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1 INTRODUCTION

This document is the first year report of a two-year CERTS (Consortium for
Electric Reliability Technology Solutions) project studying large scale blackouts
and cascading failures of electric power transmission systems.   The project is
inventing new methods, models and analysis tools from complex systems, self-
organized criticality, probability, and power systems engineering so that the
risks of large blackouts and cascading failures can be understood and mitigated
from novel global and top-down perspectives.  The work is performed by close
collaboration between Oak Ridge National Laboratory and the Power Systems
Engineering Research Center at the University of Wisconsin-Madison and
Cornell University.

Section 2 explains topics providing background to the project and sections 3 and
4 summarize first year progress and second year plans for the project.  The
details of the technical achievements of the project in the first year are
documented in Section 6.

2 PROJECT BACKGROUND

2.1 GENERAL MOTIVATION
The United States electrical energy supply infrastructure is experiencing rapid
changes and will continue to be operated closer to a stressed condition in which
there is substantial risk of cascading outages and blackouts.  The rapid changes in
this highly complex system present significant challenges for maintaining its
operational stability and reliability.

Management of the electrical power network to avoid catastrophic blackouts
should account for the global dynamics of series of these blackouts and
interdependencies between blackouts.  Analysis of historical NERC data shows
power tails in the distribution of blackout sizes; that is, there are many more
large blackouts than expected.  Simulation results to date also show underlying
nontrivial complex dynamics and interdependencies.  These complex dynamics
between blackouts are of great significance if one wants to operate the system to
avoid blackouts.  For example, in other complex systems showing self-organized
criticality (SOC), well-intentioned policies to avoid small "blackouts" can
inadvertently lead to an increased frequency of large "blackouts".  Moreover,
features of the protection system such as "hidden failures" play an important role
in cascading failures leading to blackouts.  This project is designed to establish
models and tools for a new global approach to cascading failures in stressed
power systems, which will be complementary to the valuable and traditional
efforts to analyze cascading events on a more individual cause-and-effect basis.

This project will develop the basic tools needed to represent demand-driven
complex dynamical systems for electrical power transmission systems.  The
project will investigate the nature of the SOC-like and other complex dynamics



concepts in cascading failures so that the prospects for controlling these global
dynamics to mitigate catastrophic failures can be assessed.

The first year of the project will concentrate on improving, implementing and
understanding models capturing the complex dynamics of series of blackouts.
The second year of the project will concentrate on improving the realism of the
models and data, trying to reproduce qualitative features of historical NERC data
on blackouts, and assessing the prospects for controlling the complex model
dynamics to mitigate or avoid large blackouts.

2.2 SELF-ORGANIZED CRITICALITY
The United States is dependent on the smooth functioning of a complex system
of infrastructures such as electrical power transmission systems.  Global
disruptions of these systems can obviously cause severe damage to our society.
To minimize such disruptions, it is necessary to understand, predict and control
the response of complex systems to outside perturbations.  

Complex natural systems are often governed by self-organized criticality.
The concept of self-organized criticality brings together ideas of self-organization
of nonlinear dynamical systems with the often observed near critical behavior of
many natural phenomena.  These phenomena exhibit self-similarities over
extended ranges of spatial and temporal scales.  In those systems, scale lengths
may be described by fractal geometry and time scales that lead to 1/f-like power
spectra.  Self-organized criticality gives an intimate connection between the scale
invariance in space and time [Bak87].

Physics applications include modeling the motion of tectonics plates
[Carlson94], spin glass systems, and turbulent transport [Newman96a,96b,96c,
Carreras96].  Simple cellular automata models have been very useful in
reproducing the complexity of those systems.  That is the case of the sand pile
model that presents the complex structure of multiple ranges in the frequency
spectrum including the ubiquitous 1/f regime [Hwa92].  SOC has also been
applied to biological, ecological [Bak93] and economic models [Lo91,
Mantegna95].

A characteristic property of SOC systems is that they relax through what we
call events.  These events can happen over all scales of the system.  Examples of
these events are:  earthquakes, for the motion of tectonic plates; fires, for a forest
evolution [Drossel92]; extinction, in the coevolution of biological species; and
avalanches, in the dynamics of sand piles.  In a time-averaged sense, these
systems are subcritical (that is, they lie in an average state that should not trigger
any events) and the relaxation events happen intermittently.  The time spent in a
subcritical state relative to the time of the events varies from one system to
another.  For instance, the chance of finding a forest on fire is very low with the
frequency of fires being on the order of one fire every few years and with many
of these fires small and inconsequential.  Very large fires happen over time
periods of decades or even centuries. However, because of their consequences,
these large but infrequent events are the important ones to control and
minimize.  One of the main goals of the research on these systems is to
understand how and when global events may happen in order to predict them.

In our society, systems such as power transmission grids, communication
networks, transportation systems and market distribution networks have



complex interconnections, are strongly driven and they tend to operate close to
the limit of their capabilities.  Therefore, they probably evolve to a self-organized
critical state. In this state, global disruptions are unavoidable and intrinsically
difficult to predict.

A complex society like ours is vulnerable to these types of global
disruptions.  Without outside interference, they happen over long time scales
and in an apparently random fashion. Every particular event can be and
generally is investigated on its own, and the cause or causes for the event are
identified.  Naturally, there are always reasonable explanations for each isolated
event.  However, what those isolated explanations miss is the underlying
dynamics of the complex system and the fact that similar events will happen
again from different causes.  Interestingly, published analysis (EPRI) of the
Northwestern power outages of July and August 1996 discuss both the specific
causes such as insufficient reactive support and excessive tree growth as well as
global system causes such as “big picture”, latent failure conditions and
transmission networks operating near operational limits.  It is these latter causes
that global SOC type modeling addresses.

2.3 HIDDEN FAILURES IN PROTECTION SYSTEMS

Five recent major Western Systems Coordinating Council (WSCC) events
involved incorrect operations in the generator protection equipment or the line
protection relays.  As shown by these WSCC events, the initial act may be a fault
clearing device working properly to prevent real damage to the equipment.
However, history also shows that after the initial correct course of action, a series
of unnecessary protection operations only served to propagate the initial
disturbance and damage the security of the whole power system. These "mis-
operations" are noted as the hidden failures embedded in the protection schemes
that reveal themselves when the power system deviates toward an abnormal
state. The current protection system's multiple overlapping mechanisms incline
heavily toward dependability and promote hidden failures. Although the
redundancy and over-protection in this design prevents any hardware damage,
these "sympathy" trips of lines and generators present a danger to global power
system security.

Due to the rarity of these types of cascading outages, the compounded effects of
a series of unlikely protection operations have not been thoroughly studied.
Moreover, even with advanced simulation techniques such as importance
sampling, these cascading outages are time consuming to simulate [Thorp98,
Thorp01].  There is a clear need to develop new methods to simulate, analyze
and understand cascading outages due to hidden failures so that effective
measures can be taken to mitigate or avoid these blackouts [Chen01].

2.4 EVIDENCE OF COMPLEX SYSTEM BEHAVIOR IN NERC BLACKOUT
DATA

This section summarizes analyses of NERC blackout data from
[Carreras01a]. Electric power transmission networks are complex systems that
undergo major cascading disturbances, or blackouts.  Individually, these



blackouts can be attributed to specific causes such as weather or equipment
failure. However, an exclusive focus on these individual causes can overlook the
global dynamics of a complex system in which repeated major disruptions from
a wide variety of sources are a virtual certainty.  
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Figure 1.  PDF of blackout sizes (MWh lost) compared to PDF of

avalanche sizes from an SOC sandpile system.

We analyze a 15 year time series of blackout sizes obtained from NERC to
probe the nature of these complex system dynamics.  The blackout sizes are
measured by the energy unserved (MWh).  We plot the probability distribution
function of the blackout sizes in Figure 1.  The pdf has a power tail.  Moreover,
the same analysis applied to a time series of avalanche sizes from a sandpile
model known to be self-organized critical gives results of the same form. Thus
the blackout data is consistent with self-organized criticality. Self-organized
criticality, if fully confirmed in power systems, would suggest new complex
systems approaches to understanding and possibly controlling blackouts.

The strength of our conclusions is somewhat limited by the short time
period (15 years) of the available blackout data. To further understand the
mechanisms governing the dynamics of power system blackouts, modeling of
the power system from a self-organized critical perspective is indicated and is
further pursued in this project.



2.5 IDEAS OF SOC IN SERIES OF POWER SYSTEM BLACKOUTS

This section gives a qualitative account of the structure and effects in a large
scale electric power transmission system which could give rise to SOC.  This view
of the power system complex dynamics underlies the OPA model that is
described in detail in [Dobson01, Carreras01b].  This section is based on material
from [Carreras00].

The transmission system contains many components such as generators,
transmission lines, transformers and substations.  Each component experiences a
certain loading each day and when all the components are considered together
they experience some pattern or vector of loadings. The pattern of component
loadings is determined by the power system operating policy and is driven by
the aggregated customer demands at the substations.  The power system
operating policy includes short time frame actions such as generator dispatch as
well as longer time frame actions such as improvements in procedures and
planned outages for maintenance. The operating policy seeks to satisfy the
customer demands at least cost.  The customer demand has daily and seasonal
cycles and a secular increase.  Moreover, the patterns of customer demand
change due to the evolution of bulk power markets and geographic shifts in
population and industry.

Events are either the limiting of a component loading to a maximum or the
zeroing of the component loading if that component trips or fails.  Events occur
with a probability that depends on the component loading.  For example, the
probability of transformer failure generally increases with loading.  Another
example is that an operator redispatching to limit power flow on a transmission
line to its thermal rating could be modeled as probability zero below the thermal
rating of the line and probability one above the thermal rating.

Each event is a limiting or zeroing of load in a component and causes a
redistribution of power flow in the network and hence a discrete increase in the
loading of other system components.  Thus events can cascade.  If a cascade of
events includes limiting or zeroing the load at substations, it is a blackout.  A
stressed power transmission system experiencing an event must either
redistribute load satisfactorily or shed some load at substations in a blackout.  A
cascade of events leading to blackout usually occurs on a time scale of minutes to
hours and is completed in less than one day.

It is customary for utility engineers to make prodigious efforts to avoid
blackouts and especially to avoid repeated blackouts with similar causes.  These
responses to a blackout occur on a range of time scales longer than one day.
Responses include repair of damaged equipment, more frequent maintenance,
changes in operating policy away from the specific conditions causing the
blackout, installing new equipment to increase system capacity, and adjusting or
adding system alarms or controls.  The responses reduce the probability of
events in components related to the blackout, either by lowering their
probabilities directly or by reducing component loading by increasing
component capacity or by transferring some of the loading to other
components. The responses are directed towards the components involved in
causing the blackout.  Thus the probability of a similar blackout occurring is
reduced, at least until load growth degrades the improvements made. There are



similar, but less intense responses to unrealized threats to system security such
as near misses and simulated blackouts.

The pattern or vector of component loadings may be thought of as a system
state. Maximum component loadings are driven up by customer demand trends
via the operating policy.  High loadings increase the chances of cascading events
and blackouts. The loadings of components involved in the blackout are reduced
or relaxed by the responses to security threats and blackouts.  However, the
loadings of some components not involved in the blackout may increase. These
opposing forces driving the component loadings up and relaxing the component
loadings are a reflection of the standard tradeoff between satisfying customer
demands economically and security. The opposing forces apply over a range of
time scales.  We suggest that the opposing forces, together with underlying
growth in customer demand and diversity give rise to a dynamic equilibrium
and conjecture that this dynamic equilibrium is SOC.

We briefly indicate the roughly analogous structure and effects in an idealized
sand pile model that is expected to show SOC [Bak96].  Consider a large,
idealized sand pile that has grains of sand added at a continuously varying
location. When the local maximum gradient gets too large, sand at that location
is more likely to topple.  Events are the toppling of sand and cascading events
are avalanches.  The system state is a vector of maximum gradients at all the
locations in the sand pile.  The driving force is the addition of sand, which tends
to increase the maximum gradient, and the relaxing force is gravity, which
topples the sand and reduces the maximum gradient. SOC is a dynamic
equilibrium in which avalanches of all sizes occur and in which there are long
time correlations between avalanches.  The analogy between the sand pile and
the power system is shown in Table 1.  There are also some distinctions between
the two systems.  In the sand pile, the avalanches are coincident with the
relaxation of high gradients. In the power system, each blackout occurs on fast
time scale (less than one day), but the knowledge of which components caused
the blackout determines which component loadings are relaxed both
immediately after the blackout and for some time after the blackout.



Table 1. Analogy between power system and sand pile

Power system Sand pile
system
state

loading pattern gradient
profile

driving
force

customer
demand

addition of
sand

relaxing
force

response to
blackout

gravity

event limit flow or trip sand
topples

To summarize, we have given a qualitative description of the global dynamics
of a large scale electric power system. These global dynamics are broadly
analogous to the dynamics of an idealized sand pile model that is expected to
show SOC.  This outline of a possible explanation of SOC in a power system
shows the opposing forces that could give rise to a dynamic equilibrium with
SOC properties.  The opposing forces are, roughly speaking, the trends in load
demands weakening parts of the system and the responses to blackouts
strengthening parts of the system. It is interesting to reflect that responses to a
blackout are usually regarded as an outcome of a detailed investigation of
particular blackout causes. However, the more global view suggested here sees
responses to blackouts as an intrinsic part of the global system dynamics.



3 PROGRESS IN FIRST YEAR

3.1 FIRST YEAR MAIN ACCOMPLISHMENTS

This section summarizes the main accomplishments in the first year of work.  A
detailed technical account of these accomplishments can be found in the papers
reprinted in section 6.  A summary of these accomplishments organized by
project task can be found in section 3.2.

It is convenient to first list the three models used in the project so that they can
be identified briefly in the sequel:

• OPA model.  OPA is a software code to study self-organized criticality in
power system blackouts.  OPA models the cascading failures of the power
system using DC load flow and LP dispatch and includes long term dynamics
of load growth and power system improvement in response to blackouts.
OPA was developed by ORNL, PSerc at Wisconsin and University of Alaska
and is described in [Dobson01, Carreras01b] and section 6.1.

• Hidden Failure model. The hidden failure model is a software code to study
the effect of relay misoperation in cascading failure blackouts.  The hidden
failure model represents relay misoperation as a function of line loading and
uses DC load flow and LP dispatch.  The hidden failure model was developed
by PSerc at Cornell and is described in [Chen01] and section 6.2.

• CASCADE model.   CASCADE is a simple analytically solvable model to
study basic features of probabilistic cascading failure.  CASCADE was
developed by PSerc at Wisconsin and Cornell and is described in section 6.2.

The main accomplishments include:

• Increased understanding and development of the OPA model has yielded
behavior with many features of self-organized criticality on artificial power
networks and results with some similarity to the probability distributions of
blackout sizes observed in real blackout data from North America.  Key
insights achieved are the discovery of two types of critical points in the model
associated with generator and line limitations and the need to coordinate
generator and line upgrades.  [see section 6.1]

• The hypothesis that power systems show power law behavior and heavy
tails in the distribution of blackout sizes near a certain critical loading has
been tested with the OPA, Hidden Failure and CASCADE models.  The
results are broadly consistent with the hypothesis.  The hypothesis is
important for understanding how the operating decision of the power
system loading level relates to greatly increased risk of large blackouts. [see
section 6.2]



• Initial parameter sensitivity studies on the 176 bus WSCC system with the
Hidden Failure model suggest how changes in spinning reserve, protection
system improvements and prompt control by generation redispatch during
cascading events affect the probability of large blackouts. [see section 6.3]

• Network size scaling studies with the OPA model have confirmed regions of
power law behavior in the distribution of blackout sizes. [see section 6.1]

• The project has developed the CASCADE model to study basic features of
probabilistic cascading failure and derived a formula for its probability
distribution using combinatorial methods.  CASCADE represents the
progressive system weakening as the cascading outages proceed. [see section
6.2]

3.2 REPORT ON FIRST YEAR TASKS

This section summarizes the first year progress according to the planned tasks.
All first year tasks have been substantially completed as detailed below.

Task 1: Improve global models of series of cascading failures.  
(a) Clarify and develop representations of outages, overloads, and system

memory between blackouts (Dobson, Carreras, Newman).
(b) Search for heuristics, theory and simplifications that can lead to better

understanding (Carreras, Dobson, Thorp).  

• We discovered that there are two types of blackouts occurring in the OPA
model.  One type involves line overloads and the other type involves
generator overloads.  Different types of critical behavior arise near these
two system limits.  Coordination of generator and line limits is important
in the model and generator upgrade modeling has been reworked.

• We invented CASCADE, a new, analytically solvable model of
probabilistic cascading failure that represents the progressive system
weakening as the cascade proceeds.

• We developed a better understanding of extracting probability
distribution data from the hidden failure model and improved the
representation of multiply exposed lines.

Task 2: Implement global models in software
(a) Assess need for new LP solver to be able to simulate networks of more

realistic size (Carreras, Dobson).
 (b) Incorporate model improvements from Task 1(a) OR implement new

LP solver from Task 2(a) (Carreras)

• We have tested three different LP solvers for serial machines.  Of the
three, the most effective and fastest one for this type of problem is the
simplex method.  Our standard calculations are done over 100000 days in
order to gather enough statistical information on blackouts.  For a network



with 382 nodes with the fastest solver, this calculation takes about 4 weeks on
a G-4 Macintosh computer.  Therefore, the only way of handling larger
networks would be by moving to a massively parallel computer with a
parallel version of the LP-solver. This was not feasible within the constraints
of the project budget.

• The modeling of generator upgrades from Task 1(a) has been
developed and implemented in the OPA model.

• The improvement in the handling of multiply exposed lines has been
coded into the Hidden Failure model.

Task 3: Develop test networks
(a) Finish data set for IEEE 118 bus network (Dobson).
(b) Set up WSCC system for input to OPA code (Dobson).

• Data sets for the IEEE 118 bus and 179 bus WSCC system networks
have been created for the OPA code in the required format.  Parameters may
have to be adjusted to fine-tune the models.

Task 4: Study models by running software on test networks; develop
diagnostics and analyze and interpret results

(a) Scaling studies of the blackout dynamics for different network sizes
using current OPA model (Carreras).

(b) Parameter sensitivity studies on 176 bus WSCC system (Thorp)
(c) Investigate criticality as a function of loading in models without

network improvements (Carreras, Dobson, Thorp).  
• All these studies have been done and documented in section 6.

Task 5: Project first year report in November 2001

• This document is the project first year report.  It includes planning for
the second year tasks and is available in pdf format suitable for posting on a
website.



3.3 PROJECT COORDINATION

The project team has a substantial history of productive collaboration and is
producing results in close collaboration and papers with joint authorship
[Carreras00, Carreras01a, Carreras01b, Carreras01c, Carreras02, Dobson01,
Dobson02]. Coordination with Dr. David Newman at the Physics department in
the University of Alaska-Fairbanks is ongoing.  Ian Dobson spent a sabbatical
year visiting Cornell University and worked with Jim Thorp on this project.

 Team communication is a judicious combination of email, phone, and face to face
meetings.  There is a project web page hosted by PSerc at
http://www.pserc.wisc.edu/ecow/get/researchdo/certsdocum0/currentcer/
to log papers, presentations, and administration documents.



3.4 PAPERS AND PRESENTATIONS

The following two papers document in detail much of the technical progress on
the project and are reprinted in section 6.  The papers are in final form and can be
posted on a web site in pdf format.

Dynamics, Criticality and Self-Organization in a Model for Blackouts in
Power Transmission Systems, B.A. Carreras, V.E. Lynch, I. Dobson, and D.E.
Newman. to appear at 35th Hawaii International Conference on System Sciences,
Hawaii, January 2002. [see section 6.1]

Abstract: A model has been developed to study the global complex dynamics of
a series of blackouts in power transmission systems [1, 2].  This model has
included a simple level of self-organization by incorporating the growth of
power demand and the engineering response to system failures. Two types of
blackouts have been identified with different dynamical properties. One type of
blackout involves loss of load due to lines reaching their load limits but no line
outages. The second type of blackout is associated with multiple line outages.
The dominance of one type of blackouts versus the other depends on
operational conditions and the proximity of the system to one of its two critical
points. The first critical point is characterized by operation with lines close to
their line limits.  The second critical point is characterized by the maximum in the
fluctuations of the load demand being near the generator margin capability. The
identification of this second critical point is an indication that the increase of the
generator capability as a response to the increase of the load demand must be
included in the dynamical model to achieve a higher degree of self-organization.
When this is done, the model shows a probability distribution of blackout sizes
with power tails similar to that observed in real blackout data from North
America.

Examining Criticality of Blackouts in Power System Models with Cascading
Events, I. Dobson, J. Chen, J.S. Thorp, B.A. Carreras, and D.E. Newman, to
appear at 35th Hawaii International Conference on System Sciences, Hawaii,
January 2002. [see section 6.2]

Abstract: As power system loading increases, larger blackouts due to cascading
outages become more likely.  We investigate a critical loading at which the
average size of blackouts increases sharply to examine whether the probability
distribution of blackout sizes shows the power tails observed in real blackout
data.  Three different models are used, including two simulations of cascading
outages in electric power transmission systems.  We also derive and use a new,
analytically solvable model of probabilistic cascading failure which represents the
progressive system weakening as the cascade proceeds.



The following five presentations were given:

Evidence for self-organized criticality in electric power blackouts, B. A.
Carreras, D. E. Newman, I. Dobson, and A. B. Poole, 34rd Hawaii International
Conference on System Sciences, Maui, Hawaii, January 2001.

Modeling blackout dynamics in power transmission networks with simple
structure, B.A. Carreras, V.E. Lynch, M. L. Sachtjen, I. Dobson, D. E. Newman,
34th Hawaii International Conference on System Sciences, Maui, Hawaii, January
2001.

An initial model for complex dynamics in electric power system blackouts, I.
Dobson, B. A. Carreras, V.E. Lynch, D. E. Newman, 34th Hawaii International
Conference on System Sciences, Maui, Hawaii, January 2001.

Analysis of electric power system disturbance data, J. Chen, J.S. Thorp, M.
Parashar, 34th Hawaii International Conference on System Sciences, Maui,
Hawaii, January 2001.

Cascading failure and self-organized criticality in electric power system
blackouts, I. Dobson, D.E. Newman, B.A. Carreras, and Vicki Lynch, NSF
Workshop on Engineering the transport industries, Georgetown, Washington
DC, August 13-14, 2001.

The following journal paper was submitted to the IEEE Transactions on power
systems:

Evidence for self-organized criticality in a time series of electric power system
blackouts, B. A. Carreras, D. E. Newman, I. Dobson, and A. B. Poole, preprint,
submitted to IEEE Transactions on Power Systems, December 2001. [see section
6.4]

Abstract:  We analyze a 15-year time series of North American electric power
transmission system blackouts for evidence of self-organized criticality.  The
probability distribution functions of various measures of blackout size have a
power tail and R/S analysis of the time series shows moderate long time
correlations.  Moreover, the same analysis applied to a time series from a
sandpile model known to be self-organized critical gives results of the same
form.  Thus the blackout data is consistent with self-organized criticality.  A
qualitative explanation of complex dynamics observed in electric power system
blackouts is suggested.



4 PLAN FOR SECOND YEAR WORK

The first year of the project concentrated on improving, implementing and
understanding models capturing the complex dynamics of series of blackouts.
These first year activities will be continued in the second year but emphasis will
shift towards improving the realism of the models and data, trying to reproduce
qualitative features of historical NERC data on blackouts, and assessing the
prospects for controlling the complex model dynamics to mitigate or avoid large
blackouts.

4.1 SECOND YEAR TASKS

The second year of project work builds on the first year tasks.  The planned
second year project tasks are shown below.  There will be a project meeting of all
the investigators at the HICSS meeting in January 2002 to revise the second year
tasks if this is necessary in the light of the most recent progress and make more
detailed plans and assignments.  The revised plans will be documented in late
January after the HICSS meeting.

Task 6: Apply improved global models to more realistic test networks and
analyze and interpret results

(a) Studies using OPA model (Carreras)
(b) Studies using Hidden Failure model (Thorp)

Task 7: Refine data, modeling, algorithms, analysis and software to improve
the results from task 6.  

The main objective of task 7 is to reproduce and explain qualitative
features of the historical NERC data on blackouts using the models developed by
the project.  Coordination between Wisconsin, ORNL and Cornell will be
needed.  The following task 7 subtasks will be revised in the light of the progress
in the first year tasks.

(a) Implement model upgrades to efficiently compute larger networks
(b) Develop models, data sets, and analysis techniques as needed.
(c) Develop heuristics and theory that can lead to better understanding

Task 8: Report on any implications or insights for power system operation.
Assess the prospects for controlling the complex model dynamics to

mitigate or avoid large blackouts.  This task will require advice from David
Newman of the University of Alaska-Fairbanks about general methods of
control of complex systems near criticality.

Task 9: Draft final report in November 2002; final report finished January 2003
The draft final report will be circulated for comments to be included in the

final version. The working title of the final report is  "Complex systems approach
to cascading failures."  The final report will be produced in pdf format suitable for
posting on a website.

4.2  DELIVERABLES



The deliverables for this project will include documented information in the form
of technical papers.  In addition, a final report will be prepared to include all of
the details of the tasks.

4.3  PROJECT UNCERTAINTIES

1. Run time of model codes on large (greater than about 300 bus) networks is
becoming excessive.  Options for code upgrades to solve this are being
explored.

2. Although the global models under development are simplified, they exhibit
complicated behavior.  The development of new insights and understanding
of the models is very helpful for the project progress.  Although good
progress in understanding is being made and the research team caliber and
expertise suggests that this good progress will continue, it is hard to schedule
insights.

3. In general, the project is research pioneering an entirely new perspective on
power system blackouts.  Development of new models, analysis tools and
insight is an iterative process.  Because the work is novel, there is some
uncertainty in estimating the difficulty of project tasks in advance.

4.4 BUDGET

B. A. Carreras and B. J. Kirby (ORNL)
$60,000 per year for 2 years, beginning Jan 1, 2001.

Ian Dobson (PSERC Wisconsin)
$40,000 per year for 2 years, beginning Jan 1, 2001.

Jim Thorp (PSERC Cornell)
$10,000 per year for 2 years, beginning Jan 1, 2001.

Work is approximately at 50% completion.  Some carryover of funds into next
fiscal year is anticipated to allow work in November-December 2001 to proceed.
ORNL plans to carry over about $25,000.
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Abstract

A model has been developed to study the global
complex dynamics of a series of blackouts in power
transmission systems [1, 2].  This model has included a
simple level of self-organization by incorporating the
growth of power demand and the engineering response to
system failures. Two types of blackouts have been
identified with different dynamical properties. One type
of blackout involves loss of load due to lines reaching
their load limits but no line outages. The second type of
blackout is associated with multiple line outages. The
dominance of one type of blackouts versus the other
depends on operational conditions and the proximity of
the system to one of its two critical points. The first
critical point is characterized by operation with lines
close to their line limits.  The second critical point is
characterized by the maximum in the fluctuations of the
load demand being near the generator margin capability.
The identification of this second critical point is an
indication that the increase of the generator capability as
a response to the increase of the load demand must be
included in the dynamical model to achieve a higher
degree of self-organization. When this is done, the model
shows a probability distribution of blackout sizes with
power tails similar to that observed in real blackout data
from North America.

1. Introduction

The first version of the ORNL-PSerc-Alaska (OPA)
model of series of blackouts in power system
transmission systems was proposed in [1, 2].  This first
version of the OPA model showed how the slow
opposing forces of load growth and network upgrades in
response to blackouts could self organize the power
system to dynamic equilibrium.  Blackouts were modeled

by overloads and outages of lines determined in the
context of LP dispatch of a DC load flow model. This
model showed complex dynamical behaviors and has a
variety of transition points as a function of increasing
power demand [3].  Some of these transition points have
the characteristic properties of a critical transition.  That
is, when the power demand is close to a critical value,
the probability distribution function (PDF) of the
blackout size has an algebraic tail and across the critical
point the system changes sharply.  One such
consequence of the critical transition is that at these
transition points, the power served is maximum and the
risk for blackouts increases sharply.  This fast variation
near the critical point is illustrated in Fig. 1.  Therefore,
it may be natural for power transmission systems to
operate close to and somewhat below those points.
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The fact that, on one hand, there are critical points
with maximum power served and, on the other hand,
there is a self-organization process that tries to maximize
efficiency and minimize risk may lead to a power
transmission model governed by self-organized criticality
(SOC) [4].  

The operation of power transmission systems results
from a complex dynamical process in which a diversity
of opposing forces regulate both the maximum
capabilities of the system components and the loadings
at which they operate. These forces enter in a highly
nonlinear manner and may cause a self-organization
process to be ultimately responsible for the regulation of
the system.  This view of a power transmission system
considers not only the engineering and physical aspects
of the power system, but also the engineering,
economic, regulatory and political responses to blackouts
and increases in load power demand.  A detailed
incorporation of all these aspects of the dynamics into a
single model would be extremely complicated if not
intractable due to the human interactions involved.
However, it is useful to consider simplified models with
some approximate overall representation of the opposing
forces in order to gain some understanding of the
complex dynamics in such a self-organized framework
and the consequences for power system planning and
operation.

The OPA model is motivated by analyses of
NERC data that indicate power tails in the probability
distribution of the size of North American blackouts
[5,7].  (Power tails decay as according to a power law and
are also exhibited by complex systems near criticality.)   
These observations indicate the non-Gaussian character of
the blackout size probability distributions and are of
concern because they indicate a much larger risk of large
blackouts than might be expected.  Confirming and
understanding this power dependence in the probability
distribution tails is of course very important in doing
any risk analysis of power systems.
  Note that transition points are essentially determined
from power systems physics and engineering constraints,
however, the dynamical evolution involves aspects that
are less clearly defined by simple deterministic rules.
These components of the model may be developed at
different levels of complexity representing different
approximations to the “real” system.

The main purpose of the OPA model is to study the
complex behavior of the dynamics of series of blackouts.
In this paper we examine critical points of the OPA
model to understand them better.  This understanding
allows us to extend the modeling of the self-organization
of the system to represent generator upgrades as well as
network upgrades.  With this improvement to the OPA
model, we demonstrate self-organization of the system to
a critical point at which the probability distribution of

blackout size resembles the probability distribution of
the NERC data.

2. OPA fast dynamics blackout model

In the OPA model of [1,2], the dynamics involves
two intrinsic time scales. There is a slow time scale, of
the order of days to years, over which load power demand
slowly increases and the network is upgraded in
engineering responses to blackouts.  These slow
opposing forces of load increase and network upgrade self
organize the system to a dynamic equilibrium.  These
slow dynamics are summarized in Appendix I.  There is
also a fast time scale, of the order of minutes to hours,
over which cascading overloads or outages may lead to
blackout.

Fig. 2. A 94-node tree network with 12
generators and 82 loads.

To investigate the critical points of the OPA model
in section 3, we suppress the modeling of the slow
dynamics responsible for the self-organization and study
only the fast dynamics of the blackouts.  That is, we fix
the network by suppressing the network upgrades and
treat the load demands as deterministic or random
parameters to be specified as inputs to the model. This
section explains the fast dynamics of the OPA model.

In this paper, we investigate the blackout
dynamical model applied to ideal grid networks that have
a tree structure. An example of a tree network with 94
nodes is shown in Fig. 2.

In any network, the network nodes (buses) are either
loads (L) (gray squares in Fig. 2), or generators  (G),
(black squares in Fig. 2). The power Pi injected at each
node is positive for generators and negative for loads, and



the maximum power injected is Pi
max . The transmission

line connecting nodes i and j has power flow F ij,
maximum power flow Fij

max , and the impedance of the

line z ij.  There are N N NN G L= +  total nodes and N l

lines, where NG is the number of generators and NL is the
number of loads.

The blackout model is based on the standard DC
power flow equation,

F AP= (1)

where F is a vector whose NL components are the power
flows through the lines, F ij, P is a vector whose NN–1
components are the power of each node, P i, with the
exception of the reference generator, P0, and A  is a
constant matrix. The reference generator power is not
included in the vector P to avoid singularity of A  as a
consequence of the overall power balance.

The input power demands are either specified
deterministically or as an average value plus some
random fluctuation around the average value. The random
fluctuation is applied to either each individual load or to
“regional” groups of load nodes.

The generator power dispatch is solved using
standard LP methods.  Using the input power demand,
we solve the power flow equations, Eq. (1), with the
condition of minimizing the following cost function:

Cost = ( ) - ( )
Œ Œ

Â ÂP t W P ti
i G

j
j L

(2)

We assume that all generators run at the same
cost and all loads have the same priority to be served.
However, we set up a high price for load shed by setting
W = 100. This minimization is done with the following
constraints:
1) Generator power 0 £ £ ŒP P i Gi i

max

2) Load power P j Lj £ Œ0

3) Power flows F Fij ij£ max

4) Power balance Pi
i G LŒ »

Â = 0

This linear programming problem is numerically solved
using the simplex method as implemented in [6].  The
assumption of uniform cost and load priority can of
course be relaxed but changes to the underlying dynamics
are not likely from this.

In solving the power dispatch problem for low load
power demands, the initial conditions are chosen in such
a way that a feasible solution of the linear programming
problem exists.  That is, the initial conditions yield a
solution without line overloads and without power shed.
Increases in the average load powers and random load
fluctuations can cause a solution of the linear
programming with line overloads or requires load power

to be shed. At this point, a cascading event may be
triggered.

A cascading overload may start if one or more lines
are overloaded in the solution of the linear programming
problem. We consider a line overloaded if the power flow
through this line is within 1% of Fij

max . At this point,

we assume that there is a probability p2 that an
overloaded line will outage.  If an overloaded line
outages, we reduce its corresponding Fij

max  by large

amount (making it effectively zero) to simulate the
outage, and a new solution is calculated. This process
can require multiple iterations and continues until a
solution is found with no more outages.

This fast dynamics model does not attempt to
capture the intricate details of particular blackouts, which
may have a large variety of complicated interacting
processes also involving, for example, protection
systems, dynamics and human factors.  However, the fast
dynamics model does represent cascading overloads and
outages that are consistent with some basic network and
operational constraints.

Calculations with the fast dynamics model are
carried out by slowly increasing the average load demands
over 105 iterations.  If one regards each model run as
occurring at successive peak daily loads (when blackouts
are most likely), then this corresponds to an average load
demand increasing slowly in a power network under fixed
conditions over a period of 105 days.  This is not because
we try to simulate a real power transmission network, as
this time scale is too long for the power system
remaining under the same rules and conditions. Rather it
is done in order to accumulate the necessary statistics to
calculate the PDFs and other statistical measures needed
to understand the system and ultimately do risk analysis.
This emphasizes the problem of working with real data
[5,7], which has only been available for a period of time
more than an order of magnitude shorter than the time
used in these calculations.

3. Critical points of the OPA fast dynamics
blackout model

This section studies the behavior of blackouts in the
fast dynamics model of section 2 as the average load
demand is increased.  As the power demand increases, we
found several transition points. Some of these transition
points have the characteristic properties of a critical
transition.  That is, when the load power demand is
close to a critical value, the probability distribution
function (PDF) of the blackout size has an algebraic tail
and at the critical loading the risk for blackouts increases
sharply.  In particular, there is a sudden change in the
rate of change of load shed as a function of the power
demand.  These transitions are caused by limits in the



power system and they can be grouped in two types of
limiting conditions:  
1. Limits set by the available power generation.
2. Limits set by the transmission capacity of the grid.  

An example with two of these limits is shown in
Fig. 3. For a tree network with 382 nodes (12 generators
and 370 loads), we increase power demand by increasing
all loads at the same rate. The load demand in this
example is deterministic and there is no random
fluctuation in the load demands.  As we reach a power
demand of 31480, the total generator capacity, load
power shedding starts. As the demand continues to
increase, all power above 31480 is shed.  When the
demand reaches 45725, the power flow in some lines
reaches the line power flow limit and some line outages
are produced. This causes a further increase in the load
power shed.
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Fig. 3. Normalized power shed and
number of outaged lines for a tree
network with 382 nodes as a function of
power demand.

Why is there a second transition after the total power
served is kept constant that is therefore independent of
the level of demand?  The reason is that the individual
loads increase and the power shed is not uniform over all
loads. Therefore, even if the total power served is
constant, the power delivered to some of the loads is
increased as the total demand increases and that leads to
overloading lines and possible line outages.  The second
transition point occurs at the same value of the power
demand even in the absence of the first critical point,
because it depends on the power of individual loads and
the maximum power flow that the lines connecting them

can carry.  These results come from studying a sequence
of cases under the same conditions but without random
load fluctuations.  The important point is that the first
transition point is a function of the total power demand,
while the second depends on the local value of the loads
near the lines that are closer to overload.

Some of these transition points have the
characteristic properties of a critical transition. For the
calculation shown in Fig. 3, we have used the power
demand as control parameter and we have done a scan
starting with all load nodes having the same power loads
and not allowing for fluctuations.  Clearly the power
generation limit (the first inflection point in the load-
shed curve in Fig. 3) behaves as a second order transition
point, characterized by a continuous function with
discontinuous derivative. The critical point in this case is
given by the generator power margin reaching zero, that
is DP P P

i G
i Demand∫ Â - =

Œ
0.  The load shed is a

continuous function of the load power demand, but its
derivative with respect to the load power demand is
discontinuous at the transition point.

In the proximity of the generator critical point, the
PDF of the normalized load shed has an algebraic tail. To
calculate the PDF, we have to introduce noise into the
system and this is done by introducing random
fluctuations of the load power demands. The load
fluctuations are controlled by the parameter g described in

Appendix I.  For a given value of g, the average

fluctuation induced in the total power demand is

g -( ) ( )1 2 NL . Therefore, we can also use the

parameter g as a control parameter to scan over the

critical point.  
For the sequence of results in Fig. 4, the first critical
point is reached with g = 1.35. This corresponds to an

averaged fluctuation in the power demand of 10%. As g
increases, more of the fluctuations in power demand
reach the critical point, and the PDF of the normalized
load shed develops an algebraic tail with decay index
close to –1. Above the critical point, the PDF changes
to an exponential tail.  This is shown in Fig. 4 for a 94-
node tree network. We have chosen network conditions
with the generator power limit well below the limits set
by the transmission lines in order to avoid interacting
with the line limits critical point.  In this case, we have
given an averaged value to the generation margin
capability of 5% and varied the maximum daily
oscillation of the loads.  Naturally, in this situation there
are no outages in the system and power shedding is
simply due to a supply shortage.

The second transition point in Fig. 3 is associated with
line limits and is more difficult to characterize.  To



identify this transition point, it is useful to define the
fraction of overload for a given line as

M
F

Fij
ij

ij

= max (3)
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Fig. 4. PDF of the normalized load shed
for a tree 94-node tree network for
different levels of the load fluctuations.

We can then calculate M M
ij

ijmax max∫ .  The second

transition point in Fig. 3 is given by M max = 1.  The
properties of this type of transition point depend on the
value of the parameter p2, the probability that an
overloaded line outages. Of course, if p 2 = 0, there are
no line outages and this transition point has similar
properties as the generator limit, and looks like a second
order transition. However, for p 2 = 1, all overload lines
outage.  This is the value of p2 used in the calculation
shown in Fig. 3 and the transition point has some of the
features of a first order transition characterized by a
discontinuous jump in the function. In Fig. 5, we show
examples of transitions for these different values of the
relevant parameters. For values of p2 between 0 and 1,
we have intermediate situations that are more difficult to
characterize. Only for p 2 = 0 does the PDF of the load
shed near the critical point have a clear algebraic tail.

The full classification of the properties of these
transition points for all values of the parameters is
beyond the scope of this paper.

In trying to describe the realistic dynamics of
power transmission systems, it is found that the best
choice of parameters is when both critical points are
close to each other.  In this case, we can combine the

existence of power tail in the PDF of the load shed with
the presence of outages.
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scenarios are included.

4. Self-organization dynamics

To transform the model described in Section 2 into a
self-organized dynamical system we must include some
of the opposing forces that act on the power
transmission system. One example of these opposing
forces is the growth of the demand and the system
response through upgrading the system.  These opposing
mechanisms were incorporated in the model in Refs. [1,
2] and a short description of this model is given in the
Appendix I.  In this model, all loads are multiplied by a
fixed constant g > 1 at the start of the day. This causes

an exponential increase in the average load demand.  The
generator capabilities are incremented in the same way;
therefore, the generator limits are never reached in this
model. The response mechanism was triggered by the
blackout outages.  When there is a blackout, the overload
lines have their limits incremented by multiplying them
by m > 1.  The combined effect of these slow dynamics

is that the system self-organizes close to the critical
point of the outages (second point in the example of
Fig. 3).

In order to have a self-organization mechanism that
includes the growth of maximum generator power, we
have used tested several algorithms. One of the simplest
forms incorporating such a mechanism is based on the
increase of maximum generator power as a response to



the load demand.  We have limited the model to increases
in maximum generator power at the same nodes that
initially had generators.  In doing so, we have
implemented the following rules:
a. The increase in power is quantized.  This may reflect

the upgrade of a power plant or adding generators.
We have tried two possibilities. The increase is
taken to be either a fixed quantity or a fixed ratio to
the total power. The second approach seems to work
better, in the sense of convergence to a steady state.
Therefore, we introduce the quantity

DP P Na T G∫ ( )k (4)

Here, PT is the total power demand, NG is the
number of generator nodes, and k is a parameter that

we have taken to be a few percent.  

b. To be able to increase the maximum power in node
j, the sum of the power flow limits of the lines
connected to j should be 20% larger than the
existing generating power plus the addition at node
j.  The 20% value is an arbitrary quantity that
provides a safety margin so that the line ratings are
coordinated with the generator capabilities.

c. A second condition to be verified before any
maximum generator power increase is that the mean
generator power margin has reached a threshold
value. That is, we define the mean generator power
margin at a time t as:

DP

P

P P e

P e

j
j G

t

t=
-

Œ
Â 0

0

l

l (5)

where P0 is the initial power load demand.

d. Once condition c) is verified, we choose a node at
random to test condition b). If the chosen node
verifies condition b), we increase its power by the
amount given by Eq. (4). If condition b is not
verified, we choose another node at random and
iterate.  After power has been added to a node, we
recalculate the mean generator power margin,
Eq. (5), and continue the process till DP/P is above
the prescribed quantity.  This is motivated by the
fact that utilities are, in general, likely to build a
power plant where the transmission capacity already
exists.

This algorithm seems to provide the self-organization
process that we were looking for in the following sense.
The maximum generator power stays close to and below
the critical point, which results in PDFs with power law
tails.  The new measure of criticality is the mean

generator power margin and this quantity converges to a
steady state in a reasonable amount of time.  Its mean
values is approximately

D DP

P

P

P Nthreshold G

= - k
2

. (6)

This result is reasonable because only one node gets an
increase at a given time.  
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Fig. 6.  Time evolution of DP/P for a case
with k = 0.04, threshold DP/P = 0.3.

It is also possible to introduce a time delay between
the detection of a limit in the generation margin and the
increase of the maximum generator power. This delay
would represent the construction time. However, the
result is the same as increasing the value of k in Eq. (4),

which can also give an alternative interpretation for k.

In Fig. 6, we have plotted an example of time
evolution of the generator margin DP/P for a case with
k  = 0.04, threshold DP/P = 0.3, and 10 generator

nodes. Increasing k gives larger oscillations. The results,

characterized by the PDF of the normalized power shed,
do not seem to depend on the particular value of k. They

do depend on the value taken for the threshold of DP/P.
If the latter is not the critical value, we do not get critical
behavior, as expected.  Note that the critical value for
DP/P is a function of the maximum oscillation of the
power load as described in Section 3.

Once we have determined from the load scans of
Section 3 what the critical points are, we can explore the
dynamics of self-organization. In combining the two
dynamical loops, the real self-organized critical point that
the system is operating near is the point where the two
types of critical points are close to each other. Therefore,



both the line improvement and the generator upgrade in
the dynamics of the system are needed in the dynamical
evolution. Once we have both of them together, the
PDFs of the power shed have well-developed power tails.
This is shown in Fig. 7, where the PDF of the load shed
normalized to the total power demand for three different
tree configurations has been plotted.
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Fig. 7.  PDF of the load shed normalized
to the total power demand for four
different tree networks.

The power-law-scaling region increases with the
number of nodes in the network. The power decay index
is practically the same for the four networks and close to
–1.0.  The particular values of the decay index for each
network are given in Table I.
The range of the power tail region is defined as the ratio
of the maximum and minimum load shed described by
the power law.  From the values obtained for the four
networks listed in Table I, we can see that the range
scales with the network size.

Table I

Number
of nodes

PDF
decay index

Range of
power tail

46 -1.13 7
94 -1.16 17

190 -1.16 36
382 -1.21 62

The PDFs plotted in Fig. 7 are very similar to the
PDFs of the normalized load shed obtained by direct
power demand scan near the critical points with an
important difference that they are now self organized.
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Fig. 8.  PDF of the normalized load shed
for the 382-node tree network and for
the North American blackouts in 15
years of NERC data normalized to the
largest size blackout

The form of these PDFs, or at least their power tail,
seems to have a universal character.  Therefore, we can
try to compare the PDF of the normalized load shed
obtained for the largest network with the PDF of the
blackouts obtained in the analysis of the data from the
last 15 years in the U.S. We have plotted the latter
normalizing the events to the largest value over this
period of time.

The level of agreement between the power tails of
these two PDFs is remarkable. This seems to indicate
that the dynamical model for the blackout has captured
some of the main features of the data.

5. Discussion and conclusions

The opposing forces organizing the system,
which in this paper are crudely represented by load
demand increases and upgrades to network and generation
capacity, may also be seen as the outcomes of design and
operational procedures that trade off system security (risk
of blackout) and maximizing the energy or peak power
delivered.  It is not clear how the self-organization we
model is divided between design and planning procedures
and operational procedures.  In power system design and
planning, design rules can incorporate previous
experience of blackouts or designs may be tested by
extensive simulations.  In operations, real blackouts do
of course occur and have significant impacts on



operation, upgrades and repair, but there are also
engineering responses to simulated events.  A key
question addressed but not fully answered in this paper,
assumes from the power tails observed in the NERC data
that North American power systems have been operated
near a critical point and asks why or how this arises.
Operational security criteria such as the n-1 criterion do
influence the power system loading and planning, as well
as the probability of cascading outages, and it would be
interesting to determine the extent to which application
of these criteria would lead to operation of the system
near critical loading at peak load.  That is, do specific
security criteria contribute to self-organization to
criticality?   A fundamental understanding of the relation
between security criteria and the risk or distribution of
blackouts is particularly needed as the tested practices of
the past are changed to accommodate deregulated power
systems.

To understand the complex dynamics of series
of blackouts in power systems, we proposed the OPA
model. The OPA model incorporated a simple level of
self-organization by including the growth of the load
power demand and the engineering response to system
failures. This model shows a variety of possible
transition points, some linked to line outages in the
system and others linked to the limits in the generation
capacity. We have found that critical behavior emerges
when these transition points correspond to similar power
demand levels. Close to this critical point, the system
reaches a maximum capacity for power transmission and
the PDF of the blackout sizes have a power tail.

For the system to self-organize near to this
critical point, we have to model the dynamics of the
upgrading of the generator capacity as a response to the
increased load demand. This leads to a double response
loop in the model: 1) line upgrades and 2) generator
upgrades.  Under these conditions, the model has the
characteristic properties of a system governed by self-
organized criticality. The PDF of the blackouts size has
the same power dependence that have been found from
the analysis of NERC data for the North American power
grid over a period of 15 years.

In these studies, we have limited the application
of the model to idealized power grid systems with tree
structure.  Applications to more realistic power networks
are under way.
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Appendix I: Slow dynamics of load increase
and network upgrade in OPA model.

The slow dynamics proposed in [1, 2] model the
growth of the demand and response to the blackout by
upgrades in the grid transmission capability. The slow
dynamics is carried out by a simple set of rules. At the
beginning of the day t, we apply the following rules:
1. Growth of the power demand.  All loads are

multiplied by a fixed parameter l that represents the

daily rate of increase in electricity demand. On the
bases of the past electricity consumption, we had
estimated that l = 1.00005. This value corresponds

to a yearly rate of 1.8%.

P t P t i Li i( ) = -( ) 'l 1 for (AI-1)

Equally, the maximum generator power is increased
at the same rate

P t P t i Gi i
max max( ) = -( ) 'l 1 for (AI-2)

2. Power transmission grid improvement.  We assume
a gradual improvement in the transmission capacity
of the grid in response to the outages and blackouts.
This improvement is implemented through an
increase of Fij

max  for the lines that have overload

during a blackout. That is.

F t F tij ij
max max( ) = -( )m 1 (AI-3)

if the line ij overloads during a blackout.  We take m
to be a constant and this parameter is the main
control parameter in this system

3. Daily power fluctuations.  To represent the daily
local fluctuations on power demand, all power loads
are multiplied by a random number r, such that
1 g g£ £r .  We generally choose g in the range 1

to 1.4.  We also assign a probability for a random
outage of a line. We represent a line outage by
multiplying its impedance by a large number k1 and

dividing its corresponding Fij
max  by another large



number k2. In the present calculations, these

numbers are of the order of 1000.
After applying these three rules to the network

parameters, we look for a solution of the power flow
problem using linear programming as described in
section 2.
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Abstract

As power system loading increases, larger blackouts due
to cascading outages become more likely. We investigate a
critical loading at which the average size of blackouts in-
creases sharply to examine whether the probability distri-
bution of blackout sizes shows the power tails observed in
real blackout data. Three different models are used, includ-
ing two simulations of cascading outages in electric power
transmission systems. We also derive and use a new, an-
alytically solvable model of probabilistic cascading failure
which represents the progressive system weakening as the
cascade proceeds.

1. Introduction

Analyses [5, 8] of 15 years of North American black-
out data [1] show a probability distribution of blackout size
which has heavy tails and evidence of power law depen-
dence in these tails [5, 8]. These analyses show that large
blackouts are much more likely than might be expected
from, say, a Gaussian distribution of blackout size in which
the tails decay exponentially. The power tails of probability
distributions of blackout size merit attention because of the
enormous cost to society of large blackouts.

In complex systems, power tails in probability distribu-
tions are associated with systems at criticality. Other indi-
cators of criticality are changes in gradient or a discontinu-
ity in some measured quantity. One purpose of this paper
is to examine the occurrence of power tails and criticality
as power system loading is varied. We examine expected
blackout size and pdfs as loading is varied in three differ-
ent models. The first model is a simple analytic model of
cascading failure and the second and third models are simu-
lations of cascading outages in electric power transmission
systems. In any power system, at zero loading there are no
blackouts and at any absurdly large loading there is always
a blackout. We examine the nature of the transition between
these two extremes.

2. CASCADE model

We want to capture some general features of probabilis-
tic cascading failure in a new model simple enough to allow
exact analysis. The general features are:

1. Multiple components, each of which has a random ini-
tial loading.

2. When a component overloads, it fails and transfers
some load to the other components.

Property 2 can cause cascading failure: an overload addi-
tionally loads other components and some of these other
components may also overload, leading to a possible cas-
cade of overloads. The extent of the cascade depends on
the random initial component loadings. The components
which are not (yet) overloaded become progressively more
loaded as the cascade proceeds. Thus CASCADE models
the weakening of the system as the cascade proceeds.

2.1. Description of model

The CASCADE model has n identical transmission lines
with initial loadings (power flows) which are random. For
each line the minimum loading is Lmin and the maxi-
mum loading is 1. For j=1,2,...,n, line j has initial load-
ing Lj which is a random variable uniformly distributed on
[Lmin, 1]. The average loading L = (Lmin + 1)/2. Also
Lmin = 2L− 1. L1, L2, · · · , Ln are independent.

Lines are outaged when their loading exceeds 1. When
a line is outaged, a fixed amount of load ∆ is transferred to
each of the lines. Thus ∆ is the amount of load increase on
any line when another line outages. Let p be the probability
thatL1 lies in an interval of length ∆ contained in [Lmin, 1]:

p =
∆

1− Lmin =
∆

2− 2L
(1)

It is convenient to assume that the values of ∆ are quantized
so that q = 1/p = (1 − Lmin)/∆ is an integer. Then
[Lmin, 1] can be partitioned into q intervals of length ∆.



To start the cascade, we assume an initial disturbance
which loads each line by an additional amount ∆. Other
lines may then outage depending on their loadings Lj and
the outage of any of these lines will distribute an additional
loading ∆ that can cause further outages in a cascade.

The model parameters are summarized in Table 1. All
the model parameters can be specified in terms of the aver-
age line loading L, the amount of load ∆ distributed to each
line upon an overload, and the number of lines n.

Table 1. CASCADE parameters

description comment

n number of lines
L average line loading
1 max line loading

Lmin min line loading Lmin = 2L− 1
∆ load increase at each

line when outage
p probability L1 in p = ∆/(2− 2L)

interval of length ∆
q the integer 1/p q∆ = 1− Lmin

2.2. Discussion of model

It is plausible that the general features of cascading fail-
ure captured in CASCADE can be present in cascading fail-
ure of power system transmission lines. However, CAS-
CADE is much too simple to represent with realism most
of the detailed and probably significant aspects of a power
system. Obvious deficiencies of CASCADE include the
transfer of loading upon overload without regard to net-
work structure, an artificial uniformity in the transmission
lines and their interactions, and no representation of gener-
ation changes or failure. Analysis of CASCADE can only
suggest general qualitative behavior that may be present in
power system cascading failures.

We discuss the parameter ∆. In a power system, sup-
pose that a transmission line has maximum loading 1 and
it overloads by a small amount so that the loading just be-
fore outage is approximately 1. Then, assuming a DC load
flow model, the outage causes the other line flows to change
according to line outage distribution factors [12]. The pa-
rameter ∆ in CASCADE corresponds to line outage distri-
bution factors averaged over all lines and all outaged lines.
In practice, the line outage distribution factors vary consid-
erably according to the lines considered. Only a subset of
lines may have loading significantly increased or decreased
by an outage.

If ∆ is very roughly estimated by averaging line outage
distribution factors, then it depends on the average amount

of parallel paths in the network. In the special case of a net-
work of all parallel lines, the amount of load transferred to
other lines is 1/(number of intact lines− 1) ≈ 1/n, at least
for the first few outages. In the case of the 179 bus model
of the WSCC system with number of lines n = 204, the
average line outage distribution factor is 0.0026 ≈ 1/(2n).
More highly meshed networks such as those in the Mid-
western United States would tend to have smaller average
line outage distribution factors.

In some cascading failures, power is redispatched so that
an overload on a line is relieved. This also transfers power
to other lines, but much less power is transferred than when
the line outages. This process corresponds to a smaller
value of ∆. There are also many other ways in which a
disturbance can outage lines, including interactions via dy-
namics and via the protection system.

The overload of a line by redistribution of the power flow
when another line outages depends both on the line load-
ing and the line outage distribution factor. The CASCADE
model has a fixed ∆ corresponding to the line outage dis-
tribution factor but represents random variation in the line
loadings.

2.3. Distribution of blackout size

Measure blackout size by S, the number of lines out-
aged. S is a discrete random variable on 0, 1, 2, ..., n. The
distribution of S is derived in appendix A and is given by
the following formulas:

If np ≤ 1 then

P [S = r] =
1

r + 1

(
n
r

)

((r + 1)p)r(1− (r + 1)p)n−r

(2)

If np ≥ 1, then q = 1/p ≤ n and

P [S = r] =






equation (2) ; r ≤ q − 1
0 ; q ≤ r ≤ n− 1
1−

∑n−1
s=0 P [S = s] ; r = n

(3)

Note that (2) gives P [S = q − 1] = 0 and that (2) and (3)
agree for np = 1.

Consul [9] introduced the following quasibinomial dis-
tribution to model an urn problem in which the player makes
strategic decisions:

P [X = r] =
(
n
r

)

p(p+ rφ)r−1(1− p− rφ)n−r (4)

for r = 0, 1, ..., n and p + nφ ≤ 1. For the special case
φ = p and (n + 1)p ≤ 1, we have X = S and that S has
the quasibinomial distribution. Consul [9] has derived the



mean of distribution (4) and by setting φ = p in Consul’s
formula, we obtain

ES = np

n−1∑

r=0

(n− 1)!
(n− r − 1)!

pr , np ≤ 1 (5)

2.4. Results

The distribution of blackout size S defined by (2), (3)
depends on p and n. For the first series of results we use 100
lines (n = 100). The mean blackout size ES as a function
of p is shown in Figure 1. There is a change in slope near
p = 0.01 = 1/100 and, for larger p, the mean blackout size
saturates at 100 lines.
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p

20

40

60

80

100
ES

Figure 1. Mean blackout size ES versus prob-
ability p for n = 100.

Choose ∆ = 0.005 = 1/(2n). Then the mean blackout
size ES as a function of average loading L is shown by the
solid line in Figure 2. For a fixed ∆, Figure 2 is obtained
from Figure 1 by changing the horizontal axis quantity ac-
cording to L = 1 − ∆/(2p). For ∆ = 0.005, the change
in slope in Figure 2 corresponds to p near 0.01 and occurs
near loading L = 1− 0.005/0.02 = 0.75.

In the CASCADE model we can roughly approximate
the mean power served as proportional to the average line
loading and to the average number of intact lines:

mean power served ∝ L(n− ES) (6)

Mean power served is plotted in Figure 2. The maximum
mean power served occurs at the critical loading as a conse-
quence of the sharp rise in ES becoming dominant in (6).

Figure 3 shows the distribution of S for p = 0.005 on a
log-log plot. The distribution of S falls off for larger black-
outs in a more exponential fashion and the probability of
most or all of the lines blacking out is negligible.

Figure 4 shows the distribution of S when p is increased
to the critical value of p = 1/n = 0.01. There is a heavy tail
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power served (broken line)

Figure 2. Mean blackout size ES and mean
power served versus loadingL. Power served
has arbitrary units and n = 100.

in the distribution in which there is non-negligible probabil-
ity of most or all of the lines blacking out. The distribution
of S over an initial range of say, 0 to 25, is close to, but
not exactly a power law. The region of behavior close to a
power law is maximized for p ≈ 1/n = 0.01.

Figure 5 shows the distribution of S when p is further in-
creased to p = 0.015. The probability of the entire network
blacking out is 0.60. There is also significant probability of
short cascades and the distribution of these short cascades
falls off in a more exponential fashion.
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Figure 3. PDF of blackout size S.
(P[S=0]=0.61 is not plotted.)

Now we briefly examine the scaling of the critical change
in slope in Figure 1 with the number of lines n. It is use-
ful to express the mean blackout size as the mean fraction
of lines failed and to examine the mean blackout size as a
function of the scaled probability np. Figure 6 shows the
slope change for n = 20, 100, 500. The change in slope
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Figure 4. PDF of blackout size S.
(P[S=0]=0.37 is not plotted.)
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Figure 5. PDF of blackout size S.
(P[S=0]=0.22 not plotted; note P[S=100]=0.60)

in Figure 6 occurs at np = 1 and becomes sharper as n
increases. The slopes of the curves in Figure 6 peak at
np = 1. These features of Figure 6 suggest a type 2 phase
transition at np = 1. There is also a change in regime from
formula (2) to formula (3) when np = 1.

We can analytically approximate the pdf of blackout size.
Using Stirling’s formula m! ≈

√
2πm (m/e)m to approxi-

mate the factor n!/((r + 1)!(n− r)!) in (2),

P [S = r] ≈
e√
2π

√
n

n− r
(np)r

(r + 1)3/2

(

1 +
r − (r + 1)np

n− r

)n−r
(7)

and, for large enough n−r, using (1+y/(n−r))(n−r) ≈ ey
and

√
1− r/n ≈ 1, we get

P [S = r] ≈ (np)re(1−np)(r+1)

√
2π (r + 1)3/2

(8)

In approximation (8), the distribution of S depends only on
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Figure 6. Fractional mean blackout size ES/n
versus scaled probability np.

np. Moreover, if np = 1, then

P [S = r] ≈ 1√
2π (r + 1)3/2

(9)

and (9) predicts that the slope in Figure 4 is ≈ −1.5. The
actual slope in Figure 4 varies between −1.0 and −1.3 for
2 ≤ S ≤ 45 and is ≈ −1.3 for 6 ≤ S ≤ 28. For np not
close to 1, the expression (np e(1−np))r in (8) will cause the
distribution to decrease more exponentially for r << n.

The increased prevalence of large blackouts near criti-
cal loading can be attributed to the progressive loading and
weakening of the network as lines outage. If one removes
the progressive loading so that there is no increase of load
when lines outage (∆ = 0), but retain the initial disturbance
of ∆, then the distribution of blackout sizes becomes bino-
mial:

P [S = r] =
(
n
r

)

pr(1− p)n−r (10)

3. Hidden Failure Model

When a transmission line trips, there is a small but sig-
nificant probability that lines connected to either end of the
tripped transmission line may incorrectly trip due to relay
misoperation. These further line trippings are called hid-
den failures because they do not become apparent until the
first line tripping “exposes” the adjacent lines to the possi-
bility of relay misoperation. Recent NERC reports [1] show
that hidden failures in protection systems have played a sig-
nificant role in cascading disturbances. In this section, we
summarize the hidden failure model presented in [8] and
show simulation results about how the blackouts depend on
system loading.



The hidden failure model uses the DC load flow approx-
imation, in which the linearized, lossless power system is
equivalent to a resistive circuit with current sources. In par-
ticular, transmission lines may be regarded as resistors and
generation and load may be regarded as current sources and
sinks. The probability of an exposed line tripping incor-
rectly is modeled as a increasing function of the line flow
seen by the line relay. The probability is low below the line
limit, and increases linearly to 1 when the line flow is 1.4
times the line limit.

The simulation begins by randomly choosing an initial
line trip. This action exposes all lines connected to the ends
of the initial line and also may overload lines. If one line
flow exceeds its preset limit then the line is tripped. Other-
wise, a line protection hidden failure mechanism [2, 11] is
applied to let the chosen exposed line trip. After each line
trip, the line flows are recalculated and checked for viola-
tions in line limits. The process is repeated until the cascad-
ing event stops.

As a final step, an optimal distribution of generation and
load is calculated. Linear programming is used to mini-
mize the amount of load shed subject to the constraints of
the generation and load lying within their upper and lower
limits, the line flows not exceeding the maximum flow, and
overall generation matching the overall load.

The above simulation is repeated over an ensemble of
randomly selected transmission lines as the initiating fault
location.

We discuss an improvement of the hidden failure model.
Suppose that a line is exposed multiple times by trippings
of multiple lines connected to it. One would expect that, if
relay misoperation occurs, it will occur on the first expo-
sure of the line and is unlikely to occur on the subsequent
exposures. However, the previous version of the model in
[8, 2, 11] allowed relay misoperation with equal probabil-
ity on all the line exposures. The improved model reduces
or zeros the probability of misoperation after the first expo-
sure.

We simulate a WSCC equivalent system with 179 buses,
29 generators, 60 transformers, and 203 transmission lines.
The initial load flow data is based on the December 12, 1994
conditions, from which the required DC load flow data is
derived.

NERC reports [1] show that there are only about 150
events during the past 16 years in the WSCC region. A di-
rect simulation of these rare events would require an unreal-
istically huge amount of computation. One way out of this
quandary is to use importance sampling [3]. In importance
sampling, rather than using the actual probabilities, the sim-
ulation uses altered probabilities so that the rare events oc-
cur more frequently. Associated with each distinct sample
path, SPi, a ratio of actual probability of the event pactuali

divided by the altered probability psimulatei is computed.

We then form the estimated probability of SPi as

ρ̂i =
Noccurring
Ntotal

· p
actual
i

psimulatei

(11)

where Noccurring is the number of times that SPi occurred
and Ntotal is the total number of samples. The mean value
of ρ̂i is unbiased [3]. The power loss Pi associated with
each sample path is also recorded.

Figure 7 shows the expected power loss

EP =
∑

Pi ρ̂i (12)

as a function of loading level L. The change in slope occurs
near loading L = 0.75.
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Figure 7. Variation of expected blackout size
EP with loading L

To find out the probability distribution of blackout size
P , binning of the data is used. Assume there are K sample
points in bin j, and that each of the K points has the asso-
ciated data pair (Pi, ρ̂i). The representative (P̄j , ¯̂ρj) for bin
j is defined as

P̄j =
1
K

K∑

i=1

Pi and ¯̂ρj =
∑K
i=1 Piρ̂i

P̄j
(13)

The variable binning used here is such that each bin starts
with the minimum width and ends with at least a minimum
number of samples.

Figures 8, 9, 10 show the pdf of blackout size P at the
critical loading level 0.75, a higher level 0.85, and a lower
level 0.62. The pdfs for loading levels 0.75 and 0.85 show
some evidence of power tails. The 4 data points in Figure 9
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Figure 8. Distribution of blackout size P at
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Figure 9. Distribution of blackout size P at
loading L = 0.85
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Figure 10. Distribution of blackout size P at
loading L = 0.62

that lie well above the dotted line indicate a higher proba-
bility of medium size blackouts. This arises from artificial
limitations on the further spread of blackouts of medium
size, particularly the suppression of tripping in 45 nega-
tive impedance lines that represent highly equivalenced por-
tions of network and in 60 lines that represent transformers
(transformer failures are not modelled).

4. OPA model

The OPA model was developed to assess the possibil-
ity of self-organized criticality in series of electric power
blackouts [10, 5, 7]. The self organization arises from the
opposing forces of load growth and network upgrades in re-
sponse to blackouts. In this paper we use a version of OPA
with no load growth and a fixed network and it is this ver-
sion which is summarized. For more detail see [10, 5, 7].

The OPA model represents transmission lines, loads and
generators with the usual DC load flow assumptions. Start-
ing from a solved base case, blackouts are initiated by a ran-
dom line outage. Whenever a line is outaged, the generation
and load is redispatched using standard linear programming
methods. The cost function is weighted to ensure that load
shedding is avoided where possible. If any lines were over-
loaded during the optimization, then these lines are outaged
with probability p1. The process of redispatch and testing
for outages is iterated until there are no more outages. Thus
OPA represents generic cascading outages which are con-
sistent with basic network and operational constraints. A
record is kept of the line overloads and outages and the load
shed so that the blackout extent can be studied. p1 = 0 en-



sures there are no line outages and only line overloads are
considered whereas p1 = 1 ensures that all overloaded lines
outage.

We consider a fixed network with parameters chosen so
that the system will be constrained by its transmission ca-
pacity as the load is increased. The network has 94 nodes,
12 generators and 82 loads arranged in a regular network
with a tree-like form [6]. Most nodes have 3 incident trans-
mission lines. A random fluctuation in loads is assumed up
to a maximum of 20%. Blackout size is measured by the
amount of load shed.
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Figure 11. Mean blackout size versus loading.

Figure 11 shows mean blackout size as measured by the
amount of load shed versus loading for three values of p1.
There is a critical loading P = 15392 at which the mean
blackout size increases.

Figure 12 shows pdfs of blackout size as loading in-
creases through the critical loading for p1 = 1. The pdfs
are shifted vertically so that their form may be seen.

At load P = 15210 (below the critical loading) the num-
ber of blackouts is small. The load fluctuations cause lines
to overload and outage and hence some load shed. It com-
mon for a single line to outage so that only one load node
is blacked out. This causes the pdf at lower blackout sizes
to have a series of peaks associated with values of load at a
single node.

At the critical loading P = 15392 there is some indica-
tion that a power tail develops with a decay index of about
−1.5. The fall off after 0.08 is a network size effect. Above
the critical loading the pdf is more Gaussian and is localized
at a high value of the load shed.

The OPA model contains multiple critical points associ-
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Figure 12. Distributions of blackout size.

ated with limits on both transmission and generation. In [7],
we choose parameters so that the generation critical loading
is reached first and scan through the critical loading by fix-
ing the load and increasing the load fluctuations from zero
to 98%. The results again show a power tail at the critical
loading and a more exponential decay below and above the
critical loading [7].

5. Discussion and Conclusions

We have examined expected blackout size and black-
out size pdfs as load is increased in three different models:
CASCADE, a hidden failure model, and the OPA model.
All three models show a sharp increase in slope of the ex-
pected blackout size at a critical loading.

All three models show some evidence of power tails in
the pdf at this critical loading, but there remain some differ-
ences and uncertainties in this result. In particular,

(1) CASCADE shows approximate power law behavior
over a substantial range of blackout sizes near the critical
loading. The CASCADE model is analytic so that the re-
sults are exact. CASCADE may represent processes occur-
ring in cascading failure in power system but CASCADE is
too simple to represent some presumably significant power
system features.

(2) The hidden failure model shows power tails at and
above the critical loading, except for some medium size
blackouts. Below the critical loading the form of the pdf
is not clear. This model represents hidden failures in the



protection system well and models power system cascading
outages and overloads using the DC load flow approxima-
tion and LP redispatch. The results are obtained on a 179
bus equivalenced WSCC system.

(3) The OPA model shows some evidence of a power
law region at critical loading and a more Gaussian form at
higher or lower loadings. This model represents generic
cascading power system outages and overloads using the
DC load flow approximation and LP redispatch. The re-
sults are obtained on an artificial symmetric power system
network of 96 nodes.

Since the three models are quite different and even the
two simulation models are very approximate power system
models, one cannot expect detailed agreement between the
models or, for that matter, between the models and a real
power system. (For example, [7] shows that the critical be-
havior of the OPA model is complicated and certainly can-
not be reproduced in detail by CASCADE.) However, the
broad agreement between the models is consistent with and
supportive of the hypothesis that power tails in the pdf ap-
pear at a critical loading at which mean blackout size in-
creases sharply. Moreover, it is possible that general fea-
tures of cascading outages in power systems are captured by
all three models; and in this case, the strengthened hypothe-
sis is progress towards a global analysis and understanding
of cascading failures in power systems. Further work test-
ing the hypothesis to gain sharper conclusions is indicated.

Indeed, the hypothesis, if fully established, would have
significant consequences for power system operation. For
then the NERC blackout data [1, 5, 8] suggests that the
North American power system has been operated near criti-
cality. Moreover, it is then plausible that the power tails and
the consequent risk of large blackouts could be substantially
reduced by lowering power system loading to obtain an ex-
ponential tail for large blackouts. It would be better to an-
alyze this tradeoff between catastrophic blackout risk and
loading instead of just waiting for the effects to manifest
themselves in the North American power system!

Why would power systems be operated near a critical
loading? One possible answer is that overall forces, includ-
ing the system engineering and operational policies, orga-
nize the system towards criticality as proposed in [4, 5, 10,
6, 7].

A notable outcome of this paper is the CASCADE model
and the derivation of formulas for its pdf. This pdf ex-
hibits heavy tails near critical loading and more exponen-
tial tails far from critical loading (high loading also yields a
significant chance of total failure). This is a new model of
probabilistic cascading failure that is of general interest in
studying the distribution of sizes of failures of large inter-
connected systems in which the successive failure of loaded
components progressively weakens the system.
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A. Derivation of CASCADE distribution

It is convenient to to work in terms of line mar-
gins M1,M2,M3, · · · ,Mn where Mj = 1 − Lj . Then
M1,M2,M3, · · · ,Mn are independent random variables
uniform on [0, 1 − Lmin]. Recall that the integer q =
(1− Lmin)/∆ = 1/p.

We suppose that r ≤ q − 1 and examine the event
[S = r], which is a cascade of exactly r lines. Suppose we
renumber the lines so that the r lines outaged in the order
1, 2, ..., r. The initial disturbance increased the loading on
line 1 by ∆. Since line 1 outaged, its marginM1 must have
been less than ∆. The outage of line 1 caused an additional
increase of loading ∆ on all the lines. Since line 2 outaged,
its margin M2 must have been less than 2∆. Similarly, for
j ≤ r, since line j outaged, its margin Mj must have been
less than j∆. After line r outages, the remaining intact lines
all have had their loadings increased by (r+1)∆. ((r+1)∆
comprises the initial disturbance ∆ and ∆ for each of the r
lines outaged.) Since none of the remaining intact lines out-
aged, their margins must all exceed or equal (r + 1)∆. To
summarize:

M1 < ∆,M2 < 2∆, · · · ,Mr < r∆,
Mk ≥ (r + 1)∆ for r + 1 ≤ k ≤ n.

The same argument without renumbering the lines and ac-
counting for the possible permutations of lines yields

[S = r] =
⋃

π∈Sn
[Mπ(1) < ∆,Mπ(2) < 2∆, · · · ,Mπ(r) < r∆,

Mπ(r+1) ≥ (r + 1)∆, · · · ,Mπ(n) ≥ (r + 1)∆] (14)

where the union runs over all permutations π of 1, 2, · · · , n
in the symmetric group Sn. The union in (14) is not a dis-
joint union.

We consider the case r > q − 1. If the cascade extends
to a size r > q − 1, then the total increase in load on the
remaining intact lines is (r+1)∆ > q∆ = 1−Lmin. Since
1 − Lmin is the maximum line margin, all the remaining
intact lines must outage, and so S = n and P [S = r] = 0
for q − 1 < r < n.

In the case r = q−1, (14) applies but, since (r+1)∆ =
q∆ = 1 − Lmin, the event [Mπ(n) ≥ (r + 1)∆] becomes
the probability zero event [Mπ(n) = 1 − Lmin] and hence
P [S = q − 1] = 0.

Now we assume r < q − 1 for the rest of this appendix.
Define intervals I1, I2, · · · , Iq so that

Ij = [(j − 1)∆, j∆) ; 1 ≤ j ≤ q (15)

Then [Mπ(�) < �∆] =
⋃

a�∈{1,2,...,�}
[Mπ(�) ∈ Ia� ]

[Mπ(�) ≥ (r + 1)∆] =
⋃

a�∈{r+2,...,q}
[Mπ(�) ∈ Ia� ]

and (14) can be written as

[S = r] =
⋃

π∈Sn

⋃

(a1,a2,...,an)∈B

[Mπ(1) ∈ Ia1 ,Mπ(2) ∈ Ia2 , · · · ,Mπ(n) ∈ Ian ] (16)

where B = {(a1, a2, ..., an) |
a1 ∈ {1}, a2 ∈ {1, 2}, ..., ar ∈ {1, 2, ..., r},
ar+1 ∈ {r + 2, ..., q}, ..., an ∈ {r + 2, ..., q}}

In (16) it is equivalent to permute the intervals Iai instead
of permuting the marginsMi:

[S = r] =
⋃

π∈Sn

⋃

(a1,a2,...,an)∈B

[M1 ∈ Iaπ(1) ,M2 ∈ Iaπ(2) , · · · ,Mn ∈ Iaπ(n) ] (17)

and (17) may be rewritten as

[S = r] =
⋃

(a1,a2,...,an)∈Bπ

[M1 ∈ Ia1 ,M2 ∈ Ia2 , · · · ,Mn ∈ Ian ]

(18)
where Bπ is the set of permuted elements of B:

Bπ =
⋃

π∈Sn
{(aπ(1), aπ(2), ..., aπ(n)) |

a1 ∈ {1}, a2 ∈ {1, 2}, ..., ar ∈ {1, 2, ..., r},
ar+1 ∈ {r + 2, ..., q}, ..., an ∈ {r + 2, ..., q}}

(19)

For each i with 1 ≤ i ≤ n, the event [Mi ∈ Iai ] has
probability p. Since M1,M2, · · · ,Mn are independent, the
event [M1 ∈ Ia1 ,M2 ∈ Ia2 , · · · ,Mn ∈ Ian ] has probability
pn. Equation (18) expresses [S = r] as a disjoint union of
events [M1 ∈ Ia1 ,M2 ∈ Ia2 , · · · ,Mn ∈ Ian ]. Therefore,
writing |Bπ| for the number of elements of Bπ ,

P [S = r] = |Bπ| pn (20)



and the computation of P [S = r] reduces to counting the
number of elements of Bπ .

Define Ar =
⋃

π∈Sr
{(aπ(1), aπ(2), ..., aπ(r)) |

a1 ∈ {1}, a2 ∈ {1, 2}, ..., ar ∈ {1, 2, ..., r}} (21)

A′r =
⋃

π∈Sn−r
{(aπ(1), aπ(2), ..., aπ(n−r)) |

a1 ∈ {r + 2, ..., q}, ..., an−r ∈ {r + 2, ..., q}]

Each element of Bπ can be uniquely specified by first
choosing which n−r of {a1, a2, ..., an} are in {r+2, ..., q},
or, equivalently, which r of {a1, a2, ..., an} are less than
r + 1, and then making a choice of one element of Ar, and
then making a choice of one element of A′r. Therefore

|Bπ| =
(

n
n− r

)

|Ar||A′r| =
(
n
r

)

|Ar||A′r| (22)

It is straightforward that |A′r| = (q − (r + 1))n−r and
Lemma 1 below yields |Ar| = (r + 1)r−1. Hence

|Bπ| =
(
n
r

)

(r + 1)r−1(q − (r + 1))n−r (23)

It follows from (20), (23) and pq = 1 that

P [S = r] =
1

r + 1

(
n
r

)

((r + 1)p)r(1− (r + 1)p)n−r

(24)

Lemma 1 Define the set Ar by (21). Then

|Ar| = (r + 1)r−1 (25)

Proof: Define

Σr+1 = {(a1, a2, ..., ar) |
ai ∈ {1, 2, ..., r + 1}, i = 1, 2, ..., r} (26)

Then Ar ⊂ Σr+1 and |Σr+1| = (r + 1)r.
Define the permutation σ1 on {1, 2, ..., r + 1} by

σ1(a) =
{
a+ 1 ; 1 ≤ a ≤ r
1 ; a = r + 1 (27)

Define σ : Σr+1 → Σr+1 by

σ((a1, a2, ..., ar)) = (σ1(a1), σ1(a2), ..., σ1(ar)) (28)

σr+1 is the identity and {1, σ, σ2, ..., σr} is a cyclic group
acting on Σr+1.

Consider the following union of subsets of Σr+1:

Ar ∪ σ(Ar) ∪ σ2(Ar) ∪ · · · ∪ σr(Ar) (29)

To prove the Lemma it is sufficient to show that (29) is a
partition of Σr+1 into r + 1 sets of equal size. For then
(r + 1)|Ar| = |Σr+1| = (r + 1)r.

The equal size of Ar, σ(Ar), σ2(Ar), · · · , σr(Ar) fol-
lows from σ being a bijection. To prove that (29) is a parti-
tion, we needAr, σ(Ar), σ2(Ar), · · · , σr(Ar) to be disjoint
and that (29) is equal to Σr+1.

Let k satisfy 1 ≤ k ≤ r.

σk(Ar) =
⋃

π∈Sr
{(aπ(1), aπ(2), ..., aπ(r)) |

a1 ∈ {k + 1},
a2 ∈ {k + 1, k + 2}, · · · ,
ar+1−k ∈ {k + 1, ..., r + 1},
ar+2−k ∈ {k + 1, ..., r + 1, 1},
ar+3−k ∈ {k + 1, ..., r + 1, 1, 2}, · · · ,
ar ∈ {k + 1, ..., r + 1, 1, 2, ..., k − 1}}(30)

By inspection of (21) and (30), each element of Ar has
at least k entries from {1, 2, ..., k} and each element of
σk(Ar) has no more than k − 1 entries from {1, 2, ..., k}.
Therefore Ar and σk(Ar) are disjoint for 1 ≤ k ≤ r.
Then Ar, σ(Ar), σ2(Ar), · · · , σr(Ar) are disjoint, for if
not, then there are m, � with 0 ≤ m < � ≤ r and
1 ≤ � − m ≤ r and there is a b ∈ σm(Ar) ∩ σ�(Ar)
and σ−m(b) ∈ Ar ∩ σ�−m(Ar), which is a contradiction.

To show that the subset (29) of Σr+1 is equal to Σr+1,
we choose any b = (b1, b2, ..., br) ∈ Σr+1 and show that
b is in (29). Define |b| = |(b1, b2, ..., br)| = b1 + b2 +
... + br. Choose k which minimizes |σk(b)| and write c =
(c1, c2, ..., cr) = σk(b).

We now show that c ∈ Ar. Since Ar contains all permu-
tations of its elements, we can reorder (c1, c2, ..., cr) with-
out loss of generality so that c1 ≤ c2 ≤ ... ≤ cr. According
to (21), ci ∈ {1, 2, ..., i}, i = 1, 2, ..., r implies c ∈ Ar. We
prove ci ∈ {1, 2, ..., i}, i = 1, 2, ..., r by induction on i.
c1 ∈ {1}, for if c1 > 1, then cj ≥ 2 for j = 1, 2, ..., r

and σ−1
1 (cj) = cj − 1 for j = 1, 2, ..., r and |σ−1(c)| =

|c| − r < |c| which is a contradiction.
Now suppose that i satisfies 2 ≤ i ≤ r and that c� ∈

{1, 2, ..., �} for � < i. Then σ−i1 (cj) = cj + r + 1 − i for
j = 1, 2, ..., i − 1. Suppose that ci �∈ {1, 2, ..., i}. Then
cj ≥ i + 1 for j = i, i + 1, ..., r and σ−i1 (cj) = cj − i for
j = i, i+1, ..., r. Now |σ−i(c)| = |c|+(i−1)(r+1− i)−
(r+1−i)i = |c|−(r+1−i) < |c|which is a contradiction.
Therefore ci ∈ {1, 2, ..., i}.

Thus c ∈ Ar. It follows that b = σ−k(c) =
σr+1−k(c) ∈ σr+1−k(Ar) is in (29).
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Abstract

A DC model of power transmission systems has been de-
veloped to study the observed power tail of North American
blackouts data [1,2]. We discuss in this paper a modified
model with an improved hidden failure mechanism. Our fo-
cus here is to investigate the impacts of several system pa-
rameters on the global dynamics. The main parameters in-
clude system loading level, hidden failure probability, spin-
ning reserve capacity and control strategy. The sensitivity
of power-law behavior with respect to each of these param-
eters is discussed and illustrated using simulation results
from the WSCC 179-bus equivalent system.

1. Introduction

Analysis of 16 years of North American blackout data
[3] show a probability distribution of blackout size which
has heavy tails and evidence of power law dependence in
these tails [1]. The analysis show that large blackouts are
much more likely than might be expected from, say, a Gaus-
sian distribution of blackout size in which the tails decay
exponentially. The power tails in blackout size probability
distributions merit attention because of the enormous cost
to society of large blackouts.

Recent NERC reports [3] show that protective relay mal-
function significantly contributes to the cascading outages.
A common scenario is that the relay has an undetected (hid-
den) defect that remains dormant until abnormal operating
conditions are reached. In this paper, we developed a DC
hidden failure model of power transmission systems to ex-
plore the characteristics of cascading events and the impacts
of various model parameters on the system dynamics.

2. Hidden Failure Model

2.1. Description of Model

The hidden failure model uses the DC load flow approx-
imation, in which the linearized, lossless power system is
equivalent to a resistive circuit with current sources. In
particular, transmission lines may be regarded as resistors
and generation and load may be regarded as current sources
and sinks at the nodes of the network. Line protection hid-
den failures are also incorporated to model protective re-
lays. Each line has a different load dependent probability
of incorrectly tripping. The probability of an exposed line
tripping incorrectly is modeled as a increasing function of
the line flow seen by the line relay. The probability is low
below the line limit, and increases linearly to 1 when the
line flow is 1.4 times the line limit.

The simulation begins by randomly choosing an initial
line trip. This action exposes all lines connected to the ends
of the initial line and also may overload lines. If one line
flow exceeds its preset limit then the line is tripped. Oth-
erwise, a line protection hidden failure mechanism [5] is
applied to let the chosen exposed line trip. After each line
trip, the line flow is recalculated and checked for violations
in line limits. The process is repeated until the cascading
event stops.

As a final step, an optimal distribution of generation and
load is calculated. Linear programming is used to mini-
mize the amount of load shed subject to the constraints of
the generation and load lying within their upper and lower
limits, the line flows not exceeding the maximum flow, and
overall generation matching the overall load.

The above simulation is repeated over an ensemble of
randomly selected transmission lines as the initiating fault
location.



2.2. Importance Sampling Technique

We simulated a WSCC equivalent system with 179
buses, 29 generators, 60 transformers, and 203 transmission
lines. The initial load flow data is based on the December
12, 1994 conditions, from which the required DC load flow
data is derived.

NERC reports [3] show that there are only about 150
events during the past 16 years in the WSCC region. A di-
rect simulation of these rare events would require an unreal-
istically huge amount of computation. One way out of this
quandary is to use importance sampling [7]. In importance
sampling, rather than using the actual probabilities, the sim-
ulation uses altered probabilities so that the rare events oc-
cur more frequently. Associated with each distinct sample
path, SPi, a ratio of actual probability of the event pactuali

divided by the altered probability psimulatei is computed.
We then form the estimated probability of SPi as

ρ̂i =
Noccurring
Ntotal

· pactuali

psimulatei

(1)

where Noccurring is the number of times that SPi oc-
curred and Ntotal is the total number of samples. The mean
value of ρ̂i is unbiased [7]. The power loss Pi associated
with each sample path is also recorded.

2.3. Modified Hidden Failure Mechanism

We discuss an improvement of the previous hidden fail-
ure model. Suppose a line is exposed multiple times during
a cascading event. One would expect that, if relay misop-
eration occurs, it would be more likely to occur on the first
exposure than the subsequent exposures. However, the pre-
vious version of the model allowed relay misoperation with
equal probability on all the line exposures. The improved
model reduces or, for simplicity reduces the probability of
misoperation after the first exposure to zero.

3. Parameter Sensitivity Study

3.1. Impact of Loading Level

In any power system, at zero loading there are no black-
outs and at any absurdly large loading there is always a
blackout. We examined the nature of the transition between
these two extremes in this section.

Figure ?? shows the expected power loss

EP =
∑

Pi ρ̂i (2)

as a function of loading level L. The change in slope occurs
near loading L = 0.75.
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Figure 1. Variation of expected blackout size
EP with loading L

To find out the probability distribution of blackout size
P , binning of the data is used. Assume there are K sample
points in bin j, and that each of the K points has the asso-
ciated data pair (Pi, ρ̂i). The representative (P̄j , ¯̂ρj) for bin
j is defined as

P̄j =
1
K

K∑

i=1

Pi (3)

¯̂ρj =
∑K
i=1 Piρ̂i

P̄j
(4)

The variable binning is used here in such a way that each
bin starts with the minimum scale and ends with at least a
minimum number of samples.

Figures ??, ??, ?? show the pdf of blackout size P at
critical loading level 0.75, a higher level 0.85, and a lower
level 0.62. The pdfs of loading levels 0.75 and 0.85 show
some evidence of power tails. The 4 data points in Figure
?? that lie well above the dotted line indicate a higher prob-
ability of medium size blackouts. This arises from artificial
limitations on the further spread of blackouts of medium
size, particularly the suppression of tripping in 45 nega-
tive impedence lines that represent highly equivalenced por-
tions of network and in 60 lines that represent transform-
ers(transformer failures are not modelled).

3.2. Impact of Spinning Reserve Capacity

Ample spinning reserve is a necessity to maintain system
reliability in case of unit loss or other contingencies. In this
section, we examined the impact of the capacity of available
spinning reserve on the power tail of cascading events.



10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

P( 100 MW )

Relative Frequency

Slope = −2.14 

Figure 2. Distribution of blackout size P at
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Figure 3. Distribution of blackout size P at
loading L = 0.85
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Usually certain rules set by regional reliability councils
specify how the required reserve is allocated. Typically, re-
serve is needed to be a given percentage of forecasted peak
load. Here, we assume that for each generator, the ratio of
available spinning reserve, R, over its generation in base-
load condition, P , is the same. For example, if the system
reserve capacity is 10% of power demand, then for any gen-
erator i, its available reserve Ri = 0.1× Pi.
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Figure 5. Distribution of blackout size P with
reserve capacity of 1% and 10%

Figures ??, ?? show the pdf of blackout size P with 1%,
10%, and 20% reserve capacity. The power tail is preserved
with low reserve capacity, while changes to ”exponential
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Figure 6. Distribution of blackout size P with
reserve capacity of 10% and 20%

tail” when the reserve capacity increases to more than 20%.
These results do suggest to us that increasing the capacity
of system spinning reserve would substantially reduce the
risk of large blackouts.

Recall from last subsection that we found a critical point
at which the loading level is close to available generation.
Usually the generation and load are set such that the line
flows are well below line limits. Therefore, the power tail
can possibly be ”fixed” ( i.e. changed to exponential tail)
by supplying ample spinning reserve. It seems that the role
of reserve is to eliminate the critical point. While it is not
the case considering the load growth. Suppose that the load
keeps growing without line upgrading ( i.e., line limits re-
main the same), then finally the load level will approach
the full system capacity, meanwhile the available reserve
capacity will keep dropping even to zero due to line lim-
its. Associated with this scenario, the ”fixed” exponential
tail will be changed back to the power tail, thus a shifted
critical point appears. Therefore, the reserve can put off the
critical region but can not eliminate it because of line limits.

3.3. Impact of Hidden Failure Probability

Hidden failure probability, p, is another important pa-
rameter in this model. Its impact on the system behavior
is of great interest to us. Figure ?? shows the probability
distribution of blackout size with different hidden failure
probabilities. As we can see, the power tail preserves but
becomes steeper as p decreases, which means reducing the
hidden failure in the protection system makes the system
more robust. For example, upgrading old protection system
or perhaps consistent maintenance will shift the observed
power tail downwards. But, unfortunately, the system does

not go through dramatic change by varying hidden failure
probabilities (i.e. the power tail remains).
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Figure 7. Distribution of blackout size P with
different hidden failure probabilities

Thorp et al. have also explored the hidden failures in pro-
tective relays and their impact on power transmission sys-
tem reliability in recent studies [4,6]. The previous work
focused on detection of the weakest links in the bulk power
system and correspondent economical system upgrading
strategy under ”limited budget” assuming only several weak
links can be improved. While our focus here is to investi-
gate similar problem but with ”unlimited budget”, in which
case we assume all lines can be improved at the same rate.
Although this is far away from optimum, it does give an sort
of ”upper bound” for achievable improvement of system re-
liability. For example, suppose the p of current protection
system is 0.02, and we can reduce p at most to 0.005. Then
any optimal system upgrading strategy with limited budget,
such as aforementioned studies, will generate a new pdf
located somewhere between the two power tails shown in
Figure ??. The power tail with p = 0.005 is therefore the
”upper bound”. It would be nice to develop a system up-
grading scheme that can closely approach this bound, but it
is beyond the scope of this paper.

A ”by product” obtained from this analysis is the rough
order of magnitude of p. The idea is to adjust p to generate
the same power tail from NERC data. Recall from [1,3] that
the power exponent is around −2, we found out the rough
order of p is 10−2. Another way to estimate p is by the
following calculation.

Since the major disturbances typically involve four to
five unlikely hidden failures, the approximate probability of
one typical sample path will be p−5. According to NERC
report [3], around 200 events happened in WSCC area dur-
ing the past 16 years. Assume one cascading event could be



initiated in every power circle, thus the probability of one
event will be approximately 150/(16 × 365 × 24 × 60 ×
60× 60) = 5.4× 10−9 = p−5. Again, p � 10−2.

3.4. Impact of Control Strategy

Typical major blackouts involve not only hidden failure
trips but also overloading line outages. Improved robust
protection system will reduce the risk incurred by hidden
failures, while various prompt system control will play the
role of preventing cascading overloads.

The only control used in the model is LP redispatch,
which is highly equivalent various control strategies in real
systems. The only adjustable parameter here is the respond-
ing speed of LP redispatch to cascading overloads. To sim-
plify the implementation, regular LP redispatch is used, say,
one redispatch every three trips. Notice that LP redispatch
is effective only when there exist overloads in the system,
but won’t change the system state if no line constraint vio-
lation. Besides the regular checkpionts, redispatch will be
performed additionally whenever the system breaks into is-
lands.
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Figure 8. Distribution of blackout size P with
different LP redispatchs

When a cascading event is triggered, the sooner the sys-
tem back to ”normal” with no overloads, the better. The pdf
of blackout size in Figure ?? shows that the power tail is
shifted downwards when the ”regular” interval is changed
from once every four trips to once every trip. And the mea-
sured expected power loss reduces almost 60%. Here, once
every trip means every overload is ”captured”, while once
every four trips indicates possible cascading overloads. The
gap between does indicate the improvement we can achieve
by adding prompt control. If we can not take any precaution

against possible cascading outages, ”once per trip” is the
best we can do to prevent disturbances further spreading.
The power tail then is the ” upper bound” when evaluating
the system reliability with respect to system control.

4. Conclusion

A DC model with an improved hidden failure mecha-
nism has been developed to investigate the cascading be-
havior of power transmission systems. We examined the
impacts of various parameters on system dynamics. In par-
ticular,

(1) The system shows power law behavior near a critical
loading, at which the expected power loss increases sharply.

(2) Maintaining ample spinning reserve can greatly re-
duce the risk of big blackouts. The system shows exponen-
tial tails with high reserve capacity but power tails as reserve
capacity goes down.

(3) More robust protection system ( with reduced hid-
den failure probabilities) will increase the system reliabil-
ity. The system still exhibits power law behavior but with
steeper slopes.

(4) Prompt control actions will prevent cascading over-
loads hence further reducing the risk of big disturbances.
The power tail is shifted down with faster control actions.

The tradeoff among these parameters with respect to sys-
tem reliability and economic operation is essential to power
system design or reconstruction. Although it turns out to be
complicated and beyond the scope of this paper, the fully
understanding of it would have significant consequences for
power system operation and hence is worth further investi-
gating.
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Evidence for Self-Organized Criticality in a Time
Series of Electric Power System Blackouts

Benjamin A. Carreras, David E. Newman, Ian Dobson, and A. Bruce Poole

Abstract— We analyze a 15-year time series of North
American electric power transmission system blackouts for
evidence of self-organized criticality. The probability distri-
bution functions of various measures of blackout size have a
power tail and R/S analysis of the time series shows mod-
erate long time correlations. Moreover, the same analysis
applied to a time series from a sandpile model known to be
self-organized critical gives results of the same form. Thus
the blackout data is consistent with self-organized criticality.
A qualitative explanation of complex dynamics observed in
electric power system blackouts is suggested.

Keywords—blackouts, complex systems, time series, power
system security, reliability, risk analysis.

I. Introduction

Electric power transmission networks are complex sys-
tems that are commonly run near their operational limits.
Major cascading disturbances, or blackouts of these trans-
mission systems have serious consequences. Individually,
these blackouts can be attributed to specific causes, such
as lightning strikes, ice storms, equipment failure, shorts
resulting from untrimmed trees, excessive customer load
demand, or unusual operating conditions. However, an ex-
clusive focus on these individual causes can overlook the
global dynamics of a complex system in which repeated
major disruptions from a wide variety of sources are a vir-
tual certainty. We analyze a time series of blackouts to
probe the nature of these complex system dynamics.

The North American Electrical Reliability Council
(NERC) has a documented list summarizing major black-
outs of the North American power grid [1]. They are of
diverse magnitude and of varying causes. It is not clear
how complete this data is, but it is the best-documented
source that we have found for blackouts in the North Amer-
ican power transmission system. An initial analysis of
these data [7] over a period of 5 years suggested that self-
organized criticality (SOC) [2], [3], [16] may govern the
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complex dynamics of these blackouts. Here we further ex-
amine [8], [11] this hypothesis by extending the analysis
to 15 years. This extended data allows us to develop im-
proved statistics and gives us longer time scales to explore.
We compare the results to the same types of analysis of
time sequences generated by a sandpile model known to
be SOC. The similarity of the results is quite striking and
is suggestive of the possible role that SOC plays in power
system blackouts. A plausible qualitative explanation of
SOC in power system blackouts is outlined in section VI.

As an introduction to the concept, a SOC system is one
in which the nonlinear dynamics in the presence of pertur-
bations organize the overall average system state near to,
but not at, the state that is marginal to major disruptions.
SOC systems are characterized by a spectrum of spatial
and temporal scales of the disruptions that exist in remark-
ably similar forms in a wide variety of physical systems [2],
[3], [16]. In these systems, the probability of occurrence
of large disruptive events decreases as a power function of
the event size. This is in contrast to Gaussian systems
in which this probability decays exponentially with event
size. One important implication of this type of dynamics
is in calculating the risk of large blackouts. Because of the
power law tail in the probability distribution function of
the events, standard risk probability techniques would no
longer be valid when analyzing the low probability tails.
This would require reanalysis of the risks in light of these
dynamics.

II. Time series of blackout data

We have analyzed the full 15 years of data from 1984 to
1998 that is publicly available from NERC [1]. There are
427 blackouts in 15 years and 28.5 blackouts per year. The
average period of time between blackouts is 12 days. The
blackouts are distributed over the 15 years in an irregu-
lar manner. We have detected no evidence of systematic
changes in the number of blackouts or periodic or quasi-
periodic behavior. However, it is difficult to determine long
term trends or periodic behavior in just 15 years of data.
We constructed time series from the NERC data with the
resolution of a day for the number of blackouts and for
three different measures of the blackout size. The length
of the time record is 5477 days. The three measures of
blackout size are:
1. energy unserved (MWh)
2. amount of power lost (MW)
3. number of customers affected.
Energy unserved was estimated from the NERC data by
multiplying the power lost by the restoration time.
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Fig. 1. PDF of the number of customers unserved comparing the total
data set with the data excluding the weather related events.

III. Analysis of the blackout time series

In order to gain an understanding of the dynamics of a
system from analysis of a time series, one must employ a
variety of tools beyond basic statistical analysis. Among
other measures which should be employed, the tails of the
Probability Distribution Function (PDF) should be investi-
gated for normality and frequency spectra should be viewed
in order to begin to look at dependencies in the time do-
main. The time domain is particularly important as the
system dynamics are expressed in time. Periodicities and
long time correlations must both be examined and com-
pared to systems with known dynamics. We will present
details of the analysis of the PDFs later; however, the first
striking characteristic of the data is the power law tail of
these PDFs. This power law tail is shown in Fig. 1, where
we have plotted the PDF of the number of customers un-
served for all events (the squares) on a log-log plot. The
PDF falls off with a power of approximately –1.7 which
implies a divergent variance and a clearly non-normal dis-
tribution.

Looking in the time domain, a time series is said to have
long range dependence if its autocorrelation function falls
off asymptotically as a power law. This type of dependence
is difficult to determine because noise tends to dominate the
signal for long time lags. One way to address this problem
is the rescaled range statistics (R/S statistics) proposed by
Mandelbrot and Wallis [17] and based on a previous hydro-
logical analysis by Hurst [14]. The R/S statistics considers
blocks of m successive points in the integrated time series
and measures how fast the range of the blocks grows as m
increases. The calculation of the R/S statistics is further
described in the Appendix.

It can be shown that in the case of a time seriesX with an

autocorrelation function that has an algebraic tail, the R/S
statistic scales proportionally to mH , where H is the Hurst
exponent. Thus H is the asymptotic slope on a log-log plot
of the R/S statistic versus the time lag. If 1 > H > 0.5,
there are long range time correlations, for 0.5 > H > 0, the
series has long range anticorrelations, and if H = 1.0, the
process is deterministic. Uncorrelated noise corresponds to
H = 0.5. A constantH parameter over a long range of time
lag values is consistent with self-similarity of the signal in
this range [21] and with an autocorrelation function that
decays as a power of the time lag with exponent 2− 2H.

We have determined the long range correlations in the 15
year blackout time series using the R/S method. The time
series has 5477 days and 427 blackouts. The calculated
Hurst exponents [14] for the different measures of black-
out size are shown in Table I. The H values are obtained
by fitting over time lags between 100 and 3000 days. In
this range, the behavior of the R/S statistic is power-like
(Fig. 5). The values of H obtained for all the time series
are close to 0.6. This seems to indicate that they are all
equally correlated over the long range. These values of H
are somewhat lower than the previously obtained values [7],
but still significantly above 0.5. Note that the “events” in
the time series are the events that have produced a blackout
and not all the events that occurred. The latter are sup-
posed to be random (H = 0.5); however, the events that
produce a blackout may indeed have moderate correlations
because they depend on the state of the system.

TABLE I

Hurst parameter H from R/S analysis of blackout size time

series

H
Events 0.62

Power lost 0.59
Customers 0.57

MWh 0.53

A method of testing the independence of the trigger-
ing events has been suggested by Boffetta et al. [4]. They
evaluated the times between events (waiting times) and
argued that the PDF of the waiting times should have an
exponential tail. Such is clearly the case for the waiting
times of sandpile avalanches (Fig. 2). In the case of waiting
times between blackouts, we also have observed the same
exponential dependence of the PDF tail (Fig. 3). This ob-
servation is confirmed in [11]. This strengthens the con-
tention that the apparent correlations in the events come
from SOC-like dynamics within the power system rather
than from the events driving the power system dynamics.

Examining the R/S results in more detail, Fig. 4 shows
the R/S statistic for the time series of the number of cus-
tomers affected by blackouts. The average period of time
without blackouts is 12 days, hence, in looking over time
lags of this order we typically find either one blackout or
none. For the shorter time lags less than 50 days, we are
unable to get information on correlations between black-



SUBMITTED TO IEEE TRANSACTIONS PES DECEMBER 2001 3

100

101

102

103

104

105

101 102 103

p
0
 = 0.0001

p
0
 = 0.001

C = 779.45 * e-0.00678T 

C = 14530 * e-0.0598T 

C
ou

nt
s

Time between avalanches

Fig. 2. Distribution of waiting times between avalanches in a sandpile
for two values of the probability of adding grains of sand.

outs because the time intervals are too short to contain
several blackouts. We see a correlation between absences
of blackouts, and because these time intervals tend to only
contain absences of blackouts, we see H close to 1 (triv-
ially deterministic). For time lags above 50 days, the R/S
shows a power behavior and gives a correct determination
of blackout correlation. The R/S calculation is sensitive
to this change in regime and there is an obvious change of
behavior for time intervals around 50 days. An alternative
method of determining correlations is the scaled window
variance (SWV) method. We do not use the scaled window
variance method in this paper because in this method, the
correlations between absences of blackouts skew the corre-
lations between blackouts at larger time lags [8].

IV. The effect of weather

Approximately half of the blackouts (212 blackouts) are
characterized as weather related in the NERC data. In
attempting to extract a possible periodicity related to sea-
sonal weather, we consider separately the time series of
all blackouts and the time series of blackouts that are not
weather related. An important issue in studying long range
dependencies is the possible presence of periodicities. Both
R/S analysis and spectral analysis of this data do not show
any clear periodicity. However, since the weather related
events may play an important role in the blackouts, one
may suspect seasonal periodicities. However, the data com-
bines both summer and winter peaking regions of North
America. Because of the limited amount of data, it is not
possible to separate the blackouts by geographical location
and redo the analysis. What we have done is to reana-
lyze the data excluding the blackouts triggered by weather
related events. The results are summarized in Table II.
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Fig. 4. R/S for the number of customers affected by blackouts.

As can be seen, the exclusion of the blackouts triggered
by weather related events does not significantly change the
value of H. When looking solely at the blackouts triggered
by weather related events, the value of H is closer to 0.5
(random events), although the available data is too sparse
to be sure of the significance of this result.

Another question to consider is the effect of excluding
the weather related events on the PDF. We have recalcu-
lated the PDF for all the measures of blackout size when
the weather related events are not included. The PDFs ob-
tained are the same within the numerical accuracy of this
calculation. This is illustrated in Fig. 1, where we have
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TABLE II

Hurst parameter H for measures of blackout size comparing

all data with the data excluding blackouts triggered by

weather.

H H
all events non weather events

Events 0.62 0.62
Power lost 0.59 0.64
Customers 0.57 0.58

MWh 0.53 0.57

plotted the PDFs of the number of customers unserved for
all events and for the non-weather related events. There-
fore, for both long range dependencies and structure of
the PDF, the blackouts triggered by weather events do not
show any particular properties that distinguish them from
the other blackouts. Therefore, both the long time correla-
tions and the PDFs of the blackout sizes remain consistent
with SOC-like dynamics.

In addition to weather effects, one might expect spatial
structure of the grid to have an effect on the dynamics.
However, analysis of the NERC data in [11] suggests that
similar results are obtained when data for the eastern and
western North American power systems is analyzed sepa-
rately. Since the eastern and western power systems have
different characteristics, this interesting result tends to sup-
port the notion that there are some underlying common
principles for the system dynamics.

V. Comparison to a SOC sandpile model

The issue of determining whether the power system
blackouts are governed by SOC is a difficult one. There
are no unequivocal determining criteria. One approach is
to compare characteristic measures of the power system to
those obtained from a known SOC system. The prototyp-
ical model of a SOC system is a one-dimensional idealized
running sandpile [15]. The mass of the sandpile is increased
by adding grains of sand at random locations. However, if
the height at a given location exceeds a threshold, then
grains of sand topple downhill. The topplings cascade in
avalanches that transport sand to the edge of the sandpile,
where the sand is removed. In the running sandpile, the
addition of sand is on average balanced by the loss of sand
at the edges and there is a globally quasi-steady state or dy-
namic equilibrium close to the critical profile that is given
by the angle of repose. There are avalanches of all sizes and
the PDF of the avalanche sizes has an algebraic tail. The
particular form of the sandpile model used here is explained
in [18] and the sandpile length used in the present calcula-
tions is L = 800. We are, of course, not claiming that the
running sandpile is a model for power system blackouts.
We only use the running sandpile as a black box to pro-
duce a time series of avalanches characteristic of an SOC
system.

It is convenient to assume that every time iteration of
the sandpile corresponds to one day. When an avalanche
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Fig. 5. R/S for avalanche sizes in a running sandpile compared to
R/S for power lost in blackouts.

starts, we integrate over the number of sites affected and
the number of steps taken and assign them to a single day.
Thus we construct a time series of the avalanche sizes. The
sandpile model has a free parameter p0, which is the prob-
ability of a grain of sand being added at a location. p0 is
chosen so that the average frequency of avalanches is the
same as the average frequency of blackouts.

In evaluating the long range time dependence of the
blackouts, we use the rescaled range or R/S [17] technique
described earlier. As stated before, the R/S technique is
useful in determining the existence of an algebraic tail in
the autocorrelation function and calculating the exponent
of the decay of the tail (see Appendix for details). The same
R/S analysis used for the blackout time series is applied to
the avalanche time series. Fig. 5 shows the R/S statistic
for the time series of avalanche sizes from the sandpile and
for the time series of power lost by the blackouts. The sim-
ilarity between the two curves is remarkable. A similarly
good match of the R/S statistics between the blackout and
sandpile time series is obtained for the other measures of
blackout size.

Fig. 6 shows the PDF of the avalanche sizes from the
sandpile data together with the rescaled PDF of the energy
unserved from the blackout data. The resemblance between
the two functions is again remarkable. The rescaling is
necessary because of the different units used to measure
avalanche size and blackout size. That is, we assume a
transformation of the form

P (X) = λF (X/λ) (1)

X is the variable that we are considering, P (X) is the cor-
responding PDF, and λ is the rescaling parameter. If the
transformation (1) works, F is the universal function that
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Fig. 6. Rescaled PDF of energy unserved during blackouts superim-

posed on the PDF of the avalanche size in the running sandpile.

describes the PDF for the different parameters. Transfor-
mation (1) is used to overlay the sandpile and blackout
PDFs.

We can consider PDFs of the other measures of black-
out size and use transformation (1) to plot each of these
PDFs with the sandpile avalanche size PDF. In all cases,
the agreement is very good. Of course, the scaling param-
eter differs for each measure of blackout size. The expo-
nents obtained for these PDFs tails are between –1.3 and
–2. These exponents imply divergence of the variance, one
of the characteristic features of systems with SOC dynam-
ics. In fact, divergence of the variance is a general feature
of systems near criticality. This comparison of the PDFs
of the measures of blackout and avalanche sizes is useful in
evaluating the possible errors in the determination of the
algebraic decay exponent of the PDFs. One can see that for
the large size events where the statistics are sparse, there
may be deviations from the curve. These deviations can in-
fluence the computed value of the exponent, but they are
probably of little significance for the present comparisons.

VI. Possible explanation of power system
self-organized criticality

To motivate comparisons between power system black-
out data and SOC sandpile data, we suggest a qualita-
tive description of the structure and effects in a large scale
electric power transmission system which could give rise to
SOC dynamics. The power system contains many compo-
nents such as generators, transmission lines, transformers
and substations. Each component experiences a certain
loading each day and when all the components are con-
sidered together they experience some pattern or vector of
loadings. The pattern of component loadings is determined
by the power system operating policy and is driven by the

aggregated customer loads at substations. The power sys-
tem operating policy includes short term actions such as
generator dispatch as well as longer term actions such as
improvements in procedures and planned outages for main-
tenance. The operating policy seeks to satisfy the customer
loads at least cost. The aggregated customer load has daily
and seasonal cycles and a slow secular increase of about 2%
per year.

Events are either the limiting of a component loading to
a maximum or the zeroing of the component loading if that
component trips or fails. Events occur with a probability
that depends on the component loading. For example, the
probability of relay misoperation [11] or transformer fail-
ure generally increases with loading. Another example of
an event could be an operator redispatching to limit power
flow on a transmission line to its thermal rating and this
could be modeled as probability zero when below the ther-
mal rating of the line and probability one when above the
thermal rating. Each event is a limiting or zeroing of load
in a component and causes a redistribution of power flow
in the network and hence a discrete increase in the loading
of other system components. Thus events can cascade. If
a cascade of events includes limiting or zeroing the load
at substations, it is a blackout. A stressed power system
experiencing an event must either redistribute load satis-
factorily or shed some load at substations in a blackout.
A cascade of events leading to blackout usually occurs on
a time scale of minutes to hours and is completed in less
than one day.

It is customary for utility engineers to make prodigious
efforts to avoid blackouts and especially to avoid repeated
blackouts with similar causes. These engineering responses
to a blackout occur on a range of time scales longer than
one day. Responses include repair of damaged equipment,
more frequent maintenance, changes in operating policy
away from the specific conditions causing the blackout, in-
stalling new equipment to increase system capacity, and
adjusting or adding system alarms or controls. The re-
sponses reduce the probability of events in components re-
lated to the blackout, either by lowering their probabilities
directly or by reducing component loading by increasing
component capacity or by transferring some of the loading
to other components. The responses are directed towards
the components involved in causing the blackout. Thus the
probability of a similar blackout occurring is reduced, at
least until load growth degrades the improvements made.
There are similar, but less intense responses to unrealized
threats to system security such as near misses and simu-
lated blackouts.

The pattern or vector of component loadings may be
thought of as a system state. Maximum component load-
ings are driven up by the slow increase in customer loads
via the operating policy. High loadings increase the chances
of cascading events and blackouts. The loadings of com-
ponents involved in the blackout are reduced or relaxed by
the engineering responses to security threats and blackouts.
However, the loadings of some components not involved in
the blackout may increase. These opposing forces driving
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the component loadings up and relaxing the component
loadings are a reflection of the standard tradeoff between
satisfying customer loads economically and security. The
opposing forces apply over a range of time scales. We sug-
gest that the opposing forces, together with the underlying
growth in customer load and diversity give rise to a dy-
namic equilibrium and conjecture that this dynamic equi-
librium could be SOC. It is important to note that this
type of system organizes itself to an operating point near
to but not at a critical value. This could make the sys-
tem intrinsically vulnerable to cascading failures from un-
expected causes as the repair and remediation steps taken
to prevent a known failure mode are part of the system
dynamics.

We briefly indicate the roughly analogous structure and
effects in an idealized sand pile model. Events are the top-
pling of sand and cascading events are avalanches. The
system state is a vector of maximum gradients at all the lo-
cations in the sand pile. The driving force is the addition of
sand, which tends to increase the maximum gradient, and
the relaxing force is gravity, which topples the sand and
reduces the maximum gradient. SOC is a dynamic equi-
librium in which avalanches of all sizes occur and in which
there are long time correlations between avalanches. The
rough analogy between the sand pile and the power sys-
tem is shown in Table III. There are also some distinctions
between the two systems. In the sand pile, the avalanches
are coincident with the relaxation of high gradients. In the
power system, each blackout occurs on fast time scale (less
than one day), but the knowledge of which components
caused the blackout determines which component loadings
are relaxed both immediately after the blackout and for
some time after the blackout.

TABLE III

Analogy between power system and sand pile.

power system sand pile
system state loading pattern gradient profile
driving force customer load addition of sand
relaxing force response to blackout gravity
event limit flow or trip sand topples

VII. Conclusions

We have calculated long time correlations and PDFs for
several measurements of blackout size in the North Amer-
ican power transmission grid from 1984 to 1998. These
long time correlations and PDFs are consistent with long
range time dependencies and PDFs for avalanche sizes in
a running sandpile known to be SOC. That is, for these
statistics, the blackout size time series is indistinguishable
from the sandpile avalanche size time series. This similar-
ity suggests that SOC dynamics may play an important
role in the global complex dynamics of power systems.

We have outlined a possible qualitative explanation of
the complex dynamics in a power system which proposes
some of the opposing forces that could give rise to a dy-

namic equilibrium with SOC properties. The opposing
forces are, roughly speaking, a slow increase in loading
(and system aging) weakening the system and the engi-
neering responses to blackouts strengthening parts of the
system. Here we are suggesting that the engineering and
operating policies of the system are important and integral
parts of the system dynamics.

The probability distribution functions of the measures
of blackout size have power tails with exponents ranging
from –1.3 to –2 and therefore have divergent variances.
Thus large blackouts are much more frequent than might
be expected. In particular, the application of traditional
risk evaluation methods can underestimate the risk of large
blackouts. R/S analysis of the blackout time series shows
moderate (H ≈ 0.6) long time correlations for several mea-
sures of blackout size. Excluding the weather related black-
outs from the time series has little effect on the results. The
exponential tail of the PDF of the times between black-
outs supports the contention that the correlations between
blackouts are due to the power system global dynamics
rather than correlations in the events that trigger black-
outs.

The strength of our conclusions is naturally somewhat
limited by the short time period (15 years) of the avail-
able blackout data and the consequent limited resolution of
the statistics. To further understand the mechanisms gov-
erning the complex dynamics of power system blackouts,
modeling of the power system from a SOC perspective and
other perspectives is indicated and is underway [12], [9],
[20], [11], [10], [13], [19], [6].

If the dynamics of blackouts are confirmed to be SOC,
this would open possibilities for monitoring statistical pre-
cursors of large blackouts or even controlling the power sys-
tem to modify the expected distribution of blackout sizes.
Most importantly, it would suggest the need to revisit the
traditional risk analysis based on normal statistics since
these complex systems have very non-normal statistics.

VIII. Acknowledgements

We thank J.S. Thorp for useful discussions. Ian Dob-
son thanks H-D. Chiang and the School of Electrical Engi-
neering at Cornell University for their generous hospitality
during a sabbatical leave.

References

[1] Information on blackouts in North America
can be downloaded from the NERC website at
http://www.nerc.com/dawg/database.html.

[2] P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: an
explanation of 1/f noise, Phys. Rev. Lett., vol. 59, pp. 381-4, 1987.

[3] P. Bak, How nature works: the science of self-organized criticality,
Copernicus books, 1996.

[4] G. Boffetta, V. Carbone, P. Guliani, P. Veltri, A. Vulpiani, Power
laws in solar flares: self-organized criticality or turbulence? Phys.
Rev. Letters, vol. 83, pp. 4662-4665, 1999.

[5] M. J. Cannon, D. B. Percival, D. C. Caccia, G. M. Raymond, J. B.
Bassingthwaighte, Evaluating scaled windowed variance methods
for estimating the Hurst coefficient of time series, Physica A, vol.
241, pp. 606-626, 1997.

[6] J.M. Carlson, J. Doyle, Highly optimized tolerance: a mechanism
for power laws in designed systems, Physical Review E, vol. 60,
1999, pp. 1412-1427.



SUBMITTED TO IEEE TRANSACTIONS PES DECEMBER 2001 7

[7] B. A. Carreras, D. E. Newman, I. Dobson, and A. B. Poole, Initial
evidence for self-organized criticality in electric power blackouts,
33rd Hawaii International Conference on System Sciences, Maui,
Hawaii, Jan. 2000.

[8] B.A. Carreras, D.E. Newman, I. Dobson, A.B. Poole, Evidence for
self organized criticality in electric power system blackouts, Thirty-
fourth Hawaii International Conference on System Sciences, Maui,
Hawaii, January 2001

[9] B.A. Carreras, V.E. Lynch, M. L. Sachtjen, I. Dobson, D. E. New-
man, Modeling blackout dynamics in power transmission networks
with simple structure, 34th Hawaii International Conference on
System Sciences, Maui, Hawaii, January 2001.

[10] B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman, Dynamics,
criticality and self-organization in a model for blackouts in power
transmission systems, Thirty-fifth Hawaii International Conference
on System Sciences, Hawaii, January 2002.

[11] J. Chen, J.S. Thorp, M. Parashar, Analysis of electric power
system disturbance data, Thirty-fourth Hawaii International Con-
ference on System Sciences, Maui, Hawaii, January 2001.

[12] I. Dobson, B. A. Carreras, V.E. Lynch, D. E. Newman, An initial
model for complex dynamics in electric power system blackouts,
34th Hawaii International Conference on System Sciences, Maui,
Hawaii, Jan. 2001.

[13] I. Dobson, J. Chen, J.S. Thorp, B.A. Carreras, D.E. Newman,
Examining criticality of blackouts in power system models with
cascading events, Thirty-fifth Hawaii International Conference on
System Sciences, Hawaii, January 2002.

[14] H. E. Hurst, Long-term storage capacity of reservoirs, Trans.
Am. Soc. Civil Eng., vol. 116, pp. 770, 1951.

[15] T. Hwa and M. Kardar, Avalanches, hydrodynamics, and dis-
charge events in models of sandpiles, Physical Review A, vol. 45,
no. 10 pp. 7002-7023, May 1992.

[16] H.J. Jensen, Self-organized criticality, Cambridge University
Press, 1998.

[17] B. B. Mandelbrot and J. R. Wallis, Noah, Joseph, and opera-
tional hydrology, Water Resources Research, vol. 4, pp. 909-918,
1969.

[18] D. E. Newman, B. A. Carreras, P. H. Diamond, T.S. Hahm,
The dynamics of marginality and self-organized criticality as a
paradigm turbulent transport, Physics of Plasmas, vol. 3, no. 5,
pp. 1858-1866, Part 2, May 1996.

[19] S. Roy, C. Asavathiratham, B. C. Lesieutre, G. C. Verghese,
Network models: growth, dynamics, and failure, 34th Hawaii In-
ternational Conference on System Sciences, Maui, Hawaii, Jan.
2001.

[20] M. L. Sachtjen, B. A. Carreras, and V. E. Lynch, Disturbances
in a power transmission system, Physical Review E, vol. 61, no. 5,
May 2000, pp. 4877-4882.

[21] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Ran-
dom Processes: Stochastic Models with Infinite Variance, New
York: Chapman and Hall, 1994.

Appendix

Consider the time series X = {Xt; t = 1, 2, ..., n}. We
construct the series Y = {Yt; t = 1, 2, ..., n} that is the
original series integrated in time: Yt =

∑t
s=0Xs. For the

series Y and for each m = 1, 2, ..., n a new series Y (m) =
{Y (m)

u ;u = 1, 2, ..., n/m} is generated. The elements of the
series Y (m) are blocks of m elements of Y so that Y (m)

u =
{Y (m)

um−m+1, ..., Yum}. We then calculate the range Rim and
standard deviation Sim within each of the n/m blocks of
m elements of Y (m), and compute for each block Rim/S

i
m.

The R/S statistic as a function of the time lag m is then
the average m

n

∑n/m
i=1 Rim/S

i
m.
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