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Abstract

LDRD research activities have focused on increasing the robustness and effi-
ciency of optimization studies for computationally complex engineering prob-
lems. Engineering applications can be characterized by extreme computational
expense, lack of gradient information, discrete parameters, nonconverging sim-
ulations, and nonsmooth, multimodal, and discontinuous response variations.
Guided by these challenges, the LDRD research activities have developed ap-
plication-specific techniques, fundamental optimization algorithms, multilevel
hybrid and sequential approximate optimization strategies, parallel processing
approaches, and automatic differentiation and adjoint augmentation methods.
This report surveys these activities and summarizes the key findings and rec-
ommendations.
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Preface

This document is a final report for the "Optimization Strategies for Computationally 
Challenging Problems in Engineering Sciences" LDRD project which was funded for fiscal 
years 1995 through 1997. It summarizes the main discoveries and research contributions of 
this LDRD activity and includes many of the relevant conference and journal papers that 
arose from the activity in the appendices.

The development of the DAKOTA iterator toolkit software can be attributed in part to 
support from this LDRD. It is documented in a separate companion report.
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Optimization Strategies for Complex 
Engineering Applications

Introduction

Computational methods developed for fluid mechanics, structural dynamics, heat transfer, 
nonlinear structural mechanics, shock physics, and numerous other fields of engineering 
can be an enormous aid to understanding the complex physical systems they simulate. 
Often, it is desired to use these simulations as virtual prototypes to obtain an acceptable or 
optimized design for a particular system. This project seeks to enhance the utility of 
computational methods by enabling their use as design tools, so that simulations may be 
used not just for single-point predictions, but also for automated determination of system 
performance improvements throughout the product life cycle. System performance 
objectives, to name a few possibilities, can be formulated to minimize weight, cost, or 
defects; to limit a critical temperature, stress, or vibration response; or to maximize 
performance, reliability, throughput, reconfigurability, agility, or design robustness. A 
systematic, rapid method of determining these optimal solutions leads to better designs and 
improved system performance, reduces dependence on prototypes and testing, and shortens 
the design cycle and reduces development costs.

Toward these ends, a general purpose toolkit has been developed for the integration of 
commercial and in-house analysis capabilities with broad classes of systems analysis tools. 
Written in C++, the DAKOTA (Design Analysis Kit for OpTimizAtion) toolkit is a 
flexible, extensible interface between analysis codes and iteration methods. In addition to 
optimization methods and strategies, the DAKOTA toolkit implements uncertainty 
quantification with direct and sampling methods, parameter estimation with nonlinear least 
squares solution methods, and sensitivity analysis with general-purpose parameter study 
capabilities. By employing object-oriented design to implement abstractions of the key 
concepts involved in iterative systems analyses, the DAKOTA toolkit provides a flexible 
and extensible problem-solving environment for current and future problems of interest. 
Through DAKOTA, point solutions from simulation codes can be used for answering more 
fundamental engineering questions, such as “what is the best design?”, “how safe is it?”, or 
“how much confidence do I have in my answer?”. 

In addition to its role as a problem-solving environment, the DAKOTA toolkit also 
provides a platform for research and development of advanced methodologies which focus 
on increasing the robustness and efficiency of systems analyses for computationally 
complex engineering problems. These methodologies have been the primary focus of the 
“Optimization Strategies for Computationally Challenging Problems in Engineering 
Sciences” LDRD and are the main subject of this report. The specifics of the DAKOTA 
software are provided in a separate report1.
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Guided by the challenges observed from optimizing complex engineering applications, the 
LDRD research activities have focused on developing fundamental algorithms, multilevel 
hybrid and sequential approximate optimization strategies, parallel processing approaches, 
and automatic differentiation and adjoint augmentation methods. The following sections 
summarize the application challenges that were observed and how the cited development 
areas addressed these challenges.

Complex Engineering Applications

Application investigations2-7 have shown the challenges involved in interfacing 
optimization methods with complex engineering simulations. Reference 2 provides a 
summary of the following applications: shape optimization of a hazardous material 
transportation cask (see also References 8, 9, and 10), determination of worst case fire 
environments (see also References 11 and 12), coating flow die design (see also Reference 
13), and discrete optimization of a vibration isolation platform (see also Reference 14). 
Reference 3 extends the worst case fire environment studies as well as adding an 
application in chemical vapor deposition (CVD) plant design using MP chemically reacting 
flow simulations. References 4 and 5 document various facets of an application in heat 
transfer design of CVD reactors, and References 6 and 7 document a pair of parameter 
estimation applications performed with DAKOTA by its growing user community. 
References 2 and 3 are included as Appendices A and B.

The following list (originally presented in Reference 2) presents several common 
challenges associated with complex engineering simulations.

1. The time required to complete a single function evaluation with one parameter set is 
large. Hence, minimization of the number of function evaluations is vital.

2. Analytic derivatives (with respect to the parameters) of the objective and constraint 
functions are frequently unavailable. Hence, sensitivity-based optimization methods 
depend upon numerically generated gradients which require additional function 
evaluations for each scalar parameter.

3. The parameters may be either continuous or discrete, or a combination of the two.

4. The objective and constraint functions may not be smooth or well-behaved; i.e., the 
response surfaces can be severely nonlinear, discontinuous, or even undefined in some 
regions of the parameter space. The existence of several local extrema (multimodality) 
is common.

5. Convergence tolerances in embedded iteration schemes introduce nonsmoothness 
(noise) in the function evaluation response surface, which can result in inaccurate 
numerical gradients.

6. Each function evaluation may require an “initial guess.” Function evaluation 
dependence on the initial guess can cause additional nonsmoothness in the response 
surface. Moreover, a solution may not be attainable for an inadequate initial guess, 
which can restrict the size of the allowable parameter changes.
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Techniques for Application-Specific 

Each of the listed challenges can adversely affect the robustness and efficiency of 
optimization processes and has led to research and development of application-specific 
techniques, new optimization algorithms, multilevel hybrid and sequential approximate 
optimization strategies, parallel optimization approaches, and automatic differentiation and 
adjoint augmentation methods. The following sections describe these techniques and how 
they mitigate the cited difficulties.

Techniques for Application-Specific Challenges

This section contains application-specific techniques which can be used to address the 
challenges associated with complex engineering applications. While they are not 
universally applicable to all situations, they can be highly effective in certain instances.

Adaptive simulation termination was employed in the worst-case fire and cask shape 
optimization applications2, both to minimize computational expense and to guarantee event 
capture. Since the duration of transient simulations necessary to capture the events of 
interest (subcomponent failures and maximum stress during impact, respectively) was a 
function of the design variables (fire boundary conditions and impact and thermal layer 
thicknesses, respectively), it was necessary to monitor simulation progress and terminate 
execution when event capture was determined. In the worst-case fire application, event 
capture was signaled when critical node temperatures exceeded failure thresholds, and in 
the cask application, crush event capture was indicated by rebound in the kinetic energy 
histories. These techniques were highly effective in conserving compute cycles while 
guaranteeing that the simulations did not terminate prematurely and truncate the responses.

It is not uncommon for a complex simulation to fail to obtain a converged solution for a 
particular parameter set. In some cases, this results from an inadequate initial guess, for 
which simulation continuation methods can be highly effective. Continuation can be 
implemented within the analysis code (e.g., MPSalsa, GOMA) or externally to the code 
(e.g., DAKOTA’s continuation option for simulation failure capturing). In other cases, the 
solution may be transitioning into a physics regime which the simulation is incapable of 
resolving (e.g., turbulence, phase change, structural instability) regardless of initial guess; 
in these cases, continuation will be ineffective. Assuming that this regime is undesirable 
from a design perspective (which should be carefully evaluated), the existing simulation 
code can still be utilized successfully if the optimization can be configured to recover from 
these parameter sets. One simple approach for discouraging optimization algorithms from 
entering the unsolvable regime is to return an artificially poor objective function (or, for a 
constrained problem, a stability constraint violation) in place of the nonconverging 
simulation results. This is DAKOTA’s recovery option for simulation failure capturing. 
The difficult part of the recovery process can be the detection of the failure to converge, 
since some analysis codes may loop indefinitely, or worse, return erroneous results after a 
fixed amount of effort. A more sophisticated technique is to build a strategy around an 
algorithm that decreases its extent of optimization (e.g., trust region radius, linear 
programming move limits, pattern search delta, etc.) when analysis failure is detected. The 
motivation for the more sophisticated approach would be the ability to implement increased 
flexibility beyond the internal optimizer mechanisms relied on in the recovery approach.
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Even when you can obtain a solution, the variation of the solution responses with the 
parameters may be poorly behaved. In particular, it may be noisy and nonsmooth. This 
behavior may arise from any number of factors, including under-resolved meshing, 
inadequate time step and solver convergence controls, improper physics models, modeling 
errors, insufficient precision, distorted elements or high element aspect ratios, etc. Some of 
these problems are errors that must be corrected from a modeling perspective before 
meaningful optimization can be performed (see, for example, element aspect ratios and 
contact line singularities in the cask shape optimization application2). Other problems are 
tightly linked with the individual computational expense of the simulations (such as mesh 
density, time step size, solver convergence tolerance - see cask, worst-case fire, and die 
design applications2) and must be managed so that the modeling fidelity is sufficient to 
allow optimizer navigation but not so over-resolved as to be computationally wasteful. 
“Sufficient” modeling fidelity is tightly linked to the optimizer in use, which can be 
cleverly exploited in multiple method approaches which employ variable complexity 
modeling (see Reference 3 and Multilevel Hybrid Optimization discussion below). Also, 
global approximations (e.g., response surfaces, neural networks) can significantly lessen 
the correlation between simulation expense and optimizer navigability by placing a 
differentiable intermediary between the optimizer and the actual simulations in the context 
of sequential approximate optimization (see discussion below). Unfortunately, many of the 
expense versus navigability trade-offs are most evident in hindsight and can be difficult to 
identify a priori in new applications with little experience base. Parameter study 
investigations of design space variations on a fine scale can be extremely helpful in 
identifying smoothness properties in these cases.

While local nonsmoothness is generally an artifact of incompletely resolved physics, the 
challenges of multimodality, discontinuity, and nonconvexity in general may be real 
features of an application which improvements in model fidelity will not affect. In some 
cases, changes in problem formulation may help, but in most cases, the optimization 
approach must be carefully selected to address these challenges. Traditional gradient-based 
methods assume continuous, convex, unimodal domains. Newton-based approaches 
additionally assume a quadratic model. In the worst case fire application2,3, a problem with 
multiple minima, nonsmoothness, and slope discontinuities, it was observed that Newton-
based methods performed very poorly, which is not surprising since the cusp at the 
minimum is poorly captured by a quadratic model. First-order methods (which do not retain 
curvature information - e.g., conjugate gradient) were much more successful, even though 
they are generally regarded as inferior in their convergence properties to Newton-based 
approaches. Zero-order methods (such as coordinate pattern search) were the most robust 
in reliably locating the local minimum closest to the starting point. Lastly, the 
multimodality of the problem had to be addressed with the use of global approaches, such 
as genetic algorithms, local search from multiple starting points, or stratified Monte Carlo 
sampling. These observations should not be interpreted as reasons to avoid sophisticated 
gradient-based approaches, since they can be significantly more efficient on smooth, 
convex domains. Rather, the important conclusion is that the fewer assumptions a method 
makes about its domain, the more robust it tends to be when its domain is not continuous, 
convex, or unimodal. Furthermore, the more highly tuned an approach is for maximum 
efficiency on convex domains, the worse it may perform on nonconvex domains. Parameter 
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study investigations of design space variations on a coarse scale can be extremely helpful 
in identifying these challenges.

With many of the above challenges, a compounding effect can be the fact that an optimizer 
will exploit weaknesses in the model if they result in improvements to the objective or 
constraints. Put simply, optimizers are very adept at breaking models. The model must not 
only be valid for the nominal parameters, it must also be robust with respect to parameter 
changes. For example, analysis truncation caused by insufficient simulation duration is 
very likely to cause erroneous reductions in the “peak” response information returned to 
the optimizer. If this response is being minimized or constrained from above, the optimizer 
will naturally navigate in the direction of parameter sets which cause the event of interest 
to take even longer to complete, since this will result in more truncation and lower peak 
response. The optimizer’s only feedback from the simulation is the objective and 
constraints, so it is unaware of the fact that the reductions are not real, but rather artifacts 
of model breakdown. Another example is that of entering a region of the design space 
which the simulation cannot resolve properly or for which the model is inadequate. The 
responses returned will be erroneous, and their inaccuracy may again be viewed as 
beneficial by the optimizer depending on the design problem formulation. Thus, the user 
must be mindful that modeling problems can be particularly insidious in that they can be 
exploited in the pursuit of design objectives. If they are not prevented or at least detected, 
then the situation can quickly deteriorate to one of “garbage in, garbage out.”

Fundamental Algorithm Development

Activities involved in the development of fundamental optimization algorithms have 
focused on extensions to the OPT++15, 16 and SGOPT17 software libraries. OPT++ has 
added bound constrained and barrier function extensions to its Newton-based optimizers 
and has added Gauss-Newton and ellipsoid methods. SGOPT has added genetic algorithm/
local search hybrids, evolutionary pattern search methods, and a variety of coordinate 
pattern search techniques, as well as asynchronous capabilities for parallel genetic 
algorithms and parallel coordinate pattern search. In addition, theoretical work in 
convergence proofs for evolutionary pattern search and stopping rules for random sampling 
has been performed. SGOPT’s parallel algorithms were employed to demonstrate single-
level parallel optimization with the worst-case fire application (see Reference 3 and parallel 
optimization discussion below).

When variables are discrete, the concept of a derivative breaks down and recourse must be 
taken to nongradient-based combinatorial methods. Discrete and mixed continuous-
discrete problems can be tackled with genetic algorithms, branch and bound, simulated 
annealing, and many other nongradient-based approaches. For example, genetic algorithms 
were employed in the discrete problem of optimal isolator placement for the vibration 
isolation testbed2. Discrete and mixed continuous-discrete problem domains are a 
continuing focus of the SGOPT development activity17.
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Multilevel Hybrid Optimization

The fact that response variation smoothness and simulation expense are often correlated 
through simulation controls (e.g., simulation time step size, simulation convergence 
tolerance) can be exploited by employing hybrid algorithms and multiple models of 
varying fidelity. These hybrids are described as “multilevel” to denote the fact that there is 
clear separation between the iterators within the hybrid strategy. Rather than combining the 
traits of different methods into a composite algorithm, multilevel hybrids execute one 
iterator and then pass its best results to the next iterator which then refines those results.

By using inexpensive and nonsmooth models with nongradient-based methods and 
expensive and smooth models with gradient methods, it was shown that coordinate pattern 
search/nonlinear programming hybrids were more efficient than nonlinear programming 
alone and more accurate than coordinate pattern search alone3. This validated the concept 
of multilevel hybridization and emphasized the importance of matching the required model 
fidelity to the iterator in use. DAKOTA has subsequently been extended to manage the 
binding of multiple models with multiple iterators by embedding the concepts of variable 
complexity modeling within its multilevel hybrid strategy (this important software 
development also enables other multiple model, multiple iterator strategies). Continuing 
work in hybridization is focusing on development and implementation of (1) fine-grained 
control of multilevel hybrids in which performance metrics are computed on each cycle and 
used to govern switch/adapt logic, and (2) more tightly-coupled hybrids in which local 
searches are used to improve selected points within a global search.

Sequential Approximate Optimization

Sequential approximate optimization (SAO) involves the sequential use of approximations 
in seeking to converge to an optimal solution while minimizing the number of actual 
function evaluations that have to be performed. In SAO’s simplest form, an approximation 
is built, an optimizer computes an optimal solution over the current approximation, this 
optimal point is evaluated with a “truth” model and used to update the approximation, and 
the cycle continues until convergence. The DAKOTA capability for multiple models and 
iterators enables the presence of approximate and truth models in the SAO strategy, and the 
“DakotaInterface” class hierarchy provides a flexible and extensible framework for 
implementation of approximation techniques1. Candidate approximation techniques have 
been surveyed18 and evaluated for applicability within the DAKOTA framework. Response 
surface and neural network techniques, using design and analysis of computer experiments 
(DACE) preprocessors, and multipoint approximations were recommended as general-
purpose approaches based on their application independence. Reference 18 is included as 
Appendix C.

Research in direct training of artificial neural networks has been performed in seeking to 
identify promising techniques for design space approximation which are well-behaved 
when updated with promising points from SAO cycles19. This capability was used in a 
demonstration of SAO using genetic algorithms (GAs) in which both fitness and diversity 
were used as metrics to select the best GA individuals to be used for sequentially updating 
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a neural network approximation. Direct training of neural networks has also been compared 
with more widely-used back-propagation approaches20. While direct training is more 
efficient for many problems of interest, it can be less accurate than back-propagation for 
the same number of hidden layer neurons. In addition, the ability to adapt to a changing 
input/output functional relationship (e.g., variable complexity modeling) favors back-
propagation over direct training.

In the basic SAO approach presented above, there are no guarantees of convergence and a 
poor approximation may not lead to improvement in the actual objective function. The new 
field of model management frameworks21,22 promises to augment heuristic SAO 
approaches with robust, provably convergent backplanes which can be efficient when the 
approximations are accurate and robust when they are not.

Parallel Optimization

Single-level parallel optimization approaches, in which either multiple single-processor 
simulations execute simultaneously (parallelism in the optimization algorithm) or a single 
simulation executes in parallel (parallelism in the simulation), have been investigated3. In 
the worst-case fire application, multiple simultaneous executions of single-processor heat 
transfer simulations were employed with parallel coordinate pattern search to reduce wall 
clock time by up to a factor of 20 over the benchmark nonlinear programming approach 
using up to six nodes of an IBM SP2. In this case, the optimization approach was parallel, 
although the simulations were not. In the CVD plant design application, the MPSalsa 
massively parallel chemically reacting flow code23,24 was used on the Intel Paragon as a 
function evaluator within a gradient-based optimization approach. Here, the simulation was 
parallel (executing on either 256 or 512 processors), but the optimization approach was not.

Both of these single-level parallel approaches, while effective, have clear limitations. In the 
case of the worst-case fire application, speedup was limited by the number of independent 
simulations to be performed (two times the number of design variables for coordinate 
pattern search). In the CVD plant application, speedup was limited by the practical limit on 
the number of processors for a given problem size (as processors increase for a given 
problem size, communication begins to dominate computation and parallel effectiveness 
decreases). Combining the two single-level approaches into multilevel parallelism, in 
which multiple MP simulations execute simultaneously, extends the achievable speedup 
far beyond either single-level approach. Additional levels of parallelism beyond the two 
cited (e.g., multiple independent genetic algorithm populations evolving simultaneously) 
also exist and can be used to further extend machine utilization possibilities. Multilevel 
parallelism is currently being pursued on the Intel TeraFLOPS with funding from the 
Accelerated Strategic Computing Initiative (ASCI)25.

Gradient Calculation Techniques

When analytic gradients are unavailable from an analysis code, several approaches can be 
pursued. One can manually extend the analysis source code to additionally compute 
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gradient information using either the direct or adjoint approaches, employ automatic 
differentiation (AD) to augment the analysis capability, use finite differences, employ 
nongradient-based optimization approaches, or build differentiable approximate surfaces 
from point-solution data.

Manually extending the analysis is the most effort-intensive approach, but it can be the 
most accurate and computationally efficient. One can make use of the latest research 
developments in sensitivity analysis26,27 to compute gradients. In an electronics packaging 
application28, the adjoint approach was shown to reduce time to convergence by a factor of 
two over finite difference approaches. In general, the direct approach is preferred if the 
number of design variables is smaller than the number of responses to be differentiated, and 
the adjoint approach is preferred if the number of responses is smaller than the number of 
design variables. The AD approach uses compiler technology to chain rule response 
computations. The effort required can be low since it is mostly automatic, but it can result 
in very large executables with significantly longer run times than the original analysis. 
While generally more accurate than finite differencing, relative efficiency depends on the 
simulation code, the responses being differentiated, and the size of the optimization 
problem. In a CVD reactor application29, AD was shown to generate considerably more 
accurate gradients than finite differencing and was less expensive than finite differencing 
when the number of design parameters exceeded 4 or 16, for the TWAFER and TACO 
codes respectively. In an application seeking maximum impact velocity for a guided 
projectile, AD was shown to improve robustness by bypassing finite differencing pitfalls 
and reduce the time to convergence by a factor of seven30. References 28 and 29 are 
included as Appendices D and E. Finite differences can compound expense on multiple 
levels both by requiring additional function evaluations and by requiring response 
variations which are smooth on the scale of the finite difference step. Nongradient-based 
optimization approaches can be effective, especially for challenging domains, although the 
number of simulation executions required will usually be higher than for gradient-based 
approaches. This can often be offset by relaxation of smoothness requirements with its 
associated reductions in individual function evaluation expense. Lastly, global 
approximations (e.g., response surfaces) can be used to build differentiable surfaces from 
point-solution data.

Each of these approaches can be effective, and it is often considerations of the up-front 
human effort required to achieve maximum efficiency which govern the selection. If 
simulation codes will be used frequently for design studies, then extension of the codes 
through manual modification or automatic differentiation may pay large dividends in 
improved optimization efficiency. However, in cases of limited analysis code usage, use of 
finite differencing or nongradient-based approaches can minimize human set-up time.

Conclusions

Engineering applications at Sandia National Laboratories share many challenging features, 
most notably extreme computational expense and nonsmoothness and nonconvexity of 
response variations. If these simulations are to be used as virtual prototypes to improve 
products and processes, then these challenges must be addressed with robust and efficient 
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optimization methods and strategies. This LDRD has performed research investigations in 
advanced optimization methodologies and has quantified the performance of these 
approaches on complex engineering applications in a wide range of engineering 
disciplines.

In particular, adaptive simulation termination, simulation failure capturing through 
continuation and/or recovery, nonsmoothness management through variable fidelity 
modeling and approximations, and management of nonconvexity through global and robust 
local algorithms are effective application-specific techniques which can manage simulation 
expense while providing for successful optimizer navigation. Novel algorithms being 
developed in the OPT++ and SGOPT libraries are providing new capabilities specifically 
designed for complex engineering applications. Multilevel hybrid strategies are employing 
multiple iterators with multiple models of varying fidelity to exploit the strengths of 
different methods in identifying optimal solutions quickly and reliably. Sequential 
approximate optimization strategies are employing design space approximations to 
inexpensively compute improvements in the actual objective function. Single-level parallel 
approaches have shown considerable promise and have highlighted the need for multilevel 
parallelism for achieving peak computational speed. And, automatic differentiation and 
adjoint methods for computing gradients have provided highly effective replacements to 
the expensive process of finite differencing.

This collection of findings culminates in (1) an improved understanding of the challenges 
involved in optimizing with complex leading-edge simulations and (2) a suite of advanced 
capabilities, many implemented in the DAKOTA software, which can address these 
challenges and deliver optimal solutions reliably and expediently.
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Abstract

The benefits of applying optimization to computational models are well known, but their range of widespread
application to date has been limited. This work attempts to extend the disciplinary areas to which optimization
algorithms may be readily applied through the development and application of advanced optimization strategies
capable of handling the computational difficulties associated with complex simulation codes. Towards this goal, a
flexible software framework is under continued development for the application of optimization techniques (and other
iterative computational methods) to broad classes of engineering applications, including those with high
computational expense and nonsmooth, nonconvex design space features. Object-oriented software design with C++
has been adopted as a tool to provide a flexible, extensible, and robust multidisciplinary toolkit that establishes the
protocol for wrapping parameter optimization around computationally-intensive simulations. The object-oriented
approach is well-suited for handling this large software undertaking, in which a wide assortment of optimization
algorithms, approximation techniques, and hybridized strategies must be generically interfaced with broad classes of
analysis capabilities. Demonstrations of optimization using the software are presented in fluid mechanics, heat
transfer, nonlinear solid mechanics, and structural dynamics. Optimal results are presented along with technical
lessons that were learned in the optimization process.

Introduction

Computational methods developed in fluid mechanics, structural dynamics, heat transfer, nonlinear large-
deformation mechanics, manufacturing and material processes, and many other fields of engineering can be an
enormous aid to understanding the complex physical systems they simulate. Often, it is desired to utilize these
simulations as virtual prototypes to improve or optimize the design of a particular system. This effort seeks to
enhance the utility of this broad class of computational methods by providing them with a general optimization
capability and enabling their use as design tools, so that simulations may be used not just for single-point predictions,
but also for improving system performance in an automated fashion. System performance objectives can be
formulated to minimize weight or defects or to maximize performance, reliability, throughput, reconfigurability,
agility, or design robustness (insensitivity to off-nominal parameter values). A systematic, rapid method of
determining these optimal solutions will lead to better designs and improved system performance and will reduce
dependence on prototypes and testing, which will shorten the design cycle and reduce development costs.
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Dynamics, and Materials Conference, New Orleans, LA, April 10-13, 1995.
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Towards these ends, we have targeted the needs of a broad class of computational methods in order to provide a
general optimization capability. Much work to date in the optimization community has focused on applying either
gradient-based techniques to smooth, convex, potentially expensive problems (e.g., (Kamat 1993)) or global
techniques to nonconvex but inexpensive problems (e.g., (Törn and Zilinskas 1989)). When the difficulties of high
computational expense and nonsmooth, nonconvex design spaces are coupled together, advanced strategies are
required. Moreover, since the challenges of each application are frequently very different, generality and flexibility of
the advanced strategies are key concerns. The following list itemizes the primary challenges.

Technical Issues.The coupling of optimization with complex computational methods is difficult, and optimization
algorithms often fail to converge efficiently, if at all. The difficulties arise from the following traits, shared by many
computational methods:
1. The time required to complete a single function evaluation with one parameter set is large. Hence, minimization of

the number of function evaluations is vital.
2. Analytic derivatives (with respect to the parameters) of the objective and constraint functions are frequently

unavailable. Hence, sensitivity-based optimization methods depend upon numerically generated gradients which
require additional function evaluations for each scalar parameter.

3. Convergence tolerances in embedded iteration schemes introduce uncertainty (noise) in the function evaluation
response surface, which can result in inaccurate numerical gradients.

4. The parameters may be either continuous or discrete, or a combination of the two.
5. The objective and constraint functions may not be smooth or well-behaved; i.e., the response surfaces can be

severely nonlinear, discontinuous, or even undefined in some regions of the parameter space. The existence of sev-
eral local extrema (multi-modality) is common.

6. Each function evaluation may require an “initial guess.” Function evaluation dependence on the initial guess can
cause additional uncertainty in the response surface. Moreover, a solution may not be attainable for an inadequate
initial guess, which can restrict the size of the allowable parameter changes.

Addressing these challenges with robust and efficient optimization strategies extends the range of applications where
the benefits of optimal solutions can be realized.

Technical Approach.To be effective in addressing these technical issues, one must minimize the computational
expense associated with repeated function evaluations (efficiency) and maximize the likelihood of successful
navigation to the desired optimum (robustness). The key technology developments needed to achieve these goals are
fundamental algorithm research, hybrid optimization algorithms, function approximation strategies, parallel
processing, and automatic differentiation. Research in hybridization, approximation, and parallel processing is
detailed in a separate paper (Eldred et al. 1996).

In this paper, the software infrastructure design and demonstrations of its use in four engineering mechanics
applications will be presented. The generation of optimal solutions for the four applications involves mating existing,
stand-alone optimizers (nonlinear programming, genetic algorithms, pattern search) with one or more engineering
simulations. Thus, the focus of this paper is on 1) how generic interfacing of iteration with simulation is performed,
2) what application-specific techniques are useful in enabling reliable, efficient optimization studies, and 3) how
existing techniques perform and what their weaknesses are when interfacing with complex engineering simulations.
The results computed serve as benchmarks for comparison of advanced strategy performance (Eldred et al. 1996),
and the lessons learned have helped direct the current research focus areas.

Software Design

The DAKOTA (Design Analysis Kit for OpTimizAtion) toolkit utilizes object-oriented design with C++
(Stroustrup 1991) to achieve a flexible, extensible interface between analysis codes and iteration methods. The scope
of iteration methods which may be included in the system currently includes optimization, nondeterministic
simulation, and parameter study methods. Likewise, there is breadth in the analysis codes which may be interfaced.
Currently, simulator programs in the disciplines of nonlinear solid mechanics, structural dynamics, fluid mechanics,
and heat transfer have been accessed. The system also provides a platform for research and development of advanced
iteration strategies.

Accomplishing the interface between analysis codes and iteration methods in a sufficiently general manner poses
a difficult software design problem. These conceptual design issues are being resolved through the use of object-
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oriented programming techniques. In mating an iteration method with an analysis code, generic interfaces have been
built such that the individual specifics of each iterator and each analysis code are hidden. In this way, different iterator
methods may be easily interchanged and different simulator programs may be quickly substituted without affecting
the internal operation of the software. This isolation of complexity through the development of generic interfaces is a
cornerstone of object-oriented design (the concept of “one interface, many methods”), and is required for the desired
generality and flexibility of the advanced strategy developments (e.g., hybridization, function approximation).

The Application Interface (Figure 1) isolates application specifics from an iterator method. By providing a
generic interface for the mapping of a set of parameters (e.g., the vector of design variables “OptParameter”) into a
set of responses (e.g., an objective function, constraints, and sensitivities in “OptResponse”), the specific
complexities of a given problem are hidden from the iterator method. Housed within the Application Interface are
three pieces of software. The input filter abstraction (“IFilter”) provides a communication link which transforms the
set of input parameters (OptParameter) into input files for the simulator program. The simulator program reads the
input files and generates results in the form of output files or databases (a driver program/script is optional and is used
to accomplish nontrivial command syntax and/or progress monitoring for adaptive simulation strategies). Finally, the
output filter abstraction (“OFilter”) provides another communication link through the recovery of data from the
output files and the computation of the desired response data set (OptResponse). The following descriptions identify
the actual C++ classes used by DAKOTA:

Optimizer:  This class represents the optimization technique to be used. Many optimizers may be derived from this
class, enabling easy selection of a particular optimizer as a problem may require. TheOptimizer  base class is de-
rived from a more generalIterator  class.

ApplicationInterface:  This abstraction defines the interface between an Optimizer and a simulator program. It en-
compasses the specific details of a given engineering application. Everything external to this interface is generic
and independent of the problem being solved. An ApplicationInterface object willuse both an IFilter object and
an OFilter object to accomplish its task.

IOFilter:  A utility class abstraction used by the ApplicationInterface class to provide communication links between
the generic data formats used by the Optimizer and the specific input and output formats of a particular simulator
program. The input and output operations are logically similar but separable enough to warrant two derived class-
es (IFilter and OFilter).

OptParameter: A vector of floating point values representing the parameters being optimized.

OptResponse: An abstraction for storing the desired output data set of a simulation. OptResponse contains values for
the objective function, constraints, and (in some applications) sensitivities.

Object-oriented techniques such as inheritance and polymorphism are being exploited so that the abstract objects
are easy to use and sufficiently generic to encompass a wide variety of problems. Having properly designed the inter-
face, the mapping of parameters to responses shown in Figure 1 provides generic information to the optimizer, and
the application and implementation specifics are hidden. The result is a flexible, reusable, and robust multi-disciplin-
ary toolkit that establishes the protocol for wrapping parameter optimization around computationally-intensive finite
element analyses.

Optimizer iterators are part of a larger “iterator” hierarchy in the DAKOTA system. In addition to optimization
algorithms, the DAKOTA system is designed to accommodate nondeterministic simulation and parameter study
iterators. Other classes of iterator methods may be added as they are envisioned, which “leverages” the utility of the
Application Interface development.The inheritance hierarchy of these iterators is shown in Figure 2. Inheritance
enables direct hierarchical classification of iterators and exploits their commonality by limiting the individual coding
which must be done to only those features which make each iterator unique.

Several optimization algorithm libraries and strategies are inherited from theOptimizer  base class. DOT
(Vanderplaats Research and Development 1995), NPSOL (Gill et al. 1986), OPT++ (Meza 1994), and SGOPT (Hart
1994, Hart 1995) have been incorporated in this framework as libraries ofstand-alone optimizers. Additionally, the
“Hybrid” and “SAO” optimization strategies arecombination strategies which have been conceptualized. In the
former, two or more stand-alone optimizers are combined in a hybrid strategy. For example, a coarse-grain genetic
algorithm might initially be used to locate promising design space regions, followed by the use of nonlinear
programming to converge efficiently on local optima. Effective switching metrics are a key concern. In the latter, a
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stand-alone optimizer is interfaced with a separate function approximation toolbox in the setting of sequential
approximate optimization (SAO, see (Haftka et al. 1990)). Here, the accuracy and expense of the approximate
subproblems, the mechanisms by which the approximations are updated, and the mechanisms of move limit
enforcement are key concerns.

Software development work is ongoing. In addition to extension of iterator capabilities and incorporation of
additional simulator programs through input and output filter development, general software infrastructure extensions
are being implemented in the areas of active set strategies, support of analytic sensitivities, advanced problem
specification and system control, and general restart capabilities.

Applications and Results

In application work, the targeted technology areas are nonlinear large-deformation solid mechanics, heat transfer,
fluid mechanics, and structural dynamics.

Nonlinear Mechanics: Shape Optimization of a Hazardous Material Transportation Cask

Problem Description.Design of hazardous material transportation casks is an area where numerical optimization
can have a large and immediate impact (Harding et al. 1995). These casks are used to transport spent nuclear fuel,
high-level waste, and hazardous material. Since they transport such materials, their design and certification must
adhere to strict Nuclear Regulatory Commission regulations. A typical transportation cask is shown in Figure 3.
There are several components that constitute a typical cask, including impact limiters, containment vessel, shielding,
and closure mechanisms, whose designs could be numerically optimized.

In the past, typically, each component was designed separately based on its driving constraint and the expertise of
the designer, the components were assembled, and then modified until all of the design criteria were met. This
approach neglects the fact that, in addition to its primary function, each component can also have secondary purposes.
For example, an impact limiter’s primary purpose is to act as an energy absorber and protect the contents of the
package, but it can also act as a heat dissipater or an insulator. However, designing the component to maximize its
performance with respect to both objectives severely convolutes the problem. Numerically-based optimization
schemes can readily attack such problems in an efficient manner. Thus, since the design of these packages involves a
complex coupling of structural, thermal and radiation shielding analyses and must follow very strict design
constraints, numerical optimization provides the potential for more efficient and robust container designs.

The container weight is to be minimized with respect to shape design variables, subject to design constraints on
the cask performance in fire and impact accident simulations. The shape of the cask has been parameterized with
respect to 6 design variables (x1 - x6) which control the thicknesses of 3 overpack layers in the radial and axial
directions (Figure 4). Lower and upper bounds for each of these 6 design variables are 0.1 inch and 20 inches,
respectively. The finite element model in Figure 4 shows a simplified geometry over that of Figure 3 in which the
stainless steel overpack closure and the locking mechanisms are neglected. The 3 overpack layers consist of 1 layer of

aluminum wire mesh impact limiter (density = 448.5 kg/m3) sandwiched between 2 layers of ceramic cloth thermal

insulation (density = 801.0 kg/m3). The optimizer competes these overpack layers against each other based on
relative weight and effectiveness in satisfying the certification constraints. Three separate accident conditions are of
concern, each supplying a design constraint on the optimization. In the first accident scenario, a 500 kg steel plate is
dropped from a height of 9 m onto the end of the cask which is supported on a rigid foundation (the “end-on” impact;
Figure 4). The nonlinear mechanics code PRONTO2D (Taylor and Flanagan 1986) is used to determine stress
histories for a given cask design, and for the end-on impact, a design constraint enforces an allowable of 23,000 psi
on the maximum axial stress (σyy) in the inner container. Second, for the same plate impact in a side-on configuration
(Figure 5), a design constraint enforces an allowable of 8,440 psi on the maximum inner container axial stress (σyy).
These stress allowables were obtained through calibration to a highly refined model, in which a detailed mesh
captured actual threaded seal deformation. Lastly, for a 30 minute 800O C fire, COYOTE II (Gartling and Hogan
1994) is used to generate nodal temperature histories, and a design constraint enforces that the maximum inner seal
temperature does not exceed 232O C.

An input filter program was generated to translate the shape design parameters into information used by the
PRONTO2D and COYOTE II analysis codes. This requires preprocessing of parameterized template input decks
(with APREPRO (Sjaardema 1992)) and automatic mesh generation (with FASTQ (Blacker 1988)). An output filter
program computes the weight, reads the stress and temperature time histories (using BLOT (Gilkey and Glick 1989)),
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locates the maximum stresses and temperatures, computes constraint values, and returns the objective and constraint
function values to the optimizer.

To maximize efficiency with respect to simulation duration while still maintaining the ability to reliably capture
the complete impact event, an adaptive termination time strategy was developed and implemented for the impact
analyses. This development was motivated by the observation that, whenever event durations vary broadly with
design variables, a single selected termination time will invariably be either too long, wasting CPU cycles in
continuing the simulation past the event of interest, or too short, terminating the simulation before the peak response
is reached and causing inaccurate objective and constraint function evaluations. To avoid the more serious
ramifications of the second scenario (underestimation of a critical response), it is common to sacrifice efficiency and
adopt a best guess at a sufficiently long simulation duration. Of course, this approach can fail if the variance of event
duration over the design space is underestimated; and in fact, an optimizer will naturally seek out those regions of the
design space in which the simulation duration is insufficient if the truncation of analyses leads to lower objective
functions or more feasible constraint values. A better approach is to adaptively control simulation duration through
the monitoring of simulation progress. In impact analyses, event completion can be determined by monitoring the
kinetic energy (KE) time history for rebound (an increase in KE following the near-zero minimum state), after which
the simulation can be terminated with a Unix kill process command. The KE monitoring and process kill is
accomplished with a Unix background process which is launched from the PRONTO analysis driver (see Figure 1)
and which cycles with a sleep-delay. This strategy was highly effective in conserving compute time while
guaranteeing capture of the peak stress.

Optimization Results.Nonsmoothness of response variations with respect to design variables is troublesome for
nonlinear programming techniques, especially when sensitivities are obtained by finite difference. For the end-on
vertical impact analysis, continuous improvements in analysis, including model refinement, filtering of stress time
histories, increases in platform precision (from single to double precision FORTRAN), and modifications in contact
line treatment have been necessary in order to minimize nonsmoothness. Figure 6 shows sequential improvement in
design space smoothness for variation in maximum axial stress (σyy) with respect to fine changes in vertical impact
limiter thickness (design variable x5), from unfiltered low-precision runs (plot point ‘o’) to filtered low-precision runs
(plot point ‘*’) to filtered high-precision runs on a refined model (plot point ‘x’) to filtered high-precision runs on a
refined model with contact lines node-locked at corners (plot point ‘+’). This last modeling improvement was needed
to remove contact indeterminacies at mesh corners, since these indeterminacies were exciting hourglassing
instabilities in the PRONTO stress histories. Clearly, the final response variations provide a far more navigable
surface than the initial variations. For the thermal analysis, similar refinements have been required, as shown in
Figure 7. Mesh refinements, time step size decreases, and the tightening of iterative solver convergence tolerances
were required to progress from the initial stair-stepped curve through the sinusoidal curve to the final, relatively
smooth, response variation. These nonsmoothness reductions in the impact and thermal analyses were required to
allow for effective design space navigation with gradient-based optimizers.

With the bulk of the troublesome nonsmoothness removed, optimization studies have been successful in
minimizing the cask weight with respect to the end-on constraint, the thermal constraint, and all three constraints in
the combined problem (no meaningful stand-alone weight minimization problem exists for the side-on impact model
since x4, x5, and x6 are not defined; see Figure 5). Minimum weights and constraint values are shown in Table 1
(active constraints are underlined), the associated design variable values are shown in Table 2 (variables at or near
their bounds are underlined), and the optimal shapes are graphically compared to the geometry of a successful
experimental prototype in Figure 8. In Table 1, as would be expected, the thermal and end-on optimum designs are
active on their respective constraints. The combined optimum is active on the thermal and end-on constraints, and
inactive on the side-on constraint. In Table 2, it can be seen that the end-on constraint primarily drives axial stroke
length (x4, x5, and x6) and radial wire mesh thickness (x2), and the thermal constraint primarily drives radial thickness
of the thermal shields (x1 and x3). In the combined design, it can further be seen that the outer thermal shield is
redundant (x3 and x6 go to their 0.1 inch lower bounds). The fact that the necessary thickness of thermal shield
belongs in the innermost layer is intuitive, since the thermal shield is heavier than the wire mesh and gains no obvious
thermal advantage in being positioned further out radially. The wire mesh, on the other hand, is lighter, pays a smaller
weight penalty for being the external layer, and gains a mechanical advantage in being further separated from the
centroidal axis. The 94 lb. combined optimum design is a substantial improvement over both the successful
experimental prototype containing 150 lbs. of overpack (Figure 8) and the previously published best design of 184
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lbs. (Witkowski et al. 1994).

Technical Lessons Learned.The application of optimization to this problem led to several observations:
• Shape optimization with automatic remeshing is a tricky business, particularly when design variables are

inclined to seek their lower bounds. Poor element aspect ratios can promote numerical instabilities in nonlinear
solvers, which must ultimately be addressed with increased mesh density. That is, as a shape design variable
approaches its lower bound, the characteristic element size in the region defined by the shape variable must
decrease in order to accurately compute the desired responses. This can dramatically increase the compute time,
both directly, through the increase in total degrees of freedom, and indirectly, through the determination of stable
time step sizes.

• An effective balance of nonsmoothness vs. CPU has to be determined in many engineering simulations. One
must have navigable objective and constraint function surfaces, but must also have tractable CPU usage in the
simulations. Clearly, these are competing factors, since refining the modeling controls and mesh density invari-
ably increases the CPU usage of a simulation. Furthermore, the level of required smoothness may be a function
of the type of optimizer being used. This fact is further born out in the following heat transfer application.

• Adaptive simulation termination strategies increase both the efficiency and the robustness of optimization stud-
ies, by conserving compute time while still guaranteeing capture of the peak responses of interest.

Heat Transfer: Determination of Worst Case Fire Environments

Problem Description.In thermal science simulations, parameter sets are sought which produce worst-case
credible fire environment(s) for which structures and systems (such as aircraft, weapons, or petrochemical processing
plants) must be designed. These inverse problems can be solved within an optimization framework. As a
demonstration, optimization techniques have been applied to determine the vulnerability of a safing device to a
“smart fire” (Romero et al. 1995). The optimization parameters consist of the location and diameter of a circular spot
fire impinging on the device. The temperature of the fire is constant, though the heat flux it imparts to the device
varies in time and space coupled to the response of the device. Function evaluations involved transient simulations
using a nonlinear QTRAN (PDA Engineering 1993) heat transfer model with radiative and conductive heating. The
finite element model used in the analysis is shown with typical temperature contours in Figure 9. Each simulation
required 20 CPU minutes to solve (at tight error tolerance levels, see Figure 13) on a node of an IBM SP2
workstation.

The components of interest must work together to prevent the device from operating except under the intended
conditions. It is a weaklink/stronglink design: the weaklink is designed to fail under adverse conditions, which
renders a potential stronglink failure incapable of harm. The weaklink is a Mylar-and-foil capacitor winding mounted
on the outside of the safing device and the stronglink is a stainless steel plate mounted inside a cavity and offset right
of center as shown in Figure 9. The time difference between failure of the stronglink and failure of the weaklink is the
safety margin for the device and varies with the fire exposure pattern on the device surface. Hence, to validate the
design of the safing system, the worst-case fire exposure pattern is sought by using optimization to minimize this
safety margin for selective exposure to a 1000O C black body heat source.

 Typical critical node temperature histories are shown in Figure 10 for a 20 hour fire exposure, where the critical
node of a link is the one which reaches its failure temperature earliest. The safety margin shown graphically is the
objective function that the optimizer minimizes with respect to the design parameters of fire spot-radius (r) and fire
center location (x), subject to simple bounds (0.5≤ r ≤ 5.8, -2.9≤ x ≤ 2.9).

An input filter program was generated to translate the optimization parameters into information used by the
QTRAN analysis code. Node, element, and surface information are obtained from the PATRAN (PDA Engineering
1988) neutral file description of the finite element model. The heating load applied to each exposed element is then
calculated, and this load is assigned to the corresponding nodes of the mesh. QTRAN is executed to determine the
temperature histories of monitored nodes for up to a 200 minute exposure to these heating conditions. The QTRAN
simulation rarely runs for the full 200 minute duration because of the use of an adaptive termination strategy. This
strategy uses a background script to monitor the simulation progress periodically and to execute a kill command once
failures have been captured for both links. This procedure is used to reduce the computational expense of the
simulations. Once the QTRAN simulation is completed, an output filter program reads the nodal temperature
histories and calculates a failure time for each node. In this calculation, interpolation between time step values is used
to accurately estimate captured link failures, and if the analysis ran the full 200 minute duration without capturing
failures for both links, then a linear extrapolation in time is used to approximate the uncaptured link failures. The
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earliest weaklink nodal failure time is then subtracted from the earliest stronglink nodal failure time, and this
objective function value is returned to the optimizer.

Optimization Results.This application was challenging from an optimization perspective due to the
nonsmoothness and nonconvexity of the design space. In Figures 11 and 12, one-dimensional parameter studies show
evidence of multimodality (Figure 12) and of slope-discontinuity at the minimum (Figures 11 and 12). The slope-
discontinuity in the figures is caused by switching of the critical weaklink node between geometric extremes. Figure
11 shows negative curvature near the discontinuity (nonconvexity), whereas the discontinuity in Figure 12 is more
difficult to discern since the curvature is positive near the discontinuity.

These two parameter studies also provide insight into the mechanics of the problem. In Figure 11, the offset of
the lowest safety margin from x=0 (the center of the device) backs up engineering intuition in that the stronglink is
also offset right of center. That is, a fire centered roughly over the stronglink causes a lower safety margin. Figure 12
shows a less intuitive result, in which it is evident that the lowest safety margin is not achieved with either a large fire
or a small fire. Rather, there exists an insidious, medium sized fire which is not so small that the heating rate is
insufficient and which is not so large that it prevents selective heating.

Figure 13 is a detail of Figure 11 and shows evidence of small-scale nonsmoothness, which was reduced through
the tightening of QTRAN convergence tolerances at the cost of approximately an order of magnitude greater
computational time per analysis. EPSIT and EPSIT2 are absolute convergence tolerances in degrees which govern
time step completion and node inclusion in nonlinear iterations, respectively. The additional computational expense
per analysis was warranted in this case since none of the nonlinear programming algorithms could successfully
navigate the design space without reducing the nonsmoothness (even with large finite difference step sizes).

Several nonlinear programming optimization packages were employed for the solution of this problem, including
DOT, NPSOL, and OPT++. In general, the Newton-based optimizers (NPSOL’s sequential quadratic programming
algorithm, DOT’s BFGS quasi-Newton method, and OPT++’s quasi-Newton methods) performed poorly due to
inaccuracy and ill-conditioning in the Hessian approximation caused both by the nonconvexity of the design space
and by the relatively large finite difference step sizes needed to overcome the small-scale nonsmoothness. Conjugate
gradient (CG) methods (DOT’s Fletcher-Reeves CG and OPT++’s Polak-Ribiere CG) were much more successful.
Furthermore, choice of finite difference step size (FDSS) for computation of gradients proved to be important. Table

3 shows the results for CG optimizers with varying FDSS and with EPSIT=10-2 and EPSIT2=10-4 (see Figure 13 for
effect of EPSIT tolerances). An asterisk (*) in the function evaluations column indicates that the optimization
terminated prematurely due to a search direction that failed a descent direction test.

The first four rows of Table 3 illustrate the effect of FDSS on the optimization: FDSS should be as small as
possible to allow for effective convergence to a minimum (0.1% is better than 1% which is better than 4% since the
gradients are less accurate locally for larger FDSS), but still large enough that small-scale nonsmoothness does not
cause erroneous gradients (0.01% is too small; the optimizer cannot successfully navigate the design space since the
FDSS is on the order of the design space noise). The last five rows show that DOT’s CG optimizer was more robust
and more efficient than OPT++’s CG optimizer, through the fact that DOT was successful from 3 different starting
points and OPT++ from only one, and through the lower number of function evaluations that were required. The chief
cause for these differences was not the version of CG being used (in fact, Polak-Ribiere is generally regarded to be
superior to Fletcher-Reeves (Coleman and Li 1990)), but rather was DOT’s robust line search routine. OPT++’s line
search routine was tuned for efficiency in smooth applications and was overly aggressive in this application; the
OPT++ line search library has since been extended to include more robust routines for nonsmooth applications.

To achieve the best answer possible, the QTRAN convergence tolerances were tightened 2 additional orders of

magnitude (EPSIT=10-4, EPSIT2=10-6) and the FDSS was reduced to 0.1%. DOT’s Fletcher-Reeves CG algorithm
was used to obtain the lowest objective function value of 2.5309 minutes (r=1.6204, x=0.78205) which, when
compared to stronglink and weaklink failure times of 62.743 and 60.212 minutes respectively, corresponds to a safety
margin of just 4%. The 2.5 minute safety margin is an order of magnitude lower than anticipated prior to the study,
meaning that the safing device has been shown to be much more vulnerable than was expected. With this relatively
low safety margin, it becomes crucial to assess the effects of nondeterminism in the model, which, in the future, can
be accomplished with minimal additional effort by “instantiating” an iterator from theNondeterministic base class
(see Figure 2). Thus, optimization has successfully solved the difficult problem of worst-case design safety and
suggests that design improvements may be warranted.

Pattern search optimizers from the SGOPT package have also been tested on this application. Preliminary results
have shown that the same minimum safety margin of 2.5 minutes can be reliably achieved with pattern search.
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Furthermore, since pattern search is less sensitive to small-scale nonsmoothness than gradient-based techniques,
looser EPSIT tolerances can be employed in the fire simulations which lowers the individual simulation expense
considerably. Initial studies have shown that, even though pattern search usually requires more function evaluations
than gradient-based optimization, the lower individual simulation expense more than compensates, making the
overall computational expense of the pattern search optimization lower than that of the gradient-based optimization
(see (Eldred 1996) for a more detailed discussion). Pattern search is, however, susceptible to the “curse of
dimensionality,” meaning that the method becomes less competitive in efficiency as the number of design variables
increases.

Technical Lessons Learned.The application of optimization to this problem led to the following observations:
• When using finite difference gradients in applications with nonsmoothness, an effective finite difference step size

is not easily determined. It must be as small as possible to allow for efficient convergence, but still large enough
to not be adversely affected by small-scale nonsmoothness.

• Hessian ill-conditioning can be a problem in nonconvex design spaces, causing poor performance in many New-
ton-based methods. Trust region methods have the potential to overcome this difficulty while maintaining the
theoretical strength of second-order optimizers.

• As in the previous application, when computing transient responses for events of unknown duration, increased
optimization efficiency and robustness (compute time is conserved, desired response capture is guaranteed) can
be achieved with use of an adaptive simulation termination strategy.

• Analysis code convergence tolerances can have a substantial effect on the local nonsmoothness in the design
space. When using a gradient-based optimizer, it may be necessary to pay the increased computational expense
to employ tight tolerances, so that the optimizer can navigate the design space effectively.

• Gradient-based optimizers put substantial faith in the accuracy of the computed search direction, and in nons-
mooth applications, this level of faith may not be justified since the gradients used to calculate the search direc-
tion have questionable accuracy. Pattern search optimizers do not confine themselves to a single search direction,
but rather search multiple directions simultaneously. As a result, they can be more robust in nonsmooth applica-
tions. Moreover, efficiency can be comparable when the number of design variables is small.

Fluid Mechanics: Coating Flow Die Design

Problem Description.The manufacture of polymeric thin-film coatings is an expensive process, requiring high-
maintenance, close-tolerance tooling which must be frequently replaced. In premetered processes such as slide, slot,
and curtain coating flows (the primary manufacturing methods for film products like video tapes and color
photographic film), liquids are distributed uniformly in the transverse direction by chamber-slot dies. Dies must be
carefully designed and machined with tight tolerances to ensure uniform flow at the exit (transverse nonuniformity
must fall within a few percent). The die-fabrication process is costly in both dollars and time, but is necessary to
maximize production throughput of high-quality thin films at the lowest cost. A typical thin-film die is illustrated in
Figure 14. Polymer is pumped into a chamber through a feed pipe, and is then extruded through a slot. Typical slot
dimensions are 5’ wide by .01” high. The output flow profile is typically laminar and the fluid is assumed to be
Newtonian. The flow is highly sensitive to a number of design parameters, including geometrical parameters (e.g.,
slot dimensions, chamber shape and size), fluid properties (e.g., liquid viscosity and density), and process conditions
(e.g., volumetric flowrate).

The goal of this study is to find the optimum combination of die geometry parameters which minimizes
nonuniformities in the output flow profile for a given set of fluid properties and operating conditions. The objective
function of outflow plane nonuniformity is computed by integrating the velocity profile over the outflow plane and is
formulated as the percent of coating material across the slot width whose deviation is greater than 1% from the mean
velocity. “Perfect” uniformity (0% nonuniformity) is not achievable as the problem is formulated due to the “no-slip”
condition at the flow boundaries (i.e. walls of the die). That is, some portion of the coating width will always exceed
1% deviation due to the fact that the coating velocity profile must ramp up from zero at the wall. The die design
geometry shown in Figure 14 is parameterized using six design variables that vary the pre-determined sensitive
dimensions of the die. These dimensions are slot length Ls, slot height Hs, slot entrance angleα, chamber length Lc,
chamber height Hc, and feed-channel height Hf. Slot width W is fixed at 12.7 cm. Constraints on the problem include
pump pressure range, an upper bound on the average residence time, and a tolerance band on process temperature.
Higher pump pressures generally cause larger flowrate or velocity fluctuations in the feed channel, and higher power
(i.e. $) requirements. More importantly, excessive pump pressure can cause deflection of the slot walls, which in turn
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results in variation of the slot gap height and thus an undesirable increase in flow nonuniformity at the slot exit. In
temperature-sensitive coating flow applications (e.g. hot melt extrusion), process temperature must be maintained
within a tolerance band to avoid changes to the fluid properties and to the mechanical stability of the die. In low
viscosity applications, temperature is less important since operations are normally carried out at room temperature.

There are two stages in a premetered coating flow. The first stage involves pumping coating liquid into a die
distributor (or distributors when simultaneous multilayer coating flows are carried out) and distributing the coating
liquid uniformly across the die width. In this stage, flow boundaries are of fixed type, i.e. no free boundaries are
present. Accordingly, flow simulation is straightforward. The second stage involves transferring the coating liquid
from the coating head (i.e. die) to the fast-moving flexible substrate (or web). In this stage, not only are free surfaces
(i.e. air/liquid interfaces) present, but the flow also contains static and dynamic contact lines. Here, flow simulation is
much more challenging. At present, no commercial code can satisfactorily simulate this latter stage of premetered
coating flows. To fill this void, researchers at Sandia National Laboratories are developing specialized computer
codes that can efficiently simulate the second stage of a variety of coating flows. For the present study, which
involved three-dimensional flow with fixed boundaries, a commercial code based on the finite element method,
namely FIDAP (Fluid Dynamics International 1993), was employed.

An input filter program was generated to translate the die geometry parameters into information used by the
FIDAP analysis code. This requires preprocessing of parameterized template input decks with APREPRO. Following
the FIDAP analysis, an output filter program reads the velocity and pressure profiles from the FIDAP output,
integrates the velocity data in calculating the objective function, computes the constraint values based on residence
time and maximum pressure calculations, and returns the objective function and constraint values to the optimizer.

Optimization Results and Technical Lessons Learned.As discussed in the earlier applications, nonsmoothness
of response surfaces is critical not only for a gradient-based optimization scheme to be efficient, but for it to be viable
at all. In this application, two different finite element models were used to investigate the response surface (non-
uniformity in the outflow plane versus geometric parameters) smoothness issue. The first model (the “coarse model”)
contained 540 elements, whereas, the second model (the “fine model”) had 980 elements. Both models provided
navigable surfaces; however, the coarse model had kinks in its surfaces which were nonexistent using the fine model.
Although the fine model had more than twice the computational burden, it was necessary to pay the increased
computational expense to insure a smoother surface for the optimizer to navigate. The initial geometry and finite
element mesh for the fine model are shown in Figure 15.

In the case study presented here, low viscosity coating liquids typically used in precision premetered coating pro-
cesses are of interest. Specifically, fluid viscosity and density were chosen to be 15 cP and 1000 kg/m3 respectively,

volumetric flowrate per unit slot width was set to be 1.5x10-4 m2/s, and a characteristic length scale was chosen to be
10-3 m. With these conditions, the resultant Reynolds number is 10. Constraint allowables were set at 2100 for nondi-
mensional maximum pressure (dimensional gauge pressure = 0.7 psi) and 325 for nondimensional average residence
time (dimensional time = 2.2 sec). These values were chosen somewhat arbitrarily based on the nominal design to
prevent overly large design changes. More realistic process allowables are needed and will be obtained from industry.

DOT’s modified method of feasible directions optimizer was used to successfully optimize the die geometry and
reduce the nonuniformity from 16.5% to 3.2%. The final geometry is shown in Figure 16. Initial and final die dimen-
sions and constraint values are shown in Table 4 (those dimensions which were driven to their upper or lower bounds
are indicated with a ‘*’). Comparison between initial and final geometries shows that the optimized geometry is about
twice as large as at the initial. As expected, the slot height was reduced to its lower bound, thereby causing the maxi-
mum pressure to increase to 1832 (dimensional pressure = 0.6 psi). Since neither of the constraints on maximum
pressure or average residence time were active, the optimum design computed is not a direct function of the allow-
ables chosen for these parameters. This low pressure optimal solution is typical of low-viscosity coatings. It is
expected that the maximum pressures will be considerably greater for high-viscosity coating applications (e.g., adhe-
sive coatings, hot-melt extrusion).

Although numerical optimization has proved to be valuable in improving die design for low viscosity coating
flows, it is evident that this is only part of a general die design effort. Continuation of this work will involve
investigation of additional coating materials, primarily high viscosity coatings, which will likely require more careful
treatment since the operating constraints will be more important in the design. Also, instead of parameterizing with
only a slot entrance angle, a more complex parameterization of the die chamber will be used to describe a tear-drop
chamber shape. Lastly, efforts are underway to incorporate analytical sensitivity capability within the FIDAP analysis
code so that optimization efficiency can be comparatively evaluated for analytical gradient-based, finite difference
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gradient-based, and pattern search approaches.

Structural Dynamics: Discrete Optimization of Vibration Isolation Platform

Problem Description.Vibration isolation systems are widely used to protect sensitive devices from vibrations
produced in their environment. Typical examples include isolating delicate laboratory experiments from floor-borne
vibrations, preventing transmission of vibrations in satellite structures from rotating machinery (e.g., cryo-coolers) to
communication antennas or scientific detectors, or isolating a car body or airplane frame from engine vibrations.

Isolation is achieved with the use of passive or active compliant connections between the source of the vibrations
and the device to be protected. The classical approach to designing isolation systems focuses primarily on the proper-
ties of those compliant mounts without much regard to the geometry of the complete system, that is, the locations
and/or orientations of the mounts on the isolated device. In cases where the source of the vibrations is well known
(location, amplitude, frequency content) and/or when the residual motion atspecific points on the isolated device are
of critical importance, we should expect (see, for example, (Ashrafiuon 1993)) that mount locations and orientations
will have a substantial effect on the effectiveness of the isolation.

To investigate this, we define a simplified vibration isolation problem, based on an existing laboratory setup (Fig-
ure 17). The setup consists of a rigid, rectangular optical table (approximately 48” x 36” x 8.5”, 815 lb.) mounted on
3 vibration isolation mounts. This system is in turn resting on a massive seismic base (approximately 70” x 48” x 12”,
4085 lb.), itself isolated from floor borne vibrations by 4 air bags. The isolator mounts supporting the optical table are
steel coil springs with stiffness of about 3970 lb/in in the axial direction and 1570 lb/in in the transverse (shear) direc-
tions. The bottom of the optical table and the top of the seismic base feature identical 8x6 arrays of mounting holes
for those springs. The 6 rigid body natural frequencies of the seismic base on its air bags range from about 1.1 Hz to
2.5 Hz. Both the base and the optical table can be regarded as rigid bodies below a few hundred Hertz, where flexible
modes appear.

A 3-dimensional, rigid body dynamics code was developed in MATLAB (The Mathworks 1992) to model this
system. The air bags and steel springs are modeled as 3-dimensional springs with viscous damping. Their bending
and torsional stiffnesses are neglected. The seismic base and optical table are modeled as concentrated masses and
inertias. The mass properties of all parts of the system were either measured or evaluated from CAD models. The
stiffness and damping of the air bags and steel springs were obtained from the manufacturers and further refined
through parameter estimation based on measured natural frequencies and modal damping.

To simulate a perturbation, the seismic base is excited at its front right corner by an electromagnetic shaker (Fig.
17) with a sinusoidal input at a fixed frequency of 50 Hz. We assume that the vertical component of velocity at the
front left corner of the optical table (Fig. 17) is the critical design criterion (because a sensitive instrument is mounted
there for example). These locations introduce asymmetry in the problem and lead to the nonintuitive optimal solu-
tions for the isolator locations.

The design problem consists of selecting locations for the 3 spring isolators on the 6x8 grid of mounting holes in
a way that minimizes transmission of the perturbation to the specified point on the optical table. The 6 discrete design
variables are the x and y locations of the 3 springs. The transmission T (µin/sec.-lb.) is expressed as the vertical veloc-
ity at the given point of the optical table per unit load amplitude at the excitation point. We define a baseline design
where the 3 springs are arranged as symmetrically as possible around the center of the table (Fig 18) which has a pre-
dicted transmission of 21.22µin/sec.-lb. at 50 Hz.

Since the optimized designs will be tested in the laboratory, a number of practical constraints apply:
• Due to the presence of lifters, the 4 holes at the corners of the grid cannot be used.
• The 3 springs cannot be colinear and only one spring is allowed per grid location.
• To avoid generating designs that would be too unstable, the first natural frequency of the optical table on its

mounts is constrained to be more than 4 Hz. This also ensures decoupling between the modes of the seismic
base/airbags system and those of the optical table/springs system.

• Because the springs are simply resting in end plates attached to the mounting holes, the static load on each spring
must be compressive.

• There is a limit to the amount of weight a spring can support before being compressed to its solid length. An
upper limit is imposed on the static deflection of each spring.

Optimization Results.Because of the discreteness of the problem, the optimization was performed with the
genetic algorithm (GA) available in SGOPT within DAKOTA. The MATLAB analysis code was coupled to the opti-
mizer through simple UNIX scripts. No input or output filters were used; instead, the MATLAB code was designed to
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exchange input and output directly in the DAKOTA-compatible format. The design variables (locations of 3 springs)
are coded into a “chromosome” composed of 6 integer-valued “genes” that define the grid indices for x and y coordi-
nates of the first, second and third spring, i.e. [x1, y1, x2, y2, x3, y3]. Any x gene can take integer values between 1
and 6 while y genes take values between 1 and 8. The size of the design space (total number of conceivable designs)
is approximately 100,000.

Since the GA in DAKOTA cannot explicitly handle constraints, penalty functions are implemented within the
MATLAB analysis code. Both step and quadratic penalty functions were used for this problem. In the step penalty,
any amount of constraint violation produces a fixed amount of penalty, subtracted from the fitness (Leriche 1994).
This is done to ensure convergence to a feasible design, which may not occur when using only progressive penalty
functions. Because GA’s are zero-order search techniques, the discontinuities this strategy creates are perfectly
acceptable. In addition to the step penalties, the “quantifiable” constraint violations (4Hz frequency limit, spring
static loads and deflections) produce penalties proportional to the square of the violation (constraints are first normal-
ized).

Out of several options and adjustments available in DAKOTA, the following combination was chosen:
• population size: 10; crossover probability: 0.8; mutation probability: 0.1; number of generations: 15.
• ranking technique for selection: the probability of selection of an individual is proportional to its rank.
• moderate selection pressure: the probability of selection of the best individual is twice that of the worst.
• uniform mutation: a mutated gene takes a random integer value, uniformly distributed from 1 to 6 for x genes and

1 and 8 for y genes.
• elitist strategy: the best individual of the current generation is duplicated into the next generation.

With these adjustments, each search evaluates less than 150 designs, or 1.5% of the design space (the GA keeps
track of previously analysed designs, so the actual number of function evaluations averages around 105). In order to
get some idea of the reliability of the search, we performed series of 10 runs and compare the results to a series of 10
random searches of 105 analyses each. The result from each random search is the best feasible design found. Typical
results are shown in Fig. 19. The random searches generate some good designs and many mediocre ones. In contrast,
all 10 designs obtained from the GA runs are feasible and represent significant improvements from the baseline case.
However, the GA occasionally “converges” to a relatively poor design (T=3.23 in Fig. 19). This shows that more reli-
able results can be obtained by running a small number of short searches (if the probability that the best found design
is “poor” is 0.1 for a one run, then it is only 0.01 for the best of 2 runs, 0.001 for the best of 3, etc.). Because GA’s are
most efficient in the initial phases of the search and further “convergence” is usually slow, this approach is preferable
to running a single longer search (Leriche 1994).

The “optimal” designs are also very different from each other, as illustrated in Fig. 18 where a few configurations
are shown with their predicted transmissibility. This is a strength of genetic algorithms: final designs are random
“quasi-optimal” configurations that tend to have similar values of the objective function but distinct design features;
the final choice rests in the hands of the designer. However, in this case, the various designs of Fig. 18 resulted from
distinct runs of the GA and were not present together in final populations. In fact, the final populations usually con-
tained only one or two “good” designs, with most others infeasible. This is the result of 1.) significant multimodality,
as evidenced by the large differences between distinct “optimal” designs (Fig. 18), 2.) a highly constrained design
space (12 constraints), and 3.) a relatively small design space (100,000 designs).

This creates small “pockets” of feasible designs isolated from each other in the design space. Because the design
space is small (coarse 6x8 grid) and feasible designs are rare (Monte Carlo simulations show that only about 13% of
random designs are feasible), each “pocket” tends to contain only a few designs and the probability that genetic oper-
ators will generate feasible designs is small (even by mating two feasible designs). Also, since designs in distinct
pockets are very different, there is no reason to expect that combining features of those different designs would create
better or even feasible designs (the concept of niches (Goldberg, 1989) was developed to handle this problem but we
think that in this case, the number of feasible designs in each niche is too small to allow exploitation by GA opera-
tors). This means that most of the search has to take place in the infeasible design space and explains the presence of
few feasible designs in each population.

Continuous optimization was also tested on this problem. DOT’s modified method of feasible directions was
used within the DAKOTA framework to solve the constrained continuous problem (ignoring the grid), followed by
rounding of the optimal design to neighboring discrete solutions. An optimal solution was found at (2.22, 1.56, 2.49,
4.94, 4.29, 3.79) with a transmission T=0.20µin/sec.-lb. Rounding to the closest neighbor gives (2,2,2,5,4,4), which
is infeasible. If we consider all immediate neighbors of the continuous solution (Fig. 20), we find that out of the 64
designs, only 12 are feasible and the best of these has T=3.67, 22 times worse than design A of Figure 18.
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Figure 21 shows frequency response functions (FRF’s) for the designs of Fig. 18. These FRF’s show that the GA
is seeking out an anti-resonance condition in the vicinity of 50 Hz. Anti-resonance is achieved by combining mode
shapes so as to cancel out vibration at a point. The fact that the anti-resonant peaks miss the 50Hz target slightly is
due to the discrete isolator locations; and in fact, the continuous solution of T=0.20µin/sec.-lb. places the anti-reso-
nant peak directly at 50Hz (not shown). Another important fact to observe is that there is significant broad band
improvement in the transmissibilities of the optimized designs compared to the baseline design. That is, the improve-
ments are not confined only to a 50 Hz input; but rather there are significant decreases in transmission through a
broad input range. This is an especially important observation, since it shows that the performance is not seriously
degraded for off-nominal excitation inputs and that more sophisticated objective function formulations for minimiz-
ing broad band transmission are probably unnecessary.

Finally, the designs of Fig. 18 were tested in the laboratory. The results of those tests are shown in Fig. 22 and
compared to analytical predictions. The figure shows the nominal value of the transmissibility (objective function in
the optimizations) and the predicted range of transmissibilities with 5% uncertainties in the spring constants. This
analytical range is determined with Monte Carlo simulations in which each spring constant is chosen randomly
within the 5% uncertainty range. Note that, in most cases, the experimental value falls within the analytical range.
The transmissibilities of the optimized designs were predicted between 32 and 70 times smaller than that of the base-
line design. The actual ratios achieved in the lab range from 7 to 46. They all represent significant improvements from
the original design.

Technical Lessons Learned.The application of genetic algorithms to this discrete, multi-modal, heavily con-
strained problem led to the following observations:
• Applying constraints through penalty functions in a GA problem is a delicate operation. A balance must be

achieved between the desire to obtain a feasible final design and the need to allow the search to cross infeasible
regions of the design space. Surprisingly little research has been devoted to this aspect. One reason is that, in
research GA’s, problem-specific repair operators are often introduced to enforce constraints. This approach is
more efficient but is highly application-specific and cannot be included in general purpose codes like DAKOTA.

• The combination of multi-modality, large number of constraints, and limited design options (coarse discrete grid
in this case) makes the problem difficult to handle, even for a zero-order random search technique like the GA.

• The classical argument that a GA provides multiple design alternatives in its final population does not hold in
heavily constrained discrete problems with small design spaces. Instead, each run provides only one or two
acceptable designs.

• Multiple design options and improved reliability of the search can be obtained by running a few short searches,
rather than a single, long search.

• Continuous optimization followed by rounding to neighboring discrete solutions does not generally lead to an
optimal design. For problems with coarse discrete grids, heavily constrained design space, and rapidly varying
objective function, this approach leads to few, relatively poor feasible designs.

Conclusions

Object-oriented software design has been shown to be an effective tool for the generic integration of optimization
techniques with broad classes of simulation codes. Three applications involved optimizing expensive, nonsmooth
engineering simulations with nonlinear programming, and one application demonstrated the solution of a discrete
design problem with constraints via genetic algorithm. In several of these applications, the DAKOTA system was
used for easy comparison of different optimization algorithms which enabled illuminating assessments of relative
performance.

In the engineering simulation applications, nonsmoothness in the design space has been shown to be a recurring
problem when applying gradient-based optimization techniques to “black box” transient simulation codes. This
ultimately must be addressed with attention to nonsmoothness reductions in the analyses and with employment of
robust algorithms in the optimization. The high computational expense of repeated analyses is the other crucial,
recurring difficulty. This must be addressed with attention to modeling simplifications, analysis code convergence
tolerances, efficient time stop strategies for transient simulations, function approximation strategies, and robust and
efficient optimization algorithms which make the most of each function evaluation and which are successful the first
time (thereby avoiding multiple executions and tweaking of parameters before achieving convergence).

In the vibration isolation application, the challenges were quite different. Instead of nonsmoothness and extreme
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computational expense, discrete design variables and a highly constrained design space were the primary challenges.
Genetic algorithms have shown promise as effective techniques for these types of problems. However, while GA’s can
be very robust techniques, the number of function evaluations they require can be prohibitive for applications
involving expensive engineering simulations.

Thus, research in this paper has focused on how generic interfacing of iteration with simulation is performed,
what application-specific techniques are useful in enabling reliable and efficient optimization studies, and what
algorithmic strengths and weaknesses can be observed when interfacing existing optimization techniques with
complex engineering simulations. It has been shown that existing techniques have limitations in their effectiveness
when dealing with the combined challenges of high computational expense and nonsmooth, nonconvex design
spaces. These observations have uncovered research needs which are directing advanced strategy development efforts
in fundamental algorithms, algorithm hybridization, function approximation, parallel processing, and automatic
differentiation. Progress in these areas is presented in a separate paper. The overall goal of this collection of research
activities is to develop a broadly useful optimization capability with the flexibility and extensibility to easily
accommodate broad classes of optimizers, a wide disciplinary range of simulation capabilities, and advanced
strategies which seek to enhance robustness and efficiency beyond that which is currently available.
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Table 1: Weight minimizations subject to end impact, side impact, and thermal constraints.

Initial Design Final Design

Weight
(lbs.)

Endσyy

(psi)
Sideσyy

(psi)

Max.
Temp.
(OC)

Weight
(lbs.)

Endσyy

(psi)
Sideσyy

(psi)

Max.
Temp.
(OC)

End-on 181.6 19012. N/A N/A 40.40 22976. N/A N/A

Thermal 153.9 N/A N/A 153.4 62.19 N/A N/A 232.6

Combined 181.6 19012. 4005. 162.6 93.9823012. 6614. 231.7

Table 2: Design variable values for computed optima.

x1 x2 x3 x4 x5 x6 Optimal Shape

End-on .466 .710 .104 1.13 10.5 1.13 Long & Thin

Thermal 1.68 .100 1.04 1.15 .805 .921 Short & Fat

Combined 2.22 .909 .100 .647 10.3 .107 Compromise

Table 3: Optimization results with CG optimizers for EPSIT = 10-2, EPSIT2 = 10-4

Optimizer FDSS
Initial
Values
(r, x)

Initial
Obj. Fn.

Funct.
Evals.

Final Values
(r, x)

Final
Obj. Fn.

OPT++ P.-R. CG 4% (1.4, 0.5) 7.2045 34* (1.5812, 0.75016) 2.8293

OPT++ P.-R. CG 1% (1.4, 0.5) 7.2045 100* (1.6038, 0.76547) 2.5956

OPT++ P.-R. CG 0.1% (1.4, 0.5) 7.2045 73 (1.6086, 0.76895) 2.5546

OPT++ P.-R. CG 0.01% (1.4, 0.5) 7.2045 28* (1.6016, 0.57370) 4.9477

OPT++ P.-R. CG 1% (1.0, 1.0) 86.954 31* (1.9321, 0.62026) 5.9543

OPT++ P.-R. CG 1% (1.2, 0.9) 34.831 106 (2.1044, 0.50665) 6.9526

DOT F.-R. CG 1% (1.4, 0.5) 7.2045 34 (1.6435, 0.77498) 2.5973

DOT F.-R. CG 1% (1.0, 1.0) 86.954 40 (1.6374, 0.77591) 2.5362

DOT F.-R. CG 1% (1.2, 0.9) 34.831 38 (1.6475, 0.77393) 2.6217
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Table 4: Preliminary Optimization Results

Initial Final

Slot Length, Ls (cm) 5.0 11.3

Slot Height, Hs (cm) 1.0 0.25*

Slot Entrance Angle,α (degrees) 53.0 60.0*

Chamber Length, Lc (cm) 10.9 20.0*

Chamber Height, Hc (cm) 4.3 9.9

Feed-Channel Height, Hf (cm) 15.0 14.3

Non-uniformity (%) 16.5 3.2

Average Residence Time† 253.6 215.2

Maximum Pressure† 42.3 1832.

* indicates active bound constraint
† indicates nondimensional quantity
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Figure 1. Application interface conceptualization.
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Figure 2. Iterator hierarchy showing broad iteration capabilities:
A) ParamStudy: for mapping response variations with respect to model parameters.
B) Optimizer : for numerical optimization studies.
C) Nondeterministic: for assessing the effect of modeling uncertainties on responses.
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Figure 3. Typical transportation cask.

o-ring region

Figure 4. Axisymmetric finite element model for end-on impact showing the 6
design variables which define overpack layer thicknesses.

Steel plate
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Figure 5. Finite element model for side-on impact showing radial thickness layers.

Figure 6. Smoothing of stress constraint through modeling improvements.
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Figure 9. Finite element model and typical temperature distribution (oF).
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Figure 11. Objective function variation with respect to fire center location (x) for r=1.89.
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Figure 12. Objective function variation with respect to fire radius (r) for x=0.8.
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Figure 13. Detail of Figure 11 showing effect of QTRAN convergence tolerances on design space nonsmoothness.
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Figure 14. Schematic of a chamber-slot die.
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Figure 15. Initial geometry.
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Figure 16. Final optimized geometry.

Figure 17. Vibration isolation testbed hardware.
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Figure 18. Spring locations and transmissibilities of baseline and 9 optimized designs.
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Abstract

The benefits of applying optimization to
computational models are well known, but their range of
widespread application to date has been limited. This
effort attempts to extend the disciplinary areas to which
optimization algorithms may be readily applied through
the development and application of advanced
optimization strategies capable of handling the
computational difficulties associated with complex
simulation codes. Towards this goal, a flexible software
framework is under continued development for the
application of optimization techniques to broad classes
of engineering applications, including those with high
computational expense and nonsmooth, nonconvex
design space features. Object-oriented software design
with C++ has been employed as a tool in providing a
flexible, extensible, and robust multidisciplinary toolkit
that establishes the protocol for interfacing optimization
with computationally-intensive simulations. In this
paper, demonstrations of advanced optimization
strategies using the software are presented in the
hybridization and parallel processing research areas.
Performance of the advanced strategies is compared
with a benchmark nonlinear programming optimization.

Introduction

Computational methods developed in fluid
mechanics, structural dynamics, heat transfer, nonlinear
large-deformation mechanics, manufacturing and
material processes, and many other fields of engineering
can be an enormous aid to understanding the complex
physical systems they simulate. Often, it is desired to
utilize these simulations as virtual prototypes to improve
or optimize the design of a particular system. The
optimization effort at Sandia National Laboratories
seeks to enhance the utility of this broad class of
computational methods by enabling their use as design
tools, so that simulations may be used not just for
single-point predictions, but also for improving system
performance in an automated fashion. System
performance objectives can be formulated to minimize
weight or defects or to maximize performance,
reliability, throughput, reconfigurability, agility, or
design robustness (insensitivity to off-nominal
parameter values). A systematic, rapid method of
determining these optimal solutions will lead to better
designs and improved system performance and will
reduce dependence on hardware and testing, which will
shorten the design cycle and reduce development costs.

Towards these ends, this optimization effort has
targeted the needs of a broad class of computational
methods in order to provide a general optimization
capability. Much work to date in the optimization
community has focused on applying either gradient-
based techniques to smooth, convex, potentially
expensive problems1 or global techniques to nonconvex
but inexpensive problems2. When the difficulties of high
computational expense and nonsmooth, nonconvex
design spaces are coupled together, standard
techniques may be ineffective and advanced strategies
may be required. Moreover, since the challenges of each
application are frequently very different, generality and
flexibility of the advanced strategies are key concerns.

The coupling of optimization with complex
computational methods is difficult, and optimization
algorithms often fail to converge efficiently, if at all. The
difficulties arise from the following traits, shared by
many computational methods:
1. The time required to complete a single function eval-
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uation with one parameter set is large. Hence, mini-
mization of the number of function evaluations is
vital.

2. Analytic derivatives (with respect to the parameters)
of the objective and constraint functions are fre-
quently unavailable. Hence, sensitivity-based opti-
mization methods depend upon numerically
generated gradients which require additional func-
tion evaluations for each scalar parameter.

3. The parameters may be either continuous or discrete,
or a combination of the two.

4. The objective and constraint functions may not be
smooth or well-behaved; i.e., the response surfaces
can be severely nonlinear, discontinuous, or even
undefined in some regions of the parameter space.
The existence of several local extrema (multi-modal-
ity) is common.

5. Convergence tolerances in embedded iteration
schemes introduce nonsmoothness (noise) in the
function evaluation response surface, which can
result in inaccurate numerical gradients.

6. Each function evaluation may require an “initial
guess.” Function evaluation dependence on the ini-
tial guess can cause additional nonsmoothness in the
response surface. Moreover, a solution may not be
attainable for an inadequate initial guess, which can
restrict the size of the allowable parameter changes.

To be effective in addressing these technical issues, one
must minimize the computational expense associated
with repeated function evaluations (efficiency) and
maximize the likelihood of successful navigation to the
desired optimum (robustness). Important research areas
for achieving these goals are fundamental algorithm
research, algorithm hybridization, function
approximation, parallel processing, and automatic
differentiation. Research activities are ongoing in each
of these areas at Sandia National Laboratories. The two
research areas of central interest in this paper are:

Hybrid optimization techniques:The
hybridization of optimization techniques exploits the
strengths of different approaches and avoids their
weaknesses. In a nonconvex design space, for example,
one might initially employ a genetic algorithm to
identify regions of high potential, and then switch to
nonlinear programming techniques to quickly converge
on the local extrema. Through hybridization, the
optimization strategy can be tailored to suit the specific
characteristics of a problem.

Parallel processing:The iterative nature of
optimization lends itself to parallel computing
environments. Since the simulation calls are
independent for methods such as genetic algorithms and
coordinate pattern search and for the finite difference

gradient calculations of a nonlinear programming
algorithm, parallelization can be achieved for single
processor simulation codes by simultaneously executing
many simulations, one per processor. Alternatively,
parallel efficiencies can be gained through the
interfacing of sequential optimization with parallel (i.e.
multi-processor) simulations. More advanced strategies
involve multi-level parallelism, in which parallel
optimization strategies coordinate multiple
simultaneous simulations of multi-processor codes.

Software Design

The DAKOTA (Design Analysis Kit for
OpTimizAtion) toolkit utilizes object-oriented design
with C++3 to achieve a flexible, extensible interface
between analysis codes and system-level iteration
methods. This interface is intended to be very general,
encompassing broad classes of numerical methods
which have in common the need for repeated execution
of simulation codes. The scope of iteration methods
available in the DAKOTA system currently includes a
variety of optimization, nondeterministic simulation,
and parameter study methods. The breadth of algorithms
reflects the belief that no one approach is a “silver
bullet,” in that different problems can have vastly
different features making some approaches more
amenable than others. Likewise, there is breadth in the
analysis codes which may be interfaced. Currently,
simulator programs in the disciplines of nonlinear solid
mechanics, structural dynamics, fluid mechanics, and
heat transfer have been utilized. The system, as will be
demonstrated in this paper, also provides a platform for
research and development of advanced methodologies.

Accomplishing the interface between analysis
codes and iteration methods in a sufficiently general
manner poses a difficult software design problem. These
conceptual design issues are being resolved through the
use of object-oriented programming techniques. In
mating an iterator with an analysis code, generic
interfaces have been built such that the individual
specifics of each iterator and each analysis code are
hidden. In this way, different iterator methods may be
easily interchanged and different simulator programs
may be quickly substituted without affecting the internal
operation of the software. This isolation of complexity
through the development of generic interfaces is a
cornerstone of object-oriented design, and is required
for the desired generality and flexibility of advanced
strategies (e.g., hybrid algorithms and sequential
approximate optimization).

The Application Interface (Figure 1) isolates
application specifics from an iterator method by
providing a generic interface for the mapping of a set of
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parameters (e.g., a vector of design variables) into a set
of responses (e.g., an objective function, constraints,
and sensitivities). Housed within the Application
Interface are three pieces of software. The input filter
program (“IFilter”) provides a communication link
which transforms the set of input parameters into input
files for the simulator program. The simulator program
reads the input files and generates results in the form of
output files or databases (a driver program/script is
optional and is used to accomplish nontrivial command
syntax and/or progress monitoring for adaptive
simulation strategies). Finally, the output filter program
(“OFilter”) provides another communication link
through the recovery of data from the output files and
the computation of the desired response data set.

Optimizer iterators are part of a larger “iterator”
hierarchy in the DAKOTA system. In addition to
optimization algorithms, the DAKOTA system is
designed to accommodate nondeterministic simulation
and parameter study iterators. These three iterator
classes frequently work together in a project: (1)
parameter study is used to investigate local design space
issues in order to help select the appropriate optimizer
and optimizer controls, (2) optimization is used to find a
best design, and (3) nondeterministic simulation is used
to assess the affects of parameter uncertainty on the
performance of the optimal design (a future extension
will be to allow for optimization under conditions of
uncertainty). Other classes of iterator methods may be
added as they are envisioned, which “leverages” the
utility of the Application Interface development. For
example, software effort in coordinating multiple
instances of parallel simulations on a massively parallel
computer is reusable among all of the iterators in the
DAKOTA system. The inheritance hierarchy of these
iterators is shown in Figure 2. Inheritance enables direct
hierarchical classification of iterators and exploits their
commonality by limiting the individual coding which

must be done to only those features which make each
iterator unique.

Several optimization algorithm libraries and
strategies are inherited from theOptimizer  base class.
DOT4, NPSOL5, OPT++6, and SGOPT7,8 have been
incorporated in this framework as libraries ofstand-
alone optimizers. Additionally, the “Hybrid” and “SAO”
optimization strategies arecombination strategies which
have been defined. In the Hybrid iterator, two or more
stand-alone optimizers are combined in a hybrid
strategy. Effective switching metrics are an important
research issue. In the SAO iterator, stand-alone
optimizers are interfaced with a separate function
approximation toolbox in the setting of sequential
approximate optimization9 (SAO). Here, the accuracy
and expense of the approximate subproblems, the
mechanisms by which the approximations are updated,
and the mechanisms of move limit enforcement are
important research issues.

Application Descriptions

The breadth of application of the DAKOTA toolkit
has been demonstrated previously in the disciplines of
nonlinear solid mechanics, heat transfer, fluid mechan-
ics, and structural dynamics10. These application investi-
gations have uncovered challenges commonly
encountered in real-world problems. It can be difficult to
duplicate these challenges with suites of inexpensive
test functions. Thus, the research investigations pre-
sented herein have focused on authentic engineering
applications with the hopes that the performance obser-
vations will be pertinent to real-world problems, rather
than merely being artifacts of the assumptions made in
approximating with inexpensive test functions. For the
purposes of demonstrating the advanced strategy devel-
opments, then, the focus will be placed on fire surety
and chemical vapor deposition reactor applications.

IFilter OFiltersimulator
program

ApplicationInterface

Parameters Responses

Figure 1. Application interface conceptualization.

Optimizer

Optional
Analysis Driver
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Heat Transfer: Determination of Worst Case Fire
Environments

Problem Description.In thermal science
simulations, parameter sets are sought which produce
worst-case credible fire environment(s) for which
structures and systems (such as aircraft, weapons, or
petrochemical processing plants) must be designed.
These inverse problems can be solved within an
optimization framework. In this application,
optimization techniques have been applied to determine
the vulnerability of a safing device to a “smart fire”11.
The optimization parameters consist of the location and
diameter of a circular spot fire impinging on the device.
The temperature of the fire is constant, though the heat
flux it imparts to the device varies in time and space
coupled to the response of the device. Function
evaluations involved transient simulations using a
nonlinear QTRAN12 thermal model with radiative and
conductive heat transfer. The finite element model used
in the analysis is shown with typical temperature
contours in Figure 3. Each simulation required between
8 and 60 CPU minutes to solve on an IBM SP2 node,
depending upon the error tolerance levels specified.

The components of the safing device must work
together to prevent the device from operating except
under the intended conditions. It is a weaklink/
stronglink design: the weaklink is designed to fail under
adverse conditions, which renders a potential stronglink
failure incapable of harm. The weaklink is a Mylar-and-
foil capacitor winding mounted on the outside of the
safing device and the stronglink is a stainless steel plate
mounted inside a cavity and offset right of center as

shown in Figure 3. The time lag between failure of the
stronglink and failure of the weaklink is the safety
margin for the device and varies with the fire exposure
pattern on the device surface. Hence, to validate the
design of the safing system, the worst-case fire exposure
pattern is sought by using optimization to minimize this
safety margin for selective exposure to a 1000O C black
body heat source.

 Typical critical node temperature histories are
shown in Figure 4 for a 20 hour fire exposure, where the
critical nodes of the weaklink and stronglink are those
which reach their failure temperatures earliest. The
safety margin shown graphically is the objective
function that the optimizer minimizes with respect to the
design parameters of fire spot-radius (r) and fire center
location (x), subject to simple bounds (0.5≤ r ≤ 5.8, -2.9
≤ x ≤ 2.9). Early optimization studies solved this 2
parameter problem; later studies added the y degree of
freedom in fire location as a third parameter (0.0≤ y ≤
2.9). The specific techniques used in input filtering,
adaptive simulation termination, and output filtering are
discussed in a separate paper10.

2-Parameter Optimization Results.This
application is challenging due to the nonsmoothness and
nonconvexity of the design space. In Figures 5 and 6,
one-dimensional parameter studies show evidence of
multimodality (Figure 6) and of slope-discontinuity at
the minimum (Figures 5 and 6). The slope-discontinuity
in the figures is caused by switching of the critical
weaklink node between geometric extremes. Figure 5
shows negative curvature near the discontinuity
(nonconvexity), whereas the discontinuity in Figure 6 is

.

Iterator

OptimizerParamStudy Nondeterministic

Hybrid

SGOPTNPSOLDOT OPT++

1D
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Stand Alone Optimizers Combination Strategies

Function
Approximation

Toolbox
Figure 2. Iterator hierarchy showing broad iteration capabilities:

A) ParamStudy: for mapping response variations with respect to model parameters.
B) Optimizer : for numerical optimization studies.
C) Nondeterministic: for assessing the effect of modeling uncertainties on responses.
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Figure 3. Finite element model and typical temperature distribution (oF).
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more difficult to discern due to the positive curvature
near the discontinuity.

These two parameter studies also provide insight
into the mechanics of the problem. In Figure 5, the
offset of the lowest safety margin from x=0 (the center
of the device) backs up engineering intuition in that the
stronglink is also offset right of center. That is, a fire
centered roughly over the stronglink preferentially heats
the stronglink and causes a lower safety margin. Figure
6 shows a less intuitive result, in which it is evident that
the lowest safety margin is not achieved with either a
large fire or a small fire. Rather, there exists an
insidious, medium sized fire which is not so small that
the heating rate is insufficient and which is not so large
that it prevents selective heating.

Figure 7 is a detail of Figure 5 and shows evidence
of small-scale nonsmoothness, which was reduced
through the tightening of QTRAN convergence
tolerances at the cost of approximately an order of

magnitude greater computational time per analysis.
EPSIT and EPSIT2 are absolute convergence tolerances
in degrees which govern time step completion and node
inclusion in nonlinear iterations, respectively. The
additional computational expense per analysis was
warranted in this case since none of the nonlinear
programming algorithms could successfully navigate
the design space without reducing the nonsmoothness
(even with large finite difference step sizes).

Performance comparisons of nonlinear
programming (NLP) algorithms are detailed in a
previous paper10. In summary, Newton-based optimizers
performed poorly due to the nonconvexity of the design
space (a quadratic approximation is a poor
representation); conjugate gradient (CG) methods were
much more successful. Choice of finite difference step
size (FDSS) for computation of numerical gradients
proved to be important. FDSS should be as small as
possible to allow for effective convergence to a
minimum, but still large enough that small-scale
nonsmoothness does not cause erroneous gradients.
Lastly, for nonsmooth applications, a robust line search
(as opposed to an aggressive search tuned for smooth
applications) was shown to be essential in enabling
reliable navigation to the optimum from different
starting points. The lowest objective function value
found for the 2 parameter problem was 2.531 minutes
(r=1.620, x=0.7820) at tight tolerances (EPSIT=10-4,
EPSIT2=10-6) which, when compared to stronglink and
weaklink failure times of 62.743 and 60.212 minutes
respectively, corresponds to a safety margin of just 4%.

3-Parameter Optimization Results.In more recent
studies, the fire parameterization was extended to 3
parameters (y degree of freedom in fire location added)
in order to investigate if fires centered off the line of
symmetry (see Figure 3) could result in lower safety
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Figure 5. Objective function variation with respect
to fire center location (x) for r=1.89.
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Figure 6. Objective function variation with
respect to fire radius (r) for x=0.8.
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Figure 7. Detail of Figure 5 showing effect of QTRAN
convergence tolerances on design space nonsmoothness.
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margins. It should be noted that fires centered off the
line of symmetry (i.e., y≠0) are mirrored by the
symmetry condition; that is, there is an identical fire
exposure in the y<0 half-plane. A typical parameter
study for objective function variation with respect to y is
shown in Figure 8. This study shows that the addition of
the y parameter is unlikely to result in additional
reduction of the safety margin. This is intuitive since
fires located off the symmetry line will not be as
successful in preferentially heating the stronglink. The
detail insert shows additional small-scale
nonsmoothness in the vicinity of y=0. In contrast with
Figure 7, tightening the EPSIT tolerances does not result
in significant smoothness improvements. Thus, this
nonsmoothness is believed to be geometry related and
not an artifact of finite numerics.

For the 3 parameter problem, performance of
coordinate pattern search (CPS) optimizers from the
SGOPT package has been compared with that of NLP
(DOT’s Fletcher-Reeves CG). Figure 9 shows the
optimization wall clock history for serial CPS and two
NLP studies. The two NLP studies both employ 0.1%
FDSS, but differ in the EPSIT tolerances employed in

the simulations. For (10-2, 10-4) EPSIT tolerances, NLP
terminates prematurely and the 2.5 minute minimum
safety margin is never reached. This is a clear indication
of smoothness levels which are insufficient to allow
effective navigation of the optimizer for the chosen
FDSS. At these tolerance levels, each simulation
requires approximately 20 CPU minutes to solve.

Tightening the EPSIT tolerances to the (10-4, 10-6) level
increases the individual simulation expense to
approximately 60 CPU minutes, but allows for effective
navigation to a 2.537 minute safety margin in 96 wall-

clock hours on a dedicated machine (this 3-parameter
result is slightly less optimal than the 2.531 minute 2-
parameter result because the same level of optimization
convergence was not enforced).

Since CPS is less sensitive to small-scale
nonsmoothness than gradient-based techniques, looser
EPSIT tolerances can be employed which lowers the
individual fire simulation expense considerably, to
approximately 8 CPU minutes each. Figure 9 shows
rapid convergence of CPS to the vicinity of the
minimum and final convergence to a safety margin of
2.504 minutes in 28.5 wall-clock hours. While the
number of function evaluations required by CPS is
greater than gradient-based optimization (220 compared
to 96 in Figure 9), the lower individual simulation
expense more than compensates, making the overall
computational expense of the CPS optimization more
than 3 times lower than that of the gradient-based
optimization.

However, evaluation of the CPS optimal point with

tight tolerances (EPSIT=10-4, EPSIT2=10-6) reveals a
tight-tolerance safety margin of 2.649 minutes, which is
4.4% less optimal than the NLP result. This highlights
the weakness of using CPS with inexpensive function
evaluations: convergence is not as exact. This is intuitive
since, as CPS progresses towards convergence, the step
size decreases and the substantial nonsmoothness
present with loose tolerances becomes more of a
hindrance. If the NLP optimization was terminated
when this level of optimality was achieved, the NLP run
time reduces to 73.3 wall-clock hours and the efficiency
gains measured with CPS reduce accordingly.

Global optimization issues have also been
investigated with this application. The studies in Figure
9 started from a good initial guess of (r,x,y,)=(1.4, 0.5,
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Figure 8. Objective function variation with respect
to fire location (y) for r=1.6204 and x=0.78205.
Detail shows local nonsmoothness for 0≤y≤0.1
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Figure 9. Optimization history comparison: Best
objective function value vs. wall-clock time in hours
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0.0) with an initial objective function of 7.25 minutes.
Starting from a different initial guess of (1.9, 2.1, 0.0)
with an initial objective function of 69.4 minutes, Figure
10 shows the relative performance of CPS, NLP, and an
exploratory real-valued GA. Two shorter GA runs of 15
generations each were performed rather than one long
30 generation search, because some research indicates
that several short searches usually outperform a single
long search13. The 2 GA studies differ only in the initial
random population seed and the best run of the two is
shown in the Figure. The GA can employ very loose

tolerances (EPSIT = 101, EPSIT2 = 10-1), and the
selected settings are nonaveraging 2-point crossover,
population size of 15, elitist retention of the 2 best
individuals in the population, and uniform mutation at a
40% rate. This is a difficult problem for the GA, since
the size of the region containing the 2.5 minute global
minimum safety margin is a relatively small portion of
the total design space. A Monte Carlo simulation of 120
random points (not shown) found only 2 fires with
safety margins lower than the “big fire” safety margin of
approximately 10 minutes, and both of these points were
only slightly better with objective functions of 7.45 and
7.76 minutes. Thus, finding the global minimum region
in an initial population of a GA is unlikely, and the GA
must rely primarily on mutation to search for this
region. In addition, the region is small and steep and the
topography in that vicinity contains mostly large
objective functions, and these unfit population members
tend to push the GA population away from this region.
Moreover, the GA is naturally attracted to the “big fire”
solution, since this solution makes up a large portion of
the design space and its objective function of
approximately 10 minutes is a “strong base of
attraction,” meaning that the population members with

these values are more fit than most other members. To
combat this behavior, mutation was set at a relatively
high 40% and the r upper bound was reduced to 2.9
(which still allows for a full face fire but restricts its
dominance in the initial population). With these
adjustments, it is evident in Figure 10 that the GA is
better suited for handling multimodality than CPS or
NLP and is successful in locating a promising region for
local search. The CPS and NLP approaches both
become trapped in the “big fire” local minimum with an
objective function of approximately 10 minutes. The
best GA solution of approximately 7 minutes will be
used as the first pass in several hybridization studies.

The pertinent observations in efficiency
comparisons between CPS, GAs, and NLP are
summarized as:
• CPS can be an efficient alternative to NLP, espe-

cially if local design space smoothness is tied to
simulation expense, since CPS is less sensitive to
nonsmoothness and can navigate effectively using
inexpensive simulations. NLP is better, however, at
precise convergence. This points to potential in a
hybrid CPS/NLP strategy in which CPS is used to
“get close” and NLP provides final convergence to
the precise minimum.

• Gradient-based optimizers put substantial faith in
the accuracy of the computed search direction, and
in nonsmooth applications, this level of faith may
not be justified since the gradients used to calculate
the search direction have questionable accuracy.
CPS optimizers do not confine themselves to a sin-
gle search direction, but rather search multiple
directions simultaneously. As a result, they can be
more robust in nonsmooth applications. Further-
more, these multiple searches are independent,
which provides easily-exploitable coarse-grained
parallelism. CPS is, however, susceptible to the
“curse of dimensionality,” meaning that the method
is most competitive in efficiency when the number
of design variables is small.

• Genetic algorithms are good techniques for global
design space feature extraction and location of
promising regions for refined searches. Since they
are zero-order techniques, inexpensive models may
be used for the evaluations. In addition, they have
very exploitable parallelism since each evaluation
in a population cycle is entirely independent. How-
ever, GAs are not infallible. For problems with iso-
lated minima lacking exploitable design space
structure, Monte Carlo sampling or grid search may
be the most effective global identification approach.0 2 4 6 8 10 12 14 16 18
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Figure 10. Optimization history for GA runs compared
with CPS and NLP starting from (r,x,y)=(1.9, 2.1, 0.0).

o GA with EPSIT = 101, EPSIT2 = 10-1

x NLP with+   CPS with  FDSS = 0.1%,
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Chemically Reacting Flows: CVD Reactor Design

Problem Description.There are many choices
associated with the design and operation of Chemical
Vapor Deposition (CVD) reactors including geometry,
inlet concentrations, temperature and velocities, disk
temperature and spin rate, etc. Ultimately, one wishes to
maximize profit in the deposition process by producing
crystals with a high degree of uniformity and purity at
the lowest possible manufacturing costs. Since building
and experimenting with actual reactors is an expensive
($1000/hour) and often hazardous process, virtual proto-
typing through the use of numerical simulations and
optimization techniques can help reduce the cost and
risk associated with reactor design.

A horizontal CVD reactor for the growth of Gal-
lium Arsenide (GaAs) from arsine and trimethylgallium
(TMG)14 is of interest in this study (Figure 11). The
reactants flow through a horizontal vessel with a tilted
base which is heated to the temperature at which deposi-
tion occurs. In the middle of the heated region is a rotat-
ing disk on which uniform growth can occur. Figure 11
also illustrates the simulation of the reactor using
MPSalsa, a chemically reacting flow finite-element code
developed at Sandia National Laboratories for use on

Massively Parallel (MP) MIMD computers15,16, by

showing the path of fluid through the reactor and asym-
metric surface contours of the main reactant. Figure 12
shows a deposition profile of GaAs on the reactive sur-
face where the circular outline is the spinning disk
boundary. Also in Figure 12 is a graph of the spin-aver-
aged deposition on the disk as a function of radial posi-
tion. Ideal operation of the reactor would consist of an
average growth rate of 10-20 Angstroms/second and a
perfectly uniform deposition profile.

As reactors and processes can vary, so do the rele-
vant design parameters. For this problem, we have cho-
sen to optimize an objective function which includes the
operating and material costs of the reactor less the gain
in value of the resulting wafer. A quadratic penalty term
is added to restrict the growth rate from too large a
value, which would lead to poor crystal quality. This
objective function models some of the trade-offs faced
by reactor operators: growth rate vs. product uniformity
and materials costs vs. growth rate. It has units of $/hour
and takes into account both costs and revenue, so that
the further negative the objective function value, the
more profit the process is making. An optimal configu-
ration is sought by varying 3 operating parameters: the
inlet concentration of trimethylgallium, the inlet flow
rate, and the rotation rate of the reacting disk. The capa-
bility of performing geometric optimization has recently

Inlet:

Outlet:

Contours of GaMe3
on Reacting Surface

Streamlines

  GaMe3
    AsH3
      H2

     GaMe3
       AsH3
         H2
          CH4

Figure 11. Deposition of Gallium Arsenide in a horizontal CVD reactor with tilted susceptor.
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been added by representing the tilt-angle of the reactor
as an additional parameter.

Optimization Results.For this problem, two finite
element meshes of the reactor geometry (Figure 11)
were used: a coarse mesh for quick investigation of the
parameter space and verification of the methodology,
and a fine mesh for more accurate results. This was done
to expedite the optimization process and to make the
best use of the Paragon resources. The coarse mesh was
comprised of 8504 hexahedral elements and 10188
nodes while the fine mesh had 36720 hexahedral ele-
ments and 40720 nodes. At each node in the mesh there
are 9 unknowns (three velocity component, pressure,
temperature and four species mass-fractions) resulting
in a total problem sizes of 91692 and 366480 unknowns,
respectively, for the coarse and fine meshes. The coarse
mesh has been used as an approximation by first finding
an optimum on the coarse mesh and then using these
parameter values to start the more expensive fine mesh
calculations.

The first coarse mesh run optimized the solution
over 3 operating parameters: the inlet reactant concen-
tration, the inlet flow velocity, and the disk spin rate.
DOT’s conjugate gradient algorithm was selected as the
optimizer. After 34 function evaluations (including finite
difference gradient calculations) and 4 iterations of the
conjugate gradient technique, an optimum was found.
Figure 13 shows the value of the objective function for

each function evaluation.
A second optimization run on the coarse mesh was

performed by adding in the tilt-angle of the reactor base
as a fourth parameter. This run started at the optimum
from the previous run, and decreased the objective func-
tion a little further from -1178.8 to -1226.0, while

Figure 13. Objective function history for a 3
parameter optimization of a CVD reactor on a
coarse mesh. Each conjugate gradient iteration
began with a gradient calculation as marked.
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Figure 12. Contours of the deposition rate of GaAs over the entire reactive surface (left) and time-averaged
deposition rate over the spinning disk (right). Attempting to maximize the growth rate while maintaining
required uniformity over the disk is a major component of the optimization of this reactor.

Spinning disk boundary



11
American Institute of Aeronautics and Astronautics

increasing the tilt angle from 9 degrees up to 11, which
was set as the upper bound.

Finally, a 3-parameter optimization run using the
fine mesh was initiated with the optimal parameter val-
ues from the first coarse mesh run. As can be seen in
Figure 14, the optimization run converged after 35 func-
tion evaluations, although it was nearly converged much
sooner. The objective function decreased from -1144.0
(corresponding to the coarse mesh objective of -1178.8)
down to -1250.1. The initial guess provided by the
coarse mesh proved to be a good approximation to the
fine mesh, as one parameter changed by about 10%
while the others were less than 2% from the optimum.
The use of a coarse mesh to rapidly identify promising
areas of parameter space for more expensive fine mesh
runs can be an important resource-saving methodology.

Parallel Processing

Strategy Discussion.High performance computing
is an essential technology in optimization research. For
GAs, CPS methods, and the finite difference gradient
calculations of an NLP algorithm, many simulations are
entirely independent, making it possible to achieve
“embarrassingly parallel” strategies using a coarse-
grained approach (i.e., simultaneously executing many
single-processor simulations, one per node). The other
attractive location for parallelism is in the simulation
code itself, and Sandia has been a leader in developing

massively parallel (MP) simulation capabilities. Thus, a
second approach to parallel efficiency is that of mating
an efficient, sequential optimizer (i.e. NLP) with an MP
simulation code.

Two parallel optimization studies have been per-
formed. The fireset application uses a parallel optimiza-
tion algorithm which invokes multiple independent
simulations of single-processor codes. The CVD reactor
design study achieves parallel efficiency through
sequential optimization with MP simulation codes.

Heat Transfer: Determination of Worst Case Fire
Environments

Parallel CPS from the SGOPT package has been
used for improving efficiency in optimization of fire
surety simulations. Individual thermal simulations exe-
cute on nodes of the IBM SP2 using the native loadlev-
eler software to select lightly loaded nodes, and multiple
simulations execute simultaneously.

CPS executes 2 simulations in each ofn parameter
directions during an iteration. The end of an iteration is
a synchronization point for the parallel algorithm; thus,
2n simulations at most may be performed in parallel.
Then, the maximum possible parallel speedup for the 3
parameter fire surety application using single-processor
analyses is 6. In practice, observed parallel speedup was
limited by the availability of only 3 commercial
QTRAN licenses.

Figure 15 shows the optimization wall clock history
for serial CPS, parallel CPS limited by 3 commercial
QTRAN licenses (observed performance), and parallel
CPS with unlimited QTRAN licenses (potential perfor-
mance as limited by algorithm rather than by licenses).
Reductions in wall-clock time of a factor of 10 for the
CPS optimization are observed over that of the NLP

Figure 14. Objective function history for CVD reac-
tor optimization on the fine mesh with initial guess
from the coarse mesh converged solution. Each
function evaluation required the solution of 366480
unknowns, which were solved on 512 processors of
the Intel Paragon in 5-8 minutes each.
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Figure 15. Optimization history comparison: Best
objective function value vs. wall-clock time in hours
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optimization (see Figure 9), and a factor of 20 savings
would be possible with additional QTRAN licenses. As
stated previously, however, the CPS results are slightly
less optimal, from which the utility of a CPS/NLP
hybrid can be inferred.

Parallel genetic algorithms are also under investiga-
tion (results not available at time of printing). More par-
allelism is possible with GAs than with CPS in this
problem, since the number of possible simultaneous
analyses for the GA is determined by population size
(15 used in Figure 10), compared with 6 possible simul-
taneous analyses (2n wheren = 3) for parallel CPS. In
addition, some research suggests that employing multi-
ple independent GA populations in parallel can be an
effective technique, and this removes this population
size speedup limit. However, in this problem, observed
performance will still be limited by the 3 available
licenses.

Chemically Reacting Flows: CVD Reactor Design

Massively parallel simulations have been employed
in NLP optimization studies to allow for expeditious
analysis of high fidelity models of the chemically react-
ing flows within a CVD reactor. MP SALSA simula-
tions execute on a partition of nodes on Sandia’s 1840
node Intel Paragon.

For each set of parameters given by DAKOTA
(either 3 or 4 parameters), a steady state problem is
solved by MPSalsa from which a single objective func-
tion is calculated. Each function evaluation on the
coarse mesh takes 2-3 minutes on 256 Intel Paragon pro-
cessors, while a function evaluation on the fine mesh
requires 5-8 minutes on 512 processors. For each prob-
lem size, there is a trade-off between computational
speed-up and interprocessor communication overhead
and these numbers of processors achieve an effective
balance for these problem sizes.

Through the use of the MP computer, the relatively
short objective function evaluation times are enabling us
to optimize this and larger design problems of interest to
the CVD processing industry. The total CPU time used
for the coarse mesh optimization study was approxi-
mately 80 minutes on each of 256 Paragon processors,
and the total CPU time for the fine mesh optimization
study was around 6 hours on each of 512 Paragon pro-
cessors, including time for I/O.

Code Modifications and Operation.An input filter
script has been generated to control and pass informa-
tion to the MPSalsa program. Also, MPSalsa has been
modified to take this information from DAKOTA and
generate the returned objective function value. This
modification also allows MPSalsa to stay resident on the
parallel machines and thus alleviates the need for re-ini-

tialization for every objective function evaluation. Fur-
ther, MPSalsa can use the previous solution as an initial
guess for each evaluation. With these two time saving
measures, we have cut the total CPU time by a factor of
2-10 (depending largely on the mesh size) over the
option of re-launching MPSalsa for every function eval-
uation. Since the SUNMOS operating system on the
Paragon only supports a single process at a time, only
MPSalsa will be run on the Paragon. Thus, the
DAKOTA and the filter script communicate (from a
front-end machine) with MPSalsa via parameter and
other control files on a common disk system.

Observations.Through the use of massively paral-
lel computing, accurate simulation of complicated engi-
neering systems such as CVD reactors is possible and
relatively rapid. With this capability comes the opportu-
nity to use optimization algorithms to locate improve-
ments in operation and design. As a proof-of-concept,
optimal values of three key operating parameters have
been located for the CVD growth of Gallium Arsenide
semiconductor crystals, with respect to an objective
function that takes into account materials costs, growth
rate, and the uniformity of deposition. The resulting
solution was better than any previously simulated and is
believed to be a global optimum. Initial simulations add-
ing in a fourth design parameter have already shown that
changes in the reactor configuration can be made to
improve the profitability of the reactor. It has been
shown that using a coarse mesh for initial optimization
studies can efficiently locate promising areas of parame-
ter space for the accurate fine mesh.

 Given the heavy use Sandia’s MP computers
receive, it is imperative that efficient use is made of
these resources. To this end, it is planned to augment the
DAKOTA/MPSalsa scheme in order to provide a two-
level parallelization scheme. This would allow indepen-
dent objective function calculations to be done concur-
rently, even while these calculations are themselves
parallel. Typically, the most efficient number of proces-
sor on which to run a problem is the minimum required
(owing to communication costs). Thus, by evaluating
the objective functions on the minimum number of pro-
cessors and by performing several of these in parallel,
on can achieve nearly linear speedup and optimal effi-
ciency as shown in17. For gradient methods, this second
level of parallelization is limited to the number of opti-
mization parameters (within a finite difference gradient
calculation) but will remain more effective than simply
increasing the number of processors used for a particu-
lar objective function solution.
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Algorithm Hybridization

Strategy Discussion.Hybrid optimization algo-
rithms seek to enhance the overall robustness and effi-
ciency of an optimization approach by tailoring
algorithm strengths to different parts of the optimization
process. For example, in an optimization problem whose
design space may contain multiple minima, the initial
stages of an optimization process should be character-
ized by an identification of promising design space
regions. Algorithms suited for this (e.g., genetic algo-
rithms) are often expensive since they usually require
many function evaluations. Thus, these algorithms
should only be used long enough to serve their identifi-
cation purpose. Once promising regions have been
located, an efficient local technique (e.g., NLP) can be
used to converge on precise minima. An important asso-
ciated technique is that of variable complexity
modeling18, in which analysis “complexity” (e.g., mesh
density, convergence criteria) is tailored to meet the
needs of the current algorithm or optimization phase. In
the example cited above, it is clearly attractive to use
loose convergence tolerances in the initial identification
phase (since a genetic algorithm approach does not
require smooth differentiability of the response surface),
followed by appropriately tight tolerances in the local
convergence phase.

Global/local hybrids are not the only example. It
has been shown previously that CPS and NLP have dif-
fering performance in the presence of local nonsmooth-
ness. Thus, an efficient local strategy would combine
CPS using inexpensive function evaluations in the initial
optimization phase with NLP using expensive evalua-
tions in the final convergence phase.

An important point of research is the development
of appropriate algorithm switching metrics. In the stud-
ies investigated below, the approach employed is that of
staying with an algorithm as long as it is making
progress. When an algorithm’s progress slows or when
it’s function evaluation budget has been spent, the
hybrid strategy switches to the next algorithm and con-
tinues.

Heat Transfer: Determination of Worst Case Fire
Environments

GA/NLP and GA/CPS two-pass hybrids with vari-
able complexity modeling.The GA initial phase uses

inexpensive function evaluations (EPSIT = 101, EPSIT2

= 10-1) to stochastically identify promising design space
regions. As shown in Figure 10, the GA performs 15
population cycles and identifies a promising region with
an objective functions of 6.930. In the hybridization
study, the best point found after 10 population cycles

(7.005 minutes) is handed off to CPS and NLP
approaches for local convergence. The CPS second
phase uses slightly tighter tolerance evaluations (EPSIT

= 100, EPSIT2 = 10-2), whereas the NLP second phase
requires tight tolerance, expensive evaluations (EPSIT =

10-4, EPSIT2 = 10-6). Figure 16 shows the optimization
history and relative performance of the GA/NLP and
GA/CPS hybrids. It is evident that the starting point for
the CPS and NLP second phase studies is not suffi-
ciently close to the global minimum since both
approaches become trapped in a local minimum with an
objective function slightly less than 7 minutes. The GA/
CPS hybrid converges on this local minimum in approx-
imately half the total time required for the GA/NLP
hybrid to converge. Evaluating the CPS best point with
tight tolerances yields an objective function of 6.657,
which when compared to the best tight tolerance NLP
result of 6.891 minutes, shows that the converged results
of the two hybrids are of comparable quality. Research
is ongoing in improving the reliability of GA global
identification for these hybridization studies.

CPS/NLP two-pass hybrid with variable complex-
ity modeling.This study uses the (1.4, 0.5, 0.0) good
initial guess for comparison of a CPS/NLP hybrid with
CPS and NLP single-algorithm performance from Fig-
ure 9. In the hybrid, the CPS initial phase uses inexpen-
sive function evaluations, while the NLP final phase
uses tight tolerance, expensive evaluations. Figure 17
shows the optimization history comparison for the CPS/
NLP hybrid compared with the benchmark NLP perfor-
mance. The history jump at the algorithm switch is
caused by the change in EPSIT tolerances, which causes
an increase in the objective function value at that set of
parameter values (from 2.580 at loose tolerances to

Figure 16. Optimization history comparison for hybrid
GA/NLP and GA/CPS strategies: Best objective

function value vs. wall-clock time in hours
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2.670 at tight tolerances). Given that the CPS/NLP
hybrid achieves an acceptable minimum of 2.560 min-
utes at tight tolerances, it is observed that wall clock
time is reduced by a factor of 2. However, the result
achieved is 1% less optimal than the benchmark NLP
result of 2.537, which is attributable to the nonsmooth-
ness in the y direction (see Figure 8) in that the hybrid
NLP phase gets trapped in the vicinity of y=0.04. The
hybrid strategy result is still a considerable improve-
ment over the best CPS result of 2.649 (at tight toler-
ances). This validates the hybridization strategy in that a
more optimal result was computed than was achievable
with CPS, and it was achieved in half the time required
by NLP.

GA/CPS/NLP three-pass hybrid with variable
complexity modeling.Given the results of the GA/CPS,
GA/NLP, and CPS/NLP hybridization studies, it appears
to be desirable to combine the GA/CPS and CPS/NLP
approaches into a three-pass hybrid and address both the
global minimum identification problem and the issue of
robustness and efficiency to a local minimum. However,
the GA global identification performance must first be
improved.

Conclusions

Object-oriented software design has been shown to
be an effective tool for the generic integration of
advanced optimization techniques with broad classes of
simulation codes. In a separate paper, applications in
nonlinear solid mechanics, heat transfer, fluid
mechanics, and structural dynamics were interfaced
with existing optimization algorithms via the DAKOTA
toolkit10. In this paper, fire surety and CVD reactor
applications have been employed as benchmarks for

demonstration of advanced optimization strategies in
algorithm hybridization and parallel processing. These
strategies have been designed to be general-purpose and
flexible, as enabled by the implementation of generic
interfaces in C++. This collection of various algorithms
and strategies in the DAKOTA system has allowed for
straightforward assessments of relative performance.

In the parallel optimization investigations,
significant decreases in wall-clock time have been
enabled through the use of parallel computing
methodologies. Parallel optimization of single-
processor simulations and sequential optimization of
massively parallel analyses have been demonstrated in
the fire surety and CVD reactor design applications.
Peak performance in the fire surety application was
prevented by the availability of only 3 commercial
QTRAN licenses. In the CVD application, performance
was limited by the execution of only one MPSalsa
simulation at a time. Since the MPSalsa speed-up tapers
off past a certain number of processors, a practical limit
is placed on the number of processors per analysis
which limits the potential speed-up in this parallel
optimization strategy. This points clearly to the need for
multiple MPSalsa evaluations running simultaneously in
order to achieve peak performance.

In the hybridization investigations, GA/NLP, GA/
CPS, and CPS/NLP hybrids have been investigated on
the fireset application. In the GA/NLP and GA/CPS
hybrids, GA/CPS was shown to be more computation-
ally efficient than GA/NLP in converging to a local min-
imum, although neither method was successful in
navigating to the global minimum due to the difficult
global identification problem with the fireset applica-
tion. More investigation on global identification is
needed. Both of these hybrids, however, outperform
CPS and NLP single-algorithm performance when these
single algorithms are started from an initial guess out-
side of the global minimum region (Figures 10 and 16).
The CPS/NLP hybrid is shown to be an efficient and
accurate local convergence technique since a more opti-
mal result was computed than was achievable with CPS
alone, and it was achieved in half the time required by
NLP alone. Once the global identification problem is
better understood, three-pass GA/CPS/NLP hybrids
hold promise for combining the performance of the best
two-pass approaches.

The overall goal of these research activities is to
develop a broadly useful optimization capability with
the flexibility and extensibility to easily accommodate
broad classes of optimizers, a wide disciplinary range of
simulation capabilities, and advanced strategies which
seek to enhance robustness and efficiency beyond that
which is currently available.
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Survey of Approximation Methods in Optimization
M. S. Eldred
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Introduction

When engineering simulations are computationally expensive, optimization must often resort
to approximation strategies in order to reduce the number of function evaluations required and
also to reduce the computational expense of each function evaluation. The former case of
reducing the number of function evaluations involves formal approximation methodologies in
which an approximate subproblem is built. The optimizer operates on the subproblem only, and is
never directly interfaced with the analysis code. The solution to the approximate subproblem
frequently serves as the starting point for a new approximate subproblem, and iteration continues
in this way until convergence. This strategy is known as sequential approximate optimization.

Whereas the former case encompasses mostly general techniques, the latter case of reducing
the computational expense of each function evaluation is highly application dependent and
involves tuning a particular analysis to maximize value extraction with respect to computational
cost. This technique is separate from the optimization, except for the fact that different
optimization algorithms may require different levels of model performance (e.g. response surface
smoothness/differentiability).

The following discussions survey the available methodologies in approximation methods for
optimization. Recommendations are made for development and a list of references is provided.

Reducing the Number of Function Evaluations

I. Global approximations. This class of approximations is distinguished by the use of many
analyses to build approximate representations of response surfaces. Typically, these
techniques are most applicable for low dimensional design spaces (a few design variables),
and are quite general in that little or no problem-specific knowledge is needed.

A. Hypersurface fitting. This technique involves fitting a multi-dimensional function (e.g.
polynomial, exponential) to data points from exact analyses. Many analyses are generally
required. For example, fitting a quadratic polynomial to response data requires at least
n(n+1)/2 analyses for n design variables. For expensive analyses, this severely limits the
tractable dimensionality of design problems to which this technique can be applied. A
related technology is the theory of experiment design, since these methods (e.g. Taguchi,
Box) can be used to maximize design space feature extraction with respect to the number
of exact analyses by carefully selecting the locations of the numerical “experiments.”

B. Neural networks. This technique involves training an artificial neural network (ANN) with
data sets from exact analyses, and then using the trained ANN to return approximate
response data for other data sets. Similar to the requirements of surface fitting, accurate
training requires many data sets, and the use of experiment design methods for selection of
the training sets may increase performance. Accuracy is good for interpolation between
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training sets, but can be poor for extrapolation beyond the range of the training sets. In the
literature, interpolation capabilities of back-propagation neural networks have been shown
to exceed those of surface fitting techniques.

II. Local approximations. This class of approximations involves series representations of
objective and constraint functions utilizing function, gradient, and higher-order data from a
single point. The techniques are local since their accuracy breaks down away from the vicinity
of the analysis point, making it necessary to impose move limits in optimization of the
approximate subproblem. Key issues for comparison of local approximations are range of
accuracy and required move limits. These techniques are applicable for all design space
dimensionalities, but are less general than global approximations, since the most effective
local approximation techniques make use of problem-specific knowledge to try to capture the
true nonlinear nature of the approximated function.

A. First order local approximations. This class of approximations is based on first-order
Taylor series expansions of objective and constraint functions. If the objective function
and all constraint functions are linearized and linear programming (LP) optimizers are
used to solve the approximate subproblem, the technique is known as sequential linear
programming (SLP).

1. Linear. This approximation involves a first-order Taylor series expansion of an
objective or constraint function in terms of a design variable. This approximation
makes no use of problem-specific knowledge and is therefore a general technique.
However, depending on the nonlinearity of the approximated function in terms of the
design variable, its accuracy can very quickly break down, requiring the use of
restrictive move limits.

2. Reciprocal. A Taylor series expansion of an objective or constraint function in terms of
the reciprocal of a design variable. The motivation for this approximation is tied to
structural optimization of structures consisting of truss or plane-stress elements, since
design variables were typically truss element cross-sectional areas (A) or plane-stress
element thicknesses (t), and element stresses are much more linear in terms of 1/A or
1/t than in terms of A or t. For general applications, this approximation is useful only
when an inverse relation of the approximated function with respect to the design
variables is known or suspected.

3. Conservative/Convex. This approximation is a hybrid of the linear and reciprocal
approximations and is more conservative than either. This approximation is convex,
and when both the objective function and constraints are approximated in this way, the
technique is known as convex linearization. The resulting approximate subproblem is
convex and has a single minimum. The conservative/convex approximation tends to be
less accurate than either the direct or reciprocal approximation, so it should only be
used when its conservatism or convexity are useful. Methods of moving asymptotes
have been introduced to improve accuracy.

4. Intermediate variables & response quantities. These approximations can be very
accurate since they make effective use of problem-specific knowledge through the
careful selection of intermediate responses and intermediate design variables. The idea
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behind this approximation is that of breaking a functional relationship into parts,
pulling out any nonlinear explicit portions, and performing the approximation on the
most linear implicit relationship available. For the case of stress constraints in
structural optimization, stress is a highly nonlinear function of element geometry
design variables and a standard linear approximation will require very strict move
limits. However, by using element force as a intermediate response (element stress is
an explicit function of element force), element section properties as intermediate
variables (again, an explicit relationship with the actual design variables), and
approximating the remaining relationship between element force and section
properties in a linear series, the approximated relationship is very nearly linear (even
though the approximated constraint values are highly nonlinear) and generous move
limits may be employed. For general application of this technique, the crucial step is
the insightful selection of the best intermediate response and variable forms.

B. Higher order local approximations. This technique uses higher-order Taylor series
expansions to approximate objective and constraint functions. Quadratic and reciprocal-
quadratic approximations are examples that have been investigated in the literature. These
approximations are not frequently used, since the improvement in accuracy and the
associated reduction in necessary optimization cycles is often not sufficient to offset the
increased cost of evaluating higher-order derivatives of response quantities. The well-
known technique of sequential quadratic programming (SQP) is related in that SQP
approximates the Lagrangian function with a second-order Taylor series; however, higher-
order derivatives are not actually computed since the second-order term (the Hessian
matrix) is approximated by the BFGS update formula.

C. Power law approximations. This approximation is based on selection of an appropriate
power relationship of objective and constraint functions in terms of the design variables.
This is a general strategy in that it does not require problem-specific knowledge. The
assumed form of the relationship is flexible, and appears amenable to the development of
an adaptive approximation improvement strategy (start with linear or best guess, and
refine the assumed relationship based on the discrepancy between the exact function and
its approximation at the end of each approximate subproblem optimization).

D. Differential equation-based approximation. This approach operates on an analytic
sensitivity expression by assuming that the coefficients of the various terms of the
expression are constant (an approximating assumption in most cases), and then integrating
the constant-coefficient differential equation for a high-quality nonlinear approximation.
The derived approximations are highly specialized for the particular relationship of
interest (no generality) and are most appropriate when the analytic sensitivity expressions
are relatively simple.

III. Multipoint approximations. This class of approximations involves series representations of
objective and constraint functions which are accurate over larger regions of the design space
than most local approximations since they utilize function and gradient data from a few
points. Since multipoint approximations are concerned more with matching function and
gradient information at a few points and less with capturing nonlinear relationships through
problem-specific knowledge, they resemble response surface techniques and can be very
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general approaches. In contrast to global response surface approximations, however, the
additional analysis points needed to construct the multipoint approximation are few and are
usually available through previous analysis points.

Reducing the Expense of a Function Evaluation

I. Model simplification/reduction.

A. Model simplification. This technique entails coarsening mesh densities and removing
mesh detail (e.g. cut-outs, threads, or other features requiring a fine mesh) for the purpose
of reducing the number of degrees of freedom that must be computed in the simulation.
Often these simplified models must be calibrated with respect to a high fidelity model, so
that response data of interest in the refined model can be mapped into approximately
equivalent data in the simplified model (especially when the response data of interest
involve mesh detail which has been removed). 

B. Model reduction, condensation, or substructuring. These techniques may be employed to
obtain a reduced-order model directly from a refined model without remeshing. For these
techniques to be efficient in an optimization context, the use of data describing the refined
model should be avoided in the problem formulation. That is, if the reduction employed is
not invariant with respect to the design variables in the optimization problem, then the
reduction will have to be recomputed after design changes.

C. Variable complexity modeling. This technique is an associated technology when
employing models with differing levels of refinement. The concept is that of using the
refined model when accurate results are required, and using the inexpensive model when
moderate inaccuracy is acceptable. Typically, the simple model is used in a “pre-
processor” optimization phase, either being optimized to obtain a good initial design for
optimization based on the complex model, being used to “screen out” poor designs which
do not merit refined analyses, or being used to define an approximate response surface.
Alternatively, the simplified model can be used in a global/local hybrid approximation. In
this case, the simplified model can be viewed as a global approximation, since it
approximates the true response over the entire design space, and the local approximation
occurs when the scale factor defining the ratio between simplified model and refined
model responses is approximated with a first-order local approximation. The
approximation of the scale factor estimates the variation of the discrepancy between the
simplified and refined model responses over the design space. Another potential use which
we will investigate combines variable complexity modeling and global/local hybrid
optimization algorithms: use of a coarse model in the initial global pre-processor studies
(many evaluations, accurate gradients not needed) followed by use of a refined model for
local nonlinear programming (fewer evaluations, accurate gradients are required).

II. Adaptive tolerance, time step, and termination time control.

A. Time history extrapolation and adaptive control: Rather than performing a complete
transient analysis, the analysis is terminated prematurely, truncating the time histories of
response data in order to conserve CPU. The truncated histories are then fit with a function
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(polynomial, exponential, etc.) and the function is extrapolated forward in time to compute
the desired responses. Of course, the success of this scheme depends highly on the quality
of the fit and the smooth behavior of the responses past the truncation point. From
experience, this technique is not robust, since the optimizer frequently seeks out those
design space regions where the extrapolation breaks down. A much more robust and
accurate technique is that of using an adaptive termination time strategy, in which
simulation progress is periodically monitored (e.g. by a background script which loops
with a time delay) and the simulation is terminated immediately upon capture of the events
of interest. This approach is really not an approximation; rather it is an effective strategy
for optimizing simulation duration, by both assuring that the simulation proceeds long
enough to capture the desired events (avoiding accidental truncation) and by eliminating
unnecessary computation for time steps occurring after the event of interest.

B. Convergence tolerance and time step control: In transient simulations, the tightness of
convergence tolerances and the size/number of time steps greatly influence the CPU usage
of an analysis, the accuracy of the results, and the small-scale smoothness of the response
variations in the design space. Transient analyses with large time steps and loose
tolerances are inexpensive, but suffer from inaccuracy and small-scale nonsmoothness.
Likewise, analyses with small time steps and tight tolerances are accurate and smooth, but
can be prohibitively expensive in CPU usage. Thus, an important concern in reducing the
expense of function evaluations is the trade-off between model performance (accuracy,
smoothness of response variations) and CPU usage. Strategies for achieving an effective
balance include (1) perform trade-off study off-line to determine best control settings, (2)
adaptively control settings based on smoothness metrics during the optimization process,
and (3) variable-complexity modeling: employ large time steps and loose tolerances for
initial studies and tighten controls for refined studies.

Recommendations

One of the key concerns for incorporating approximation methodologies within the DAKOTA
software is the generality of the technique. In addition to having good performance, the developed
approximation methods should be broadly applicable in different engineering disciplines without
the need for application-specific modifications. Many of the cited approximation methods grew
out of the structural optimization research community, and as such, they take advantage of
structures-specific knowledge in order to best capture nonlinear relations in local approximations.
The DAKOTA toolkit has a breadth of application that is much wider than structures, which
necessarily makes the incorporation of problem-specific knowledge into approximation methods
a difficult proposition.

For reducing the number of function evaluations, global approximation techniques look
promising as general approximation strategies for those problems when the number of design
variables is approximately 10 or less. For these cases, DAKOTA should be equipped with
response surface or neural network approximation capabilities, and this is recommended as a
development item. Additionally, it would be desirable to incorporate methods of experiment
design as pre-processors in response surface generation and neural network training, so as to
maximize design space feature extraction for a limited number of computational “experiments.”
The most effective local approximation techniques are not general; they require problem-specific
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knowledge for determining the best approximated response and series parameter forms. Thus,
only the simplest of local approximation strategies (the linear and power law approximations)
could be incorporated into DAKOTA as general approximation techniques. The development of
sophisticated means for incorporating problem-specific knowledge into a intermediate variable/
response approximation within DAKOTA has high potential payoff, but the relative difficulty and
high risk of the task makes it difficult to assess any priority to its development. More realistic
targets for development within DAKOTA are the techniques of multipoint approximations, which
can be highly accurate, efficient, and general. Therefore, development of response surfaces and
neural networks with experiment design pre-processing, linear and power law local
approximations, and multipoint approximations have been identified as the best candidates for
development and inclusion in the DAKOTA toolkit.

In terms of reducing the expense of a given function evaluation, the cited techniques of model
simplification/reduction and adaptive tolerance, time step, and termination time control have been
shown to be very effective in application work to date and are recommended for continued use
and development. Since they are highly application-specific, incorporation into the DAKOTA
software is not generally feasible, and they will continue to be effected in the filter and analysis
driver programs (adaptive strategies) or off-line from the DAKOTA optimization executions
(nonadaptive strategies).
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Abstract

The discrete adjoint method provides a less expensive means for generating gradient
information in optimization. A large expensive analysis code is run once for each design
variable when evaluating numerical derivatives of the objective function and nonlinear
constraints. With the adjoint method, the analysis code needs only to be run once per
gradient evaluation. The additional adjoint information is extracted from the solution
procedure existing in the analysis code. When there are nonlinear constraint equations,
the adjoint method is bene�cial only if the number of design variables is much larger than
the number of constraints. A derivation of the adjoint method is given as applied to optimal
design problems. Practical implementation issues are discussed.

1



Table of Contents

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2: Gradient Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Black-Box Method for Numerical Gradients . . . . . . . . . . . . . . . . . . 8
2.2 Adjoint Method for Numerical Gradients . . . . . . . . . . . . . . . . . . . . 9
2.3 Direct Method for Numerical Gradients . . . . . . . . . . . . . . . . . . . . . 10
2.4 Direct Method is Mathematically Equivalent to Adjoint Method . . . . . . . 10

Chapter 3: Adjoint Method Implementation . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Using Full-Matrix Analysis Codes . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Using Analysis Codes with Embedded Solvers . . . . . . . . . . . . . . . . . 13
3.3 Using Analysis Codes with Segregated Solvers . . . . . . . . . . . . . . . . . 14
3.4 Using Analysis Codes with Matrix-Free Solvers . . . . . . . . . . . . . . . . 14

Chapter 4: Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Cooling Package Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.2 Design Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.3 Performance of Optimization Methods . . . . . . . . . . . . . . . . . 18

4.2 Flow Channel Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Design Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 5: Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2



Nomenclature

Roman symbols

nd = number of design variables, scalar

nc = number of nonlinear constraints, scalar

nl = number of linear iterations of iterative

matrix solver, scalar

nn = number of nonlinear iterations of

iterative solution procedure, scalar

x = design variables, vector

xl = lower bounds on design variables, vector

xu = upper bounds on design variables, vector

q = solution variables, vector

~qi = solution variables for perturbed

design variable xi, vector

F = objective function, scalar

C = general nonlinear constraints, vector

G = gradient of the objective function, vector

H = Hessian of the objective function, matrix

R = residual of the physical conservation laws,

solved by the analysis code,

physical constraints, vector

L = Lagrangian operator, vector

A = sti�ness matrix or Jacobian, matrix

b = load vector, vector

p = Krylov vector

Greek symbols

� = Lagrange multipliers or co-state variables, tensor

�i = perturbation to ith component of x, scalar

Superscripts

T = transpose

Subscripts

d = pertaining to design variables

c = pertaining to constraint equations

l = pertaining to linear iterations

n = pertaining to nonlinear iterations
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Chapter 1: Introduction

This report represents a portion of worked performed under a joint three-year LDRD on

optimization. The purpose of this project is to investigate methods for computing gradient

information more cheaply.

In the past, we have studied optimal design problems for thermal processing equipment

used in the microelectronics manufacturing industry. We used gradient-based methods to

determine optimal operating parameters to maximize process uniformity [1, 2]. Gradient

information was generated by applying divided di�erences to perturbed solutions from large,

expensive �nite-element analysis codes. Each function evaluation for the optimization is

expensive since the analysis codes can take upwards of an hour of computer time. Less

expensive methods of gradient evaluation are desired.

We investigated automatic di�erentiation for generating analytic gradients directly in the

analysis code [3]. We found that there is a minimum problem size below which the overhead

of automatic di�erentiation makes it more expensive than divided di�erences. Additionally,

the window for usefulness is small since for larger optimization problems, above the e�ciency

threshold, one rapidly runs out of computational resources.

The adjoint method reduces the amount of work required to evaluate gradients. The

adjoint method, based on variational principles, has proven useful in shape optimization for

aerodynamic design [4, 5, 6, 7]. There have been both continuous and discrete approaches

to forming the adjoint equations. While the continuous approach provides an equation set

for the adjoint problem, the discrete meshing sensitivity is lost and boundary conditions for

general objective functions are problematic. We investigate the discrete adjoint formulation

because it does incorporate the mesh dependence from the analysis code, and the objective

function and constraints are easy to implement. Also, the discrete adjoint method is

implemented in such a way that minimal modi�cations are required for validated, production

analysis codes.

The advantage of the adjoint method is that gradients are constructed from the sensitivity

information that is inherent in an analysis code. The sensitivity information is ignored in

brute-force numerical di�erencing methods. Most analysis codes solve nonlinear equations

by iterating on a linearization of the governing equations. The information contained in the
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Update solution variables

Solve Jacobian matrix

by iterative methods

Linearize equations

Nonlinear Solution Procedure

Figure 1.1 Solution Procedure Paradigm Required for E�cient Application

of Adjoint Method

linear problem is the sensitivity information that the adjoint method requires.

The adjoint method works best with analysis codes that have a solution procedure based

on Newton or Picard iteration: outer nonlinear iterations over an inner linearized problem.

The paradigm is shown in Figure 1.1. It is implied that all equations are coupled together in

the linearization which is typically the case for �nite element codes, such as COYOTE [8, 9]

and SALSA [10, 11]. It is expensive to store all the matrix coe�cients from the linearization

when the mesh becomes large or the number of physical variables is large (reacting ow,

for an example). It is more common to �nd solution procedures which approximate the

linearization by breaking the matrix into pieces.

The segregated linearization approach is used when there are several di�erent governing

equations. The equations are solved sequentially. A principal solution variable is associated

with each physical equation and the linearization of the equation if performed with respect

to the variable. The segregated approach is found most often in uid mechanics code, such as

CURRENT [12], where velocities are associated with momentum equations and temperature

is associated with an energy equation. The individual linearizations can be combined to form

the overall sensitivities required for the adjoint method, but the sensitivity coe�cients are

approximate so the gradients will be approximate. An outstanding question is whether the
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approximate gradients are accurate enough to be useful for the optimization. Sometimes the

segregated solution approach is applied in an embedded manner. The solution of radiative

uxes in the TACO code [13] is segregated and embedded in the solution for the temperatures.

Another possibility for approximating the linear problem is matrix factorization. Many

uid mechanics codes are constructed with such a solution strategy. Some people researching

adjoint methods have steered away from using approximate factorization because it is too

di�cult to form the transpose.

In the following investigation of the adjoint method, the approach will to use any

sensitivity information that is available from an analysis code. The e�ectiveness of using

approximate sensitivity information is assessed.
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Chapter 2: Gradient Evaluation

Our optimization problems are described in terms of an objective function, subject to bounds

on the design variables and general nonlinear constraints. The design variables, x, are the

values we would like to optimize such that some objective function, F , is minimized. The

objective function is a function of both the design variables, x, and other solution variables, q,

determined by the analysis code. The analysis code introduces additional physical constraints

on allowable combinations of the design variables and solution variables through the residual

of the conservation laws, R. The mathematical description of the optimization problem is

min
x

F (x;q (x)) (2.1)

subject to the nonlinear constraints

C (x;q) < 0; (2.2)

the lower and upper bounds on design variables

xl < x < xu; (2.3)

and the physical analysis constraints on the solution variables

R (x;q) = 0: (2.4)

The general nonlinear constraints C are separated from the physical constraints R

because constraints associated with the optimization objective are enforced di�erently than

constraints associated with the analysis code.

The gradients of the objective function and general nonlinear constraints are required

for gradient-based optimization methods. Generally, the objective function and constraints

are written in terms of the geometric design variables and the solution variables. The

solution variables are also functions of the design variables. The gradients of the objective

function and constraints with respect to the design variables are calculated using the

following analysis. If the design variables and solution variables were independent, then
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the di�erentials of the objective function and nonlinear constraints at an arbitrary point

(x;q) would be

dF =
@F

@x
dx+

@F

@q
dq; (2.5)

dC =
@C

@x
dx +

@C

@q
dq; (2.6)

but the directional derivatives are meaningless unless one knows how the solution variables

change with the design variables. When the physical constraints are satis�ed, R(x;q) = 0,

then there is a dependence between x and q such that q = q(x). The gradients can be

written as

rF =
@F

@x
+

@F

@q

@q

@x
; (2.7)

rC =
@C

@x
+

@C

@q

@q

@x
: (2.8)

Equations 2.7 and 2.8 are only valid when the solution variables satisfy the physical

constraints, Equation 2.4.

The expensive part of evaluating the gradient is computing the sensitivity derivatives

in Equations 2.7 and 2.8. Three methods for evaluating the gradient are presented in the

following sections|the \black-box" method, the adjoint method, and the direct method.

Shubin and Frank [14] showed that the discrete forms of each of these methods are

mathematically equivalent, though the implementation expense is di�erence.

2.1 Black-Box Method for Numerical Gradients

Previously, we have used a \black-box" approach to solving the optimization problem de�ned

by Equations 2.1 through 2.4. Solutions to the problem R (x;q) = 0 were used to generate

objective function values. Gradients of the objective function are computed through divided

di�erences of the objective function. When there are nd design variables de�ning x, then

nd + 1 expensive nonlinear problems, R, must be solved to generate the gradient of F with

respect to x. Sequentially, each design variable xi is perturbed by �i. The solution vector,

~qi, resulting from the solution of the perturbed system of equations, is used to �nd the

derivative of the objective function.

rF �
F (x+ �i; ~qi;R (x + �i; ~qi) = 0)� F (x;q;R (x;qi) = 0)

�i
(2.9)

The black-box procedure implicitly contains the sensitivity of the solution variables to the

design variables, @q=@x.
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2.2 Adjoint Method for Numerical Gradients

The adjoint method is a variational method that is used to extract additional information

from the analysis problem to computationally simplify the construction of gradients. The

method is grounded in the formalism of optimal control theory [4] and an extended history

of the method, as applied to optimization and computational uid dynamics, is given

by Anderson and Venkatakrishnan [7]. The minimization of the objective function is

reformulated as a Lagrange multiplier problem, explicitly including the physical constraint

relations, R. The Lagrangian is

L =

"
F (x;q)

C (x;q)

#
� �TR (x;q) ; (2.10)

where � is the Lagrange multiplier. Note that in this formulation, the x and q values are

considered to be independent and the minimization problem is de�ned by

min
x;q;�

L (x;q; �) : (2.11)

The conditions for the adjoint formulation are de�ned by:

@L

@�
= �R = 0 (2.12)

@LT

@q
=

@

@q

"
F

C

#T
�

@RT

@q
� = 0 (2.13)

@LT

@x
=

@

@x

"
F

C

#T
�

@RT

@x
� (2.14)

The �rst equation states that the design variables x and solution variables q must be

consistent. The second equation is the adjoint equation by de�nition. The third condition

de�nes the gradient and will be equal to zero if the gradient is equal to zero.

In the adjoint method solution procedure, Equation 2.12 is �rst solved for q given a

set of design variables x. The adjoint problem, Equation 2.13, is then solved for the co-

state variables �. If � also satis�es Equation 2.14, then the design variables are optimal.

Otherwise, the derivative of the Lagrangian in Equation 2.14 is equivalent to the gradient of

the objective function, Equation 2.7. (Note: in Equation 2.14, the derivative @F=@x is for a

�xed value of q.)

The adjoint method requires the evaluation of four Jacobian matrices: @F=@x, @F=@q,

@R=@x, and @R=@q. The conservation law Jacobian, @R=@q, already exists in some form

as part of the solution procedure in the analysis code. The derivatives of the residual with

respect to the design variables are computed through divided di�erences of the residual. The
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conservation-law residual is available from the analysis code and is inexpensive to compute.

The derivatives of the objective function are either derived analytically or computed with

divided di�erences.

The adjoint method is less expensive than the black-box method because it only requires

residual evaluations and linear matrix solves. The black-box method requires full nonlinear

iterations. If there many more nonlinear constraints than design variables, then the adjoint

method becomes expensive. Each constraint equation has a set of co-state variables that are

computed by inverting the linear adjoint equations.

2.3 Direct Method for Numerical Gradients

Recall that the gradient information can be computed from Equations 2.7 and 2.8 if the

sensitivity derivatives, @q=@x, are known. Consider the di�erential of the conservation law

residual,

dR =
@R

@x
dx+

@R

@q
dq: (2.15)

For solutions of Equation 2.4, the di�erentials dR are zero and

@R

@q

@q

@x
=

@R

@x
: (2.16)

This is a linear system requiring matrix solves for the nd vector components of @q=@x. The

work required to generate the Jacobian matrices is the same between the direct and adjoint

methods. The di�erence between the two methods is the number of linear matrix inversions.

2.4 Direct Method is Mathematically Equivalent to Adjoint Method

In this section, proof is given that the derivative of the Lagrangian with respect to the design

variables is equivalent to the gradient of the objective function and nonlinear constraints.

Direct di�erentiation is �rst applied to the Lagrangian,

dL =

 
@

@x

"
F

C

#
� �

@R

@x

!
dx +

 
@

@q

"
F

C

#
� �

@R

@q

!
dq: (2.17)

By de�nition, we solve the adjoint problem Equation 2.13. Removing the adjoint equation

from Equation 2.17 leaves only the di�erential dependence on the design variables,

dL =

 
@F

@x
� �

@RT

@x

!
dx; (2.18)

or, substituting for the solution of �,

@L

@x
=

@

@x

"
F

C

#
�

@

@q

"
F

C

#
@R�1

@q

@R

@x
: (2.19)
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Substituting Equation 2.16 into Equation 2.19 gives the �nal form of the gradient of the

Lagrangian
@L

@x
=

@

@x

"
F

C

#
�

@

@q

"
F

C

#
@q

@x
; (2.20)

which is equivalent to Equations 2.7 and 2.8.
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Chapter 3: Adjoint Method Implementation

The computational expense of the adjoint method varies relative to the \black-box" method

depending on the number of design variables and constraints, and the solution procedure

used in the analysis code. In implementing the discrete adjoint method, we wish to make use

of as much existing information from the analysis code as possible. Also, we want to access

the information in such a way that we minimize the amount of computer code we modify

or add. First, a de�nition of the linear problem is required. The residual of the discrete

governing equations is R. The residual is usually linearized about the solution variables, q,

to form the linear problem Aq = b. Note that if Newton linearization is used, then b = R

evaluated at the previous solution and q is the change is solution variables. In the following

derivations, q are assumed to be the solution variables.

Consider the computational work required to form the gradient of the objective function

using direct di�erentiation with numerical forward di�erences. For nd design variables, the

analysis code must be run nd + 1 times. Assume the analysis code uses an implicit solution

technique consisting of repeated steps of evaluating the residuals of the conservation laws

and building a matrix of implicit terms. Each run of the analysis code consists of nn

outer iterations to solve a nonlinear problem. Each nonlinear iteration requires a matrix

construction step, Tk, and nl inner iterations of a linear solver Ta. (For this work estimate,

it is assumed that the entire matrix is stored. Some solution procedures continuously

reconstruct parts of the matrix during the solution procedure in which case the cost is

proportional to nl (Tk + Ta).) The linear solve usually consists of iterative operations similar

to matrix-vector multiplies. If Tk and Ta are the work-loads associated with the matrix-build

and one inner iteration of the linear solve, then the overall work required to form a gradient

is proportional to TD = (nd + 1)nn (Tk + nlTa).

To form a gradient with the adjoint method, the analysis code must �rst be run for the

current state of design variables to extract the solution variables. The adjoint problem

then consists of forming the matrix and inverting once for each objective function and

nonlinear constraint, nc. The discrete adjoint matrix is the transpose of the Jacobian matrix,

@R=@q. The Jacobian matrix is often available as the matrix of implicit coe�cients from the

analysis code. The derivatives of the residual with respect to the design variables, @R=@x are
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computed by divided di�erences. The procedure is fast since only the residuals are evaluated

and no matrix inversions are required. The overall work required to form a gradient is

proportional to TA = nn (Tk + nlTa) + (Tk + nlTa) + (Tk + ncnlTa) + (nd + 1) (Tk + Ta).

For most analysis codes, the time to form the matrix, Tk, is small relative to the time

required to invert the matrix, nlTa. In the limit that Tk � nlTa, the ratio of times is

TA

TD
� constant +

1 + nc=nn

1 + nd

: (3.1)

If the number of design variables is larger than the number of nonlinear constraints, then

the adjoint method is the less expensive method. If the number of design variables is much

smaller than the number of nonlinear constraints, the direct di�erentiation method is less

expensive. Note that the dependence on the number of constraints is scaled by the expense of

performing a nonlinear analysis. There can be a large number of constraints and the adjoint

method will still be bene�cial if the analysis code requires a lot of iteration to extract a

solution. It is assumed that the adjoint matrix is relatively easy to form and invert so that

the expense of the transpose step does not factor into the timing analysis.

In the following sections, di�erent linearization schemes are discussed in relation to the

adjoint method.

3.1 Using Full-Matrix Analysis Codes

The easiest implementation of the discrete adjoint method is for the case where the full

Jacobian matrix is available from the analysis code. An example of such a code that

we use is the COYOTE [8, 9] �nite-element heat transfer code. The sti�ness matrix for

the heat conduction problem, including radiation ux terms at boundaries, is stored as a

sparse matrix. The code has been modi�ed to solve the adjoint problem by transposing

the sti�ness matrix in sparse form and using the built-in preconditioned gradient schemes

to solve Equation 2.13. The derivatives @R=@x are computed by divided di�erences. The

residual, R, is computed by R = Aq � b, where A is the sti�ness matrix and b is the

load vector. A mesh is constructed for each perturbed set of mesh parameters using the

FASTQ [15] mesh generator, run in batch mode.

3.2 Using Analysis Codes with Embedded Solvers

When enclosure radiation problems are solved in heat transfer, the solution of the radiosities

is usually split from the solution of the heat conduction. First, the radiation heat ux

problem between surfaces is solved for a �xed temperature �eld. The heat uxes are then
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added to the load vector for the conduction problem. This procedure can be viewed as a

matrix inversion embedded within the right-hand-side of the conduction matrix. Two such

heat transfer codes are the TACO code [13] and the COYOTE [8, 9] code (COYOTE has

the option of either treating the enclosure radiation problem as embedded or fully-coupled).

It is probable that transposing only the conduction matrix for the adjoint method will

not provide enough information to generate an accurate gradient. Somehow, the surface

exchange information contained in the load vector must be introduced, inexpensively.

3.3 Using Analysis Codes with Segregated Solvers

The CURRENT [12] code uses a segregated solution approach. The continuity, momentum,

and energy equations are solved solved at separate steps for the solution variables of pressure,

velocity, and temperature. If the objective function is only written in terms of a single

solution variable (an objective function based on prescribed heat ux only depends explicitly

on the temperature variable), then it may be possible to generate gradient information from

the linearization of a single equation (the energy equation in this case).

The matrix coe�cients for an equation set in CURRENT are stored in terms of stencil

positions for each control volume. To form the transpose coe�cient set, the north coe�cient

of a control volume maps to the south coe�cient of the north adjacent control volume, the

south coe�cient maps to the north coe�cient of the south adjacent control volume and so

on. Boundary conditions are folded in the source term so only internal control volumes

are involved. The line-relaxation scheme can then be applied to the transposed coe�cient

set. Care must be taken to remove the time-damping terms from the coe�cient sets before

applying the transpose operation.

3.4 Using Analysis Codes with Matrix-Free Solvers

If the transpose of the linear matrix operator is di�cult to generate, a matrix-free method

may be considered. The matrix-free approach will not be cost-e�ective unless the overhead

of starting and initializing (command parsing and data structure evaluation) an analysis

code is low. A matrix-free gradient method can be used to invert the adjoint problem,

Equation 2.13. The Krylov vectors for the matrix-free gradient method are generated using

numerical di�erentiation.

First, consider a matrix-free gradient method for solving Aq = b, where A = @R=@q.

Krylov vectors for the gradient method are generated by multiplying the matrix A by
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previous search direction vectors, p. Numerically,

Ap =
@Ri

@qj
pj (3.2)

= (Ri(qj + �pj)�Ri(qj)) =� (3.3)

The matrix-vector product is generated by di�erencing residual functions based on the

solution vector and the solution vector perturbed by the search direction. The operation

is simple because solution vector is perturbed and then the residual is evaluated with the

perturbed solution vector. When the transpose matrix is involved, the perturbation process

becomes more di�cult.

ATp =
@Rj

@qi
pj (3.4)

= (Rj(qi + �)�Rj(qi))pj=� (3.5)

The analysis code must be restarted with a di�erent perturbation for each equation which

can be expensive, or the perturbation must be hardwired into the code at the equation

evaluation level which is usually a long-and-involved process.

The matrix-free was not tried because all the analysis codes of interest have high start-up

overhead.
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Chapter 4: Applications

The adjoint method is tested with two constrained shape optimization applications with

heat transfer design. The �rst application is a shape design of a high-conductivity material

insert for cooling packages. The COYOTE code is used for the analysis and the transpose

matrix is directly available from the code. The second application is a ow channel design

to optimize the convective heat ux to a channel wall. The CURRENT code is used for the

analysis and the transpose matrix information is extracted from the energy equation.

For all optimizations, the DAKOTA [16] package is used to drive the optimization process.

The gradients from the adjoint method are computed external to DAKOTA and supplied as

"analytic gradients".

4.1 Cooling Package Design

The operational power of RF ampli�ers, used for cellular telephone base-stations, is limited

by the temperature of the active area. Each ampli�er package is mounted on a cold block,

but the top-side temperature of the active device is limited by thermal conduction through

the package to the cooler base. To run at higher RF powers, a greater amount of cooling must

be applied. It would be expensive to redesign or retro-�t the base-station cooling. Instead,

the individual RF packages can be redesigned to improve the conductive cooling path to

the base-station cooling mechanism. A solution to the conduction problem is to add an

insert of high-conductivity material below the active area in the RF package. Commercially

manufactured diamond has been considered because of high thermal conductivities near 10

W/cm/K. Unfortunately, diamond material is also very expensive so we must design a cooling

insert with the minimum amount of diamond to achieve a desired device temperature.

4.1.1 Optimization Problem

The optimization problem is to minimize the volume of the diamond insert given a nonlinear

constraint on the temperature of the active device. There are three design variables

describing the size and position of the insert. There are lower and upper bounds on the design

variables, constraining the insert design to �t within the RF package. The temperature for
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Feasible Region for
Cooling Insert Thermally Active Area

Convectively Cooled Backside

Figure 4.1 Diamond Insert Provides Improved Conduction Path from Hot

Active Area to Cooled Base Plate

the nonlinear constraint is computed with the COYOTE [8, 9] �nite-element heat transfer

code and the FASTQ [15] meshing code.

A schematic of the RF package is given in Figure 4.1. The bottom rectangular shape is

the package material, a copper-tungsten alloy. The package is 385 mil wide and 60 mil deep.

The active material is the small rectangle of silicon, mounted on top of the copper-tungsten.

The silicon die is 35 mil wide and 5 mil deep. The gray area in the copper-tungsten block

is the feasible region in which to place the diamond insert, also of rectangular shape. The

size of the diamond is constrained such that it is at least 5 mil deep and it must be at least

5 mil from the sides and bottom of the copper-tungsten package. Also, the diamond insert

must at least cover the area directly beneath the active area.

For a given RF operational power, there will be a certain amount of heat dissipated

within the device. The heat generation is introduced as a heat ux across the top of the

silicon die.

4.1.2 Design Analysis

The maximum allowable die temperature is 150�C. The bottom of the RF package is cooled

with a convective cooling coe�cient of 7:75 W/cm2/K and a far-�eld temperature of 50�C.

The power dissipation at the die surface without the diamond insert is 1830 W/cm2. It

is desired to increase the RF power such that the dissipated power is 2590 W/cm2. The

resulting die temperature would be an average of 192�C, which is too high.

The cooling package was meshed with block-structured grids. The block boundaries move

with the material interfaces. The number of grid points and the relative grid spacing is �xed
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in each block.

The temperature contours through the RF package for the baseline design are shown in

Figure 4.2. The optimal placement of the diamond insert is as a sheet extending to the open

area at the left of the die, shown in Figure 4.3. The diamond sheet spreads the heat out

so is sees more cooled surface area. This is an interesting solution because it was originally

hypothesized that the insert should be placed directly beneath the active area and provide

a path directly to the bottom of the cold plate.

4.1.3 Performance of Optimization Methods

The optimization problem was solved using both the NPSOL [17] and DOT [18] packages

in the DAKOTA [16] optimization framework. The nonlinearly constrained SQP methods

were chosen from each package. Three di�erent types of gradients were used to validate the
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Table 4.1 Constrained Optimization Code Performance for Cooling Package

Design Problem

F(x) C(x) Steps F Call Total Time

DOT/Ext Adj 19.395 �6:501� 10�4 14 49 1540.

DOT/Ext Dir 19.235 �1:338� 10�4 36 225 3780.

DOT/Int Dir 19.523 1:549� 10�4 16 92 3410.

NPSOL/Ext Adj * 2.443 4:675� 10�2 6 13 870.

NPSOL/Ext Dir * 10.420 2:847� 10�2 2 8 1140.

NPSOL/Int Dir * 10.392 3:139� 10�2 2 40 1480.

* failed to converge

adjoint method and to provide timings for comparison between the \black-box" method and

the adjoint method. All numerical derivatives are constructed using forward di�erences and

a step factor of 0:01. The �rst gradient method is the adjoint method. The second method is

the \black-box" method, but run externally to DAKOTA to provide a direct comparison in

workload estimates with the adjoint method. The third method is the \black-box" method

internal to DAKOTA. The performance times for gradients generated internal and external

to DAKOTA should be di�erent because DAKOTA has logic that prevents it from making

duplicate function evaluations.

The adjoint method run with the DOT-SQP optimizer reached the optimal solution

the fastest, in half the time required than when using gradients generated internally to

DAKOTA. Both approaches terminated due to a step-size tolerance of 10�4. The solution

with \black-box" gradients, generated externally to DAKOTA, took three times longer than

the adjoint approach, but the results cannot be compared directly. The external gradient

information is more accurate than the internal DAKOTA gradients or the adjoint gradients

because optimizer does not stop due to step-size tolerances. It continues past the point the

other two stop to �nd a better solution. The NPSOL method failed on this problem, unable

to �nd a solution that satis�es the �rst-order Kuhn-Tucker conditions. Table 4.1 provides a

tabulation of the performance for the methods in terms of function value, constraint value,

the number of optimization steps, the total number of function evaluations, and the total

time for the optimization. The history of the design variables in the iteration process is

shown in Figures 4.4 through 4.6.
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4.2 Flow Channel Design

The channel shape of a horizontal ow chemical vapor deposition reactor can determine

the ux uniformity to the wafer surface. The surface ux in a growing laminar boundary

layer is nonuniform because the near-wall gradients decrease. The boundary layer thickness

can be made uniform by accelerating the ow through a constricted ow passage. Shape

optimization for owing systems is demonstrated by targeting uniform heat ux to the

bottom surface of the ow channel.

4.2.1 Optimization Problem

The optimization problem is to minimize the least-squares variation of the bottom-surface

heat ux from a target value, given nonlinear constraints on the shape of the ow channel.

There are �ve design variables describing the height of the channel at prescribed axial

stations. The bottom surface of the channel is at. The shape of the top surface is

recovered by a tension spline through the �ve design variables. The convective heat ux

to the isothermal channel oor is calculated using CURRENT [12] uid mechanics code and

the ANTIPASTO [19] meshing code.

The problem is exaggerated to provide good visual results by driving the reactor at a

higher mass ow rate, thereby requiring a larger acceleration and slope-change to achieve

ux uniformity.

The thermodynamic pressure is 1:3 � 105 dynes. The channel walls are �xed at a

temperature of 300 K. Nitrogen ows into the reactor at 800 K at 400 cm/s. The channel

entrance inow pro�le is uniform. The channel entrance region is one inch long and one inch

high. The constricted region follows for the next ten inches. The minimum channel height

is constrained at a tenth of an inch. The design variables are nonlinearly constrained to be

of monotonically decreasing height down the length of the channel.

4.2.2 Design Analysis

The optimal channel shape is shown in Figure 4.7 along with temperature contours. The

comparison of the Stanton numbers for the uniform channel and optimized channel are shown

in Figure 4.8.

4.2.3 Performance

The calculation of derivative information is simpli�ed because of the relative place of the

design variables to the design objective. The objective function is not directly dependent
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Figure 4.7 Temperature Contours in Optimized Flow Channel
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Figure 4.8 Comparison of Stanton Numbers in Uniform and Optimized

Channels

on the design variables and the nonlinear constraints do not depend directly on the solution

variables. Derivatives of the objective function are simpli�ed{only one set of costate variables

are required since the other right-hand-sides of Equation 2.13 are null.

Three versions of the CURRENT code are required. The original code is used to calculate

consistent solution variables for a set of design variables and to evaluate the objective

function. A second version of the code is required to evaluate and invert the transpose

of the heat equation matrix. A third version of the code is required to evaluate the residual

of the heat equation and then terminate.

As of the time of this draft, the adjoint-method gradients using the segregated approach

are not working. The gradient information is o� by a factor of roughly two to three{enough

to cause the DOT package to fail after one gradient evaluation.
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Chapter 5: Summary

The adjoint method makes use of sensitivity information inherent in the solution algorithm

of an analysis code to compute gradient information. Because the sensitivity information

already exists, the adjoint method should be cheaper to execute than direct numerical

di�erentiation. The wisdom holds true for large problems, but the cost/bene�t numbers for

smaller problems get obfuscated by the input parsing and pre- and post-processing overhead

of the analysis codes. Also, the adjoint method is bene�cial only if the number of design

variables is much larger than the number of constraints.

Typically, the information required to execute the adjoint method can be extracted from

an analysis code in a relatively non-intrusive manner. But, each code is di�erent and a

building general adjoint method software tool does not make sense. The adjoint method

can be used in conjunction with the DAKOTA code by supplying the proper information as

DAKOTA "analytic gradients".

The adjoint method works best when the full Jacobian matrix is available. Approximate

forms of the Jacobian matrix are not accurate to provide useful gradient information. The

observation is supported by the example solutions given in this report and research trends in

the literature. Gradients computed by the adjoint method are expected to be less accurate

than gradients by direct numerical di�erentiation because of truncation errors in the multiple

steps of the adjoint method.

As of the last draft of this report, funding ended before �nishing the work on segregated

schemes. The approximate adjoint information extracted from the segregated scheme was

judged to be too inaccurate, but I think more work is required on the subject. There should

be enough sensitivity information available from such a code. The problem is integrating

the proper pieces.
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Abstract

Automatic di�erentiation is applied to the op-
timal design of microelectronics manufacturing
equipment. The performance of nonlinear, least-
squares optimization methods is compared between
numerical and analytic gradient approaches. The
optimization calculations are performed by running
large �nite-element codes in an object-oriented
optimization environment. The Adifor automatic
di�erentiation tool is used to generate analytic
derivatives for the �nite-element codes. The per-
formance results support previous observations that
automatic di�erentiation becomes bene�cial as the
number of optimization parameters increases. The
increase in speed, relative to numerical di�erences,
has a limiting value and results are reported for two
di�erent analysis codes.

Introduction

There is a great need for equipment and process
design optimization in the microelectronics man-
ufacturing industry. Manufacturing equipment is
becoming more expensive to build and operate
as device feature-scales continue to decrease be-
low 0:35�m. Sandia has applied computational
models and optimization techniques to assist U.S.
semiconductor equipment suppliers to develop and
improve reactor designs. The equipment of in-
terest in this paper is used in thermal processes.
Thermal processing plays an important role in
manufacturing discrete microelectronic components
on silicon wafers. The most important design

�Senior Technical Sta�, Member AIAA
ySenior Technical Sta�
zDistinguished Technical Sta�
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and Astronautics, 6th AIAA/NASA/ISSMO Symposium on
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speci�cation for thermal processing is temperature
uniformity. Strict wafer temperature tolerances are
crucial to controlling the chemical processes that
create material features. Designs optimized for
thermal uniformity lead to higher yield and smaller
feature scales.

Our automated optimization approach uses the
OPT++ object-oriented optimization package1 to
generate objective functions and numerical gradients
from our �nite-element heat transfer codes.2, 3 The
objective function is formulated using least-squares
and is minimized with nonlinear, gradient-based
methods. The automated optimization design
methods were �rst demonstrated for rotating-disk
reactors4 and later extended to vertical furnaces and
rapid thermal processing reactors.5

Gradients derived from numerical di�erences
(ND) are often inaccurate and become computation-
ally expensive when the number of design parame-
ters becomes very large, such as calculating optimal
heating trajectories.6 Also, the function evaluation
is often expensive, requiring on the order of an
hour of computer time. Automatic di�erentiation
(AD) is a fast and accurate alternative. Automatic
di�erentiation creates source code for calculating
derivatives by applying the derivative chain-rule to
an existing code. Gradients from AD are exact
so truncation errors in numerical derivatives are
eliminated. In particular, we use the Adifor code7

to compute gradient information.
Automatic di�erentiation is starting to be used

to generate sensitivity information for optimization
and engineering analysis. Automatic di�erentiation
has been used for sensitivity analysis in simple
�nite-element structural analysis,8 applications to
various analysis problems,9 nonlinear control,10

and creating sparse Jacobian matrices.11 More
recently, AD has been applied to a large-scale
computational uid dynamics code12 to generate
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sensitivity derivatives for aerodynamic design. We,
at Sandia, are applying AD to large-scale radiation
heat transfer codes, coupled to object-oriented opti-
mization software, to optimize power con�gurations
for thermal processing.

In the following sections, we de�ne a design
optimization problem for a vertical batch furnace,
present the numerical methods used in the optimiza-
tion and analysis codes, and discuss the performance
of automatic di�erentiation in optimization.

Heat Transfer Design Problem

The performance of automatic di�erentiation in
design optimization is demonstrated for a vertical,
multi-wafer furnace. Vertical furnaces can process
up to 200 silicon wafers in a single batch and have
been used for thin �lm deposition, oxidation, and
other thermal process steps. Thermal modeling
has made particularly important contributions to
the design of vertical furnaces.13 The engineering
heat transfer models of Houf2 and Badgwell14

were written speci�cally for the analysis of vertical
furnaces. Application of general-purpose, �nite-
element heat transfer models by Spence15 provided
more detailed calculations.

The evolution of vertical furnaces has been
driven by the need for process uniformity (i.e.,
wafer-to-wafer and within-wafer uniformity) and
high wafer throughput. A recent variation of the
multiwafer reactor design is the small-batch, fast-
ramp (SBFR) furnace. The SBFR is designed to
heat-up and cool-down quickly, thus reducing cycle
time and thermal budget. The SBFR consists of
a stack of 50 eight-inch (diameter) silicon wafers
enclosed in a vacuum-bearing quartz jar. The
stack is radiatively heated by resistive coil heaters
contained in an insulated canister. The heating coils
can be individually controlled or ganged together in
zones to vary the emitted power along the length
of the reactor; a seven-zone con�guration is shown
in Figure 1. There are six control zones (each
containing several heating coils) along the length of
the furnace and one heater zone in the base. The
zones near the ends of the furnace are run hotter
than the middle zones to make up for heat loss.

The thermal design optimization problem is:
given a discrete number of �xed heating coils, how
can the coils be grouped in the fewest number of
control zones such that the temperature uniformity
about a �xed set-point is maximized. For this
paper, we concentrate on �nding the optimal power
settings and related temperature uniformity for a
�xed zone con�guration. The objective function, F ,
is de�ned by a least-squares �t of the N discrete
wafer temperatures, Tw;i, to a prescribed pro�le,
Ts;i,

F (pj) =

NX

i=1

(Tw;i � Ts;i)
2

(1)

where the pj are the unknown power parameters.
The power optimization can be automated while the
integer problem of con�guring zones is performed in
an outer loop.

Numerical Issues

The nonlinear, least-squares optimization problem
is solved using the quasi-Newton and Gauss-Newton
gradient methods16 from the OPT++ library.1

The object-oriented software provides optimization
classes that are based on the availability of deriva-
tives of the objective function. The user only needs
to de�ne how the objective function and analytic
derivatives (if they exist) are generated. In our
case, the information comes from the heat transfer
analysis codes. Numerical gradients are generated
by OPT++ through multiple evaluations of the
objective function.

The derivative-code for generating analytic
gradients of the objective function is created from
the original �nite-element code using the Adifor
automatic di�erentiation software.7, 17, 18 The
derivative-code returns both the solution variables
and their derivatives with respect to the optimiza-
tion parameters. The procedure for generating
derivative-code with Adifor consists of three steps:
code canonicalization, variable nomination, and
code generation. In the code canonicalization
step, an existing analysis code is rewritten into
a standardized format. Adifor produces warnings
for non-standard code. In the variable nomination
step, Adifor decides which variables are associated
with gradient information and generates interaction
graphs. In the code generation step, Adifor gen-
erates FORTRAN 77 code for generating analytic
derivatives.

We generated analytic gradients for two di�erent
heat transfer codes applied to vertical furnaces{
TWAFER2 and TACO.3, 19 For both codes, we
found it quite easy to run the Adifor code by
following the steps outlined in the manual.7 Some
work was required in rewriting old \legacy code" to
be ANSI-compliant, consisting mostly of data type-
casting issues. There were no modi�cations to the
solution procedures.

The TWAFER heat transfer code is an engi-
neering code, speci�c to vertical furnaces. The
heat transfer formulation is simpli�ed by using mass
lumping and one-dimensional approximations. The
nonlinear transport equations are solved using the
TWOPNT solver,20 which is a Newton method with
a time evolution feature. The TWAFER program
has approximately 27000 lines of FORTRAN code
and has an image size of 0.9 Mb 1. After
processing with Adifor for 25 independent variables,
the program increases to 39000 lines with an image
size of 6.8 Mb.

1Compiled on a SGI Power Challenge with -O2 ag.
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Detailed �nite-element simulations are per-
formed with the TACO heat transfer code. Radiant
exchange between enclosure surfaces is based on
the net radiation method.21 View factors for the
enclosure radiation exchange are computed using
VIEWC.22 The �nite-element thermal simulations
of the SBFR use 1500 nodes and three enclosures
with a total of 500 surfaces. The surfaces are
treated as di�use gray and the semi-transparency of
the quartz window is approximated using enclosure
averaging. The nonlinear transport equations
are solved iteratively using time marching with a
skyline-LDU decomposition. The TACO program
has approximately 12800 lines of FORTRAN code
and an image size of 9.3 Mb. After processing with
Adifor for 25 independent variables, the program
increases to 20000 lines with an image size of 210Mb.

Example Problems

The performance of analytic gradients versus numer-
ical gradients is explored using both the TWAFER
code and the TACO code. The goal is to study
the behavior of the methods as the number of
parameters grows. In all cases, the objective is to
optimize the heater zone powers in order to bring the
wafer temperatures as close to 1300 K as possible.

The power optimization problems are solved
with either the quasi-Newton method (QN) or the
Gauss-Newton (GN) method, both with trust region
search algorithms. Di�erent numerical di�erence
accuracies are used to characterize the performance
of numerical gradients. Forward di�erences were
tested with a function accuracy of 10�6 (FD06)
and 10�8 (FD08). Central di�erences were tested
with a function accuracy of 10�6 (CD06) and 10�10

(CD10). The function accuracy determines the step
size for numerical di�erences.

TWAFER: Power Optimization

There are many di�erent parameter combina-
tions considered in the study of the TWAFER code.
There are three di�erent heater zone con�gurations:
7 zones, 15 zones, and 25 zones. There is always
one bottom heater and the rest are equally-sized
side heaters. In addition, both the QN and
GN algorithms were tested with the full suite of
function accuracies. Convergence plots for the 7-
zone problem are included to demonstrate typical
behavior. Results for the 15 and 25-zone problems
are tabulated since they exhibit behavior similar to
the 7-zone problem.

The initial guess at the powers is 4.8 kW,
distributed evenly between the side heaters. The
bottom heater power is the same power as a side
heater. The optimization terminates when the norm
of the gradient of the objective function goes below
10�6 or when the change in the value of the objective
function becomes less than 10�9.

The resulting power distribution is characterized
by a large central at zone with temperature
variations at the ends. The optimal power densities
are shown in Figure 2. The root-mean-square
temperature variation across the stack for 7 power
zones is is less than 0.1 K and the maximum
temperature di�ers only by 1 K from the target
temperature. The uniformity is even better for the
25-zone con�guration because it can adapt to the
heat losses at the ends of the furnace.

TWAFER: Numerical Gradient Performance

Of the two optimization methods, Gauss-
Newton converges much faster than quasi-Newton
with little sensitivity to errors in the gradient. A plot
of the function value with respect to computational
time is shown in Figure 3 for numerical gradients.
The use of central di�erences with the GN method
has no bene�t and results in convergence times twice
as long as forward di�erences. The QN method with
numerical gradients is very sensitive to the accuracy
of the gradients. The use of forward di�erences
results in premature termination of the optimization
when the trust region becomes too small to advance
the solution. Central di�erences with a function
accuracy of 10�10 are required in order to generate
gradients accurate enough for QN to work.

The optimization problem is ill-conditioned.
Large variations in power near the ends of the
furnace result in only small changes in temperature.
The condition number of the approximate Hessian
used for the Gauss-Newton method is on the
order of 109. The quasi-Newton method has a
di�cult time converging for ill-conditioned problems
and is very sensitive to truncation errors in the
numerical di�erences. With numerical di�erences,
QN only achieves a condition number of 106 before
failing because of the trust region size. With
analytic gradients, the QN method converges and
the condition number does reach 109.

The l2-norm of the gradient is an indication
of how close the solution is to optimal and a plot
of the gradient norms is shown in Figure 4. The
oscillation in the gradient norm for the QN method
corresponds to the stair-stepping in the function
value. The QN method is taking several steps in
directions very close to one another. A sudden drop
in function value corresponds to a large change in
search direction. The gradient builds up in size
before each direction change, indicating that the
solution might be better advanced by just taking
the steepest decent.

TWAFER: Analytic Gradient Performance

Adifor is applied to TWAFER to generate a
code called AD TWAFER that returns both the
function value and the gradient. The convergence
rate of the GN and QN methods with analytic
gradients is compared to the fastest numerical
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gradient method (GN with forward di�erences) in
Figure 5. The GN method with analytic derivatives
is faster than numerical gradients by a factor of 1.6
for seven parameters. The QN method continues
to be slow, but the method does converge since
the gradients are exact. The convergence of the
l2-norm of the gradient is shown in Figure 6. A
tabulation of convergence information for all three
zone con�gurations is included in Table 1.

TWAFER: AD Scaling

The performance of AD, relative to ND with
the Gauss-Newton method, improves as the number
of optimization parameters increases. The compu-
tational work required to form gradients with AD
becomes less, relative to ND, and the supporting
TWAFER function-call timings are given in Table 2.
The �rst row of the table lists the average CPU time
required to complete one function evaluation with
TWAFER. The second row of the table lists the
average CPU time required to calculate the function
value and analytic gradient with AD TWAFER.

Whereas the TWAFER code runs the same
no matter how many power zones are used, the
work required by AD TWAFER appears to scale
linearly with the number of independent parameters,
shown in the third row of Table 2. The slope
of the growth rate of AD (normalized by an ND
call) with respect to the number of parameters is
0.2, shown in Figure 7. The performance of AD
over ND improves with the number of parameters,
but at a diminishing rate. The performance ratio
compares the work required to take one Newton
step. The AD/ND performance ratio asymptotes to
0.2. For the TWAFER code using GN, the largest
improvement in convergence we expect to see is a
factor of �ve.

TACO: AD Scaling

It is di�cult to assess the performance of
analytic derivatives in the TACO code because
the computational work required for each function
evaluation is extremely dependent on the starting
temperature guess. Each function evaluation
consists of time-marching the governing equations
to steady-state, and requires anywhere from 500
to 3500 seconds of CPU time. The solution of
the enclosure radiation problem by Gauss-Seidel
iteration also complicates the overall evaluation.

The largest change in temperature from the
actual solution to the transport equations occurs
after each Newton step when the powers are up-
dated. It is computationally expensive to generate
gradients during the time iteration to steady state.
This fact was noted previously19 and e�ciency
can be improved by using simpli�ed recurrence
di�erentiation.23 As an alternative, we found it
useful to �rst update the solution with the standard

TACO code after each optimization step, before time
marching with the analytic gradient code.

The AD parameter scaling is estimated based
on the work involved in taking a single time step
in the TACO code. A time step involves loading
a coe�cient matrix, loading a forcing function, and
inverting the linear system. The matrix and forcing
function may be reformed many times during a
sub-iteration process to advance one time step. In
addition, each time the forcing function is formed,
the enclosure radiation problem must be solved. The
matrix and forcing function calculations require the
bulk of the CPU time with very little time required
for the matrix inversion.

The CPU times required for the di�erent
calculations required in a time step are listed in
Table 3. The CPU time required for a time step in
the standard version of TACO is the same, regardless
of the number of parameters. The timings have been
broken out into the CPU time to load the matrix,
the CPU time to evaluate the forcing function, and
the overall CPU time to take the time step. It turns
out that the analytic derivatives are more expensive
than forward di�erences until there are at least 16
optimization parameters. Even then, the limiting
speed-up appears to be only two times faster than
numerical derivatives.

As the number of independent variables shrinks
towards zero, the Adifor-generated code does not
run as fast as the original code. The automatic
di�erentiation adds overhead to the analysis codes,
mainly through external loops over the independent
variables. As a result, there is a threshold number
of variables for which automatic di�erentiation be-
comes more expensive than numerical di�erencing.
The threshold points for both TACO and TWAFER
are illustrated in Figure 7, a plot of how the
computational work scales with the number of
parameters.

Concluding Remarks

Gradient-based optimization methods were applied
to the design of power con�gurations in a vertical
furnace. The performance using analytic gradients
was compared to numerical gradients for two
di�erent optimization algorithms.

� For nonlinear, least-squares optimization prob-
lems with numerical gradients, the Gauss-
Newton method is much more robust than the
quasi-Newton, even though Gauss-Newton is
more expensive per nonlinear step.

� The Gauss-Newton gradient method is not
very sensitive to numerical di�erence truncation
errors.

� The analytic gradients are much more accurate
than numerical gradients. The performance of
the quasi-Newton method is the best indicator

4 of 9



of the di�erence between the two approaches
for generating gradients. The quasi-Newton
method rarely convergences when numerical dif-
ferences are used, even central di�erences. The
method will converge when analytic gradients
are used.

� For the TWAFER code with the Gauss-Newton
optimization method, the AD gradients lead
to faster convergence than numerical gradients,
but the rate ratio asymptotes to a factor of �ve.

� For the TACO code, the AD gradients are
slower than forward di�erences until a break-
even point of 16 parameters. For a large number
of parameters, the AD gradients are faster, but
the acceleration factor asymptotes to a factor of
two.

� Given the computer memory resources, it
is always favorable to use AD gradients for
optimization with the TWAFER code. The
TACO code has too large a bene�t threshold
to warrant using analytic gradients for most
of the problems we are interested in. The
acceleration factor and threshold for the TACO
code can probably be improved by changing
the solution strategy for the transport equations
and enclosure radiation problem.

To date, we have only considered parameter
optimization based on thermal issues. Future work
looks towards shape optimization based on material
deposition criteria. The material deposition rate
and uniformity are computed using reacting ow
models with conjugate heat transfer. The shape
optimization is expected to be very expensive
because of the radiation transport processes. Each
shape variation results in recalculating radiation
view factors. Using numerical gradients increases
the number of view factor calculations that must be
performed.
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Table 1 Convergence Performance for TWAFER Code

Method Zones Iterations Function Calls f jjgjj
2

�Trms

GN-CD06 7 16 (11) 270 (190) 1:677 9:145� 10�6 0.065

GN-FD06 7 21 (9) 220 (89) 1:677 8:212� 10�4 0.065

QN-CD10� 7 82 1250 1:695 1:166� 10�6 0.065

QN-CD06� 7 45 691 8:226 7:154� 10�1 0.14

QN-FD08� 7 17 145 462:5 3:560� 100 1.1

QN-FD06� 7 17 147 651:6 7:755� 100 1.3

GN-AD 7 14 (11) 15 (12) 1:677 4:093� 10�7 0.065

QN-AD 7 82 (77) 84 (79) 1:677 5:379� 10�7 0.065

GN-CD06 15 18 (11) 606 (382) 1:294 2:335� 10�6 0.057

GN-FD06 15 22 (11) 390 (203) 1:294 1:515� 10�5 0.057

QN-CD10 15 306 9638 1:314 3:685� 10�7 0.057

QN-CD06� 15 337 10758 10:71 7:401� 10�2 0.16

QN-FD08� 15 109 1790 90:83 9:521� 10�1 0.48

GN-AD 15 12 (11) 17 (16) 1:294 8:776� 10�7 0.057

QN-AD 15 157 (155) 166 (164) 1:294 1:800� 10�5 0.057

GN-CD06 25 36 (22) 1922 (1194) 0:7995 1:192� 10�6 0.045

GN-FD06 25 34 (22) 944 (620) 0:7995 1:497� 10�4 0.045

QN-CD06y 25 500 25866 23:59 6:799� 10�2 0.24

QN-FD08� 25 135 3546 72:63 4:923� 10�1 0.43

GN-AD 25 30 (22) 31 (23) 0:7995 6:383� 10�7 0.045

QN-AD 25 344 (343) 357 (344) 0:7995 6:218� 10�7 0.045

� Premature termination, trust region too small
y Premature termination, reached iteration limit
Iterations for f to converge to four signi�cant �gures shown in ()

Table 2 Function-Call Timings for the TWAFER Code

7 Zone 15 Zone 25 Zone 50 Zone

TWAFER Call 12.2 12.5 12.7 12.9

AD TWAFER Call 67.0 88.5 123.5 192.7

AD/ND Function Call Ratio 5.5 7.1 9.7 14.9

Timings in CPU seconds on SGI Power Challenge
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Table 3 Function-Call Timings for the TACO Code

5 Zone 9 Zone 15 Zone 25 Zone

TACO/Matrix 0.1 0.1 0.1 0.1

TACO/Force Vector 0.17 0.17 0.17 0.17

TACO/Time Step 5.8 5.8 5.8 5.8

AD TACO/Matrix 0.96 1.08 1.36 1.89

AD TACO/Force Vector 1.35 1.75 2.34 3.12

AD TACO/Time Step 62.1 79.4 96.3 130.3

Timings in CPU seconds on SGI Power Challenge
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