

Subsonic Rotary Wing

Susan A. Gorton, Principal Investigator Barbara M. Esker, Project Manager Isaac López, Project Scientist

- Rotary Wing Project objectives, structure
- Multidisciplinary Analysis and Technology
- Research areas
 - Propulsion
 - Flight Dynamics and Control
 - Aeromechanics
 - Acoustics
 - Materials and Structures
 - Experimental Capabilities
- NRAs
- Partnerships
- Future work

QuickTime™ and a decompressor re needed to see this picture

Subsonic Rotary Wing (SRW) Project

Goal: Improve the civil benefits (ease of access, reduce congestion at airports, emergency and rescue services) of rotary wing vehicles

Civil Requirements (support NextGen) Reduce airport congestion Community acceptance Reduce emissions Decrease cost, increase utility

Safe operations for advanced concepts

Research Areas Increase speed and range

- Noise propagation and reduction
- Increase propulsion efficiency
- Increase payload
 - Improve control systems

Acoustic Research

SRW Approach

Approach has three main components

- NASA in-house research
- Research with partners (Other Government Agencies, Industry, University)
- Sponsored foundational research through NASA Research Announcement (NRA)

Technical Challenges require integration of disciplines to succeed

- Integrated Variable Speed Rotorcraft Concept
- Super-Integrated Control Design
- Advanced Structural and Propulsion Concepts for Interior Noise and Vibration Reduction
- Interactional Aeroacoustics Investigation
- Unified Experimental Techniques

Rotary Wing Project Management Structure

Multi-Disciplinary Analysis and Technology

Provides a focal point for the integration of discipline technologies. Analyses development at the system level and demonstrations of integrated components provide a path for maturing technology

Elements

- Multi-Disciplinary Design & Analysis
- Multi-Disciplinary Tech Challenges

Progress FY08

- In-house support of Joint Heavy Lift (JHL), LCTR2
- In-house evaluation of propulsion system requirements
- In-house, civil rotorcraft conceptual design code (NDARC)

Next Steps FY09

- Evaluation of rotary wing aircraft in the airspace system
- Evaluation of propulsion airframe integration effects
- Support of Airspace's NRA as appropriate

Systems Concepts Studies Integrated Analysis Environment

AFDD Project Focused on Developing INTERFACES in Design Process Objective: Reduce time for higher fidelity analysis of key areas Objective: Increase configuration level design and analysis of select concepts Design Synthesis Conceptual Analysis INTERFACE Structural Design and Design avout Desi Flight Control / Aeromechanics **Handling Qualities** Handling Qualities INTERFACE INTERFACE Requirements Handling Qualities Computational Analysis Comprehensive Fluid (e.g. CONDUIT Analysis Dynamics (e.g. RCAS, Analysis CAMRAD) NASA INTERFAC

- NASA Aeronautics directed to support NextGen technologies and capabilities
- Congestion/capacity an issue in NextGen
- Vertical capability at one or both ends of a mission increases capacity, particularly in the 300-600nm flight range
- Simultaneous, Non-Interfering (SNI) approaches need to be evaluated in the current NextGen CONOPS

System studies to date have shown these types of configurations will improve capacity

The Rationale for Rotary Wing Transport Mission Range

Develop Civil Missions and Baseline Data

2008 Study by The Boeing Company for NASA

Variable/Multi-speed main rotor

- Enables high-speed configurations
 - single main rotor/compound rotorcraft
 - tiltrotor configurations
- Need about 50% reduction in main rotor rpm from hover condition to forward flight
 - maintain efficiency of powerplant system
 - no or minor weight penalty
 - creates many other technical issues (dynamics, low frequency vibration, flight controls, acoustics, aero-performance, etc)

Nersy

Large Civil Tiltrotor 2nd Gen (LCTR2)

NASA's notional high-speed configuration

- Use to model configuration capabilities in the Airspace
- 90 passengers, 300 knots cruise speed, 1254 nm range
- Hover tip speed 650 fps/ cruise tip speed 350 fps

Circa October 2007

Portfolio Investment Weighted heavily towards far-term applications

SRW technologies applicable across wide range of configurations.

SRW Discipline: Propulsion

Advanced modeling tools/concepts essential to allow an engine/drive system to achieve a significantly larger speed range without sacrificing power and efficiency

- High efficiency,multi/variable-speed drive systems
- Oil free engine/optimized gearbox systems
- Wide operability engine systems for rotary wing applications

(under construction)

Conceptual variable / multi-speed drive system for a tiltrotor aircraft

Neter

SRW Discipline: Flight Dynamics and Control

Flight dynamics and control research focuses on modeling, testing, and validating realtime control of integrated, advanced rotorcraft technologies with emphasis on heavy-lift handling qualities and control

Assessment of Flight Procedures in Vertical Motion Simulator

Testing (simulation and flight)

LCTR2 precision hover simulation

SRW Discipline: Aeromechanics

Rotorcraft aeromechanics research extends from first-principles modeling through testing and validation for isolated and multi-disciplinary phenomena

SRW Discipline: Materials and Structures

Materials and structures research focused on rotorcraft-specific issues in crashworthiness, advanced materials for airframes and engines, durability and damage tolerance

SRW Discipline: Acoustics

Rotorcraft acoustics research focus includes the study and control of source noise, interior noise, gear noise, propagation, and concepts for low-noise operations

SRW Discipline: Experimental Capabilities

Experimental Capabilities development is essential for validation of aeromechanics, acoustics, structural response, and propulsion fundamental methods

Large field rotor wake assessments

Pre Blade/fuselage unsteady pressures

 $C_{T} = 0.007$

 $C_{\tau} = 0.009$

Deformed blade geometry

Targeted Primary NASA Rotorcraft Test Facilities

 $C_{T} = 0.005$

National Full-Scale Aerodynamics Complex Fundamental Aeronautics Annual Meeting, Atlanta, 10/7/2008

Transonic Dynamics Tunnel

14- by 22-Foot Subsonic Tunnel Subsonic Rotary Wing Project

Edge

NRA Investment by Technical Discipline; Number awarded, Total award value

	NRA Round	Propulsion	Flight Dynamics & Control	Aeromechani cs	Acoustics	Materials & Structures	Experimental Capabilities	Multi- Disciplinary/ System Design
	Round 1	2 (\$1.255M)	0	2 (\$2.020M)	5 (\$2.442M)	2 (\$0.886M)	1 (\$0.373M)	0
	Round 2	2 (\$0.845M)	4 (\$1.313M)	4 (\$2.514M)	0	0	0	2 (\$0.855M)
	Round 3*	1 (\$1.800M)	0	3 (\$1.190M)	4 (\$0.745M)	0	0	0
	Total	5 (\$3.900M)	4 (\$1.313M)	9 (\$5.724M)	9 (\$3.187M)	2 (\$0.886M)	1 (\$0.373M)	2 (\$0.855M)
6% 6% 6% 6% 6% 6% 6% 6% 6% 6%						amics anics & Structures htal Cap iplinary/Integrated Design		
	* Tentative figures - award negotiations on-going							

Fundamental Aeronautics Annual Meeting, Atlanta, 10/7/2008

NRA Investment by Recipient; Number awarded, Total award value

NRA Round	Universities Number (Total Award Value)	Other Non- Profit Number (Total Award Value)	Small Businesses Number (Total Award Value)	Other Industry Number (Total Award Value)
Round 1	10 (\$6.147M)	2 (\$0.886M)	0	0
Round 2	10 (\$3.809M)	0	1 (\$0.450M)	2 (0.855M)
Round 3*	4 (\$1.229M)	0	1 (\$0.136M)	3 (\$2.370M)
Total	24 (\$11.185M)	2 (\$0.886M)	2 (\$0.586M)	5 (\$3.225M)

NRAs by recipient type

NRA Award Values by Recipient Type

* Tentative figures - award negotiations on-going

Partnerships

Completed last 6 months

- DARPA, SMART rotor testing
- AATD, composite crashworthiness modeling and drop testing (SARAP)
- Army, Vertical Motion Simulator Heavy Lift Simulation

On-Going

- ZFL, Army Individual Blade Control testing
- FAA, drive system health monitoring
- Army slowed rotor research
- Army, UH-60 Airloads research
- ONR, oil-free bearing testing
- Boeing, crashworthiness
- Army, Joint Heavy Lift
- AFRL, acoustic flight research
- Sikorsky, internal acoustics, sidewall transmission study
- Army/Boeing, Active Twist Rotor
- Army/Boeing, Small Scale Active Rotor
- Army, PSP, PIV and PMI

Under Negotiation

- --Sikorsky, impact resistance
- --JAXA active rotor prediction and test
- --HART III active twist rotor
- --KIST, oil-free engine technology

Emerging --CRI, rotorcraft icing

Capit/Lines¹⁴⁴ and a descenythor are reserved in user Polyinden.

Quintifierer¹⁴ and a decompositor are resoluted to see Tribusing

Guideline " and a decomposition

On the Horizon

- IBC and UH-60 Airloads in NFAC (Army and Sikorsky)
- Fuselage drag reduction active flow control in 14x22 (Army)
- Drive train and propulsion facilities on-line (Army)
- Active Twist Rotor demonstration in TDT (Army)
- Full-scale drop test of MD530 (Boeing)
- Enhanced experimental capability (Army)
- Flight control simulations (Army, Hoh Aeronautics)
- Participation in HART III International Active Twist Rotor project (Army, DLR, DNW, ONERA, JAXA, Korea)

- Goals of Subsonic Rotary Wing are centered around civil applications of rotary wing technologies
- SRW project making measurable and significant progress in many research areas
- Partnerships are providing significant leveraging
- Execution of FY09 plan is critical

Backup slides

SRW FY08 Publications (1 of 6)

Performance of Advanced Heavy-Lift High-Speed Rotorcraft Configurations	Wayne Johnson*, Hyeonsoo Yeo**, and C.W. Acree. Jr *	Presented at the AHS International Forum on Rotorcraft Multidisciplinary Technology, Seoul, Korea, October 15\$17, 2007
Determination of Turboprop Reduction Gearbox System Fatigue Life and Reliability	Zaretsky, E.V.; Lewicki, D.G.; Savage, M.; and Vicek, B.L	Society of Tribologists and Lubrication Engineers (STLE) in Tribology Transactions (Vol. 50, No. 4, October 2007, pp. 507-516),
Finite Element Development and Specifications of a Patched, Recessed Nomex Core Honeycomb Panel for Increased Sound Transmission Loss	Ferdinand Grosveld	NASA-CR-2007-214898
wave bearing topic	Fred Oswald	2007 ASME/STLE International Joint Tribology Conference San Diego, CA, Oct 22-24
Synergy of Drive Train Research Between Rotorcraft and Space Applications	Robert Handschuch	AHS Propulsion Specialists Meeting in Williamsburg, VA on 23-23 October 2007
Computational Fluid Dynamic Simulation of the V22 Isolated Tiltrotor	Neal Chaderjian	2007 Supercomputing Conference, Reno, NV on November 10-16, 2007
OVERVIEW OF NASA LANGLEYŐS PIEZOELECTRIC CERAMIC PACKAGING TECHNOLOGY AND APPLICATIONS.	Robert G Bryant, NASA	JISSE 10 - SAMPE Japan Tokyo Big Sight, Tokyo, Japan Nov 27 - 30th, 2007
Vibration Transmission Through Bearings With Application to Gearboxes	David P. Fleming	NASA/TMŃ2007-214954
Vortex Filament Evolution Subject to Pulsed/Periodic Disruption	L. Young	AIAA Aerospace Sciences Meeting, Reno, NV, January 2008.
Algorithm and Turbulence Model Requirements for Simulating Vortical Flows	R.H. Nichols	AIAA 46th Aerospace Sciences Meeting, Jan. 7-10, 2008, Reno, NV, AIAA 2008-0337
A Multi-Code Python-Based Infrastructure for Overset CFD with Adaptive Catresian Grids	Wissink, A.M., Sitaraman, J., Sankaran, V., Mavriplis, D.J., Pulliam, T.H.,	AIAA Paper No. 2008-0927, Jan. 2008. Presented at the AIAA 46th Aerospace Sciences Meeting, Reno, NV, Jan 2008
Towards Verification for Unstructured Grid Solvers	Eric Nielsen	AIAA Paper No. 2008-0666, Jan. 2008. Presented at the AIAA 46th Aerospace Sciences Meeting, Reno, NV, Jan 2008
Turbulence Modeling Treatment for Rotorcraft Wakes	Mark Postdam, AFDD, and Tom Pulliam, ARC,	AHS Specialist meeting in January 2008 at San Francisco, CA
The Rotor Azimuth Synchronization Program (RASP)	Gary Fleming, William Culliton	LAR-17581-1, disclosure number
Performance Analysis of Trailing-Edge Flaps in Helicopter Primary Control	Jaye Falls,Univ of MD Anubhav Datta, Eloret Inderjit Chopra, Univ of MD	Aeromechanics, San Francisco, CA, January 23-25, 2008.
Influence of Lift Offset on Rotorcraft Performance	Wayne Johnson	Presented at the AHS Specialist's Conference on Aeromechanics, San Francisco, CA, January 23-25, 2008.
Requirements for Next Generation Comprehensive Analysis of Rotorcraft	Wayne Johnson and Anubhav Datta, ELORET Corporation	Presented at the AHS Specialist's Conference on Aeromechanics, San Francisco, CA, January 23-25, 2008.
An Assessment of the Stat of the Art in Mutlidisciplinary Aeromechanical Analyses	Anubav Datta, Eloret Corp Wayne Johnson, NASA	Presented at the AHS Specialist's Conference on Aeromechanics, San Francisco, CA, January 23-25, 2008.

SRW FY08 Publications (2 of 6)

Suppressing Inplane, low frequency helicopter	Ben Sim, UARC Ames Research	Presented at the AHS Specialist's Conference on Aeromechanics, San Francisco, CA, January 23-25,
Harmonic Noise with Active Controls	Center	2008
Understanding far field near inplane high speed		
harmonic helicopter rotor noise in hover:	Baurav Gopalan	Presented at the AHS Specialist's Conference on
governing parameter sand acoustic control	Frederic Schmitz	Aeromechanics, San Francisco, CA, January 23-25,
possibilities	University of Maryland	2008.
	William S Bousman, Quercus	Presented at the AHS Specialist's Conference on
Assessment of predictive capability of	Associates SL	Aeromechanics, San Francisco, CA, January 23-25,
aeromechanics methods	Thomas Norman, NASA	2008.
		Presented at the AHS Specialist's Conference on
Calculation of JVX proprotor performance and		Aeromechanics, San Francisco, CA, January 23-25,
comparisons with hover and high speed test data	C. W. Acree, Jr. NASA	2008.
		Crashworthiness Working Group (CWG) meeting that was
		held in conjunction with the Composite Materials
		Handbook (CMH)-17 Coordination Meeting
Impact Modeling of Crushable Foams and Other	Karen Jackson	Cocoa Beach, Florida
Energy Attenuating Materials	Edwin L. Fasanella	January 14-16, 2008
	M.S. Chandrasekhara, Navai	
Comprehensive Dynamic Stall Performance of a	Postgraduate School	
Variable Droop Leading Edge Airfoll with a Gurney	P.B. Martin, AFDD	Journal of the American Helicopter Society, Vol 53, No 1,
Flap	C. Tung, AFDD	Jan 2006, pp 16-25
NDesign, Fabrication, and Performance of Foll		ASME
Gas Thirust Dealings IOI	Deb Bruckner	ASME/IGTI
natent for inventing a flow-stabilizing device for	Cary Skoch Mark Stevens and Tom	
centrifugal compressors	Lett	Patent number 7 326 027
Centrifugal and Axial Pump Flow Code-PLIMPA	Jen	
User's Manual	losenh Veres	NASA/TP-2007-214823
Low Cycle Bending Estique of AISI 9310 Steel	Robert Handschub, Timothy Krantz	
Spur Gears	Brad Lerch and Chris Burke	Gear Solutions Magazine January 2008 issue
Failure Mechanisms Identified and Life Prediction	Brad Eoron and Onno Barko	estal solutione magazine, sundary zoos losas
Approaches Established for Thermal and		32nd International Conference on Advanced Ceramics
Environmental Barrier Coatings Under Thermal		and Composites held in Davtona Beach, Florida, January
Gradients	Dongming Zhu & Mike Halbig	26 through Feb 1, 2008
Oxidation Kinetics and Stress Effects for the	Michael C. Halbig, James D. McGuffin-	······································
Oxidation of Continuous Carbon Fibers within a	Cawley, Andrew J. Eckel, David N.	Journal of the American Ceramic Society, February 2008
Microcracked C/SiC Ceramic Matrix Composite	Brewe	Vol. 91 Issue 2 Page 351-689
Pitting and Bending Fatigue Evaluations of a New		
Case-Carburized Gear Steel	Timothy Krantz, Brian Tufts	Gear Technology Magazine, March 2008
		Special Symposium on Ballistic
		Impact and Crashworthiness of Aerospace Structures to
Overview of the NASA Subsonic		be held during the 11th ASCE
Rotary Wing Aeronautics Research Program in	Dr. Karen Jackson, Yvonne Fuchs,	Earth and Space Conference, Long Beach, CA, on March
Rotorcraft Crashworthiness	Sotiris Kellas	3-5, 2008.
Soft-Inplane Tiltrotor Aeromechanics Investigation	P. Masarati, D. Piatak, G. Quaranta, J.	Journal of the American Helicopter Society, Vol 53, No 2,
Using Two Comprehensive Multibody Solvers	Singleton , J. Shen	April 2008, p179-192.
Prediction of Rotor Structural Loads with		Journal of the American Helicopter Society, Vol 53, No 2,
Comprehensive Analysis	H. Yeo and W. Johnson	April 2008, p193-209
		35th International Conference on Metallurgical Coatings
Advanced Low Conductivity Thermal Barrier		and Thin Films 2008 (ICMCTF), San Diego, California, on
Coatings: Performance and Future Directions	D. Zhu and R. A. Miller	April 30, 2008
		rtn Republic of Korea (ROK) Defense Modeling &
		Simulation workshop hosted by the Korea Institute for
Modeling and Simulation of Turbomachinery	Dr. Michael Hathaway	Detense Analysis (KIDA), April 17-18, 2008
Automated Power Assessment for Helicopter		64th American Helicopter Society (AHS) Annual Forum,
Turbosnaπ Engines	Donaid Simon and Jonathan Litt	Montreal, Canada, April 29-May 1, 2008
Vertical Drop Testing and Analysis of the WASP	Funda V T and Induna V F	beth American Helicopter Society (AHS) Annual Forum,
nelicopter Skid Gear	IFUCIIS. Y. L. AND JACKSON, K. E	Involuear, Canada, April 29-May 1, 2008

SRW FY08 Publications (3 of 6)

A Computational Approach for Model Update of	Horta, L. G., Jackson, K. E., and	64th American Helicopter Society (AHS) Annual Forum,
an LS-DYNA Energy Absorbing Cell	Kellas, S.,	Montreal, Canada, April 29-May 1, 2008
Multi-Terrain Vertical Drop Tests of a Composite		64th American Helicopter Society (AHS) Annual Forum,
Fuselage Section	Kellas, S. and Jackson, K	Montreal, Canada, April 29-May 1, 2008
Modeling Requirements for Analysis and		64th American Helicopter Society (AHS) Annual Forum,
Optimization of JVX Proprotor Performance	C. Acree	Montreal, Canada, April 29-May 1, 2008
Continued Development of a Mach Scale		
Swashplateles Rotor with Integrated Trailing Edge	P. Copp. I. Chopra, University of	64th American Helicopter Society (AHS) Annual Forum.
Flaps	Maryland	Montreal, Canada, April 29-May 1, 2008
Application and Validation of Unstructured	R. Kunz: R. Noack: M. Hill: L. Long: P.	
Overset CED Technology for Rotorcraft Gearbox	Morris Penn State	64th American Helicopter Society (AHS) Annual Forum
Windage Aerodynamics Simulation	Robert Handschub ARI	Montreal Canada April 29-May 1 2008
Measurement and Analysis of High Advance Ratio	T Quackenbush: D Wachspress	64th American Heliconter Society (AHS) Annual Forum
Heliconter Poter Performance	Continuum Dynamics Inc	Montreal Canada April 29 May 1, 2008
Far Field Near In Plane Harmonic		
Main Poter Helicenter Impulsive Noise Peduction	Conclos C and Schmitz E H	64th American Holicoptor Society (AHS) Appual Forum
	Gopalan, G., and Schmitz, F. H.,	Mantasal Canada April 00 May 4 0000
Possibilities	Univ of Maryland	Montreal, Canada, April 29-May 1, 2008
	J. Shen; B. Roget NIA	
	P. Masarati Politecnico di Milano	
Modeling a Stiff-Inplane Tiltrotor using Two	D. Piatak NASA	64th American Helicopter Society (AHS) Annual Forum,
Multibody Analyses: A Validation Study	J. Singleton; M. Nixon ARL	Montreal, Canada, April 29-May 1, 2008
In-flight Array Measurements of Tail Rotor	C. Sargent; F. Schmitz Univ of MD	64th American Helicopter Society (AHS) Annual Forum,
Harmonic Noise	B. Sim UARC, Army	Montreal, Canada, April 29-May 1, 2008
	M. Stevens, NASA	64th American Helicopter Society (AHS) Annual Forum,
Concepts for Multi-Speed Rotorcraft Drive System	R. Handschuh, D. Lewicki, ARL	Montreal, Canada, April 29-May 1, 2008
Systems Engineering: When Knowledge and		64th American Helicopter Society (AHS) Annual Forum,
Technlogy are the Product	Larry Young, NASA	Montreal, Canada, April 29-May 1, 2008
A Modular Approach to Euler/Navier-Stokes		
based Aeroelasicity of Helicopter Rotor Blades	Guru Guruswamy	AIAA 49th Structural Dynamics Conference, April 2008
	R. Biedron and E. Lee-Rausch, NASA	
Rotor Airloads Prediction Using Unstructured	Langley Research Center, Hampton,	AIAA-2008-7341 26th AIAA Applied Aerodynamics
Meshes and Loose CFD/CSD Coupling	VA	Conference, Honolulu, Hawaii, Aug. 18-21, 2008
Analysis of Interference Fit Life Factor for Roller	Fred Oswald, Erwin Zaretsky, Joseph	
Bearings	Poplawski	STLE Annual Meeting may 2008
An Experimental Investigation of Helicopter BVI	Koushik, S., and Schmitz, F. H.,	AIAA Aeroacoustics Conference, Vancouver, Canada,
Noise	Univ of Maryland	May 6-9, 2008
A Numerical Investigation of Turbine Noise	erne er margiana	
Source Hierarchy and Its Acoustic Transmission		AARC Turbine Noise Workshop, Vancouver, Canada, Ma
Characteristics	Dale van Zante	
	Heath S.L.: McAninch G.L.: Smith C	AIAA Aeroacoustics Conference, Vancouver, Canada
Validation of Pay Tracing Code Refraction Effects	D : Copper D A	May 5.7, 2008 AIAA 2008 2004
Comparison of ALE and SDH Simulations of	D., Conner, D. A	Brassodings of the 10th International LS DVNA Llass
Comparison of ALE and SPH Simulations of		Conference LCTC Dearbarn ML luna 9.10.2009 pr15
Ventical Drop Tests of a Composite Fuselage	Jackson K. F. and Fusha M. T.	d through 45 00
Section into water	Jackson, K. E., and Fuchs, Y. L.,	1 through 15-20.
		Proceedings of the 10th International LS-DYNA Users
Soft Soil Impact Testing	Fasanella, E. L., Jackson, K. E., and	Conference, LSTC, Dearborn, MI, June 8-10, 2008, pp15
and Simulation of Aerospace Structures	Kellas, S.	1 through 15-20.
Computational Modeling of Variable Droop		
Leading Edge in Forward Flight	Jeremy Bain, Ga Tech	AIAA Flow Control Conference, Seattle, June 23-26, 2008
An Optics-Based Tip-Path Plane		AIAA Guidance, Navigation, and Control Conference, 18-
Tracking System for Rotorcraft Applications	Sickenberger, R. and Schmitz, F.	21 Aug. 2008. Honolulu, Hawaii, 2008
		To be published in Proceedings of American Society for
ASSESMENT OF COMPOSITE DELAMINATION	T. Kevin OÕBrien,	Composites 23rd Technical Conference Memphis,
SELF-HEALING VIA MICRO-ENCAPSULATION	Scott R. White	Tennessee, Sept. 2008

SRW FY08 Publications (4 of 6)

Measurements of the High Temperature Dynamic		Society of Tribologists and Lubrication Engineers (STLE)
Coefficients of the Elastic Wave Bearing SupportÓ	Moraru, L., Ene, N., Dimofte, F., Afieh,	Annual Meeting, Cleveland, May 18-20, 2008
An Investigation of the Behavior of a Dual		Society of Tribologists and Lubrication Engineers (STLE)
Clearance Squeeze Film Damper	Moraru I. Dimofte E. Keith T.	Annual Meeting, Cleveland, May 18-20, 2008
A Thormo Hudrodynamia Analysia of a Waya	Morard, E., Dimone, F., Reith, F.	Society of Tribologiste and Lubrication Engineers (STLE)
A memo-nyulouynamic Analysis of a wave	Ena N. Dimetta E	Appual Masting Clausland May 19 20 2000
Journal Bearing	Ene, N., Dimoite, F.	Annual Meeting, Cleveland, May 16-20, 2006
		accepted for publication, International Journal of
Wave Motion Optimization in Periodically	Manuel Collet, Kenneth A. Cunefare,	Intelligent Materials Systems and Structures, November,
Distributed Shunted Piezocomposite Structures	and M. N. Ichchou	2007
Vibration And Wave Propagation Control of Plates		
With Periodic Arrays of Shunted Piezoelectric	A. Spadoni, M. Ruzzene, K.A.	Proceedings of ICAST 2007, October 5-7th, Ottawa,
Patches	Cunefare	Canada
Broad-band Vibration Attenuation In Plates With		To be presented at Acoustics '08, Paris June 29 Š July 4,
Periodic Arrays Of Shunted Piezoelectric Patches	L. Airoldi, M. Ruzzene	2008
Experimental Assessment of Negative Impedance		SPIE Smart Materials and Structures Conference, San
Shunte for Vibration Suppression on a Ream	B Beck K A Cupefare M Collet	Diego CA USA March 9-13th
Diago shunt nower flow ontimization for	D. Deck, R.A. Gunelare, M. Gollet	SPIE Smart Materials and Structures Conference, San
r lezo-situlti power-now opumization ion	M Callet K A Curafara D Daak	Diago CA LICA March 0 12th
composite beam stabilization	IVI. COIlei, K.A. Curleiale, B. Beck	Diego, CA, USA March 9-15th
		Society of Tribologists and Lubrication Engineers Annual
An Experimental Study of Fretting of Gear Teeth	Dr. Timothy Krantz	Meeting held in Cleveland, Ohio May 2008
Signal Detection Theory Applied to Helicopter		
Transmission Diagnostic Thresholds	Paula Dempsey	NASA TM
Analytical Assessment of Performance, Handling		
Qualities and Added Dynamics in Rotorcraft Flight		Correspondence Paper in the IEEE Transactions on
Control	Ron Hess	Systems, Man, and Cybernetics Part A
		textbook, System Health Management
		with Aerospace Applications, a reference text for System
		Health Management (SHM)
Chapter 11: Potorcraft Systems Health		field. The planned publication data for the book is May
Management	Roula Domnoov	
A Fail Thrust Dearing Dig for Evoluation of Lligh	Faula Dempsey	2010
A Foil Thrust Bearing Rig for Evaluation of High		America Designation And ADD 0000
Temperature Performance and Durability	Dykas, B.D., Tellier, D.W.,	Army Research Laboratory, ARL-MR-0692
Design, Fabrication, and Performance of Foli Gas		
I hrust Bearings for Microturbomachinery	Dykas, B.D., Bruckner, R.J.,	
Applications	DellaCorte, C., Edmonds, B., Prahl, J.,	NASA / TM-2008-215062.
Compliant Foil Journal Bearing Performance at		
Alternate Pressures and Temperatures	Bruckner, R.J., Puleo, B.J.,	NASA / TM-2008-215219
Gas Foil Bearing Misalignment and Unbalance		
Effects	Howard, S.A.,	NASA / TM-2008-215176.
Misalignment in Gas Foil Journal Bearings: An		
Experimental Study	Howard, S.A.	NASA / TM-2008-215223.
Textbook-Efficiency Multigrid Solver for Three-		submitted to the Journal of Computational Physics
Dimensional Linsteady Compressible Navier		documenting a portion of work performed under the
Stekes Equations	NIA: Liu	
Slokes Equations	INIA. LIU	NOTE NRA.
		AIAA Stri Theoretical Fluid Mechanics meeting, June 25-
Modeling of a Turbulent Line Vortex	Larry Young	26, 2008, in Seattle, WA
Modeling Requirements for Analysis and		
Optimization of JVX Proprotor Performance	Wally Acree	NASA/TM-2008-214581
Compliant Foil Journal Bearing Performance at		International Gas Turbine Institute at the ASME Turbo
Alternate Pressures and Temperatures	Dykes, Howard, Bruckner	Expo 2008, June 9-13, in Berlin, Germany
Design, Fabrication, and Performance of Foil Gas		International Gas Turbine Institute at the ASME Turbo
Bearings for Microturbomachinery Applications	Dykes, Howard, Bruckner	Expo 2008, June 9-13, in Berlin, Germany
Misalignment in Gas Foil Journal Bearings An	, ,	International Gas Turbine Institute at the ASME Turbo
Experimental Study	Dykes Howard Bruckner	Expo 2008 June 9-13 in Berlin Germany
Experimental olduy	Phuriwat Anusonti-Inthra National	Expo 2000, dane 5-10, in Denin, Germany
	Institute of Acrosson and	
Coupled CED and Darticle Martey Tracter at	Matt Flares LIC Army Desser-	20th Eluid Dunamics Conference and Euhikit - 0 til-
Coupled CFD and Particle Vortex Transport	Indu FIULUS, US AITINY RESEARCH	Sour Fluid Dynamics Conterence and Exhibit, Seattle,
wethod: wing Performance and wake Validations	Laboratory	June 2008 AIAA paper 2008-4177

SRW FY08 Publications (5 of 6)

Performance Optimization of the NASA Large		
Civil Tiltrotor	Acree, Yeo and Sinsay	NASA/TM-2008-215359
		Paper-14, International Conference on Aerospace
Role of HPC in Advancing Computational		Science and Technology (INCAST), Indian Institute of
Aeroelasticity	Guruswamy, G. P	Science, Bangalore, India, June 26-28, 2008
	Asnok Rajendari, Thomas M.	Ath Flow Control Conference
Characterization of the Internal Flow Dynamics of	Georgia Institute of Technology	23 26 June 2009 Seattle Washington
Combustion Reward Actuators	Atlanta Georgia 20222	AIA A 2008 3760
Pilot Modeling with Applications to the Applytical	Alianta, Georgia, 50352	AIAA-2000-3700
Assessment of Flight Simulator Fidelity	Ron Hess	August 18-21 2008
Assessment of Fight officiator Fidency	10111033	August 10-21, 2000
	J. Bain, L. Sankar and J. Prasad,	
	Georgia Institute of Technology,	
	Atlanta, GA; O. Bauchau, Georgia	
	Insitute of Technology, Atlanta, GA; D.	
	Peters, Washington University, St.	4th Flow Control Conference
Computational Modeling of	Louis, MO; C. He, Advanced Rotorcraft	23 - 26 June 2008, Seattle, Washington
Variable Droop Leading Edge in Forward Flight	Technology Inc., Mountain View, CA	AIAA-2008-3872
Signal Detection Theory Applied to Helicopter		
Transmission Diagnostic Thresholds	Paula Dempsey	NASA Technical Memorandum 215262, June 2008
	C. W. Acree, Jr. NASA	
Performance Ontimization of the NASA Large	Infrau Sinnau	
Civil Tiltrotor		NASA/TM 2008 215350 June 2008
	Byung-Young Min* Lakshmi N	NASA/TM-2000-215555, Julie 2006
	Sankar Nischint Raimohan a and	
	JVR Prasada	
Computational Investigation of the Effects of	School of Aerospace Engineering	
Gurney Elap on the Forward Flight Characteristics	Georgia Institute of Technology	AIAA Guidance, Navigation, and Control Conference, 18-
of Helicopter Rotors	Atlanta, GA, 30332-0150	21 Aug. 2008. Honolulu. Hawaii. 2008
System Identification of Large Flexible Transport	Colin Theodore	
Aircraft	Boeing Seattle Authors	AIAA AFM conference Aug 18-21
		Proceedings of Noise-Con 2008: The National
		Conference and Exposition on Noise Control Engineering,
Vibration Response Models of a Stiffened		Dearborn,
Aluminum Panel Excited by a Shaker	Randolph Cabell. NASA	Michigan, July 28-30, 2008.
		Proceedings of Noise-Con 2008: The National
		Conterence and Exposition on
Vibroacoustic Response Data of Stiffened Panels	Randolph Cabell, Jake Klos, Ralph	Noise Control Engineering, Dearborn, Michigan, July 28-
Pasidual compressive strength analysis	Wade Jackson	30, 2008
Analysis method for residula compressive	Wade backson	
strength	Wade Jackson	submitted to American Society for Composities Journal
NConcepts for Variable/Multi-Speed Rotorcraft		·····
Drive System	Mark Stevens	TM 215276-0, E-16558-0
		AIAA-2008-3070
		14th AIAA/CEAS Aeroacoustics Conference (29th AIAA
A New Experimental Approach to Study	S. Koushik and F. Schmitz, University	Aeroacoustics Conference), Vancouver, British Columbia,
Helicopter Blade-Vortex Interaction Noise	of Maryland, College Park, MD	May 5-7, 200
	S. Ananthan and J. Baeder, University	
	of Maryland, College Park, MD; J.	
	Sitaraman, National Institute of	ALA A 0000 7000
Hybrid Unsteady Simulation of Helicopters: HUSH	Aerospace, Hampton, VA; S. Hann and	AIAA-2008-7339 26th AIAA Applied Acceduractics Conference, Henclulu
	Stanford CA	Hawaii Aug 18 21 200
The Merits of Coupled CED /CSD Analysis for	Staniord, CA	34th EUROPEAN ROTORCRAFT FORUM
Prediction of Aerodynamic and Structural Rotor	Prof. James Baeder, University of	16th Š 18th September 2008
Loads During Manuvering Helicopter Flight	Maryland	Arena & Convention Centre, Liverpool, UK
Large-Eddy Simulation of a Combustion Powered	Srinivasan S. Girgis B. and Menon	AIAA-2008-4680 AIAA/ASME/SAE Joint Propulsion
Actuator	S., Georgia Tech	Conference, 2008
	· · · · · · · · · · · · · · · · · · ·	SAE Aerospace Information Report (AIR) Lessons
Chapter 4.9 Rotorcraft Health and Usage		Learned from Developmental and Operational Turbine
Monitoring (HUMS)	Paula Dempsey, GRC	Engine Monitoring System
A Foil Thrust Bearing Rig for Evaluation of High		
Temperature Performance and Durability	Dykas, B.D., Tellier, D.W.,	Army Research Laboratory, ARL-MR-0692.
Design, Fabrication, and Performance of Foil Gas		
I nrust Bearings for Microturbomachinery	Dykas, B.D., Bruckner, R.J.,	
Applications	DellaCorte, C., Edmonds, B., Prahl, J.,	NASA / TM-2008-215062.
Alternate Breasures and Temperature	Brusknar B I Bulas B I	NASA / TM 2008 215210
Anemate Pressures and Temperatures,	IDI UCKITEL, K.J., MUIEO, B.J.,	INAGA / IN-2008-215219.

SRW FY08 Publications (6 of 6)

Gas Foil Bearing Misalignment and Unbalance		NASA / TM-
Effects	Howard, S.A.,	2008-215176.
Misalignment in Gas Foil Journal Bearings: An		
Experimental Study.	Howard, S.A.,	NASA / TM-2008-215223.
Analytical Assessment of Performance, Handling		
Qualities and Added Dynamics in Rotorcraft Flight		IEEE Transactions on Systems, Man and Cybernetics,
Control	Ron Hess	Part A
A Parametric Study of Foil Journal Bearings by		
Temperature, Pressure, and Working Fluid	B. Puleo, R. Bruckner,	IECEC presentation, AIAA-2008-5734.
		Presented at the American Helicopter Society Next
	Watts, Michael E; Conner, David A;	Generation Vertical Lift Technologies Specialist Meeting,
Report on the Joint Eglin Acoustic Week III	Smith, Charles D.	Oct. 15-17, 2008, Dallas, TX
	F. Dimofte, N. M. Ene, R. F.,	
Current Results of Testing PVD Coatings for	Handschuh, T.L., Krantz, KD.,	
Wave Bearings for Use in Aerospace-	Bouzakis, A., Asimakopoulos, and M.,	
Transmissions	Batsiolas	The Coatings Meeting, Oct 1-3, 2008, Kass‡ndra, Greece
Tests of Bearings and Gears With PVD Coatings		
for Aerospace Transmissions; Results and		
ProblemsÓ, A Keynote to 2008 NThe CoatingsÓ		
Meeting	F. Dimofte and T.L. Krantz.	The Coatings Meeting, Oct 1-3, 2008, Kass‡ndra, Greece
A Finite Element Analysis for Predicting the		
Residual Compressive Strength of Impact-		
Damaged Sandwich Panels	Ratcliffe, James G.; Jackson, Wade C.	NASA TM 2008-215341, August 2008
Signal Detection Theory		
Applied to Helicopter Transmission Diagnostic	Dempsey, Paula, J.; Keller, Jonathan,	NASA/TM-2008-215262;
Thresholds	A.; Wade, Daniel R.,	AMRDEC PAO Control Number FN 3597, July 2008
Identifying Bearing Rotordynamic Coefficients		
using an Extended Kaman Filter,	Miller, B.A, Howard, S.A.,	NASA / TM 2008-215298, August 2008.
NA Parametric Study of Foil Journal Bearings by		
Temperature,		AIAA-2008-5734, presented at the International Energy
Pressure, and Working FluidÓ,	B. Puleo, R. Bruckner,	Conversion and Engineering Conference, August 2008
		Proceedings of AIAA Atmospheric Flight Mechanics
Theodore, C. R., Ivler, C. M., Tischler, M. B.,	System Identification of Large Flexible	Conference and Exhibit, Honolulu, Hawaii, Aug. 18-21,
Field, E. J., Neville, R. L., and Ross, H. P	Transport Aircraft	2008, AIAA-2008-6894
Overview of the NASA Subsonic Rotary Wing		accepted to the Journal of Aerospace Engineering,
Aeronautics Research Program in Rotorcraft	Jackson, K.E., Fuchs, Y. T., and Kellas,	Special Issue on Ballistic Impact and Crashworthiness of
Crashworthiness	S	Aerospace Structures, September 26, 2008.

Previous Studies Regarding Civil Tiltrotor Viability

No.	Title	Author	Reference ID
1	Civil Tiltrotor Missions and Applications; A Research Study, Supporting Documentation for U. S. Policy Making Decisions	Boeing Commercial Airplane Co., Bell Textron, Inc, Boeing Vertol	NASA CR- 177451, November 1987
2	Civil Tiltrotor Missions and Applications; Phase II: The Commercial Passenger Market, Summary Final Report	Boeing Commercial Airplane Group, Bell Helicopter Textron, Inc, Boeing Helicopters	NASA CR- 177576, February 1991
3	Civil Tiltrotor Missions and Applications; Phase II: The Commercial Passenger Market, Final Report, Book Two: Sections 4 and 5, Proprietary	Boeing Commercial Airplane Group, Bell Helicopter Textron, Inc, Boeing Helicopters	NASA CR- 177576, February 1991
4	Civil Tiltrotor Missions and Applications, Phase II: The Commercial Passenger Market Final Report, Supporting Documentation for U. S. Policy Making Decisions	Thompson, R., Neir, R., Reber, R., Scholes, R., Alexander, H., Sweet, D., and Berry, D.	NASA CR- 177591, October 1991
5	Advanced Tiltrotor Transport Technology: Cost/Benefit/Risk Assessment Phase I Final Report	Alexander, H. R., Allen, E. M., and Bartie, K. M.	NASA CDCR- 20001, August 1994
6	Technical Memorandum: Civil Tiltrotor Community Noise: Aircraft Size versus Community Improvement	Boeing Defense and Space Group, Helicopters Division	P2T12-1994- NAS2-13625, Phase II, Task 12, November 1994
7	Report to Congress Š Volume 1, Final Report	Civil Tilt Rotor Development Advisory Committee	Report to Congress in accordance with PL102- 581, December 1995

Previous Studies Regarding Civil Tiltrotor Viability

No.	Title	Author	Reference ID
8	Report to Congress Š Volume 2,	Civil Tilt Rotor	Report to
	reemiear supprement	Committee	accordance
			with PL102-
			581, December 1995
9	Civil Tiltrotor Feasibility Study for the	Stouffer, V., Johnson,	NASA CR-
	New York and Washington Terminal Areas	J., and Gribko, J.	2001-210659, January 2001
			building 2001
10	Evaluation of the National Throughput	Johnson, J, Stouffer, V.,	NASA CR-
	Benefits of the Civil Tiltrotor	Long, D., and Gribko, J.	2001-211055, September
			2001
11	Aviation System Capacity Program: Short	Guilianetti, D.	NASA/TP- 2003-212800
	Reduction and Terminal Area Operations		November
			2003
12	Technology Development for Runway	Smith, D. E.,	American
	Independent Aircraft	Wilkerson, J., Montoro,	Helicopter
		J.	Annual Forum.
			Phoenix, AZ,
			May 2003
13	NASA Heavy Lift Rotorcraft Systems	Johnson, W., Vamauchi G. K. and	NASA/TP- 2005-213467
	Sucies	Watts, M. E.	December
		,	2005