θ(xk+1 − xk) > 0,
then xk+1 = xk + αh; if xk + θ(xk+1 − xk) = 0, then xk+1 = −((1 − θ)/θ)xk.
Inserting these formulas for xk + 1 into the first two conditions gives the following: If
xk+θ(2+α)h < 0, then xk+1 = xk+(2+α)h; if xk+θ α h > 0, then xk+1 = xk+αh.
Neither of these occurs if xk ∈ −θ h [α, 2 + α], where xk+1 = −((1 − θ)/θ)xk. Note
that ∂xk+1/∂xk is either −(1 − θ)/θ or one. If θ = 1 (for fully implicit Euler),
then ∂xk+1/∂xk is either zero or one. This gives the approximations to ∂x(2)/∂x0

computed from differentiating the numerical solutions of either zero or one.
Now consider 1

2 < θ < 1. If xk ∈ −hθ [α, 2 + α], then xk+1 = −(1 − θ)xk/θ > 0,
and so xk+1 + θ α h > 0 and xk+2 = xk+1 + αh ≥ xk+1 > 0, and so on. Thus there
can be at most one k where xk ∈ −hθ [α, 2 + α]. This means that the approximation
to ∂x(2)/∂x0 obtained by differentiating the numerical solutions is either −(1− θ)/θ
or one. Either of these answers is clearly far from the correct answer of α/(2 + α).
Furthermore, the formulas depend on completely different quantities.

As a more explicit example, consider the following results, which involve the
above differential inclusion with α = 1 and numerical solutions computed by using
θ = 1 (i.e., the fully implicit Euler method). In Figure 2.1 the objective function is

(x(2) − 5/3)2 +
∫ 2

0
x(t)2 dt is plotted against x(0) = x0 with the integral computed

by using the trapezoidal rule. The trapezoidal method should contribute only O(h2)
error compared with the now O(h) for the errors from the implicit Euler method.
As can be clearly seen in Figure 2.1, the values of the computed objective function
converge, but the gradients do not. Smoothing the right-hand side of the differential
equation (in this case replacing Sgn(x) with Sgnσ(x) := tanh(x/σ)) improves things
greatly regarding the value of gradients, as can be seen in Figure 2.2.

The results in Figure 2.2 also point out the following fact about systems whose
dynamics is not necessarily nonsmooth but that are stiff enough to behave like an
almost nonsmooth system, with σ 6= 0, but σ ≈ 0. Since such systems are stiff, it
is likely that the favorite way of simulating them is to use an implicit time-stepping
scheme with a relatively large time step. If the derivative is computed on the same
grid, the resulting optimization problem will have many local minima, not necessarily
close to the target minimum. These disappear only when the time step is o(1/L),
where the right-hand side has a local Lipschitz constant of L.

3. The model differential inequality. Consider the DI

dx

dt
∈





{f1(x)}, ψ(x) < 0,
{f2(x)}, ψ(x) > 0,

co {f1(x), f2(x)}, ψ(x) = 0.
(3.1)
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We assume that this right-hand side satisfies a one-sided Lipschitz condition (1.3).
We note that (3.1) can be in one of the following nedegenerate switching cases.
1. We have ∇ψ(x) · f1(x), ∇ψ(x) · f2(x) > 0, whenever ψ(x) = 0. In this case
dψ(x(t))/dt is strictly increasing before and after the switching time. So the
dynamical system described by (3.1) will switch from the set ψ(x) < 0 to the
set ψ(x) > 0.

2. We have that ∇ψ(x) · f1(x) > 0, ∇ψ(x) · f2(x) < 0, whenever ψ(x) = 0.
In this case once the dynamical system reaches the manifold ψ(x) = 0, it is
trapped there.

Either of these cases will result in jumps in the sensitivities and the adjoint variables,
as we show in the following sections. In addition we have the situation where the
system “exits” a singularity, which may occur starting from the second case when
∇ψ(x)f2(x) changes sign. In that case, however, there is no discontinuous transition,
and the case does not need to be studied separately.

We address the properties of both cases below.

3.1. Consequences of the one-sided Lipschitz condition. In this subsec-
tion we show that the one-sided Lipschitz condition, which is satisfied by Coulomb-
friction force laws, enforces certain constraints on the functions f1 and f2, which will
be used later.

Lemma 3.1. Suppose that the right-hand side of (3.1) satisfies the one-sided
Lipschitz condition (1.3). Suppose also that ψ is differentiable and ∇ψ(x) 6= 0 for
any x where ψ(x) = 0. Then on the discontinuity Σ = {x | ψ(x) = 0 } we must have
(f2 − f1) ‖ ∇ψT and ∇ψ · (f2 − f1) ≤ 0.

Proof. Pick η > 0, ǫ > 0, and x ∈ Σ. Consider any 0 6= ζ ⊥ ∇ψ(x)T . Now put
x1 = x − ǫ∇ψ(x)T and x2 = x + ǫ∇ψ(x)T + ηζ. We want to choose ǫ, η > 0 small
enough so that ψ(x1) < 0 and ψ(x2) > 0. Now ψ(x1) = ψ(x) − ǫ‖∇ψ(x)‖2 + o(ǫ), so
for any ǫ > 0 sufficiently small, ψ(x1) < 0. Also ψ(x2) = ψ(x)+ ǫ‖∇ψ(x)‖2 +o(ǫ+η).
So for any θ > 0 there is an η0 > 0 so that ǫ+η < η0 implies that the remainder term
o(ǫ+ η) is less than θ(ǫ+ η). For such ǫ and η,

ψ(x2) ≥ ǫ‖∇ψ(x)‖2 − θ(ǫ+ η).

Provided 0 < η < (‖∇ψ(x)‖2 − θ)ǫ/θ and ǫ and η are sufficiently small, we have
ψ(x2) > 0. If we set η = 1

2 (‖∇ψ(x)‖2 − θ)ǫ/θ, then for sufficiently small ǫ > 0,
ψ(x2) > 0. Turning this around, if we set ǫ = 2θη/(‖∇ψ(x)‖2−θ), then for sufficiently
small η > 0 and 0 < θ ≤ 1, ψ(x1) < 0 and ψ(x2) > 0. Choose θ > 0 sufficiently small
so that ǫ ≤ η.

Now by the one-sided Lipschitz condition, for sufficiently small ǫ > 0 and η > 0
given as above,

L‖x2 − x1‖
2 ≥ (x2 − x1)

T (f2(x2) − f1(x1))

= (2ǫ∇ψ(x) + ηζT )[f2(x) − f1(x) +O(ǫ+ η)].(3.2)

Since ‖x2 − x1‖ = O(η), after dividing both sides of (3.2) by η and taking η ↓ 0, we
have

0 ≥ (2(ǫ/η)∇ψ(x) + ζT )[f2(x) − f1(x)].(3.3)

But ǫ/η = 2θ/(‖∇ψ(x)‖2 − θ). So

0 ≥ (2θ/(‖∇ψ(x)‖2 − θ)∇ψ(x) + ζT )[f2(x) − f1(x)],
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for all θ > 0 sufficiently small. Taking θ ↓ 0 gives the result that for any x ∈ Σ,
ζT [f2(x) − f1(x)] ≤ 0. Since −ζ is also perpendicular to ∇ψ(x)T , it follows that
f2(x)−f1(x) is perpendicular to ζ. Noting that ζ is an arbitrary vector perpendicular
to ∇ψ(x)T , we see that f2(x) − f1(x) ‖ ∇ψ(x)T .

To prove the final assertion, set ζ = 0. Then for sufficiently small ǫ > 0,
2ǫ∇ψ(x)[f2(x) − f1(x) + O(ǫ)] ≤ 0. Taking ǫ ↓ 0 gives ∇ψ(x)[f2(x) − f1(x)] ≤ 0.

3.2. The equivalent equation in the trapped case. We now work under the
assumption that ∇ψ(x)f1(x) > 0 and ∇ψ(x)f2(x) < 0, that is, when the problem is
“trapped” in the manifold ψ(x) = 0, where we must follow the trajectory.

From the third branch in (3.1), the problem of following the trajectory in the
discontinuity should be expressed as

dx

dt
= f∗(x) = (1 − θ(x)) f1(x) + θ(x)f2(x).

The unknown weighting function θ(x) is computable from the condition that the
mapping ψ(x) is an invariant of the dynamical system defined by f∗(x), that is,
∇ψ(x)f∗(x) = 0 . In turn, the last equation leads to

∇ψ(x) ((1 − θ(x)) f1(x) + θ(x)f2(x)) = 0.

Solving for the unknown weighing function from the last equation, we obtain

θ(x) =
∇ψ(x)f1(x)

∇ψ(x)f1(x) −∇ψ(x)f2(x)
.(3.4)

Note that, under the assumption that ∇ψ(x)f1(x) > 0 and ∇ψ(x)f2(x) < 0 we must
have that

0 < θ(x) < 1,

at least in a neighborhood of the switching point.
This also shows that the dynamical system will exit the discontinuity manifold

only when the weighing function θ(x) switches to either 0 or 1. From the expression
of θ(x), it follows that such a switch can happen only when either ∇ψ(x)f1(x) or
∇ψ(x)f2(x) will switch signs.

With this identification, the dynamical system can, in effect, be represented by
the following piecewise differential equation:

ẋ =

{
f1(x), ψ(x) < 0

f
∗

(x), ψ(x) = 0
ẋ(0) = x0

3.3. Exact sensitivities with respect to parameters. We are interested in
evaluating the sensitivities with respect the parameters, that can be easily incorpo-
rated in sensitivities with respect to the initial conditions. Let x(t, x0) be the value
of x(t) where x is the solution of the discontinuous ODE with initial value x0.

3.3.1. The trapped case. We first compute these sensitivities in the case where
the trajectory is trapped in the manifold ψ(x) = 0, that is, ∇ψ(x)f1(x) > 0 and
∇ψ(x)f2(x) < 0.
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An important component in computing this sensitivities is the switching time ts,
which can be defined implicitly by the equations

ẋ(0, x0) = x0, ẋ(t, x0) = f1(x), ψ(x(ts, x0)) = 0.

The sensitivity s(t, x0) satisfies the following equation, before switching.

ṡ = ∇f1(x(t, x0))s, s(0) = I.

Using the implicit function theorem, we obtain that

∂ts
∂x0

= −
∇ψ(x(ts, x0))s(ts, x0)

∇ψ(x(ts, x0))f1 (x(ts, x0))
.

From our assumptions, it is immediate that ∇ψ(x)f1(x) 6= 0.
To determine the equation satisfied by the sensitivity after switching, we proceed

in two steps. First we consider the equation satisfied by the system once it enters the
discontinuity,

ẏ(t, y0) = f
∗

(y(t, y0)), ẏ(0, y0) = y0,

and we analyze its sensitivity s2(t, y0) = ∂y/∂y0 with respect to the parameter y0.
Here we have used the identification that is valid when t > ts ,

y(t, y0) = x(t+ ts, x0).

We obtain the following linear differential equation:

ṡ2 = ∇f∗(y(t, x0))s2, s2(0) = I.

To compute s2(t, y0) = ∂x/∂x0 , we glue the solutions before and after reaching to
discontinuity by using that

y0 = x(ts, x0).

We get that

∂y0
∂x0

=
dx(ts, x0)

dx0
= f1 (x(ts, x0))

∂ts
∂x0

+ s(ts, x0)

= −f1 (x(ts, x0))
∇ψ(x(ts, x0))s(ts, x0)

∇ψ(x(ts, x0))T f1 (x(ts, x0))
+ s(ts, x0)

=

[
I −

f1 (x(ts, x0))∇ψ(x(ts, x0))

∇ψ(x(ts, x0))f1 (x(ts, x0))

]
s(ts, x0).

The following computation also shows that x(t, x0) is a differentiable function of x0

and that its derivative s(t) obeys the following differential equation

ṡ(t) =

{
∇f1(x(t, x0))s(t), t < ts
∇f∗(x(t, x0))s(t), t > ts.

To figure out the jump rule at the switching, we use that x(t, x0) = y(t− ts, y0).
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We obtain that, whenever t > ts, the following holds.

∂x(t, x0)

∂x0
=
dy(t− ts, y0)

dx0
= −f∗(y(t− ts, y0))

∂ts
∂x0

+ s2(t− ts, y0)
∂y0
∂x0

.

As t ↓ ts, we have that s2(t− ts, y0) approaches the identity. Using our computation
for ∂ts/∂x0 and ∂y0/∂x0, we obtain that, at the switching point, the sensitivity will
jump according to the rule

s(t+s ) =

[
I +

(f∗ (x(ts, x0)) − f1 (x(ts, x0)))∇ψ(x(ts, x0))

∇ψ(x(ts, x0))f1 (x(ts, x0))

]
s(t−s ).

If we replace the expression for f∗ in the above equation, we obtain that

s(t+s ) =

[
I +

(f2 (x(ts, x0)) − f1 (x(ts, x0)))∇ψ(x(ts, x0))

∇ψ(x(ts, x0)) (f1 (x(ts, x0)) − f2 (x(ts, x0)))

]
s(t−s ).(3.5)

From Lemma (3.1) we have that (f2 − f1) ‖ ∇ψT , which implies that the matrix
in the above relation is an orthogonal projection.

3.3.2. The case where ∇ψ(x)f1(x) > 0 and ∇ψ(x)f2(x) > 0. We can imme-
diately see that the previous argument used only the fact that

dx

dt
∈

{
{f1(x)}, t < ts,
{f∗(x)}, t > ts.

Replacing f∗(x) by f2(x) in the preceding analysis we obtain that

s(t+s ) =

[
I +

(f2 (x(ts, x0)) − f1 (x(ts, x0)))∇ψ(x(ts, x0))

∇ψ(x(ts, x0))f1 (x(ts, x0))

]
s(t−s ).(3.6)

4. A smoothing approach. We now investigate the approximation of (3.1) by
the smoothed system

dxσ
dt

= ϕσ(ψ(xσ)) f2(xσ) + (1 − ϕσ(ψ(xσ))) f1(xσ).(4.1)

Here

ϕσ(w) =

∫ w

−∞

θσ(r
′) dr′,(4.2)

where θσ(r) = (1/σ)θ(r/σ) and θ ≥ 0, supp θ = [−1,+1], and
∫ +∞

−∞
θ(r) dr = 1. Thus,

ϕσ(w) = 0 for w ≤ −σ and ϕσ(w) = 1 for w ≥ +σ. Note that the smoothed differ-
ential equation (4.1) is identical with the original discontinuous differential equation
(3.1) unless −σ ≤ ψ(x) ≤ +σ. The set {x | −σ ≤ ψ(x) ≤ +σ } is called the transition
region.

Note that in the following convergence results, we use all five asymptotic order
symbols: O, o, Ω, ω, and Θ. Recall that f(s) = O(g(s)) as s→ 0 means that there is
a constant C and s0, where 0 < |s| < s0 implies |f(s)| ≤ C g(s), f(s) = o(g(s)) means
that f(s)/g(s) → 0 as s → 0, f(s) = Ω(g(s)) means that g(s) = O(f(s)), f(s) =
ω(g(s)) means that g(s) = o(f(s)), and f(s) = Θ(g(s)) means that f(s) = O(g(s))
and f(s) = Ω(g(s)).
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4.1. One-sided Lipschitz condition for the smoothed system. Lemma
3.1 is useful for showing that the smoothed right-hand side fσ in (4.1) also satisfies a
one-sided Lipschitz condition, although the Lipschitz constant might not be the same
as for (3.1). To show this, we do need to assume that f1 and f2 satisfy an ordinary
(“two-sided”) Lipschitz condition with constant Lf and that ∇ψ is also Lipschitz with
constant L∇ψ. As usual, L is the one-sided Lipschitz constant for (3.1). That means
that both f1 and f2 satisfy the one-sided Lipschitz condition (1.3) with constant L.
Since Σ = {x | ψ(x) = 0 } is a C1 manifold, there is a continuous “nearest point” map
π(x) = the nearest point in Σ to x. We can choose a σ0 > 0 so that if 0 < σ < σ0,
this map is well defined on the transition region.

We will show that for any w ∈ R
n, wT∇fσ(x)w ≤ L‖w‖2. Note that wT∇f1(x)w,

wT∇f2(x)w ≤ L‖w‖2 for all w. Outside the transition region we have ∇fσ(x) =
∇f1(x) or ∇fσ(x) = ∇f2(x), and the desired property of ∇fσ follows immediately.
Inside the transition region, we have

∇fσ = (1 − ϕσ)∇f1 + ϕσ∇f2 + (f2 − f1)ϕ
′
σ(ψ)∇ψ.

Thus

wT∇fσ(x)w = (1 − ϕσ(ψ(x))wT∇f1(x)w + ϕσ(ψ(x))wT∇f2(x)w

+ ϕ′
σ(ψ(x))wT (f2(x) − f1(x))∇ψ(x)w

≤ L‖w‖2 + ϕ′
σ(ψ(x))wT (f2(π(x)) − f1(π(x)))∇ψ(π(x))w

+O(1/σ)O(‖π(x) − x‖) ‖w‖2.

But the transition region is only O(σ) wide, so ‖π(x) − x‖ = O(σ). Thus, using
Lemma 3.1, and the fact that φ′σ(·) ≥ 0, we obtain that

wT∇fσ(x)w ≤ O(1) ‖w‖2.

Thus fσ satisfies a one-sided Lipschitz condition, although its one-sided Lipschitz
constant may be considerably larger than for f .

5. Convergence of the gradients for the case ∇ψ(x)f1(x) > 0 and

∇ψ(x)f2(x) > 0 . We now analyze the asymptotic properties, as σ → 0 for the case
where ∇ψ(x)f1(x) > 0 and ∇ψ(x)f2(x) > 0, that is, the case where the trajectory
switches from ψ(x) < 0 to ψ(x) > 0.

5.1. The variational equation of the smoothed differential equation.

The variational equation for the smoothed system can be easily written down:

dsσ
dt

= {(1 − ϕσ)∇f1 + ϕσ∇f2 + (f2 − f1)ϕ
′
σ(ψ)∇ψ} sσ.(5.1)

For smooth f1, f2, the first two terms ϕσ∇f2 and (1−ϕσ)∇f1 in the braces of equation
(5.1) are bounded, but the last term (f1 − f2)ϕ

′
σ(ψ)∇g might not be bounded. Thus

the limiting equation as σ ↓ 0 for ψ(x(t)) 6= 0 becomes

ds

dt
=

{
∇f1, ψ(x) < 0
∇f2, ψ(x) > 0

}
s.(5.2)

However, this ignores what happens near ψ(x(t∗)) = 0. From (3.6) we have de-
termined what happens for the original system (3.1); but to complete a proof of
convergence of sσ to s, we must also prove that the jumps match.
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Suppose that the limiting solution (which is unique by the one-sided Lipschitz
assumption) reaches the surface ψ(x(t)) = 0 at time t = t∗. By our assumptions that
ψ(x) = 0 implies ∇ψ(x) · f1(x) > 0 and ∇ψ(x) · f2(x) > 0, there can be only one time
t = t∗ where ψ(x(t)) = 0. Put x∗ = x(t∗), f∗1 = f1(x

∗), f∗2 = f2(x
∗), ∇ψ∗ = ∇ψ(x∗).

Note that if t ≈ t∗ and σ ≈ 0, then xσ(t) ≈ x∗.
Of particular interest to us is the fact that the term (f1 − f2)ϕ

′
σ(ψ)∇ψ is un-

bounded. Although we expect that ϕ′
σ(ψ) 6= 0 only for a time interval of length O(σ),

ϕ′
σ(ψ) has a magnitude of O(1/σ). In the limit as σ ↓ 0, this could correspond to

a Dirac-δ function. This can be interpreted in the sense of [10]. Since the matrix
(f2(xσ(t)) − f1(xσ(t)))∇ψ(xσ(t))) → (f∗2 − f∗1 )∇ψ∗ as σ ↓ 0 in the relevant time
interval(s) (ϕ′

σ(xσ(t)) 6= 0), in the limit the effect of this term is to include a factor
of the form

exp (α (f∗2 − f∗1 )∇ψ∗) ,(5.3)

where α is the limit of
∫
ϕ′
σ(ψ(xσ(t))) dt. We will show that this limit exists and will

give a simple formula for it and the matrix exponential (5.3).
Now for −σ ≤ ψ(xσ(t)) ≤ +σ we have ‖xσ(t) − x∗‖ = O(σ). Then we can write

d

dt
ψ(xσ(t)) = ∇ψ(xσ(t)) · ẋσ(t)

= ϕσ(ψ(xσ(t)))∇ψ(xσ(t)) · f2(xσ(t)) + (1 − ϕσ(ψ(xσ(t))))∇ψ(xσ(t)) · f1(xσ(t))

= ϕσ(ψ(xσ(t)))∇ψ
∗ · f∗2 + (1 − ϕσ(ψ(xσ(t)))∇ψ

∗ · f∗1 +O(σ).

Put γi = ∇ψ∗ · f∗i , i = 1, 2. Then we can write

dψ

dt
= ϕσ(xσ(t))γ2 + (1 − ϕσ(xσ(t)))γ1 +O(σ).

For sufficiently small σ > 0, we have dψ/dt > 0, so we can use a change of variables.
Returning to the value of α in (5.3), we consider the integrals

∫ +∞

−∞

ϕ′
σ(ψ(xσ(t))) dt =

∫ +σ

−σ

ϕ′
σ(ψ)

γ1 + ϕσ(ψ)(γ2 − γ1) +O(σ)
dψ

=
1

γ2 − γ1

∫ γ2

γ1

dw

w
+O(σ) (using w = γ1 + ϕσ(ψ)(γ2 − γ1) )

=
ln(γ2/γ1)

γ2 − γ1
+O(σ).

Thus we obtain the value for the limit of α = ln(γ2/γ1)/(γ2 − γ1). To compute the
matrix exponential (5.3), we resort to the series definition of the matrix exponential.
To simplify notation, put u = f∗2 − f∗1 and vT = ∇ψ∗. Then

exp(αuvT ) = I +
∞∑

k=1

1

k!
αk(uvT )k = I +

∞∑

k=1

1

k!
αk(vTu)k−1uvT

= I +
1

vTu

∞∑

k=1

1

k!
(α vTu)k uvT = I +

uvT

vTu

[
eαv

Tu − 1
]
.

Substituting for u and v, we see that the limiting matrix exponential is

exp(α(f∗2 − f∗1 )∇ψ∗) = I +
(f∗2 − f∗1 )∇ψ∗

γ2 − γ1
[exp((γ2 − γ1) ln(γ2/γ1)/(γ2 − γ1)) − 1]
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= I +
(f∗2 − f∗1 )∇ψ∗

γ2 − γ1

[
γ2

γ1
− 1

]
= I +

(f∗2 − f∗1 )∇ψ∗

γ2 − γ1

γ2 − γ1

γ1

= I +
(f∗2 − f∗1 )∇ψ∗

γ1
.

We have thus proved the following result.
Theorem 5.1. For the case where ψ(x) = 0 implies that ψ(x)f1(x) > 0, and

∇ψ(x)f1(x) > 0, the sensitivity of the solution of the smoothed problem, sσ, ap-
proaches the sensitivity of the solution of the original problem, s, as σ → 0.

Proof. Follows by comparing the right-hand side of the last displayed equality
with (3.6), as well as our conclusion that the right-hand side of (5.1) converges to
(5.2) away from the switching time t∗.

5.2. Lagrange multipliers and the jump rule. There is another way to
obtain this result via the adjoint equation from the Pontryagin conditions. Since this
is a problem without control functions, we consider the problem of minimizing some
objective function g(x(T )) by varying the initial value x0. Again we consider using a
smoothed right-hand side fσ (4.1).

From the conventional Pontryagin conditions [26, 7, 21, 5] we have the adjoint
equations

dλσ
dt

= −∇fσ(xσ(t))
Tλσ, λσ(T ) = ∇g(xσ(T )).(5.4)

As above, we note that

∇fσ(x) =
ϕ′(ψ(x)/σ)

σ
[f2(x) − f1(x)]∇ψ(x)

+ {ϕ(ψ(x)/σ)∇f1(x) + (1 − ϕ(ψ(x)/σ))∇f2(x)}

and that the terms enclosed in {· · ·} are bounded as σ ↓ 0. Integrating (5.4) backwards
in time and using the matrix exponential, we get the approximation around t = t∗,
where ψ(x(t∗)) = 0:

λσ(t
∗ − ǫ) =

[
I +

eα(γ2−γ1) − 1

γ2 − γ1
(f∗2 − f∗1 )∇ψ∗

]
λσ(t

∗ + ǫ) +O(ǫ),(5.5)

where σ = o(ǫ) as ǫ ↓ 0, and α is some nonnegative quantity (possibly dependent on
σ). We can simplify (5.5) by setting β := (eα(γ2−γ1) − 1)/(γ2 − γ1). Then we get

λσ(t
∗ − ǫ) = [I + β(f∗2 − f∗1 )∇ψ∗] λσ(t

∗ + ǫ) +O(ǫ).(5.6)

The only quantity that is not determined by this approach is β. But it can be com-
puted from the property that the Hamiltonian Hσ(xσ(t), λσ(t)) := λσ(t)

T fσ(xσ(t)) is
a constant function of t.

If we apply this rule around the crossing time t∗, we get (f∗2 )Tλσ(t
∗ + ǫ) =

(f∗1 )Tλσ(t
∗ − ǫ) + O(ǫ). We can then write an estimate for λσ(t

∗ − ǫ) in terms of
λσ(t

∗ + ǫ):

(f∗2 )Tλσ(t
∗ + ǫ) = (f∗1 )T [I + β(f∗2 − f∗1 )∇ψ∗]λσ(t

∗ + ǫ) +O(ǫ).

Solving for β gives (f∗2 − f∗1 )T∇ψ∗ = O(ǫ) or

β =
1

∇ψ∗f∗1
+O(ǫ).(5.7)
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Note that if ∇ψ∗(f∗2 − f∗1 ) = O(ǫ), then λσ(t
∗ − ǫ) = λσ(t

∗ + ǫ) +O(ǫ). So

λσ(t
∗ − ǫ) =

[
I +

(f∗2 − f∗1 )∇ψ∗

∇ψ∗f∗1

]
λσ(t

∗ + ǫ) +O(ǫ).(5.8)

Taking ǫ ↓ 0 and σ = o(ǫ) gives a simple “jump rule” for the adjoint variables:

λ(t∗−) =

[
I +

(f∗2 − f∗1 )∇ψ∗

∇ψ∗f∗1

]
λ(t∗+).(5.9)

That the adjoint functions have discontinuities in problems with discontinuous
right-hand sides was noted by, for example, Driessen and Sadegh [12] and Kim and
Ha [23].

5.3. Convergence results. We now prove the main convergence result for this
case.

Theorem 5.2. Assume that ∇ψ(x)f1(x) > 0, ∇ψ(x)f2(x) > 0, whenever ψ(x) =
0. Assume that we integrate the smoothed model equation (4.1) and the corresponding
sensitivity equation (5.1) for ∂x/∂x0 using Euler’s method with a time step h = o(σ).
Then, the numerical sensitivites and the numerical adjoints converge to the sensivities
of the original problem as σ → 0.

We separate the proof in the following parts:

1. In Subsection 5.3.1 we prove that the sequence of state variables produced by
Euler’s method applied to the smoothed equation converge to the one of the
model problem (3.1).

2. In Subsection 5.3.2 we prove that the sequence of adjoint variables is conver-
gent.

3. In Subsection 5.3.3 we prove that the sequence of sensitivities is convergent.

5.3.1. Errors in the computed trajectory. Consider using the explicit Euler
method for the numerical solution of dxσ/dt = fσ(xσ). Let tk = t0 +k h, where h > 0
is the step size:

xk+1
σ = xkσ + h fσ(x

k
σ)

xσ(tk+1) = xσ(tk) + h fσ(xσ(tk)) +
1

2
h2ξk

where ‖ξk‖ ≤ 1
2h

2 maxtk≤t≤tk+1
‖x′′σ(t)‖ by Taylor’s theorem to second order. We

suppose that hL < 1. Subtracting the equations for xk+1
σ and xσ(tk+1) gives

xσ(tk+1) − xk+1
σ = (xσ(tk) − xkσ) + h [fσ(xσ(tk)) − fσ(x

k
σ)] +

1

2
h2ξk.(5.10)

For all k, put eσ,k = xσ(tk) − xkσ. Then

eσ,k+1 = eσ,k + h [fσ(x
k
σ + eσ,k) − fσ(x

k
σ)] +

1

2
h2ξk.(5.11)

Lemma 5.3. Under our standing assumptions, the map z 7→ z + h[fσ(x + z) −
fσ(x)] is Lipschitz with constant 1 + hL+ Ch2/σ2 for some constant C independent
of h and σ.
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Proof. Let Φh,σ,x(z) = z + h[fσ(x+ z) − fσ(x)]. Then for any z1, z2,

‖Φh,σ,x(z1) − Φh,σ,x(z2)‖
2

= ‖z1 − z2 + h[fσ(x+ z1) − fσ(x+ z2)]‖
2

= ‖z1 − z2‖
2 + 2h(z1 − z2)

T [fσ(x+ z1) − fσ(x+ z2)] + h2 ‖fσ(x+ z1) − fσ(x+ z2)‖
2

≤ ‖z1 − z2‖
2 + 2hL‖z1 − z2‖

2 + h2 ‖fσ(x+ z1) − fσ(x+ z2)‖
2

(using (1.3))

≤ (1 + 2hL+ Ch2/σ2)‖z1 − z2‖
2,

since fσ is Lipschitz with constant C1/2/σ for some C independent of h or σ. There-
fore,

‖Φh,σ,x(z1) − Φh,σ,x(z2)‖ ≤ (1 + 2hL+ Ch2/σ2)1/2‖z1 − z2‖.

Note that for w ≥ 0, (1 + w)1/2 ≤ 1 + 1
2w, so

‖Φh,σ,x(z1) − Φh,σ,x(z2)‖ ≤ (1 + hL+ Ch2/(2σ2))‖z1 − z2‖,

as desired.
Using Lemma 5.3, we see that

‖ek+1‖ ≤ (1 + hL+ Ch2/σ2)‖ek‖ +
1

2
h2‖ξk‖.(5.12)

We can also bound x′′σ(t) because

x′′σ(t) =
d

dt
fσ(xσ(t))

= ∇fσ(xσ(t)) fσ(xσ(t)),

which immediately gives the bounds

‖x′′σ(t)‖ ≤ ‖∇fσ(xσ(t))‖ ‖fσ(xσ(t))‖.(5.13)

Using local boundedness of f , we can bound fσ independently of σ over compact sets.
Thus ‖x′′σ(t)‖ = O(1/σ).

Thus if h = o(σ2), we can combine these bounds to show that for L′ > L and
sufficiently small h > 0

‖ek+1‖ ≤ eL
′h‖ek‖ + C

h2

σ
.(5.14)

Using a discrete Gronwall lemma and e0 = 0, we can see that

‖ek‖ ≤
eL

′kh − 1

L′h
C
h2

σ
= (eL

′(tk−t0) − 1)O(h/σ).(5.15)

This bound can be considerably improved if we know that ∇ψ∗f∗1 , ∇ψ
∗f∗2 > 0,

as then the time to cross the transition region is O(σ). Outside the transition region,
the error is O(h), as is well known [1]. It will take O(σ/h) time steps to cross the
transition region under the assumptions that ∇ψ∗f∗1 , ∇ψ

∗f∗2 > 0. Suppose we choose
k∗ = k∗(σ, h) so that xσ(tk∗) is outside the transition region, but xσ(tk∗+1) is inside
the transition region, and after K = K(σ, h) = O(σ/h) steps we find that xσ(tk∗+K)
is outside the transition region, and the discrete time trajectory remains outside the
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transition region for a positive time period (a period whose length does not go to zero
as h→ 0).

For now we assume only that h = o(σ). Then from (5.12) and (5.13) we find that

‖ek∗+K‖ ≤ exp((hL+ Ch2/σ2)K(σ, h))

[
‖ek∗‖ + C

h2

σ
K(σ, h)

]

≤ exp(C ′(Lσ + Ch/σ)) [‖ek∗‖ + C C ′ h] = O(h),

where K ≤ C ′σ/h, for h, σ small enough.

5.3.2. Errors in the adjoints. Recall that for the Euler method

xk+1
σ = xkσ + h fσ(x

k
σ).

Thus a small variation δxkσ in xkσ results in a variation

δxk+1
σ = [I + h∇fσ(x

k
σ)] δx

k
σ + o(‖δxkσ‖)(5.16)

in xk+1
σ . The the discrete sensitivity equations are thus

sk+1
σ = [I + h∇fσ(x

k
σ)] s

k
σ,

with given s0σ = s0.
Alternatively, we can consider the discrete adjoint variables. Suppose we have

a function g: Rn → R and we wish to determine the gradient of the g(xN ), where
tf = t0 +Nh with respect to a change in the initial values x0, where xN is computed
via Euler’s method. Let Ψi(x

i) = g(xN ) where xk+1 = xk + h fσ(x
k) for k = i, i +

1, . . . , N − 1. Set λi = ∇Ψi(x
i)T . If Jk = I + h∇fσ(x

k), for all k, then Jk =
∇xk(xk+1), so

λi = ∇Ψi(x
i)T = (∇Ψi+1(x

i+1)Ji)
T

= [I + h∇fσ(x
i)]T λi+1,

and λN = ∇g(xN )T , which are the discrete adjoint equations.
We can investigate the accuracy of either the direct sensitivity equations, or the

discrete adjoint equations, to determine the accuracy of the computed gradients.
The adjoint equations for the differential equations are

dλσ
dt

= −∇fσ(xσ(t))
Tλσ, λσ(T ) = ∇g(xσ(T ))T .

Thus

λσ(tk) = [I + h∇fσ(xσ(tk))
T ]λσ(tk+1) + ηk,(5.17)

λkσ = [I + h∇fσ(x
k
σ)
T ]λk+1

σ ,(5.18)

where ‖ηk‖ ≤ 1
2h

2 maxtk≤t≤tk+1
‖λ′′σ(t)‖. We can bound λ′′σ(t) by differentiating the

adjoint equation:

λ′′σ(t) = −
d

dt
(∇fσ(xσ(t))

Tλσ(t))

= −∇x(∇fσ(x)
Tλσ(t))|x=xσ(t)

dxσ
dt

(t) −∇fσ(xσ(t))
T dλσ
dt

(t)

= −∇x(∇fσ(x)
Tλσ(t))|x=xσ(t)

dxσ
dt

(t) + [∇fσ(xσ(t))
2]Tλσ(t).
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Now dxσ/dt is bounded on finite intervals independently of σ as fσ is bounded with
a one-sided Lipschitz condition. Also λσ is bounded independently of σ. Noting that
∇fσ(x) = O(1/σ) and ∇∇fσ(x) = O(1/σ2), we see that λ′′σ(t) = O(1/σ2) in the
transition region. Outside the transition region, λ′′σ(t) = O(1). Note that for t in a
fixed finite interval, the constants implicit in the “O” expressions are independent of
t.

Thus ηk is O(h2/σ2) with a constant independent of h, σ, and k, where xσ(t) is in
the transition region for some tk ≤ t ≤ tk+1. Otherwise ηk = O(h2) with a constant
independent of h, σ, and k.

To obtain bounds on the errors in the adjoints, we first subtract (5.18) from
(5.17). This gives

λσ(tk) − λkσ = [I + h fσ(xσ(tk))]
T [λσ(tk+1) − λk+1

σ ]

+ h[∇fσ(xσ(tk)) −∇fσ(x
k
σ)]λ

k+1
σ + ηk.

Now ‖∇fσ(xσ(tk))−∇fσ(x
k
σ)‖ ≤ (C/σ2)‖xσ(tk)−x

k
σ‖ as ∇fσ is Lipschitz on bounded

sets with a Lipschitz constant of O(1/σ2). Assuming that ∇ψ∗f∗1 , ∇ψ
∗f∗2 > 0, so that

we have ‖xσ(tk)−x
k
σ‖ = O(h). Furthermore, ‖h[∇fσ(xσ(tk))−∇fσ(x

k
σ)]λ

k+1
σ +ηk‖ =

O(h2/σ2) if xσ(t) is in the transition region for some tk ≤ t ≤ tk+1 or xkσ is in the
transition region. Otherwise the more usual bounds ‖h[∇fσ(xσ(tk))−∇fσ(x

k
σ)]λ

k+1
σ +

ηk‖ = O(h2) hold. Again, assuming that the trajectories xσ(t) or xkσ are in the
transition region for only O(σ/h) many steps, we can apply a Gronwall lemma to
obtain a bound

‖λσ(tk) − λkσ‖ = O(h2/σ2)O(σ/h) +O(h2)O(1/h) = O(h/σ)(5.19)

with the implicit constants independent of k, h, and σ. Thus if h = o(σ), and
h, σ → 0, the adjoint variables converge to the gradients of g(x(tf )) with respect to
the initial conditions for the discontinuous limit.

5.3.3. Convergence of the numerical sequence siσ. The rule of the numer-
ical integration of the sensitivity and of the adjoint variables is

si+1
σ =

(
I + h∇fσ(x

i
σ)

)
siσ

λiσ =
(
I + h∇fσ(x

i
σ)

)T
λi+1
σ .

Multiplying the first equation by λi+1
σ and the second equation by si+1

σ , we obtain
that

(si+1
σ )Tλi+1

σ = (siσ)
Tλiσ.

Using now the fact that the sensitivity and the adjoint of the exact solution satisfies

s(t)Tλ(t) = constant,

for any change in the initial condition x0, as well as the fact that

λiσ
σ→0
−→ λ

that was proved above, we have that

siσ
σ→0
−→ s,

which completes the proof of the Theorem 5.2.

17



6. Convergence of gradients for time discretizations of the case where

∇ψ(x)f1(x) > 0 and ∇ψ(x)f2(x) < 0 . In the case treated here, the solution of
the smoothed equation (4.1) will stay in the transition region for ω(σ) time. In this
case there is also a jump in the limit of the (smoothed) adjoint variables, as well as a
“jump formula” for the limiting adjoint equations. Furthermore, the adjoint variables
obtained in the limit are the correct adjoints for the discontinuous system.

Within the transition region, the adjoint variables change most rapidly in direc-
tions near to ∇ψ∗. By Lemma 3.1, f∗2 − f∗1 = −ρ∗∇ψ∗ for some ρ∗ ≥ 0.

If the trajectory stays on the discontinuity for any open interval, then while the
trajectory is on the interval, an equivalent right-hand side can be used for the motion
on the discontinuity [27].

6.1. The convergence result. In this section, we prove the following result
concerning the convergence of the sensitivity of the equation (4.1) to the one of (3.1).

Theorem 6.1. Assume that ∇ψ(x)f1(x) > 0, ∇ψ(x)f2(x) < 0, whenever ψ(x) =
0. Assume that we integrate the smoothed model equation (4.1) and the corresponding
sensitivity equation (5.1) for ∂x/∂x0 using Euler’s method with a time step h = o(σ2).
Then, the numerical sensitivites and the numerical adjoints converge to the sensivities
of the original problem as σ → 0.

Note that we will need to take h = o(σ2) in order to resolve the trajectory as it
passes through the transition region so that the gradient information will be accurate.
It will turn out that this is sufficient for the Euler method to compute approximate
gradients that converge to the true gradient as computed in the previous section.

Our initial investigations suggest that the result is true even for the case where
h = o(σ). Nonetheless, this would require additional complexity to an already very
technical proof so we will use the stronger assumption. However, wherever possible
in the course of the proof, we will invoke only the weaker assumption h = o(σ).

The proof of this result is split into a number of items that are discussed in the
following subsections. We note that the proof of the convergence of the state vectors
is identical to the one for the preceding case, from Subsection 5.3.1. In addition, we
will use results from Sections 3 and 4 that apply to this case.

6.1.1. Asymptotic behavior of ϕσ(ψ(xσ(t))). Consider the differential equa-
tion

d

dt
ϕσ(ψ(xσ))) = ϕ′

σ(ψ(xσ))∇ψ(xσ)
T [(1 − ϕσ(ψ(xσ)))f1(xσ) + ϕσ(ψ(xσ))f2(xσ)]

= ϕ′
σ(ψ(xσ))[(1 − ϕσ(ψ(xσ)))γ1(xσ(t)) + ϕσ(ψ(xσ))γ2(xσ)],

where γi(x) = ∇ψ(x)T fi(x), i = 1, 2.
We consider this differential equation for a time interval [t∗σ,−, t

∗
σ,− + ǫ] where

t∗σ,− is the first time when we reach the transition zone. In an interval of this size,
γi(xσ(t)) = γi+O(ǫ+σ). We will consider ǫ = ω(σ), so γi(xσ(t)) = γi+O(ǫ). Setting
w(t) = γ1 − (γ1 − γ2)ϕσ(ψ(xσ(t))), we see that

dw

dt
= −µ(t)[w(t) + g(t)],(6.1)

where µ(t) = (γ1 − γ2)ϕ
′
σ(ψ(xσ(t))) and g(t) = O(ǫ/σ). Note that in a time interval

of size O(σ) the trajectory will reach a point where ϕσ(ψ(xσ(t))) is halfway between
zero and γ1/(γ1 − γ2). Call this time t∗σ,−1/2. We can bound ϕ′(ψ(xσ(t))) away from
zero, at least for a time interval of length bounded away from zero.
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On our time interval of length ǫ, then, µ(t) = Θ(1/σ) and γi(xσ(t)) = γi +O(ǫ).
We can solve the differential equation for w starting from t∗σ,−1/2:

w(t∗σ,−1/2 + t) = exp

(
−

∫ t

0

µ(t∗σ,−1/2 + τ) dτ

)
w(t∗σ,−1/2)

+

∫ t

0

exp

(
−

∫ t

τ

µ(t∗σ,−1/2 + s) ds

)
g(t∗σ,−1/2 + τ) dτ.

Thus for 0 ≤ t ≤ ǫ we get

w(t∗σ,−1/2 + t) =

∫ t

0

e−C(t−τ)/σ O(ǫ/σ) dτ = O(e−Ct/σ) +O(ǫ).(6.2)

So in a time ≥ constσ log(1/ǫ) the difference between ϕσ(ψ(xσ(t))) and γ1/(γ1 − γ2)
is O(ǫ).

Set θ(x) = γ1(x)/(γ1(x) − γ2(x)). More careful analysis shows that for t large
compared with σ log(1/σ), the difference between ϕσ(ψ(xσ(t))) and θ(xσ(t)) is O(σ).
To see this, construct the solution to the differential equation

d

dt
(w − g) = −µ(t)(w − g) − g′(t)(6.3)

as

w(t) − g(t) = exp

(
−

∫ t

0

µ(τ) dτ

)
(w(0) − g(0)) −

∫ t

0

exp

(
−

∫ t

τ

µ(s) ds

)
g′(τ) dτ

and substitute w(t) = ϕσ(ψ(xσ(t
∗
σ,− + t))) and g(t) = θ(xσ(t

∗
σ,− + t)).

6.1.2. Asymptotic behavior of ϕσ(ψ(xkσ)). Note that if h = O(ǫσ2), then
we can use the global error bound in (5.15). Since x 7→ ϕσ(ψ(x)) is Lipschitz with
constant of O(1/σ), for tk ≥ t∗σ,− we have (γ1 − γ2)ϕ

′
σ(ψ(xkσ)) = O(ǫ). In addition,

we have that ϕσ(ψ(xkσ)) → θ(x(t)) for t above the switching point.
This can be improved to merely requiring h/σ = O(ǫ). However, a detailed rig-

orous demonstration would require improved error bounds that take into account the
exponential damping of order O (1/σ) in the direction perpendicular to the manifold
Σ = {x | ψ(x) = 0 }. Since this would result in a substantial additional complexity to
what is already very technical proof, we will not follow it in the context of this paper.

6.1.3. Sensitivity equations in the transition region, and their dis-

cretization. If we apply Euler’s method (with h = o(σ)) to the sensitivity equations
in the transition region, we get

sk+1
σ = [I + h∇fσ(x

k
σ)]s

k
σ

=
[
I + hϕ′

σ(ψ(xkσ))(f2(x
k
σ)) − f1(x

k
σ))∇ψ(xkσ)

+ h (1 − ϕkσ)∇f1(x
k
σ) + hϕkσ∇f2(x

k
σ)

]
skσ,

where ϕkσ = ϕ(skσ). Note that away from the boundaries of the transition zone,
ϕ′
σ(x) = Θ(1/σ). Let ukσ = f1(x

k
σ) − f2(x

k
σ), v

k
σ = ∇ψ(xkσ)

T , and F kσ = (1 −
ϕkσ)∇f1(x

k
σ) + ϕkσ∇f2(x

k
σ). Then we can write the discrete sensitivity equation as

sk+1
σ = [I − hϕ′

σ(ψ(xkσ))u
k
σ(v

k
σ)
T + hF kσ ]skσ.(6.4)
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If xkσ was on Σ = {x | ψ(x) = 0 }, then since f satisfies a one-sided Lipschitz condition,
ukσ ‖ vkσ and (vkσ)

Tukσ ≥ 0. However, while in the transition zone, the distance of xkσ
from Σ is O(σ). Thus the angle between ukσ and vkσ is O(σ) by Lipschitz continuity
of f1, f2 and ∇ψ, and the assumption that f2 − f1 6= 0 and ∇ψ 6= 0 anywhere on Σ.

Let αkσ = ϕ′
σ(ψ(xkσ))/((v

k
σ)
Tukσ).

For the remainder of this subsection we will drop the σ subscripts.
Then we can write

sk+1 =

[
I − hαk

uk(vk)T

(vk)Tuk
+ hF k

]
sk.(6.5)

Note that αk = Θ(1/σ) and F k = O(1). Since the angle between uk and vk is O(σ)
and αk = O(1/σ),

αk
uk(vk)T

(vk)Tuk
= αk

uk(uk)T

(uk)Tuk
+O(1).(6.6)

Thus

sk+1 =

[
I − hαk

uk(uk)T

(uk)Tuk
+ hF̂ k

]
sk,(6.7)

where F̂ k = O(1).
Let ûk = uk/‖uk‖2. Choose a family of orthogonal matrices Qk where Qkû

k =
ûk+1. Since ‖uk+1−uk‖ = O(h), and ‖uk‖ is bounded away from zero, we can choose
Qk so that ‖Qk − I‖2 = O(h). Put Rk = Qk−1Qk−2 · · ·Q1Q0, with Qj = I if xjσ is
not in the transition zone. With this in mind, the discrete sensitivity equations can
be rewritten as

sk+1 =
[
I − hαkRkû

0(û0)TRTk + hF̂ k
]
sk,

= Rk[I − hαkû
0(û0)T + hRTk F̂

kRk]R
T
k s

k.

For large k, we can write

sk =



k−1∏

j=0

(Rj [I − hαj û
0(û0)T + hRTj F̂

jRj ]R
T
j )


 s0

= Rk



k−1∏

j=0

(RTj+1Rj [I − hαj û
0(û0)T + hRTj F̂

jRj ])


 RT0 s

0

= Rk



k−1∏

j=0

(Qj [I − hαj û
0(û0)T + hRTj F̂

jRj ])


 RT0 s

0,(6.8)

where
∏k−1
j=0 Aj = Ak−1Ak−2 · · ·A1A0. Noting that Qj = I + O(h), we can absorb

the difference Qj − I in the product into the O(1) term of the above product. This
gives

sk = Rk



k−1∏

j=0

(I − hαj û
0(û0)T + hGj)


 RT0 s

0(6.9)
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with Gj = O(1). Provided 0 ≤ hαj ≤ 1 for all j, one can easy show that this product
is uniformly bounded as h ↓ 0 with kh bounded.

We want to go further and show that this converges to a matrix of the form
R(I − û0(û0)T )G(I − û0(û0)T ) with R orthogonal.

In addition to supposing that h = o(σ), we choose p, an integer, so that σ = o(ph),
and we write ǫ := ph.

6.1.4. Lower bounds for ϕσ(ψ(xσ(t))). In the following, we make certain as-
sumptions about the properties of the function ρ(x) that defines the smoothing func-
tion ϕσ(x) . Recall that we defined

ϕσ(x) =

∫ x

−∞

ρ
( r
σ

)dr
σ

=

∫ x/σ

−∞

ρ (r′)dr′ =

∫ x/σ

−1

ρ (r′)dr′.

Namely, we assume that there exists a positive parameter c such that

∫ x
−1
ρ(r′)dr′ ≤ cρ(x), x ∈ [−1, 0];∫ 1

x
ρ(r′)dr′ ≤ cρ(x), x ∈ [0, 1].

An immediate consequence of this assumption is that

min(ϕσ(x), (1 − ϕσ(x)) ≤ cρ
(x
σ

)
, x ∈ [−σ, σ].

Since we aimed to prove certain properties of the solution while in the transition
region and while the solution follows the discontinuity manifold, it is important to
define the transition region for the situation where σ 6= 0 . In our case, we simply
define it as the point xσ(t) that satisfies ρσ(ψ(xσ(t))) ≥ k1, where k1 > 0 is sufficiently

small. In addition, since we have shown that ρσ(ψ(xσ(t)))
σ→0
−→ θ(x(t)) , and since our

assumption that ∇ψ(x)T f1(x) > 0 and ∇ψ(x)T f2(x) < 0 implies that θ(x(t)) must
be bounded away from 1, it follows that in the transition region and in the region
that follows the discontinuity manifold, we have the following inequality:

k1 ≤ ϕσ(ψ(xσ(t))) ≤ 1 − k2.

In turn, this implies that whenever xσ(t) is in the transition region or follows the
discontinuity, we will have that

min(k1, k2) ≤ min(ϕσ(ψ(xσ(t))), (1 − ϕσ(ψ(xσ(t)))) ≤ cρ

(
ψ(xσ(t))

σ

)
,

Therefore, in the same regime we have that

ϕ′
σ(ψ(xσ(t)) =

1

σ
ρ

(
ψ(xσ(t)

σ

)
≥

min(k1, k2)

cσ
.(6.10)

As a result, we have that

h
∑

tk∈Iσ

ϕ′
σ(ψ(xσ(tk)) → ∞

as soon as m(Iσ) ≥ σp, p ∈ (0, 1).
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6.1.5. Results on products of nearby projections. Consider the product
with ‖ûi‖2 = 1 for all i and ûi+1 − ûi = O(h):

P :=

p∏

i=1

(I − hαiûiû
T
i ).

Let Qi,i+1ûi = ûi+1 by an orthogonal matrix: Qi,i+1 = I + (ûi+1 − ûi)û
T
i − ûi(ûi+1 −

ûi)
T +h.o.t. Then put Qr,s = Qr,r+1Qr+1,r+2 · · ·Qs−1,s for s > r. Note that Qr,sûr =

ûs. Also QTr,sûs = ûr so we put QTr,s = Qs,r. Then

P =

p∏

i=1

(I − hαiûiû
T
i )

=

p∏

i=1

(I − hαiQ0,iû0û
T
0 Q

T
0,i)

=

p∏

i=1

(Q0,i(I − hαiû0û
T
0 )QT0,i)

= Q0,j+1

[
p∏

i=1

(QT0,i+1Q0,i(I − hαiû0û
T
0 ))

]
QT0,1.

Note that Q0,i+1 = Qi,i+1Q0,i, so

QT0,i+1Q0,i = QT0,iQ
T
i,i+1Q0,i

= QT0,i
[
I + ûi(ûi+1 − ûi)

T − (ûi+1 − ûi)û
T
i + h.o.t.

]
Q0,i

= I +QT0,iûi(ûi+1 − ûi)
TQ0,i −QT0,i(ûi+1 − ûi)û

T
i Q0,i + h.o.t.

= I + û0z
T
i − ziû

T
0 + h.o.t.

Note that “h.o.t.” means “higher-order terms”; zi = O(h), and h.o.t. = O(h2). If

G̃i := QT0,i+1Q0,i − I = û0z
T
i − ziû

T
0 + h.o.t., then

P = Q0,j+1

[
p∏

i=1

((I + G̃i)(I − hαiû0û
T
0 ))

]
QT0,1.

Expanding the factors with I + G̃i, we get

P = Q0,j+1

[
p∏

i=1

(I − hαiû0û
T
0 )

]
QT0,1

+Q0,j+1




p∑

i=1





p∏

j=i+1

(I − hαiû0û
T
0 )



 G̃i





i−1∏

j=1

(I − hαiû0û
T
0 )






QT0,1 +O(h2p2).

Assume that all αi = Θ(1/σ) with σ > 0 small (bounds independent of i) and h =
o(σ). This assumption is satisfied in our case, once we specify αi, by using (6.10).
Then

s∏

j=r

(I − hαiû0û
T
0 ) = I −


1 −

s∏

j=r

(1 − hαj)


 û0û

T
0

= P0 +O(

s∏

j=r

(1 − hαj)), P0 = I − û0û
T
0 .
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Thus

p∑

i=1





p∏

j=i+1

(I − hαiû0û
T
0 )



 G̃i





i−1∏

j=1

(I − hαiû0û
T
0 )



 =

p∑

i=1

P0G̃iP0 +O(h (σ/h) log(σ/h)).

But P0G̃iP0 = (I − û0û
T
0 )(û0z

T
i − ziû

T
0 +O(h2))(I − û0û

T
0 ) = O(h2), so

p∑

i=1





p∏

j=i+1

(I − hαiû0û
T
0 )



 G̃i





i−1∏

j=1

(I − hαiû0û
T
0 )



 = O(σ log(σ) + ph2).

Thus P = Q0,j+1P0Q
T
0,1 + O(σ + ph2 + p2h2). In fact, noting that Q0,1 = I + O(h),

we get

P = Q0,j+1(I − û0û
T
0 ) +O(σ + ph2 + p2h2).

Taking ph→ ǫ, we get

P = I − û0û
T
0 +O(ǫ).(6.11)

6.1.6. Jump conditions for the sensitivity. We wish to use the above result
to show that if Gi = O(1) for all i, then

p∏

i=1

(I − hαiûiû
T
i + hGi) = I − û0û

T
0 +O(ǫ)(6.12)

provided ph = O(ǫ).
Now

p∏

i=1

(I − hαiûiû
T
i + hGi) =

p∏

i=1

(I − hαiûiû
T
i )

+ h

p∑

i=1





p∏

j=i+1

(I − hαiûiû
T
i )



Gi





i−1∏

j=1

(I − hαiûiû
T
i )





(from (6.11)) = I − û0û
T
0 +O(ǫ)

+ h

p∑

i=1

(I − û0û
T
0 +O(ǫ))Gi(I − û0û

T
0 +O(ǫ))

= I − û0û
T
0 +O(ǫ).

Taking limits as h, σ → 0 with h = o(σ2) gives s(t∗ + ǫ) = (I − û0û
T
0 )s(t∗− ǫ)+O(ǫ).

That is, s(t∗+) = (I−û0û
T
0 )s(t∗−), which is the required jump rule for the sensitivities

(3.5).

6.1.7. Convergence to the differential equation for the sensitivity on

the discontinuity. We assume that x(t∗) (the exact solution) lies on Σ. Then
s(t∗+) ⊥ ∇ψ(x(t∗)) by Section 6.1.6.
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We consider a time interval [t∗, t∗ + ǫ] with 0 < ǫ≪ 1 and take ph→ ǫ, h = o(σ),
σ = O(ǫ2). Then the limit of the computed sensitivities can be computed from

sk
∗+p =

p∏

i=1

(
I − hαi

ui(vi)T

(vi)Tui
+ hFi

)
sk

∗

,

where Fi = (1 − ϕσ(ψ(xk
∗+i))∇f1(x

k∗+i) + ϕσ(ψ(xk
∗+i))∇f2(x

k∗+i), and so forth.
Note that ϕσ(ψ(xk

∗+i))−θ(xk
∗+i) = O(σ) with a constant independent of i, 1 ≤ i ≤ p.

From the above computations,

sk
∗+p = Q0,p(I − û0(û0)T ) sk

∗

+ h

p∑

i=1





p∏

j=i+1

(I − hαj+k∗ û
j(ûj)T )



Fi





i∏

j=1

(I − hαj+k∗ û
j(ûj)T )



 sk

∗

+O(h2p2 + σ).

Since Fi−[(1−θ(xk
∗+i)∇f1(x

k∗+i)+θ(xk
∗+i)∇f2(x

k∗+i)] = O(σ), and the trajectories
converge, we can take the limit as h → 0, ph → ǫ. This gives the solution of the
smoothed problem. We can also (simultaneously) take σ → 0 with h = o(σ) to
get the limit of the computations with Euler’s method. Without taking the limit as
σ → 0, we get

sk
∗+p = Q0,p(I − û0(û0)T ) sk

∗

+ h

p∑

i=1

Qi+1,p(I − ûi+1(ûi+1)T )FiQ1,i−1(I − û1(û1)T ) sk
∗

+O(h2p2 + σ)

= Q0,p(I − û0(û0)T ) sk
∗

+ h

p∑

i=1

Qi+1,p(I − ûi+1(ûi+1)T )Fi(I − ûi−1(ûi−1)T )Q1,i−1 s
k∗

+O(h2p2 + σ).

Now

Q0,p − I =

p∏

i=1

(I + (ûi+1 − ûi)(ûi)T − ûi(ûi+1 − ûi)T ) − I +O(ph2)

=

p∑

i=1

[
(ûi+1 − ûi)(ûi)T − ûi(ûi+1 − ûi)T

]
+O(p2h2)

=

p∑

i=1

[
(ûi+1 − ûi)(û0)T − û0(ûi+1 − ûi)T

]
+O(p2h2)

= (ûp+1 − û0)(û0)T − û0(ûp+1 − û0)T +O(p2h2).

Assuming (sk∗)T∇ψ(x(t∗)) = O(σ), we get

sk
∗+p − sk

∗

ph
= [(ûp+1 − û0)(û0)T − û0(ûp+1 − û0)T ]sk

∗

/(ph)
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+
1

p

p∑

i=1

Qi+1,p(I − ûi+1(ûi+1)T )Fi(I − ûi−1(ûi−1)T )Q1,i−1 s
k∗

+O(hp+ σ/(hp))

= −û0(ûp+1 − û0)T sk
∗

/(ph)

+
1

p

p∑

i=1

Qi+1,p(I − ûi+1(ûi+1)T )Fi(I − ûi−1(ûi−1)T )Q1,i−1 s
k∗

+O(hp+ σ/(hp)).

Now ûp+1 = up+1/‖up+1‖ and up+1 = f1(x
k∗+p+1) − f2(x

k∗+p+1). Since f1 and f2
are C1 and f1 − f2 is nonzero on Σ, then x 7→ (f1(x) − f2(x))/‖f1(x) − f2(x)‖ is a
smooth map in a neighborhood of Σ. Thus (ûp+1 − û0)/(ph) → ∇[(f1 − f2)/‖f1 −
f2‖](x(t

∗)) f∗(x(t∗)) =: z as ph→ 0. Since Fi = (1−θ(x))∇f1(x(t
∗))+θ∇f2(x(t

∗))+
O(ph) and Qi+1,p, Q1,i−1 = I +O(ph), it follows that if P (t) = I − û(t)û(t)T , where
û(t) = u(t)/‖u(t)‖ and u(t) = f1(x(t)) − f2(x(t)),

sk
∗+p − sk

∗

ph
=

[
−û0zT + P (t∗) {(1 − θ(x))∇f1(x(t

∗)) + θ∇f2(x(t
∗))}P (t∗)

]
sk

∗

+ O(hp+ σ/(hp)).

Noting that σ = o(ǫ) and taking ph = ǫ→ 0, we have

ds

dt
(t∗) =

[
−

f1(x(t
∗) − f2(x(t

∗))

‖f1(x(t∗) − f2(x(t∗))‖
z(t∗)T

]
s(t∗)

+ [P (t∗) {(1 − θ(x(t∗)))∇f1(x(t
∗)) + θ(x(t∗))∇f2(x(t

∗))}P (t∗)] s(t∗),

with z(t) = ∇[(f1 − f2)/‖f1 − f2‖](x(t)) f
∗(x(t)). But s(t∗) ⊥ u(t∗), so

ds

dt
(t∗) =

[
−

f1(x(t
∗) − f2(x(t

∗))

‖f1(x(t∗) − f2(x(t∗))‖
z(t∗)T

]
s(t∗)

+ [P (t∗) {(1 − θ(x(t∗)))∇f1(x(t
∗)) + θ(x(t∗))∇f2(x(t

∗))}] s(t∗).

Note that ∇f∗(x) = (1−θ(x))∇f1(x)+θ(x)∇f2(x)+(f2(x)−f1(x))∇θ(x). Since
the equation on the discontinuity is

dx

dt
= f∗(x),

the associated variational equation

ds

dt
= ∇f∗(x(t)) s

must keep the tangent plane of the disconuity invariant. Note that

P (t∗)
ds

dt
(t∗) = P (t∗) [(1 − θ(x))∇f1(x(t

∗)) + θ∇f2(x(t
∗))] s(t∗)

= P (t∗)∇f∗(x(t∗)) s(t∗).

In order to obtain the correct sensitivity in the limit, it suffices that the component
of ds/dt(t∗) in the direction of u(t∗) is correct. But, (ûp+1)T sk

∗+p = O(σ), so in the
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limit as h, σ → 0 with h = o(σ), u(t) ⊥ s(t) for all t ≈ t∗. Thus the component of
ds/dt(t∗) in the direction of u(t) must also be correct, and so

ds

dt
(t∗) = ∇f∗(x(t∗)) s(t∗).

Since this is true for all t∗ in the interior of the set { τ | ψ(x(τ)) = 0 }, and since s is
Lipschitz on this set (provided u(t)T s(t) for some t in any interval in { τ | ψ(x(τ)) =
0 }), the limit of the numerically computed sensitivities with h = o(σ) satisfy the
correct sensitivity equation on the discontinuity:

ds

dt
= ∇f∗(x(t)) s.

6.1.8. The jump rule for λ. We have so far been able to obtain the jump rule
for the sensitivities when the discontinuity manifold is reached:

s(t∗+) =

(
I −

u(t∗)u(t∗)T

u(t∗)Tu(t∗)

)
s(t∗−).(6.13)

The corresponding jump rule for λ can be found from the following property of the
adjoints and sensitivities, which is true for any s(0):

d

dt
(sσ(t)

Tλσ(t)) = 0.

Thus sσ(t)
Tλσ(t) is independent of t. Now s(t∗+) = P (t∗) s(t∗−) where P (t) =

I−u(t)u(t)T /(u(t)Tu(t)). So taking σ → 0 we obtain s(t∗+)Tλ(t∗+) = s(t∗−)Tλ(t∗−).
Thus, s(t∗−)P (t∗)Tλ(t∗+) = s(t∗−)Tλ(t∗−). Since this is true for all values of s(t∗−),
we get the jump rule for λ:

λ(t∗−) = P (t∗)Tλ(t∗+) = P (t∗)λ(t∗+),(6.14)

since P (t∗) is symmetric.
Similarly, we find that the Lagrange multipliers will satisfy the following adjoint

equations on the manifold of discontinuity:

λ̇(t) = −

{
∇f1(x(t, x0))

Tλ(t), t < ts
∇f∗(x(t, x0))

Tλ(t), t > ts
, λσ(T ) = ∇g(x(T )),

which satisfies the following jump rule at the discontinuity

λ(t−s ) =

[
I +

(f∗ (x(ts, x0)) − f1 (x(ts, x0)))∇ψ(x(ts, x0))
T

∇ψ(x(ts, x0))T f1 (x(ts, x0))

]
λ(t+s ).

7. A model problem and numerical results. We now investigate numerically
the benefits of our theoretical results. We use our smoothing approach to investigate
an optimal control problem whose discontinuous dynamics originates in the Coulomb
friction. While the proofs of our theorems do not include the case with controls, the
benefits of our analysis can be extended to that case as well.

Indeed, consider the problem

min
u,x

g(x(T ))

subject to ẋ = f(x, u),

x(0) = x0,

u(t) ∈ K,
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where K is a given convex set.

We construct the Lagrangian L(x, u) = g(x(T )) −
∫ T
0
λT (ẋ− f(x, u)). We com-

pute its first-order variations with respect to feasible δx(t) and δu(t) ∈ TK(u(t)):

δL = ∇xg(x
T )δx(T ) −

∫ T

0

λT
(

˙δx−∇xf(x, u)δx−∇uf(x, u)δu
)
.

Choosing the adjoint variable λ(t) to satisfy

λ̇(t) = −(∇xf(x, u))Tλ(t), λ(T ) = ∇xg(x(T ))

as well as doing integration by parts and using δx(0) = 0, we obtain that

δL =

∫ T

0

λ(t)T∇uf(x(t), u(t))T δu(t)

for feasible δu(t) ∈ TK(u(t)).
Therefore, λ(t)∇uf(x(t), u(t))T is the reduced gradient with respect to u. Using

Theorems 6.1 and 5.2, we obtain that, if the problem has discontinuities and we
use a smoothing approach with an Euler time-stepping scheme with h = O(σ2), the
reduced gradients for the smoothed problem approach the ones of the original problem,
if ∇uf(x, u) is continuous. Therefore, since the gradients converge, the divergence
phenomena described at the beginning of this paper will not occur. Nonetheless,
when solving our example we do not have to use the reduced gradient computed in
this fashion; we have used it only to argue the convergence of the relevant gradients.

We have used the smoothing approach to compute optimal solutions for a crude
approximation of a racing car model. This is a version of the “Michael Schumacher”
problem described on CPNET, the Complementarity Problem Network [29]. The
differential equations and constraints are different here from those in [29] in that
aerodynamic drag is ignored here and the track considered here is a more complex
S-bend instead of an ellipse.

The state space consists of a vector x ∈ R
2 denoting the position of the center of

the vehicle, its velocity v ∈ R
2, and the angle in which the vehicle is pointing θ ∈ R.

The controls consist of the throttle a(t), which accelerates or decelerates the vehicle,
and the steering control s(t), which changes the vehicle orientation. The auxiliary
functions used are t(θ) = (cos(θ), sin(θ)), the unit vector the vehicle is pointing in,
and n(θ) = (− sin(θ), cos(θ)), a unit normal vector to t(θ). The following differential
equations are used:

ẋ = v(7.1)

v̇ = a(t) t(θ) + F n(θ),(7.2)

θ̇ = s(t) (t(θ)Tv),(7.3)

F ∈ −µNSgn(n(θ)Tv).(7.4)

As usual, µ is the coefficient of friction and N is the normal contact force (assumed
constant). These equations are clearly not sufficient to realistically describe a For-
mula 1 racing car. For example, “spin-outs” and “fish-tailing”, where large uncon-
trolled angular velocities occur, cannot happen in this model. However, (7.1)–(7.4) do
provide an interesting control system where friction appears in an essential way. Fur-
thermore, slip is an essential characteristic of the solutions found for certain optimal
control problems.
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The initial conditions used were x(0) = 0, v(0) = 0, and θ(0) = 0. These are
the conditions for a vehicle initially at rest at the origin, pointing horizontally to the
right.

The vehicle is constrained not to leave the track. This constraint introduces state
constraints of the form x(t) ∈ C, where C ⊂ R

2 is the track. For our particular model
problem, we take C to be

{ (x, y) | |y − ycl(x)| ≤ w/2 } ,(7.5)

where w is the “width” of the track, and { (x, ycl(x)) | x ∈ R } is the curve of the
centerline of the track. For an interesting but easily implementable system, we set

ycl(x) =





sin(x), x ≤ π,
π − x, π ≤ x ≤ 2π,

−π − sin(x), 2π ≤ x.
(7.6)

This generates a C1, but not C2, curve for the centerline.
The controls are subject to simple bounds constraints:

|a(t)| ≤ amax for all t,(7.7)

|s(t)| ≤ smax for all t.(7.8)

The objective function chosen was a combination of a penalty term for missing a
target xtgt, and the time taken to reach the endpoint:

g(T, x(T )) = α‖x(T ) − xtgt‖
2 + T.(7.9)

7.1. Specific parameter values. The following default values were used:
• The penalty parameter for the final target was α = 10.
• The target point was xtgt = (3π, −π)T , which is on the center line of the

track.
• The maximum acceleration and steering controls were amax = 2 and smax = 2.
• The maximum friction force was µN = 4.

7.2. Numerical results. The discretized optimal control problem was set up
with AMPL modeling language [14] and solved with LOQO [35] under Linux. The
baseline problem used a time step of h = T/N , with T the final time and N fixed at
1000; the smoothing parameter was σ = 0.1. A number of runs were carried out with
different values of N and σ. The results are shown in Table 7.1.

For the baseline problem, the value of T computed for this “minimal time” prob-
lem was T = 5.541106358, making h ≈ 5.5× 10−3. The final objective function value
was 5.552177023, obtained in 349 iterations and taking 53.3 seconds of CPU time
on a Pentium 4 running Linux. LOQO reported a dual objective function value of
5.552176961. While the objective function and the feasible region are highly noncon-
vex, this result does indicate that the objective function value is likely within about
6× 10−8 of the value of a local minimum. The objective function value indicates that
α‖x(T )−xtgt‖

2 ≈ 0.01107; since α = 10, this indicates that ‖x(T )−xtgt‖ ≈ 0.03327;
the target is approached to high accuracy. Similar results are apparent for the other
values of N and σ (see Table 7.1).

We note that LOQO, like most software for mathematical programming, can
guarantee only that the computed solution is close to a local minimum; guaranteeing
a global minimum without convexity is a computationally challenging task and there

28



σ N Objective T # Iter’ns CPU Time
0.1 250 5.544654 5.53393 303 14.1

500 5.549708 5.53877 531 53.3
1000 5.552177 5.54111 349 53.3
2000 5.553451 5.54239 420 227.0

0.05 500 5.590849 5.58285 1501 153.5
1000 5.409497 5.39842 977 242.2
2000 5.409183 5.39813 643 300.8

0.025 1000 5.353886 5.34289 1240 184.5
2000 5.354256 5.34321 1759 913.2
4000 5.354451 5.34341 1368 1552.8

Table 7.1

Objective, final time and algorithm performance for minimum time problem
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steering straight
braking

Fig. 7.1. Trajectory of “race-car”

is no reason to expect that these optimal control problems do not have many local
minima. However, the objective function values reported are remarkably consistent,
and the controls used to achieve these local minima are also remarkably similar. This
gives us some confidence that the computed objective values and controls are close to
a global minimum for the true unsmoothed continuous time problem (7.1)– (7.6).

The computed optimal trajectory for the baseline problem is shown in Figure 7.1.
A close-up of the trajectory as it is going around the first half of the first bend is
shown in Figure 7.2.

The computed optimal control functions, along with the normal and tangential
velocities, are shown in Figure 7.3. A complex maneuver takes place near t = 3; this
is shown in more detail in Figure 7.4.
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Note from Figure 7.1 that the vehicle appears to be braking near the origin. The
reason is that the vehicle is at first reversing with the steering set to turn the vehicle
clockwise; after a short time the vehicle is accelerating forward. This can be seen
in the control functions in Figure 7.3. When the vehicle comes to rest, the steering
wheel is set to the opposite direction to turn the car counterclockwise in order to stay
on the track. After touching the boundary of the track, the vehicle starts turning
clockwise in order to turn around the first bend. Since the aim is to minimize the
time taken, there is a tendency to keep the tangential velocity as high as possible.
Because slip then limits the curvature of the turn, the trajectory can no longer stay
in contact with the track boundary (see Figure 7.2).

There is a brief period of deceleration as the vehicle goes around the first bend;
this is probably to prevent the vehicle from going outside the track when it touches
the north boundary of the track. About when the vehicle reaches the northernmost
point on the bend the vehicle is already pointing in a direction more than π/4 radians
from east-west (the x-axis). This can be seen in Figure 7.3 near t = 1.7 where the
ratio of the normal velocity to the tangential velocity is over 1.5. The steering control
is set to be straight (s(t) ≈ 0) until well into the straight segment of the track.

Around t = 3.2 there is a complex maneuver that is shown in more detail in
Figure 7.4. This occurs at the start of the “braking” part of the trajectory in the
straight segment of track, which can be seen in Figure 7.1. First, the steering control
reverses direction, which changes the direction of the slip velocity. Then the tangential
acceleration control a(t) reverses sign and starts to decelerate the vehicle. Thereafter,
the steering control returns to near zero. There is some “overshoot” in the steering
control. This appears not to be a numerical artifact, as will be discussed below.

Shortly after the above maneuver at about t = 3.5, the steering control is set to
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its maximum value to avoid crossing the southern boundary of the track and to turn
around the second bend. The continued deceleration helps the vehicle to change its
direction of motion. As the vehicle approaches the second bend, the steering control is
set at its maximum value for turning counter-clockwise. This is maintained until the
friction forces due to slip is sufficient to make the vehicle reach the final destination
without crossing the track boundary. Around t = 4.7, the steering control is brought
to zero; again there is some overshoot, but it is not clear why. As might be expected
of an optimal control, it just touches the track boundary as it goes around the second
bend.

7.3. Comparison with solutions for different N and σ. Different values
of N and σ do result in some differences in the control functions and the velocities.
These can be seen in Table 7.1, and also in Figure 7.5. Most of the control and
velocities are indistinguishable except for a few features.

For σ = 0.1 there is the initial reversing maneuver, which is not present for smaller
values of σ. This is presumably because reducing the value of σ keeps the normal
velocity closer to zero and enables the vehicle to make the first counter-clockwise turn
without leaving the track. However, for σ = 0.05 there is a deceleration maneuver
near t = 0.35 that appears to be of a bang-singular-bang type; for σ = 0.025 there is
another deceleration maneuver at about the same time of a bang-bang type.

For σ = 0.05 and N = 500 the computed solution appears to be a local but not
global minimum. Note that the objective function for this case is ≈ 5.59 compared
with ≈ 5.41 for N = 1000 and N = 2000 with σ = 0.05, a difference of 3%. This solu-
tion (plotted with “dot-dash” lines) does not have the interesting steering maneuvers
near t = 3 and near t = 4.6 and has quite different control functions near the finish
line.

Otherwise the controls are qualitatively and quantitatively similar. Thus, it would
seem that most of the maneuvers observed in the optimal controls are not artifacts
but are truly part of the optimal strategy.

8. Conclusions. Optimal control problems where the dynamics includes dis-
continuous right-hand sides or differential inclusions can be handled both analytically
and computationally by smoothing the right-hand side, at least when the right-hand
side satisfies a one-sided Lipschitz condition. Furthermore, not smoothing the right-
hand side, and computing the gradients of the discretized system directly, leads to
incorrect gradient information with errors comparable to the size of the true gradients
even with fully implicit discretization. For the computed gradients to converge to the
true gradients, we need h = o(σ2), where h is the step size and σ is the smooth-
ing parameter; this is sufficient under non degeneracy assumptions. Furthermore, we
used the computed gradients with modern optimization software to compute optimal
controls for moderately complex optimization problems with solutions that could not
be easily predicted a priori. We expect that such results can be replicated for a large
class of problems.

The usual adjoint equation or inclusion must be modified to allow for jumps in the
adjoint variables if the trajectory crosses the discontinuity. This is quite different from
the case of differential inclusions with Lipschitz right-hand sides [6, 16, 19], where an
adjoint differential inclusion can be constructed and solved.

A “jump formula” for the adjoint variable in the case where the trajectory crosses
a codimension-one discontinuity has been developed that uses only the right-hand side
on opposite sides of the discontinuity and the normal vector of the discontinuity man-
ifold. This jump formula opens up the possibility of accurately computing gradients
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by using a detect/locate/restart method of handling discontinuities in the forward
ODE solver.
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