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1 INTRODUCTION

This document is the final report of a two-year CERTS (Consortium for Electric
Reliability Technology Solutions) project studying large-scale blackouts and
cascading failures of electric power transmission systems.   The project is
devising new methods, models and analysis tools from complex systems,
criticality, probability, and power systems engineering so that the risks of large
blackouts and cascading failures can be understood and mitigated from global
and top-down perspectives.  The work was performed by close collaboration
between Oak Ridge National Laboratory and the Power Systems Engineering
Research Center at the University of Wisconsin-Madison.

Section 2 explains topics providing background to the project and sections 3 and
4 summarize the project achievements, deliverables and budget.  The details of
the technical achievements of the project are documented in Section 6 and in
p r e p r i n t s  a v a i l a b l e  o n  t h e  w e b  at
http://eceserv0.ece.wisc.edu/~dobson/home.html.  A comprehensive review of
much of the project work is documented in section 6.4.

2 PROJECT BACKGROUND

2.1 GENERAL BACKGROUND

The United States electrical energy supply infrastructure is experiencing rapid
changes and will continue to be operated close to a stressed condition in which
there is substantial risk of cascading outages and blackouts.  The rapid changes in
this highly complex system present significant challenges for maintaining its
operational stability and reliability.

Avoiding large blackouts and especially those involving most or all of an
entire interconnected power transmission system is vital to the United States.
Large blackouts typically involve complicated series of cascading rare events that
are hard to anticipate. The enormous number and rarity of possible events,
interactions and dependencies has previously made the analysis of large
blackouts intractable, except by an intricate case-by-case, postmortem analysis.
However, we can now exploit the new models and ideas we have previously
developed by CERTS to address the risk of large blackouts caused by cascading
failures.

In the past we the focus of our work has been the development of models
to study blackout dynamics in the power transmission grid. We have developed
the OPA model that incorporates self-organization processes based on the
engineering response to blackouts and the long-term economic response to
customer load demand. It also incorporates the apparent critical nature of the
transmission system. The combination of these mechanisms leads to blackouts
that range in size from single load shedding to the blackout of the entire system.
This model shows a probability distribution of blackout sizes with power tails
similar to that observed in NERC blackout data from North America.



We have developed a probabilistic model of cascading failure called
CASCADE.  CASCADE shows a critical threshold in the overall system loading
that leads to large cascading failures.  The corresponding threshold in the power
system is a threshold in overall system loading or stress that gives a sharply
increased risk of large blackouts. This type of threshold has been observed in the
OPA power system models and operation near this threshold is consistent with
the NERC data.  However, this threshold is not well understood in OPA or in
real systems, and the parameters controlling it are not easy to identify.
Moreover, practical methods to monitor the proximity of the power system to
this threshold to assess the risks of large blackouts have not been developed.

We have also developed an approximation to the CASCADE model using the
theory of branching processes that yields further insights into cascading failure.
The branching process model opens the door to measuring the system overall
stress with respect to the extent to which failures propagate after they are
started.
 One perspective is that in the past, the n-1 criterion and generous
operating margins were used to provide some protection against cascading
failure and large blackouts. Economic and competitive pressures are now
inexorably causing changes in these practices and we seek to assess the risks of
these evolving practices with respect to cascading failure.  Assessing and
mitigating the risk of large blackouts from a global, complex systems perspective
is preferable to the direct experimental approach of waiting for large blackouts
to occur and then reacting exclusively on a case-by-case basis.

2.2 BLACKOUT RISK ANALYSIS AND POWER TAILS

Figure 1 shows power tails in NERC blackout data.  Note that a straight line on a
log-log plot such as Figure 1 yields a power law relation between the variables
with the exponent given by the line slope. This section, which is based on
[Carreras03], reviews some of the consequences of this for blackout risk analysis,
because this underpins much of the project work.

To evaluate the risk of a blackout, we need to know both the frequency of the
blackout and its costs.  It is difficult to determine blackout costs, and there are
several approaches to estimate them, including customer surveys, indirect
analytic methods, and estimates for particular blackouts [Billington96]. The
estimated direct costs to electricity consumers vary by sector and increase with
both the amount of interrupted power and the duration of the blackout.
[Billington87] defines an interrupted energy assessment rate IEAR in dollars per
kilowatt-hour that is used as a factor multiplying the unserved energy to
estimate the blackout cost.  That is, for a blackout with size measured by
unserved energy S,

direct costs = (IEAR) S   $  (1)

There are substantial nonlinearities and dependencies not accounted for in
Eq. (1), but expressing the direct costs as a multiple of unserved energy is a
commonly used crude approximation.  However, studies of individual large



blackouts suggest that the indirect costs of large blackouts, such as those
resulting from social disorder, are much higher than the direct costs.  Also, the
increasing and complicated dependencies of other infrastructures mentioned
earlier on electrical energy tend to increase the costs of all blackouts [Rinaldi01],
[NERC01].

For our purposes, let the frequency of a blackout with unserved energy S be
F(S) and the cost of the blackout be C(S). The risk of a blackout is then the
product of blackout frequency and cost:

risk  = F(S) C(S)

The NERC data indicate a power law scaling of blackout frequency with blackout
unserved energy as

F(S)  ~  Sa

where a ranges from -0.6 to -1.9. If we take a = -1.2, and only account for the
direct costs in C(S) according to (1),  then

risk  ~  S-0.2

This gives a weak decrease in risk as blackout size increases, which means that
the total cost of blackouts is very heavily dominated by the largest sizes.  If we
also account for the indirect costs of large blackouts, we expect an even stronger
weighting of the cost for larger blackouts relative to smaller blackouts. From this
one can clearly see that, although large blackouts are much rarer than small
blackouts, the total risk associated with the large blackouts is much great than
the risk of small blackouts.

In contrast, consider the same risk calculation if the blackout frequency
decreases exponentially with size so that

F(S) = A-S

With the simple accounting for direct costs only, we get

risk  ~ S A-S

for which the risk peaks for blackouts of some intermediate size and decreases
exponentially for larger blackouts.  Then, unless one deals with an unusual case
in which the peak risk occurs for blackouts comparable to the network size, we
expect the risk of larger blackouts to be much smaller than the peak risk.  This is
likely to remain true even if the indirect blackout costs are accounted for unless
they are very strongly weighted (exponentially, for example) toward the large
sizes.

While there is some uncertainty in assessing blackout costs, and especially the
costs of large blackouts, the analysis above suggests that, when all the costs are
considered, power tails in the blackout size frequency distribution will cause the
risk of large blackouts to exceed the risk of the more frequent small blackouts.
This is strong motivation for investigating the causes of power tails.  



We now put the issue of power tails in context by discussing other aspects of
blackout frequency that impact risk.  The power tails are of course limited in
extent in a practical power system by a finite cutoff near system size
corresponding to the largest possible blackout.  More importantly, the frequency
of smaller blackouts and hence the shape of the frequency distribution away
from the tail impacts the risk. Also significant is the absolute frequency of
blackouts.  When we consider the effect of mitigation on blackout risk, we need
to consider changes in both the absolute frequency and the shape of the blackout
frequency distribution.  That is, rather than seeking to deterministically avoid all
blackouts (which may be unachievable and is certainly too costly), a better
question is: How do we assess and manage the risk of all sizes of blackouts?
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2.3 SUMMARY OF MAIN IDEAS

This section summarizes some of the main ideas of the project that are
foundations of the current work.

    (1) Instead of looking at the details of particular blackouts, study the statistics,
dynamics and risk of series of blackouts with approximate global models.

    (2) 15 years of NERC blackout data yields a probability distribution of blackout
sizes with a power tail.  Thus large blackouts are much more likely than expected
and, when costs are considered, their risk is comparable to the risk of small
blackouts.  The data also suggests North American grid operation near a critical
point.

    (3) Imagine increasing power system load from zero (independent failures and
negligible chance of large blackout) to emergency loading of all components
(certain cascading failure). We think there is a critical loading (phase transition) in
between these extremes at which there is a sharply increased chance of cascading
failure. Our models show power tails at this critical point.

    (4) The practical implications of the critical loading are that we need ways to
estimate the closeness to this critical loading in order to manage the risk of large
blackouts by operating the power system with a suitably low risk of cascading
failure. Therefore the current thrust of the project is to devise practical methods
of monitoring or assessing criticality of the power system.

    (5) There are a huge number of possible combinations of foreseeable and
unforeseeable multiple contingencies that can lead to cascading failure.  While it
is definitely good practice to mitigate the most likely of the foreseeable
contingencies, in this project we focus on the complementary problem of
assessing the overall system stress that can cause failures to propagate after they
are started.

    (6) Load growth at 2% per year reduces power system margins of operation
whereas the engineering responses to blackouts (caused by small margins)
increase margins.  These opposing forces could dynamically self-organize the
system to the critical point.  Mitigation of blackout risk should take care to
account for counter-intuitive effects in complex self-organized critical systems.
For example, suppressing small blackouts could lead the system to be operated
closer to the edge and ultimately increase the risk of large blackouts.



3 PROJECT ACHIEVEMENTS

3.1 MAIN ACCOMPLISHMENTS

This section summarizes the main accomplishments of the project.  A detailed
technical account of these accomplishments can be found in the papers reprinted
in section 6  and in the preprints that are available at
http://eceserv0.ece.wisc.edu/~dobson/home.html. A summary of these
accomplishments organized by project task can be found in section 3.2.

It is convenient to first list the three main models developed and used in the
project so that they can be identified briefly in the sequel:

• OPA model.  OPA is a software code to study the dynamics of power system
blackouts.  OPA models the cascading failures of the power system using DC
load flow and LP dispatch and includes long term dynamics of load growth
and power system improvement in response to blackouts.  OPA was
developed by ORNL, PSerc at Wisconsin and University of Alaska and was
extensively developed in the previous CERTS project.

•  CASCADE model.   CASCADE is a simple analytically solvable model to
study basic features of probabilistic cascading failure.  CASCADE was
developed from scratch by the previous CERTS project.

•  branching process model.   The branching process model is a simple
analytically solvable model that approximates CASCADE.  

The main accomplishments are:

• We analyzed the criticality condition yielding power tails in the distribution of
the number of failures in the CASCADE model. This was done by
approximating the CASCADE  model as a branching process [see section 6.1].
The criticality parameter measures the propagation of failures during the
cascade and the proximity of the system to a high risk of cascading failure.
The approximation was generalized to the more realistic case of limited
component interactions [see section 6.3]. The branching process
approximation opens up possibilities for analyzing, quantifying and
monitoring the risk of large cascading failures.  In particular, the value of
failure propagation λ can be linked to risk of blackouts of all sizes [see section
6.6].

•  Progress was made in identifying and obtaining the criticality parameter
using data from the OPA blackout simulation [see sections 6.2 and 6.5].  This
allows the comparison of the OPA and CASCADE model and gives insights
into both models, particularly the limitations in the CASCADE model that
have to be addressed when applying a branching process perspective.



•  Branching process models were proposed for the exponentially increasing
portions of real blackouts and some initial methods of fitting the models to
real blackout data were proposed and illustrated using data from WSCC
blackouts [see section 6.10].  Further work will require access to summary
data from the August 2003 blackout and this data has been requested from
DOE.  A start has been made on proposing and assessing the feasibility of
real-time monitoring methods [see section 6.10], but much more exploration
is needed to assess initial feasibility.

•  Progress was also made in proposing ways of statistically estimating
propagation of failures λ from general data.  As well as the work described
above [see sections 6.2, 6.3, 6.5] another possible statistic for λ was proposed
and a method to find the criticality point by Monte Carlo simulation were
outlined [see section 6.6]. These are all steps towards understanding criticality
and developing methods to measure the criticality parameter from
simulations and real data.

•  The mathematical foundations of the CASCADE model and connections to
models of branching processes, queues, random graphs, stochastic process
fluctuations and epidemics were established and documented
[DobsonPEIS05].   The generalized multinomial joint distribution of the
number of failures in each stage was derived.  The description and
derivations of the CASCADE model were simplified and improved.

• The effect of grid upgrade strategies such as increasing component reliability
and redundancy on the complex system dynamics of the transmission grid
were studied [see section 6.7].  Some of the long-term effects on blackout risk
were counter-intuitive, suggesting that care should be taken in planning
upgrades in the light of complex system dynamics.

• Work on detecting criticality in a blackout simulation model that represents
hidden failures in the protection system and exploring mitigation methods to
shape the probability distribution of blackout sizes was completed and a
journal paper is being published [Chen05]. This completes joint work with
PSerc at Cornell University that was recently funded under CERTS.

• Joint work with University of Alaska was done on modeling cascading failure
in interdependent infrastructures and on human factors in risk [see sections
6.8 and 6.9].  The models developed for the interdependent infrastructure
generalize branching and complex systems models in the project in ways that
are expected to be useful for blackout modeling. Moreover, a start on the
human factors in risk is needed as an important but poorly modeled key
factor in blackout risk and perception of blackout risk.

•  Media interest in cascading failure blackouts and complex systems aspects
after the August blackout led to quotes and background provided to over a
dozen newspaper articles and appearances on NPR radio and ABC Nightline.
Project research results were featured in Nature, National Post, Energia, and



in lead articles in SIAM News and IEEE Spectrum. These articles may be
a c c e s s e d  a t  t h e  website
http://eceserv0.ece.wisc.edu/~dobson/complexsystemsresearch.html

• The project work on electrical blackouts was recognized as one of DOE Office
of Science Programs’ Top Achievements in 2003.

• The project work on the distribution of blackout size as a result of complex
systems effects has been identified as significant in assessing the risk of loss of
offsite power for nuclear power plants [Raughley04].  Ben Carreras has been
advising the U.S. Nuclear Regulatory Commission to assist this analysis.

• Substantial progress in establishing methods of cascading failure analysis and
complex systems analysis were made.  Four journal papers in electrical and
systems engineering, physics, and probability journals were produced
[CarrerasCAS04, CarrerasCHAOS04, DobsonPEIS05, Chen05] and many
presentations were given at conferences and to industry.  Collaboration with
a consulting company was established and pursued and several proposals
were made to industry and an ISO jointly with the consulting company. A
session on cascading failure blackouts was organized at the PMAPS
conference that brought together for the first time international researchers
working on this topic.  Lectures on the project material were presented to
industry at the EEI Market Design & Transmission Pricing School, the
Institute for Asset Management in Britain, and at a PSerc meeting. These
activities are all intended to multiply the effectiveness, leverage, and impact
of the project in a variety of industrial, academic, national and international
contexts.

• Since the OPA model does not currently represent some of the factors that
may be significant in cascading failure interactions, we established a
collaboration with the University of Manchester to test their cascading failure
model [Kirschen04, Rios02] for criticality.  This collaboration has a paper in
progress to be submitted to the 2005 PSCC conference.  Researchers at
Carnegie-Mellon also reported criticality phenomenon in their cascading
failure model [LiaoCMU04] and we are also starting to collaborate with them
and Iowa State under PSerc to investigate this. Strong interest has been
expressed by PSerc industry members. Upgrade of OPA is planned for next
year as outlined in section 3.6.3

• A web page to briefly explain the project results and give access to a selection
o f  p a p e r s  w a s  s e t  u p  at
http://eceserv0.ece.wisc.edu/~dobson/complexsystemsresearch.html



3.2 ACCOMPLISHMENTS BY TASKS

This section summarizes the project accomplishments for the two years
according to the planned tasks.

Task 1:  Document explorations of blackout risk analysis and mitigation in
complex system simulations

(a) Progress was made in identifying and obtaining the criticality
parameter using data from the OPA blackout simulation.  The criticality
parameter determines how close the power system is to a significant risk of
cascading failure and its determination from data could be used to monitor the
risk of cascading failure.  This work was documented in an initial conference
paper [see section 6.2].  

(b) Work on detecting criticality in a blackout simulation model that
represents hidden failures in the protection system and exploring mitigation
methods to shape the probability distribution of blackout sizes was completed
and documented in the journal paper [Chen05].

(c) The media showed great interest in complex systems approach to
blackout risk and mitigation.  The CERTS team provided information about this
research topic to reporters so that it could get public exposure and to contribute
to the public information relevant to the August 2003 blackout.  The December
2003 issue of SIAM news headlined an article on complex systems applied to
blackouts that extensively described the project work in blackout risk analysis
and mitigation [Robinson03].  (SIAM is the Society for Industrial and Applied
Mathematics).  The August 2004 issue of IEEE Spectrum lead article discussed the
complex systems work of the project in some detail and contrasted the project
work with other approaches [Fairley04].

(d) Extending and documenting the work on blackout risk mitigation
using OPA is Task 4.

Task 2: Document the properties of a general cascading failure model  

(a) The general cascading failure model CASCADE has been carefully
stated and formulas for the probability distribution of the number of failures has
been rigorously derived by two methods.  The connections to known
mathematics have been elucidated; it turns out that the cascading failure model is
a new application and generalization of a quasibinomial distribution.  The
quasibinomial distribution has appeared in problems involving queues,
epidemics and random mappings.  Establishing the analysis and related
applications of the cascading failure model is foundational for understanding the
model and for effective further exploitation of the model.  This work is
documented in the journal paper [DobsonPEIS05].



(b) We approximated the CASCADE model as a branching process to give
insight into the propagation of failures.  The approximation and the implications
for risk analysis of cascading failure were documented in an initial conference
paper [see section 6.1].  The approximation was generalized to the more realistic
case of limited component interactions and this was documented in another
conference paper [see section 6.3].

(c) Analysis of the criticality conditions in the CASCADE model is task 5.

Task 3: Project first year report
The first year report was produced and is available in pdf format on the CERTS
website.

Task 4: Document blackout risk mitigation using OPA
The effect of grid upgrade strategies such as increasing component reliability and
redundancy on the complex system dynamics of the transmission grid were
studied [see section 6.7].  Some of the long-term effects on blackout risk were
counter-intuitive, suggesting that care should be taken in planning upgrades in
the light of complex system dynamics.  A journal paper submission on task 4 is
planned but not yet completed. Work on blackout risk mitigation in another
blackout simulation model that represents hidden failures in the protection
system and exploring mitigation methods to shape the probability distribution of
blackout sizes was completed and a journal paper is being published [Chen05].
This completes joint work with PSerc at Cornell University that was recently
funded under CERTS.

Task 5: Analyze criticality conditions in CASCADE model
Much of the work on this task was directed towards approximating the CASCADE
model with a branching process and analyzing the branching process. One of the
criticality conditions for the CASCADE model shows up in the branching process
approximation as the failure propagation parameter λ and several papers have
explored ways to compute λ from CASCADE, OPA and real blackout data [see sections
6.2, 6.5, and 6.6].  Some work on an interpretation of the structure of criticality in
CASCADE from the point of view of thermodynamics has been done.

Task 6: Understand criticality conditions in OPA model
Work further to that in Task 2(b) was done in relating the OPA criticality to CASCADE
criticality [see section 6.5].  Also a straightforward method to find the criticality point by
Monte Carlo simulation was outlined [see section 6.6].  Since the OPA model does not
currently represent some of the factors that may be significant in cascading failure
interactions, we established a collaboration with the University of Manchester to test
their cascading failure model [Kirschen04, Rios02] for criticality.  This collaboration has a
paper in progress to be submitted to the 2005 PSCC conference.  Researchers at
Carnegie-Mellon also reported criticality phenomenon in their cascading failure model
[LiaoCMU04] and we are also starting to collaborate with them and Iowa State under
PSerc to investigate this.  Strong interest has been expressed by PSerc industry
members.  Upgrade of OPA is planned for next year as outlined in section 3.6.3.



Task 7:  Final report
This report is the final report.  



3.3 PROJECT COORDINATION

The project is led by Ian Dobson and involves a team of researchers at
PSerc at Wisconsin and ORNL.  Close collaboration with Dr. David Newman at
the Physics department in the University of Alaska-Fairbanks is ongoing.  The
project team has a substantial history of productive collaboration and is
producing results in close collaboration and papers with joint authorship
[BhattHICSS05, Carreras00, Carreras01a, Carreras01b, Carreras02,
CarrerasCHAOS02, Carreras03, CarrerasCHAOS04, CarrerasCAS04, Carreras04,
Dobson01, Dobson02, DobsonCHINA02, Dobson03, Dobson04, DobsonISCAS04,
DobsonPEIS05, DobsonCMU04, DobsonHICSS05, NewmanCMU04,
NewmanHICSS05].

Team communication is a judicious combination of email, phone, and face-to-face
meetings.  The team members meet for about three days about every four
months.  



3.4 PAPERS AND PRESENTATIONS

The following papers document in detail much of the technical progress on the
project.   The 2004 and January 2005 conference papers and 2004 journal papers
are reprinted in section 6.  The 2005 journal papers are not reprinted in this
report. However, preprints of the 2005 journal papers are posted on the website
at http://eceserv0.ece.wisc.edu/~dobson/home.html.

The following journal papers were produced:

Evidence for self-organized criticality in a time series of electric power system
blackouts
B.A. Carreras, D.E. Newman, I. Dobson, A.B. Poole
IEEE Transactions on Circuits and Systems Part I
volume 51, no 9, September 2004, pp 1733-1740
(reprinted in  section 6.11)

Abstract: We analyze a 15-year time series of North American electric power
transmission system blackouts for evidence of self-organized criticality.  The
probability distribution functions of various measures of blackout size have a
power tail and R/S analysis of the time series shows moderate long time
correlations.  Moreover, the same analysis applied to a time series from a
sandpile model known to be self-organized critical gives results of the same
form.  Thus the blackout data seem consistent with self-organized criticality.  A
qualitative explanation of the complex dynamics observed in electric power
system blackouts is suggested.

Complex dynamics of blackouts in power transmission systems
B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman
Chaos: An Interdisciplinary Journal of Nonlinear Science
volume 14, no 3, September 2004, pp 643-652
(reprinted in  section 6.12)

Abstract: A model has been developed to study the global complex dynamics of
a series of blackouts in power transmission systems.  This model includes a
simple level of self-organization by incorporating the growth of power demand,
the engineering response to system failures, and the upgrade of the generator
capacity. Two types of blackouts have been identified with different dynamical
properties. One type of blackout involves loss of load due to transmission lines
reaching their load limits but no line outages. The second type of blackout is
associated with multiple line outages. The dominance of one type of blackouts
versus the other depends on operational conditions and the proximity of the
system to one of its two critical points. The model shows a probability
distribution of blackout sizes with power tails similar to that observed in real
blackout data from North America.



Cascading dynamics and mitigation assessment in power system disturbances
via a hidden failure model
J. Chen, J.S. Thorp, I. Dobson
to appear in
International Journal of Electrical Power and Energy Systems in 2005.
preprint available at http://eceserv0.ece.wisc.edu/~dobson/home.html

Abstract:  A hidden failure embedded DC model of power transmission systems
has been developed to study the observed power tails of North American
blackout data. We investigate the impacts of several model parameters on the
global dynamics and evaluate possible mitigation measures. The main
parameters include system loading level, hidden failure probability, spinning
reserve capacity and control strategy. The sensitivity of power-law behavior
with respect to each of these parameters and the possible blackout mitigation are
discussed and illustrated using simulation results from the WSCC 179-bus
equivalent system and IEEE 118-bus test system. It is our intention that the study
can provide guidance on when and how the suggested mitigation methods
might be effective.

A loading-dependent model of probabilistic cascading failure
I. Dobson, B.A. Carreras, D.E. Newman
to appear in
Probability in the Engineering and Informational Sciences
vol. 19, no. 1, Jan 2005, pp. 15-32
preprint available at http://eceserv0.ece.wisc.edu/~dobson/home.html

Abstract: We propose an analytically tractable model of loading-dependent
cascading failure that captures some of the salient features of large blackouts of
electric power transmission systems.  This leads to a new application and
derivation of the quasibinomial distribution and its generalization to a saturating
form with an extended parameter range.  The saturating quasibinomial
distribution of the number of failed components has a power law region at a
critical loading and a significant probability of total failure at higher loadings.

The following conference papers were produced.

A branching process approximation to cascading load-dependent system failure
I. Dobson, B.A. Carreras, D.E. Newman
Thirty-seventh Hawaii International Conference on System Sciences, Hawaii,
January 2004
(reprinted in  section 6.1)

Abstract: Networked infrastructures operated under highly loaded conditions
are vulnerable to catastrophic cascading failures.  For example, electric power
transmission systems must be designed and operated to reduce the risk of
widespread blackouts caused by cascading failure.  There is a need for
analytically tractable models to understand and quantify the risks of cascading



failure.  We study a probabilistic model of loading dependent cascading failure
by approximating the propagation of failures as a Poisson branching process.
This leads to a criticality condition for the failure propagation.  At criticality there
are power tails in the probability distribution of cascade sizes and consequently
considerable risks of widespread catastrophic failure.  Avoiding criticality or
supercriticality is a key approach to reduce this risk.  This approach of
minimizing the propagation of failure after the cascade has started is
complementary to the usual approach of minimizing the risk of the first few
cascading failures.  The analysis introduces a saturating form of the generalized
Poisson distribution so that supercritical systems with a high probability of total
failure can be considered.

Dynamical and probabilistic approaches to the study of blackout vulnerability
of the power transmission grid
B.A. Carreras, V.E. Lynch, D.E. Newman, I. Dobson
Thirty-seventh Hawaii International Conference on System Sciences, Hawaii,
January 2004
(reprinted in  section 6.2)

Abstract: The CASCADE probabilistic model for cascading failures gives a simple
characterization of the transition from an isolated failure to a system-wide
collapse as system loading increases. Using the basic ideas of this model, the
parameters that lead to a similar characterization for power transmission system
blackouts are identified in the OPA dynamical model of series of blackouts. The
comparison between the CASCADE and OPA models yields parameters that can
be computed from the OPA model that indicate a threshold for cascading failure
blackouts. This is a first step towards computing similar parameters for real
power transmission systems.

Probabilistic load-dependent cascading failure with limited component
interactions
I. Dobson, B.A. Carreras, D.E. Newman,
IEEE International Conference on Circuits & Systems, Vancouver, Canada, May
2004 (reprinted in section 6.3)

Abstract: We generalize an analytically solvable probabilistic model of cascading
failure in which failing components interact with other components by increasing
their load and hence their chance of failure.  In the generalized model, instead of
a failing component increasing the load of all components, it increases the load of
a random sample of the components.  The size of the sample describes the extent
of component interactions within the system.  The generalized model is
approximated by a saturating branching process, and this leads to a criticality
condition for cascading failure propagation that depends on the size of the
sample.  The criticality condition shows how the extent of component
interactions controls the proximity to catastrophic cascading failure.  Implications
for the complexity of power transmission system design to avoid cascading
blackouts are briefly discussed.



Complex systems analysis of series of blackouts: cascading failure, criticality,
and self-organization
I. Dobson, B.A. Carreras, V.E. Lynch, D.E. Newman
IREP conference: Bulk Power System Dynamics and Control - VI, Cortina
d'Ampezzo, Italy, August 2004
(reprinted in  section 6.4)
Abstract: We give a comprehensive account of a complex systems approach to
large blackouts caused by cascading failure.  Instead of looking at the details of
particular blackouts, we study the statistics, dynamics and risk of series of
blackouts with approximate global models.  North American blackout data
suggests that the frequency of large blackouts is governed by a power law.  This
result is consistent with the power system being a complex system designed and
operated near criticality.  The power law makes the risk of large blackouts
consequential and implies the need for nonstandard risk analysis.

Power system overall load relative to operating limits is a key factor affecting the
risk of cascading failure.  Blackout models and an abstract model of cascading
failure show that there are critical transitions as load is increased.  Power law
behavior can be observed at these transitions.

The critical loads at which blackout risk sharply increase are identifiable
thresholds for cascading failure and we discuss approaches to computing the
proximity to cascading failure using these thresholds.  Approximating cascading
failure as a branching process suggests ways to compute and monitor criticality
by quantifying how much failures propagate.

Inspired by concepts from self-organized criticality, we suggest that power
system operating margins evolve slowly to near criticality and confirm this idea
using a blackout model.  Mitigation of blackout risk should take care to account
for counter-intuitive effects in complex self-organized critical systems.  For
example, suppressing small blackouts could lead the system to be operated
closer to the edge and ultimately increase the risk of large blackouts.

Estimating failure propagation in models of cascading blackouts
I. Dobson, B.A. Carreras, V.E. Lynch, B. Nkei, D.E. Newman
Eighth International Conference on Probability Methods Applied to Power
Systems, Ames Iowa, September 2004
(reprinted in  section 6.5)

Abstract: We compare and test statistical estimates of failure propagation in data
from versions of a probabilistic model of loading-dependent cascading failure
and a power systems blackout model of cascading transmission line overloads.
The comparisons suggest mechanisms affecting failure propagation and are an
initial step towards monitoring failure propagation in practical system data.
Approximations to the probabilistic model describe the forms of probability
distributions of cascade sizes.



A criticality approach to monitoring cascading failure risk and failure
propagation in transmission systems
I. Dobson, B. A. Carreras, D. E. Newman
Electricity Transmission in Deregulated Markets, conference at Carnegie Mellon
University, Pittsburgh PA USA, December 2004
(reprinted in  section 6.6)

Abstract:  We consider the risk of cascading failure of electric power
transmission systems as overall loading is increased. There is evidence from
both abstract and power systems models of cascading failure that there is a
critical loading at which the risk of cascading failure sharply increases.
Moreover, as expected in a phase transition, at the critical loading there is a
power tail in the probability distribution of blackout size.  (This power tail is
consistent with the empirical distribution of North American blackout sizes.)
The importance of the critical loading is that it gives a reference point for
determining the risk of cascading failure.  Indeed the risk of cascading failure
can be quantified and monitored by finding the closeness to the critical
loading.  This paper suggests and outlines ways of detecting the closeness to
criticality from data produced from a generic blackout model. The increasing
expected blackout size at criticality can be detected by computing expected
blackout size at various loadings.  Another approach uses branching process
models of cascading failure to interpret the closeness to the critical loading in
terms of a failure propagation parameter λ.  We suggest a statistic for λ  that
could be applied before saturation occurs.  The paper concludes with
suggestions for a wider research agenda for measuring the closeness to
criticality of a fixed power transmission network and for studying the complex
dynamics governing the slow evolution of a transmission network.



The Impact of Various Upgrade Strategies on the Long-Term Dynamics and
Robustness of the Transmission Grid
D. E. Newman, B. A. Carreras, V. E. Lynch, I. Dobson
Electricity Transmission in Deregulated Markets, conference at Carnegie Mellon
University, Pittsburgh PA USA, December 2004
(reprinted in  section 6.7)

Abstract: We use the OPA global complex systems model of the power
transmission system to investigate the effect of a series of different network
upgrade scenarios on the long time dynamics and the probability of large
cascading failures. The OPA model represents the power grid at the level of DC
load flow and LP generation dispatch and represents blackouts caused by
randomly triggered cascading line outages and overloads. This model represents
the long-term, slow evolution of the transmission grid by incorporating the
effects of increasing demand and engineering responses to blackouts such as
upgrading transmission lines and generators. We examine the effect of increased
component reliability on the long-term risks, the effect of changing operational
margins and the effect of redundancy on those same long-term risks. The
general result is that while increased reliability of the components decreases the
probability of small blackouts, depending on the implementation, it actually can
increase the probability of large blackouts. When we instead increase some types
of redundancy of the system there is an overall decrease in the large blackouts
with a concomitant increase of the smallest blackouts. As some of these results
are counter intuitive these studies suggest that care must be taken when making
what seem to be logical upgrade decisions.

Risk assessment in complex interacting infrastructure systems
D. E. Newman, B. Nkei, B. A. Carreras, I. Dobson, V. E. Lynch, P. Gradney  
Thirty-eighth Hawaii International Conference on System Sciences, Hawaii,
January 2005
(reprinted in  section 6.8)

Abstract: Critical infrastructures have some of the characteristic properties of
complex systems. They exhibit infrequent large failures events. These events,
though infrequent, often obey a power law distribution in their probability
versus size.  This power law behavior suggests that ordinary risk analysis might
not apply to these systems. It is thought that some of this behavior comes from
different parts of the systems interacting with each other both in space and time.
While these complex infrastructure systems can exhibit these characteristics on
their own, in reality these individual infrastructure systems interact with each
other in even more complex ways. This interaction can lead to increased or
decreased risk of failure in the individual systems. To investigate this and to
formulate appropriate risk assessment tools for such systems, a set of models are
used to study to impact of coupling complex systems. A probabilistic model and
a dynamical model that have been used to study blackout dynamics in the power
transmission grid are used as paradigms. In this paper, we investigate changes in



the risk models based on the power law event probability distributions, when
complex systems are coupled.

Understanding the effect of risk aversion on risk
U. Bhatt, D.E. Newman, B.A. Carreras, I. Dobson
Thirty-eighth Hawaii International Conference on System Sciences, Hawaii,
January 2005
(reprinted in  section 6.9)

Abstract: As we progress, society must intelligently address the following
question: How much risk is acceptable?  How we answer this question could
have important consequences for the future state of our nation and the dynamics
of its social structure. In this work, we will elucidate and demonstrate using a
physically based model that the attempt to eliminate all thinkable risks in our
society may be setting us up for even larger risks.  The simplest example to
illustrate this point is something with which we are all familiar and have known
from the time we were very young. When children burn their finger on a hot
item they learn the consequences of touching fire. This small risk has taught the
child to avoid larger risks.  In trying to avoid these small risks as well as larger
risks, one runs the dual danger of not learning from the small ones and of
having difficulty in differentiating between large and small risks.   We will
illustrate this problem with a series of social dynamics examples from the
operation of NASA to network operation and then make an analogy to a
complex system model for this type of dynamics.  From these results,
recommendations will be made for the types of risk responses that improve the
situation versus those that worsen the situation.  In order to progress, society
has to recognize that accidents are unavoidable and therefore an intelligent risk
management program must be implemented aimed toward avoiding or
reducing major accidents.  It is not possible to avoid all risk but it is better to
avoid the greater risk situations for society.

Branching process models for the exponentially increasing portions of
cascading failure blackouts
I. Dobson, B.A. Carreras, D.E. Newman
Thirty-eighth Hawaii International Conference on System Sciences, Hawaii,
January 2005
(reprinted in  section 6.10)

Abstract: We introduce branching process models in discrete and continuous
time for the exponentially increasing phase of cascading blackouts.  Cumulative
line trips from real blackout data have portions consistent with these branching
process models.  Some initial calculations identifying parameters and using a
branching process model to estimate blackout probabilities during and after the
blackout are illustrated.



In addition to the conference papers listed above, which were all presented, the
following presentations were made:

Blackout mitigation assessment in power transmission systems
B.A. Carreras, V.E. Lynch, D.E. Newman, I. Dobson
36th Hawaii International Conference on System Sciences, Hawaii, January 2003.
A probabilistic loading-dependent model of cascading failure and possible
implications for blackouts
I. Dobson, B.A. Carreras, D.E. Newman
36th Hawaii International Conference on System Sciences, Hawaii, January 2003.
Cascading failure,
I. Dobson, B.A. Carreras, D.E. Newman
Talk at the University of Liege, Belgium March 2003

Cascading failure,
I. Dobson, B.A. Carreras, D.E. Newman
Talk at Imperial College, London England March 2003

Cascading failure,
I. Dobson
Brief presentation at press conference organized by Wisconsin Public Utility
Institute, Madison WI, August 2003

Cascading failure and the risk of large blackouts,
I. Dobson, B.A. Carreras, D.E. Newman
Talk at UMIST, University of Manchester Institute for Science and Technology,
Manchester, England, September 2003

Cascading failure and catastrophic risk in complex systems,
I. Dobson, B.A. Carreras, D.E. Newman
Invited talk at Institute for Asset Management Workshop, Birmingham, England,
September 2003

Cascading failure and the risk of large blackouts,
I. Dobson, B.A. Carreras, D.E. Newman,
Talk to Wisconsin Public Service Commission, Madison WI, September 2003

Cascading failure and the risk of large blackouts,
I. Dobson, B.A. Carreras, D.E. Newman,
Talk to Graduate student seminar course, Electrical and Computer Engineering
Department, University of Wisconsin, Madison WI, October 2003

Cascading failure, the risk of large blackouts, criticality and self-organization
I. Dobson, B.A. Carreras, D.E. Newman,
Talk to Plasma Physics seminar, University of Wisconsin, Madison WI, October
2003



Cascading failure, criticality and the risk of large blackouts,
I. Dobson, B.A. Carreras, D.E. Newman,
Talk to Systems group seminar, Electrical and Computer Engineering
Department, University of Wisconsin, Madison WI, October 2003

Cascading failure, the risk of large blackouts, criticality and self-organization
I. Dobson, B.A. Carreras, D.E. Newman,
Talk to Chaos and Complex Systems seminar, University of Wisconsin, Madison
WI, October 2003

Criticality and risk of large cascading blackouts
I. Dobson, B.A. Carreras,
Presentation at CERTS review meeting, Washington DC January 2004

Cascading failure analysis
I. Dobson, B.A. Carreras, D.E. Newman,
Presentation to L.R. Christensen Associates, Madison WI April 2004

Cascading failure analysis
I. Dobson, B.A. Carreras, D.E. Newman,
Presentation to Alliant Energy, Madison WI April 2004

Cascading failure analysis and criticality
R. Camfield, I. Dobson
Presentation to a major utility, May 2004.

Cascading failure propagation and branching processes
I. Dobson, B.A. Carreras, D.E. Newman,
Presentation to Silicon Graphics Inc and Hydro-Quebec TransEnergie, Madison
WI June 2004

Cascading failure analysis
I. Dobson, B.A. Carreras, D.E. Newman,
Lecture at EEI Market Design & Transmission Pricing School
Madison, Wisconsin, July 2004

A preliminary coupled model of electricity markets and cascading line
failures in power transmission systems
D. Berry,
Student Undergraduate  Laboratory Internship poster session
Oak Ridge, Tennessee, August  2004

Criticality and risk of large cascading blackouts
I. Dobson, B.A. Carreras, D.E. Newman,
Presentation at PSerc Industry Advisory Board meeting, August 2004



The study of cascading failure in complex systems
B. Nkei, B.A. Carreras, V.E.  Lynch,
2004 Virginia Tech Symposium for Undergraduate Research in Engineering
Blacksburg, Virginia, October 2004

Cascading failures in coupled systems
B. Nkei, V. E. Lynch, B. A. Carreras,
71st Annual Meeting of Southeastern Section of the American Physical Society,
Oak Ridge, Tennessee, November 2004

Blackouts
I. Dobson.  8 lectures  (last quarter of the course) in Fall 2004 graduate course at
University of Wisconsin: ECE 905 Special topics in Electric power system:
operation, markets, reliability, and blackouts; applications of optimization,
markets, reliability and self-organized criticality to electric power transmission
networks. Students from electrical engineering and policy attended.
http://eceserv0.ece.wisc.edu/~dobson/ece905.html

I. Dobson was the organizer and chair of a Special session on Probabilistic
assessment of cascading events and blackouts at the Eighth International
Conference on Probability Methods Applied to Power Systems, Ames Iowa,
Sept. 2004.  This session brought together most of the international researchers
in this emerging area.



3.5 NEWSPAPER AND MEDIA

There was considerable interest from the media in this project immediately
following the August blackout.  Considerable time was spent talking to the
media, providing explanations, background and quotes.  While some of the
articles reflected general information, other articles (title in bold face) cited
research results from the project.  The articles and radio and TV contacts are
listed below; most are available at
http://eceserv0.ece.wisc.edu/~dobson/complexsystemsresearch.html.

Why the lights went out
Jonathan Kay, National Post, August 16 2003

“Last December, four U.S. scientists published a paper in the Journal Chaos
entitled Critical points and transitions in an electric power transmission model
for cascading failure blackouts. "Detailed analysis of large blackouts has shown
that they involve cascading events in which a triggering failure produces a
sequence of secondary failures that lead to blackout of a large area of the grid,"
the authors found. They presciently concluded that "large blackouts are much
more likely than might be expected from [conventional statistical analysis]" and
are "suggestive of a complex system operating close to a critical point."

At 4:10pm on Thursday, Ontario and seven states hit that "critical point." Within
seconds, workers in New York City, Toronto and thousands of other
communities found themselves staring at blank computer screens. Many were
forced to walk home in sticky weather -- generally to dark, uncomfortably hot
homes. Some are still without power as of Saturday morning. Their only
consolation is that the biggest power outage in North American history
evidently had nothing to do with terrorism.”
…

How a butterfly's wing can bring down Goliath.
Chaos theories calculate the vulnerability of megasystems
Keay Davidson, San Francisco Chronicle, August 15 2003

This was a first world blackout
Chris Suellentrop, Slate magazine, August 15 2003

Wisconsin company believes blackout originated in Lansing, Mich.
Associated Press, Star Tribune, August 15 2003

David Newman appeared on NPR radio KUAC FM, August 27 2003

Ian Dobson appeared on ABC Nightline, August 18 2003

Energy scientist studies blackout triggers
Pat Daukantas, Government Computer News, August 22 2003



Blackout was no surprise to UAF professor
Ned Rozell, Anchorage Daily News, September 7 2003

The chaos behind the wall socket
Ned Rozell, Fairbanks Daily News-Miner, September 7 2003

Getting a grip on nation's grid grind
R. Cathey Daniels, Oak Ridger, September 16, 2003

Californians work to predict grid-crashing
Ian Hoffman, Oakland Tribune, August 25 2003

Set of rules too complex to be followed properly
James Glanz and Andrew Refkin, New York Times, August 19 2003

Elusive force may lie at root of blackout
Richard Perez-Pena and Eric Lipton, New York Times, September 23 2003

What’s Wrong with the Electric Grid?
Eric Lerner, Industrial Physicist, November 3 2003

Quick response is key in emergencies
Tom McGinty, NewsDay, November 9 2003

L'energia ha un punto critico
Donata Allegri, Ecplanet

The power grid: Fertile ground for math research
Sara Robinson, SIAM News, Volume 36, Number 8, October 2003

Black-out: cause e mezzi per prevenirli
Carlo Alberto Nucci e Alberto Borghetti, Rivista ENERGIA, n. 3, pp. 20-29, 2003

The power grid as complex system,
Sara Robinson, SIAM News, Volume 36, Number 10, December 2003

The unruly power grid,
Peter Fairley, IEEE Spectrum August 2004

Remember last year's big blackout? Get ready for another one
Stephen Strauss, The Globe and Mail, August 14, 2004



3.6 PLAN OF FUTURE WORK

This section presents a longer term plan of work that explains how the project is
directed towards monitoring tools to be applied to the real power system.

3.6.1 Project Goal

Contribute to transmission system reliability by understanding large, cascading
failure blackouts and providing tools for analyzing and monitoring their risk.  In
particular, the project will identify the threshold that leads to increased risk of
cascading failure, express this threshold in terms of realistic power system
parameters and develop monitoring tools and criteria to be applied in real power
transmission systems.

3.6.2 Benefits

The main long-term benefit is to monitor and reduce the likelihood of large-scale
blackouts in the United States by the use of operational criteria derived from the
results of this project.

3.6.3 Technical approach

We will use a hierarchy of models that will include the CASCADE and OPA
models and their extensions to be developed as needed. The CASCADE model is
probabilistic model for cascading failures that gives a simple characterization of
the transition from an isolated failure to a system-wide collapse as system
loading increases. At the present funding level, this project will require funding
for about three to four years. To reach this goal we need to achieve the following
objectives:

1 )  Using the OPA model we must thoroughly understand the loading
threshold that causes system-wide blackouts. We will compare the
probabilistic CASCADE model, where this threshold is easy to identify,
with the dynamical OPA model. This dynamical model incorporates the
structure of a network, and a linear programming (LP) approach is used to
find instantaneous solutions to the power demand. In such a model, the
threshold to system-wide blackouts is not obvious, and its understanding
is the first step in the path toward application to realistic systems. There are
several potential ways of characterizing the threshold and we are
investigating them. That is, we need to identify the key measurements to
be carried out on the power system that will provide information on the
closeness to the criticality threshold. In particular we need to test and refine
metrics for monitoring closeness to criticality such as the branching process
failure propagation parameter λ, average normalized total load transfer
for a failing line, and the loading margin to critical loading.

2)  Determine the secure operating conditions with respect to cascading
failure. We will use both models in this study. We have to determine how
close to the threshold it is possible to operate.



3) Studies of the impact of the slow time evolution and the self-organizing
forces will be conducted on simpler models. They will provide guidance on
the validity of the probabilistic criteria when translated to the self-
organized system.

4 )  Based on the previous results we have to develop criteria and
measurements that are applicable to real system.

5) We will explore the development of software tools to monitor and assess
the security of the power system with respect to large cascading failures.
First we will test these tools in simulated operation to assess their
capabilities and limitations

6) Implement the criteria and tools developed so that is possible to monitor
power system status and risk trade-offs and to be able to do “what-if”
analysis. We will look for collaborations within CERTS in developing
practical tools to carry out this task.

3.6.3 Plan for next step in OPA development

There are several power system cascading failure models with varying modeling
emphases as summarized in the following table:

OPA hidden
failure

Manchester CMU TRELSS

overloads X X X X X
 redispatch X X X X

hidden failure X X
protection group X

AC X X
Gen trip X

voltage collapse X X
transient stability X

under freq load
shed

X

islanding X X X
load increase and

grid upgrade
X

approx.   max
number  of buses

400 300 1000 2500 13000

reference [Carreras
CHAOS02]

[Chen 05] [Kirschen 04] [LiaoCMU04] [TRELSS]

Note that OPA is the only code that can currently address the load increase and
grid upgrade complex dynamics.

The overall plan for the next step in development of OPA is to add to OPA the
most straightforward and significant enhancements first and to seek to
collaborate with the groups running the other models to gain quick access to
features that would require substantial development resources.  Further steps
can be evaluated once this first step is undertaken and some sense of the



importance of the various enhancements for cascading failure analysis has been
gained.

The most promising enhancements to OPA to be first considered are then

• Representation of hidden failures in OPA
• Investigating the modeling of generator trips
• Improving the input to handle a standard format power system file

The AC load flow and the approximation of voltage and transient stability issues
can be postponed in OPA in this first step and first pursued in collaboration with
existing codes.

Significant progress has been made in pursuing and establishing the
collaborations mentioned above.  We have already successfully collaborated
within CERTS with the hidden failure model developed at Cornell University
[Chen05].  The collaboration with the University of Manchester has a paper in
progress to be submitted to the 2005 PSCC conference.  We are starting to
collaborate with Carnegie-Mellon University (CMU) (and Iowa State) under
PSerc to investigate their model.  Strong interest has been expressed by PSerc
industry members.  Our collaboration with a consulting company has already
approached a major utility to explore possibilities of running TRELSS.



4 DELIVERABLES AND BUDGET

4.1  DELIVERABLES

The deliverables for this project are a one-year report and this final report and
the documented information in the conference and journal papers listed in
section 3.4.

4.2 BUDGET

Benjamin A. Carreras (ORNL)
$65,000  for the year beginning Jan 1, 2003.
$60,000  for the year beginning Jan 1, 2004.

Ian Dobson (PSERC Wisconsin)
$55,000  for the year beginning Jan 1, 2003.
$60,000  for the year beginning Jan 1, 2004.
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Abstract

Networked infrastructures operated under highly loaded
conditions are vulnerable to catastrophic cascading fail-
ures. For example, electric power transmission systems
must be designed and operated to reduce the risk of
widespread blackouts caused by cascading failure. There
is a need for analytically tractable models to understand
and quantify the risks of cascading failure. We study a
probabilistic model of loading dependent cascading failure
by approximating the propagation of failures as a Poisson
branching process. This leads to a criticality condition for
the failure propagation. At criticality there are power tails
in the probability distribution of cascade sizes and conse-
quently considerable risks of widespread catastrophic fail-
ure. Avoiding criticality or supercriticality is a key ap-
proach to reduce this risk. This approach of minimizing the
propagation of failure after the cascade has started is com-
plementary to the usual approach of minimizing the risk of
the first few cascading failures. The analysis introduces a
saturating form of the generalized Poisson distribution so
that supercritical systems with a high probability of total
failure can be considered.

1. Introduction

Networked infrastructures such as electric power trans-
mission systems are vulnerable to widespread cascading
failures when the systems are highly loaded. Since mod-
ern society depends on large infrastructures, catastrophes in
which failures propagate to most or all of the system are of
concern. For example, blackouts of substantial portions of
the North American power system east or west of the Rocky
Mountains have a huge cost to society, as demonstrated in
2003 and 1996 respectively. There is a need for analytically
tractable models to understand and quantify the risks of cas-
cading failure so that networked systems can be designed
and operated to reduce the risk of catastrophic failure.

Analyses of 15 years of North American blackout data

show an empirical probability distribution of blackout size
which has heavy tails and evidence of power law depen-
dence in these tails [24, 2, 11, 3, 6]. The exponent of the
power tail is roughly estimated to be in the range –2 to –1.
These data show that large blackouts are much more likely
than might be expected from a distribution of blackout size
in which the tails decay exponentially. Simulation mod-
els of cascading blackouts show similar power tails and the
power tails have been attributed to the nature of the cascad-
ing process [19, 9, 7].

Because of protection and appropriate design and oper-
ational procedures, it is very rare for power transmission
components to fail in the sense of the component break-
ing. However, it is routine for these components to be tem-
porarily removed from service by protection equipment and
the outaged or tripped component is then failed in the sense
that it is temporarily not available to transmit power. More-
over there are sometimes misoperations or mistakes in pro-
tection, communication and control systems or operational
procedures or sometimes the power system is operated un-
der conditions that could not be anticipated in the original
design settings or procedures. In the context of power trans-
mission systems, the term “failure” as used in this paper
should be understood in this broad and nuanced sense.

Notable general features of power transmission systems
are the large number of components, the increased prob-
ability of component failure and interaction at high load,
and the numerous, varied and widespread interactions be-
tween components. Large blackouts typically involve long
sequences of component failures. Many of the interactions
are rare, unanticipated or unusual, not least because of en-
gineering efforts to design and operate the system so as to
avoid the most common failures and interactions. Although
we use electric power transmission system blackouts as the
motivating example in this paper, these general features ap-
pear in other networked infrastructures so that it is likely
that the ideas apply more generally.

One natural way to study cascading failure is to con-
sider the failures propagating probabilistically according to
a Galton-Watson-Bienaymé branching process [23]. For
example, simple assumptions lead to a Poisson branching



process that has the total number of components failed dis-
tributed according to the generalized Poisson distribution
[17, 15].

On the other hand, the CASCADE model of probabilistic
cascading failure [20] has the following general features:

1. Multiple identical components, each of which has a
random initial load and an initial disturbance.

2. When a component overloads, it fails and transfers
some load to the other components.

Property 2 can cause cascading failure: a failure addition-
ally loads other components and some of these other com-
ponents may also fail, leading to a cascade of failure. The
components become progressively more loaded and the sys-
tem becomes weaker as the cascade proceeds.

Both the Poisson branching process and CASCADE can
exhibit criticality and power tails in the probability distribu-
tion of the number of failed components.

We begin the paper by reviewing standard results on
branching processes and the generalized Poisson distribu-
tion and then consider the implications of these results for
the risk of load-dependent cascading failure. A saturating
form of the generalized Poisson distribution is introduced to
allow study of the transition through criticality in a system
with a large but finite number of components. We review the
CASCADE model of cascading failure and then show how
CASCADE can be approximated by the saturating general-
ized Poisson distribution. Then we discuss the implications
of the approximation for analyzing CASCADE and under-
standing cascading failure in blackouts.

2. Review of branching processes

This section reviews standard material on Galton-
Watson-Bienaymé branching processes [23] and general-
ized Poisson distributions [17, 15] as expressed in terms of
cascading failures.

2.1. Generalities

We first consider an infinite number of system compo-
nents. All components are initially unfailed. Component
failures occur in stages with Mi the number of failures in
stage i. We first assume an initial disturbance that causes
one failure in stage zero so that M0 = 1. This first failure
is considered to cause a certain number of failures M1 in
stage 1. M1 is determined according to a probability distri-
bution with generating function E[tM1 ] = f(t) and mean
λ. In subsequent stages, each of the Mi failures in stage i
independently causes a further number of failures in stage
i + 1 according to the same distribution f(s). That is, the

kth failure in stage i causes M
(k)
i+1 failures in stage i+1 and

Mi+1 = M
(1)
i+1 + M

(2)
i+1 + · · · + M

(Mi)
i+1 (1)

where M
(1)
i+1, M

(2)
i+1, · · · , M

(Mi)
i+1 are independent. This in-

dependence is a plausible approximation in a system with
many components and many component interactions so that
series of failures propagating in parallel can be assumed not
to interact. The generating function of Mk is

E[tMk ] = f(f(f(...f(t)...))) = f (k)(t) (2)

and the mean E[Mk] = λk. If at any stage k, Mk = 0, then
zero elements fail for all subsequent stages and the cascad-
ing process terminates.

There are three cases, depending on the mean λ of the
number of failures caused by each failure in the previous
stage. In the subcritical case λ < 1, a finite number of
components will fail. In the supercritical case λ > 1, either
a finite or infinite number of components can fail and the
number of failures in each stage tends to zero or infinity
respectively. The critical case is λ = 1.

We are most interested in the distribution of the total
number of failures

M =
∞∑

k=0

Mk (3)

The generating function of M is F (t) = E[tM ] and it sat-
isfies the recursion F (t) = tf(F (t)).

2.2. Universality of the critical exponent

Under mild conditions on f , for the critical case λ =
1, P [M = r] ∼ r−

3
2 as r → ∞ [26, 23]. That is, the

distribution of the total number of failures of a branching
process at criticality has a universal property of a power tail
with exponent − 3

2 . The details are in Otter’s theorem [26]:

Theorem 1 Suppose that P [M1 = 0] > 0 and that there
is a point a in the interior of the circle of convergence of
f for which f ′(a) = f(a)/a. (This is true, for example, if
1 < λ ≤ ∞ or if f(s) is entire or if f ′(ρ) = ∞, where ρ is
the radius of convergence of f . The point (a, f(a)) is then
the point where the graph of f , for real positive s, is tangent
to a line through the origin. Let α = a/f(a) and let d be
the largest integer such that P [M1 = r] �= 0 implies that r
is a multiple of d, r = 1, 2, .... If r − 1 is not divisible by d,
then P [M = r] = 0, while if r − 1 is divisible by d, then

P [M = r] = d

(
a

2παf ′′(a)

) 1
2

α−rr−
3
2 + O

(
α−rr−

5
2

)

r → ∞ (4)

Notice that α ≥ 1, the equality holding if and only if λ = 1.
Also d = 1 when P [M1 = r] �= 0 for r = 1, 2, ....



2.3. Branching generated by a Poisson distribution

If, in addition to the independence assumptions above,
the failures propagate in a large number of components so
that each failure has a small uniform probability of inde-
pendently causing each failure in a large number of other
components, then the distribution of failures caused by each
failure in the previous stage can be approximated as a Pois-
son distribution [17] so that

P [M1 = m] =
λm

m!
e−λ , m = 0, 1, 2, ... (5)

f(t) = eλ(t−1) (6)

The distribution of the total number of failures becomes

P [M = r] = (rλ)r−1 e−rλ

r!
, 0 ≤ λ ≤ 1 (7)

which is known as the Borel distribution.

2.4. A probabilistic initial disturbance and the gen-
eralized Poisson distribution

If we neglect the zero stage that has one failure, and con-
sider the failures starting with stage 1, then (5) gives a distri-
bution of initial failures according to a Poisson distribution
with mean λ.

However, we distinguish the initial failures that are
caused by some initial disturbance from the subsequent
propagation of failures internal to the system. We want to
represent the initial disturbance by its own probability dis-
tribution. This can be done by specifying a probability dis-
tribution for M0, the number of failures in stage zero. If the
initial failures are Poisson distributed with mean θ so that

P [M0 = m] =
θm

m!
e−θ , m = 0, 1, 2, ... (8)

f0(t) = eθ(t−1) (9)

then the generating function of Mk becomes f0(f (k)(t) and
the distribution of the total number of failures becomes

P [M = r] = θ(rλ + θ)r−1 e−rλ−θ

r!
, θ ≥ 0, 0 ≤ λ ≤ 1 (10)

which is the generalized (or Lagrangian) Poisson distribu-
tion introduced by Consul and Jain [17, 12, 15]. The prob-
ability generating function of (10) is

E[sM ] = eθ(t−1) where t is the function of s satisfying

t = seλ(t−1) (11)

The mean of the generalized Poisson distribution (10) is

E[M ] =
θ

1 − λ
(12)

The generalized Poisson distribution is usually restricted to
parameters such that λ ≤ 1 to avoid the supercritical case
in which there is a finite probability of M infinite.

3. Implications for risk of load-dependent cas-
cading failure

The following sections show how a model of loading de-
pendent cascading failure can be approximated as a branch-
ing process. To motivate this topic, this section supposes
that cascading failure can be treated as a branching process
and discusses some general implications of the branching
results in Section 2 for risk analysis and mitigation of cas-
cading failure.

Suppose that the system is at criticality (λ = 1) so that
the probability distribution of the total number of failures
M follows a power law with exponent − 3

2 . Since risk R is
the product of probability and cost,

R(m) = P [M = m]C[m] ∼ m− 3
2 C[m] (13)

First assume in (13) that the cost C(m) is proportional to
the total number of failures m. (This is a conservative es-
timate in applications such as blackouts; even if the direct
costs are proportional to the blackout size and the total num-
ber of failures, the indirect costs can be very high for large
blackouts [1].) Then R(m) ∼ m− 3

2 m = m− 1
2 . This gives

a weak decrease in risk as the number of failures increase,
which means that the risk of cascading failure includes a
strong contribution from large cascades. Moreover, if in-
stead cost increases according to C[m] ∼ mα where α > 3

2 ,
then (13) implies that the risk of large cascades exceeds that
of small cascades, despite the large cascades being rarer.

Consider a general load dependence for component fail-
ure and interaction. We assume that system components are
more likely to fail and more likely to cause other component
failures when load increases. It is reasonable to assume that
at zero load λ < 1, since a system design with a significant
risk of cascading failure at zero load is unlikely to be feasi-
ble when operated at normal loads. Moreover, if the system
is operated at an absurdly high load at which all compo-
nents are at their limits, then failure of any component will
on average cause many other components to fail and then
λ > 1. We may also assume that λ is an increasing and
continuous function of load. Then there is a critical load for
which λ = 1 and the branching process is critical and the
risk is governed by (13). The risk will be even higher for
λ > 1.

Thus a simple criterion for avoiding the high risk of cas-
cading failure associated with λ ≥ 1 with some margin de-
termined by a choice of λmax < 1 is

design and operate system so that λ ≤ λmax < 1 (14)



Although this is a simple criterion, translating it to appli-
cable design and operational criteria is a substantial task.
Moreover, applying the criteria (14) generally requires the
system to be operated with limited throughput. For exam-
ple, in electric power transmission systems, the loading of
transmission lines and other system components would be
limited. Thus limiting the risk of cascading failure using
(14) will have an economic cost. The dynamics and diffi-
culties of managing this tradeoff should not be neglected.

One approach to limiting cascading failure is to describe
the most likely sequences of cascading failures starting
from the initiating failures and design and operate the sys-
tem to reduce their probability. This standard approach is
sensible and can reduce risk [22, 25, 10]. However, in large
interconnected and interdependent systems there is a com-
binatorial explosion of possibilities. It is often impractical
to envisage and to quantify and compute probabilities for
all but the most likely or apparent of these cascading se-
quences. A large number of rare and hard to anticipate in-
teractions may have to be neglected [27].

Criterion (14) suggests a different and complementary
approach that focusses on limiting the average propagation
of failures after a cascade is started. λ is the expected num-
ber of failures consequent upon a single failure. We sug-
gest that estimation of average values of λ may be feasible
using simulation [8] or otherwise and that the dependence
of λ on load and system design could be determined to al-
low (14) to be implemented. Perhaps the simplifications in
this approach could allow the contributions to λ from nu-
merous but rare interactions to be accounted for more read-
ily. There are a number of problems in establishing this
approach. Two of these problems are

1. Branching processes usually assume an infinite num-
ber of components so that there can be an infinite num-
ber of failures in the supercritical case. This is not re-
alistic when considering the transition from subcritical
to supercritical.

2. Can loading dependent cascading failure be well ap-
proximated as a branching process?

Section 4 addresses problem 1 with a saturating branch-
ing process and the rest of this paper addresses problem 2
by showing how the CASCADE model of load-dependent
cascading failure can be approximated by the saturating
branching process.

4. Saturation due to finite system size

In our application we have a large but finite number n of
components and we need to introduce a saturation or trun-
cation of the Poisson branching process. Let

N = min{n − 1, integer part of (n − θ)/λ} (15)

Then the process evolves in the same way as the process
with an infinite number of components when the total num-
ber of failures does not exceed N . If the total number
of failures exceeds N , then it assumed that all n com-
ponents fail and the process ends. If the parameters are
such that N < n − 1, this implies that it impossible for
N + 1, N + 2, ..., n − 1 components to fail. The saturation
(15) is chosen so that the saturating model can be a good
approximation to CASCADE and this is justified in subsec-
tions 6.1 and 6.2.

The standard result (10) above can be modified as fol-
lows to obtain the saturating model: The generating func-
tion G(t) for the total number of failures remains valid to
order N . Write G[N ](t) for the terms up to and including
order N of G(t). Then G[N ](t) generates the probabilities
of the total number of failures r for r ≤ N . However, the
sum of the probabilities generated by G[N ](t) is G[N ](1)
and G[N ](1) < 1. The probability generating function Ĝ(t)
for the saturating model can be obtained by making the
probability of n failures equal to 1 − G[N ](1):

Ĝ(t) = G[N ](t) + (1 − G[N ](1))tn (16)

=
N∑

r=0

θ(θ + rλ)r−1 e−θ−rλ

r!
tr + (1 − G[N ](1))tn

(17)

The corresponding probability distribution is:
Definition: g(r, θ, λ, n) is the probability that r compo-

nents fail in the saturating generalized Poisson distribution
model with initial disturbance mean failures θ, cascading
mean failures λ, and n components. For θ < 0,

g(r, θ, λ, n) = 1; r = 0 (18)

g(r, θ, λ, n) = 0; r > 0 (19)

For θ ≥ 0,

g(r, θ, λ, n) = θ(rλ + θ)r−1 e−rλ−θ

r!
; 0 ≤ r ≤ (n − θ)/λ, r < n (20)

g(r, θ, λ, n) = 0 ; (n − θ)/λ < r < n, r ≥ 0 (21)

g(n, θ, λ, n) = 1 −
n−1∑
s=0

g(s, θ, λ, n) (22)

The saturating form of the generalized Poisson distribution
(20-22) limits the total number of failures to n even in the
supercritical case and extends the range of parameters of the
generalized Poisson distribution (10) to allow λ > 1.

There are other ways of normalizing or truncating the
cascading process to avoid infinite quantities in the super-
critical case. For example, one can normalize the number of
failures Mk at stage k by their mean λk [23] or one can con-
sider truncations motivated by not observing data in some



ranges [17, 14]. However, these methods are not suited to
our application.

The mean number of failures in the saturating general-
ized Poisson distribution is

E[M ] =
N∑

r=0

rθ(θ + rλ)r−1 e−θ−rλ

r!
+ n(1 − G[N ](1))

(23)

5. Review of CASCADE

This section summarizes the CASCADE model of prob-
abilistic load-dependent cascading failure and the saturating
quasibinomial distribution from [20].

The CASCADE model has n identical components with
random initial loads. For each component the minimum ini-
tial load is Lmin and the maximum initial load is Lmax.
For j=1,2,...,n, component j has initial load Lj that is
a random variable uniformly distributed in [Lmin, Lmax].
L1, L2, · · · , Ln are independent.

Components fail when their load exceeds Lfail. When a
component fails, a fixed amount of load P is transferred to
each of the components.

To start the cascade, we assume an initial disturbance
that loads each component by an additional amount D.
Other components may then fail depending on their initial
loads Lj and the failure of any of these components will
distribute an additional load P ≥ 0 that can cause further
failures in a cascade.

Now we define the normalized CASCADE model. The
normalized initial load �j is

�j =
Lj − Lmin

Lmax − Lmin
(24)

Then �j is a random variable uniformly distributed on [0, 1].
Let

p =
P

Lmax − Lmin
, d =

D + Lmax − Lfail

Lmax − Lmin
(25)

Then the normalized load increment p is the amount of load
increase on any component when one other component fails
expressed as a fraction of the load range Lmax −Lmin. The
normalized initial disturbance d is a shifted initial distur-
bance expressed as a fraction of the load range. Moreover,
the failure load is �j = 1

The saturating quasibinomial distribution is given by:
Definition: f(r, d, p, n) is the probability that r compo-

nents fail in the CASCADE model with normalized initial
disturbance d, normalized load transfer amount p, and n
components. For d < 0,

f(r, d, p, n) = 1; r = 0 (26)

f(r, d, p, n) = 0; r > 0 (27)

For d ≥ 0,

f(r, d, p, n) =
(

n
r

)
d(rp + d)r−1(1 − rp − d)n−r

; 0 ≤ r ≤ (1 − d)/p, r < n (28)

f(r, d, p, n) = 0 ; (1 − d)/p < r < n, r ≥ 0 (29)

f(n, d, p, n) = 1 −
n−1∑
s=0

f(s, d, p, n) (30)

If np+d ≤ 1, (28) and (30) reduce to the quasibinomial dis-
tribution introduced as an urn model by Consul [13]. Thus
(28–30) extend the quasibinomial distribution to parame-
ters with np + d > 1. np + d > 1 corresponds to highly
stressed systems with a significant probability of all compo-
nents failing.

The distribution (26–30) can also be expressed using a
saturation function φ as follows [21]:

f(r, d, p, n) =


(
n
r

)
φ(d)(d + rp)r−1(φ(1 − d − rp))n−r,

r = 0, 1, ..., n − 1

1 −
n−1∑
s=0

f(s, d, p, n), r = n

(31)

where

φ(x) =




0 ;x < 0
x ; 0 ≤ x ≤ 1
1 ;x > 1

(32)

Note that (31) uses 00 ≡ 1 and 0/0 ≡ 1 when needed.

6. Approximating CASCADE as a branching
process

We first approximate the distribution of the total number
of failures in CASCADE by the distribution of total number
of failures in a saturating Poisson branching process. Then
we show how the cascading failures in CASCADE can be
approximated stage by stage by a Poisson branching pro-
cess.

6.1. Approximating the distribution of the total
number of failures

The total number of failures in the CASCADE model
is distributed according to the saturating quasibinomial dis-
tribution (26)-(30). We prove that the saturating quasibi-
nomial distribution can be approximated by the saturating
generalized Poisson distribution (18)-(22).

Let n → ∞ and p → 0 and d → 0 in such a way
that λ = np and θ = nd are fixed. Then the appendix



[17] shows that the quasibinomial distribution tends to the
generalized Poisson distribution. Hence for large n and for
0 ≤ r ≤ (1−d)/p = (n−θ)/λ, (28) may be approximated
by (20). (1 − d)/p = (n − θ)/λ also implies that (29) may
be replaced by (21). Then the preceding results imply that
(30) tends to (22).

6.2. Branching process obtained from CASCADE

This subsection informally shows how failures in CAS-
CADE arise in stages approximately as stages of a satu-
rating branching process. The CASCADE model produces
failures in stages i = 0, 1, 2, ... where Mi is the number of
failures in stage i. The following is a normalized version of
the algorithm for CASCADE that can be derived from [20].

Algorithm for normalized CASCADE model

0. All n components are initially unfailed and have initial
loads �1, �2, · · · , �n determined as independent random
variables uniformly distributed in [0, 1].

1. Add the initial disturbance d to the load of component
j for each j = 1, ..., n. Initialize the stage counter i to
zero.

2. Test each unfailed component for failure: For j =
1, ..., n, if component j is unfailed and its load > 1
then component j fails. Suppose that Mi components
fail in this step.

3. If Mi = 0, stop; the cascading process ends.

4. If Mi > 0, then increment the component loads ac-
cording to the number of failures Mi: Add Mip to the
load of component j for j = 1, ..., n.

5. Increment the stage counter i and go to step 2

It is convenient throughout to restrict m0, m1,... to non-
negative integers and to write

si = m0 + m1 + ... + mi (33)

Consider the end of step 2 of stage i ≥ 1 in the CAS-
CADE algorithm. The failures that have occurred are M0 =
m0, M1 = m1, ..., Mi = mi, but the loads have not yet
been incremented by mip in the following step 4. Let

αi+1 = φ

(
mip

1 − d − si−1p

)
(34)

where φ is the saturation function defined in (32).
Suppose that d + si−1p ≤ 1. Then the loads of the

n − si unfailed components are uniformly distributed in
[d + si−1p, 1]. This uniform distribution is conditioned on
the n − si components not yet having failed. In the follow-
ing step 4, the probability that the load increment of mip

causes one of the unfailed components to fail is αi+1 and
the probability of mi+1 failures in the n− si unfailed com-
ponents is

P [Mi+1 = mi+1|Mi = mi, ..., M0 = m0] =(
n − si

mi+1

)
α

mi+1
i+1 (1 − αi+1)n−si+1

, mi+1 = 0, 1, ..., n − si (35)

and the generating function for (35) is

(1 + αi+1(t − 1))n−si (36)

Suppose that d + si−1p > 1. Then all the components must
have failed on a previous step and P [Mi+1 = mi+1|Mi =
mi, ..., M0 = m0] = 1 for mi+1 = 0 and vanishes oth-
erwise. In this case αi+1 = 0 and (35) and (36) are again
verified.

Let nd = θ and np = λ. Then

αi+1 = φ

(
miλ

n − θ − si−1λ

)
(37)

There are three cases:
(1) si−1 > (n − θ)/λ. Then αi+1 = 0, (36) evaluates to

1 and P [Mi+1 = 0|Mi = mi, ..., M0 = m0] = 1. Case 1 is
an already saturated case corresponding to all components
failing in stage i − 1 or previous stages.

(2) si−1 ≤ (n− θ)/λ and si = mi + si−1 ≥ (n− θ)/λ.
Then αi+1 = 1, (36) evaluates to tn−si and P [Mi+1 =
n − si|Mi = mi, ..., M0 = m0] = 1. Case 2 is a saturating
case corresponding to all components failing in stage i.

(3) si = mi + si−1 < (n − θ)/λ. Then

αi+1 =
miλ

n − θ − si−1λ

Let n → ∞ and p → 0 so that np = λ. Since

(1 + αi+1(t − 1))n−si → emiλ(t−1) as n → ∞ (38)

we approximate (36) by

(
emiλ(t−1)

)[n−si−1]

+

tn−si

(
1 −

(
emiλ(t−1)

)[n−si−1]

(1)
)

(39)

That is, the approximation is

P [Mi+1 = mi+1|Mi = mi, ..., M0 = m0] =


(miλ)mi+1

mi+1!
e−miλ , mi+1 = 0, 1, ..., n − si − 1

1 −
n−s1−1∑

k=0

(miλ)k

k!
e−miλ , mi+1 = n − si.

(40)
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Figure 1. Average number < r > of compo-
nents failed in CASCADE as a function of np
and nd for n = 100. Lines are contours of con-
stant <r>. White indicates < 10 failures and
black indicates > 90 failures.

According to (38), for fixed r, the approximation (39) be-
comes exact as n → ∞. That is, the coefficient of tr in (39)
tends to the coefficient of tr in (36) as n → ∞. However,
the approximation (39) is inaccurate for the coefficient of tr

when r = n − si or r is close to n − si.
Since emiλ(s−1) =

(
eλ(s−1)

)mi , (39) or (40) is the dis-
tribution of the sum of mi independent Poisson random
variables with rate λ with saturation occurring when the to-
tal number of failures exceeds n. Thus we can consider
each failure as independently causing other failures in the
next stage according to a saturating Poisson process.

A similar approximation applies at stage zero. Suppose
that in step 2 of stage zero in the CASCADE algorithm there
are m0 failures due to the initial disturbance d. The proba-
bility that the load increment of d causes one of the compo-
nents to fail is φ(d) and the probability of m0 failures in the
n components is given by:(

n
m0

)
φ(d)m0 (1 − φ(d))n−m0 (41)

Let n → ∞ and d → 0 so that nd → θ. Then we approxi-
mate (41) by the saturating Poisson distribution

P [M0 = m0] =




θm0

m0!
e−θ , m0 = 0, 1, ..., n − 1

1 −
n−1∑
k=0

θm0

m0!
e−θ , m0 = n.

(42)
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Figure 2. Average number < r > of compo-
nents failed in saturating generalized Pois-
son distribution as a function of λ and θ for
n = 100. Lines are contours of constant <r>.
White indicates < 10 failures and black indi-
cates > 90 failures.

The approximations (40) and (42) show that the num-
ber of failures in each stage are, for large n and small p
and d, governed by a saturating Poisson branching process
with mean λ = np, except that on the first step the mean
is θ = nd. The approximation does not necessarily imply
that concepts natural to the branching process translate di-
rectly to the CASCADE model. For example, each failure
in CASCADE may be attributed to load increases caused
by many previous failures, whereas it is natural to attribute
each failure in a branching process to a single previous fail-
ure.

The mean number of failures in the CASCADE and the
saturating generalized Poisson distribution as a function of
θ and λ are compared in Figures 1 and 2. Scans correspond-
ing to load increase with d = p and θ = λ are compared in
Figures 3 and 4. Note the closeness of the approximation
for small and moderate r and the expected inaccuracy of
the approximation near r = n.

7. Discussion

Large power system blackouts typically involve a cas-
cading series of failures or outages in which the system
becomes weaker or more stressed as the cascade proceeds.
There are many ways in which failure or outage of a compo-
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Figure 3. CASCADE probability distributions
of total number of failures on log-log plot.
n = 1000. Note that the probability of 1000
components failing is 0.003 for np = 1, and
0.798 for np = 2.

nent can adversely affect other components and make their
failure more likely. For example, outage of a line can make
more likely the failure of other components via redistribu-
tion of load, relay or control system misoperation [28], tran-
sient phenomena, or operator or planning error. Moreover,
all these interactions generally become stronger as power
system loading is increased and the significant interactions
become more numerous. High loading tends to make in-
teractions more nonlinear, harder to conceive of in advance
and much more likely to cause further failures since mar-
gins are smaller. In the terminology of Perrow [27], highly
loaded power systems are more complex and tightly cou-
pled. The diversity of components and interactions in the
power system is highly simplified in the CASCADE model
to uniform components that interact in a uniform and sim-
ple way with all the other system components. The branch-
ing process model is even further abstracted in that compo-
nent failures cause other failures by an unspecified mech-
anism. While this paper does claim to capture salient fea-
tures of cascading blackouts in both of these simple models,
it should be acknowledged that substantial work is needed
to determine the detailed similarities and differences be-
tween these models and real blackouts via statistical mea-
surements and simulations. Estimating λ from a simulation
of cascading outages is considered in [8]. The consequences
of nonuniform interactions between components or interac-
tions limited to a subset of other components also needs to
be examined in future work.

The CASCADE model captures the weakening of sys-
tem as the cascade proceeds and reproduces some qualita-
tive features of blackout size probability distributions ob-
served in blackout data and simulations [19, 9, 7]. Since
this paper shows that CASCADE is well approximated by
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Figure 4. Saturating generalized Poisson
probability distributions of total number of
failures on log-log plot. n = 1000. Note that
the probability of 1000 components failing is
0.025 for λ = 1, and 0.797 for λ = 2.

a branching process and the saturating generalized Poisson
distribution, the saturating generalized Poisson distribution
also reproduces the same qualitative features of blackout
size probabilities.

The approximation of CASCADE by the branching pro-
cess allows the parameters of the two models to be related.
Thus

λ = np (43)

=
nP

Lmax − Lmin
(44)

Recall that in CASCADE, p is the normalized load transfer
amount and n is the number of components. (43) can be
used to reinterpret p = λ/n in the branching process as the
probability that a component failure causes the failure of a
specific other component. This is an important interpreta-
tion in contexts in which there is a cascading dependency
between components that is not naturally expressed as an
increment in loading.

The criterion (14) for minimizing cascading failure can
be reexpressed using (43) as np < λmax. Then even if
p is very small, large n can cause cascading failure. This
suggests that numerous rare interactions can be equally in-
fluential in causing cascading failure as a smaller number of
likely interactions. More generally, one can speculate that
a design change that introduced a large number of unlikely
failure interactions (plausibly similar to large n) could make
cascading failure more likely, despite high reliability (low
p). It is conceivable that coupling infrastructures together
such as controlling the power system over an internet or cer-
tain types of global control schemes could make the system
more vulnerable to cascading failure in this fashion. It is
also interesting to note that many traditional power system
controls are designed to reduce interactions by deliberate



separation in distance, frequency, and time scale.
The criterion (14) for minimizing cascading failure can

be reexpressed using (44) as

λ =
nP

Lmax − Lmin
< λmax (45)

There are several ways to represent system load increase
in CASCADE [20]. One of these ways increases average
component load by increasing Lmin. Then (45) shows how
this form of load increase affects the criterion limiting the
risk of cascading failure. The relation (45) between λ and
Lmin is nonlinear.

8. Conclusion

We introduce a saturating form of the generalized
Poisson distribution and show that it approximates the
distribution of total number of failures in the CASCADE
model of load-dependent cascading failure. Moreover,
successive failures in stages of CASCADE can be approx-
imated by corresponding stages of a saturating Poisson
branching process. The approximation of CASCADE as a
branching process yields insights into the power tails and
criticality observed in CASCADE. The branching process
approximation is simpler and more analytically tractable
than CASCADE while retaining qualitative features of
load-dependent cascading failure. Moreover, at criticality
the universality of the − 3

2 power law in the probability
distribution of the total number of failures in a branching
process suggests that this is a signature for this type of
cascading failure. The − 3

2 power law is approximately
consistent with North American blackout data and blackout
simulation results.

Criticality or supercriticality in the branching process
implies a high risk of catastrophic and widespread cas-
cading failures. Maintaining sufficient subcriticality in
the branching process according to a simple criterion (14)
would limit the propagation of failures and reduce this risk.
The approximation of CASCADE as a branching process
allows the criterion to be expressed in terms of system load-
ing (45). However, implementing the criterion to reduce the
risk of catastrophic cascading failure would require limit-
ing the system throughput and this is costly. Managing the
tradeoff between the certain cost of limiting throughput and
the rare but very costly widespread catastrophic cascading
failure may be difficult. Indeed [18, 4, 5] maintain that for
large blackouts, economic, engineering and societal forces
may self-organize the system to criticality and that efforts
to mitigate the risk should take account of these broader dy-
namics [6].

Our emphasis on limiting the propagation of system fail-
ures after they are initiated is complementary to more stan-
dard methods of mitigating the risk of cascading failure by

reducing the risk of the first few likely failures caused by an
initial disturbance as for example in [10].

The branching process approximation does capture some
salient features of loading dependent cascading failure and
suggests an approach to reducing the risk of large cascad-
ing failures by limiting the average propagation of failures.
However, much work remains to establish the correspon-
dence between these simplified global models and the com-
plexities of cascading failure in real systems.
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A. Approximating quasibinomial distribution

The generalized Poisson distribution is [17, 16]

G(r, θ, λ) = θ(rλ + θ)r−1 e−rλ−θ

r!
(46)

for λ ≤ 1 and θ > 0. We use Consul’s derivation [16]
that the quasibinomial distribution tends to the generalized
Poisson distribution. The quasibinomial distribution is

(
n
r

)
d(rp + d)r−1(1 − rp − d)n−r (47)

for d + np ≤ 1 and 0 < d < 1.
If d → 0, p → 0 and n increases without limit such that

nd = θ and np = λ, then (47) can be written in the form

nd(rnp + nd)r−1

r!
n!

(n − r)!nr

[
1 − rλ + θ

n

]n−r

(48)

which can be rewritten as

θ(rλ + θ)r−1 e−rλ−θ

r!

[
1 − rλ + θ

n

]n

erλ+θ

[(
1 − 1

n

) (
1 − 2

n

)
· · ·

(
1 − r − 1

n

)] [
1 − rλ + θ

n

]−r

= G(r, θ, λ)
[
1 − (rλ + θ)2

2n

]
[
1 +

2r(rλ + θ) − r(r − 1)
2n

]
+ O(n−2)

= G(r, θ, λ)
[
1 +

2r(rλ + θ) − r(r − 1) − (rλ + θ)2

2n

]

+O(n−2)

= G(r, θ, λ)
[
1 +

r − (r(λ − 1) + θ)2

2n

]
+ O(n−2) (49)

Hence the generalized Poisson distribution is the limit of
the quasibinomial distribution.

Examination of the 1 + O(n−1) factor in (49) suggests
that the approximation improves for λ ≈ 1 and only slowly
gets worse for larger r. For λ �≈ 1, the 1 + O(n−1) factor
suggests that the approximation gets worse for larger r.
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Abstract

The CASCADE probabilistic model for cascading failures
gives a simple characterization of the transition from an
isolated failure to a system-wide collapse as system loading
increases. Using the basic ideas of this model, the parameters
that lead to a similar characterization for power transmission
system blackouts are identified in the OPA dynamical model of
series of blackouts. The comparison between the CASCADE
and OPA models yields parameters that can be computed from
the OPA model that indicate a threshold for cascading failure
blackouts. This is a first step towards computing similar
parameters for real power transmission systems.

1. Introduction

We have developed the ORNL-PSerc-Alaska (OPA)
model to study blackout dynamics in the power transmission
grid [1-3]. This model incorporates self-organization processes
based on the engineering response to blackouts and the long-
term economic response to customer load demand. It also
incorporates the apparent critical nature of the transmission
system. The combination of these mechanisms leads to
blackouts that range in size from single load shedding to the
blackout of the entire system.  This model shows a probability
distribution of blackout sizes with power tails [2] similar to that
observed in real blackout data from North America.

In addition to the OPA model, we have constructed
CASCADE, a probabilistic model that incorporates some
general features of cascading failure.  A detailed description of
the CASCADE model is given in Refs. [4,8]. This model shows
the existence of two critical thresholds. One is associated with
the minimal load needed to start a disturbance. In a power
transmission system, it can be interpreted as the load increase
that will cause a line (or a few independent lines) to overload
and fail. The second critical threshold is associated with the
minimal load transfer throughout a cascading event that can
lead to a total system blackout. This type of threshold is less
evident in real systems, and the parameter or parameters
controlling it are not easy to identify.

Those cascading events are similar to the “domino
effect.”  In this case, the force needed to trip the first domino
gives the first threshold. The second threshold is given by the
ratio of the separation between dominos to their height; the
threshold must be less than the critical value of one to cause all
the dominos to fall. Of course, transmission systems are a great

deal more complicated than dominos, but here we want to focus
on identifying this second type of threshold.

To identify the type of threshold that causes system-
wide blackouts, we compare the probabilistic model, where this
threshold is easy to identify, with the dynamical model. This
dynamical model incorporates the structure of a network, and a
linear programming (LP) approach is used to find instantaneous
solutions to the power demand. In such a model, the threshold
to system-wide blackouts is not obvious, and its understanding
may provide a path toward application to realistic systems.

2. Critical transitions in the CASCADE model

The CASCADE model has n identical components
with random initial loads. The minimum initial load is Lmin, and
the maximum initial load for each component is Lmax.. For
j=1,2,...,n, component j has an initial load of Lj that is a random
variable uniformly distributed in [Lmin, Lmax]. L1, L2, · · · , Ln are
independent.  Components fail when their load exceeds Lfail.
When a component fails, a fixed amount of load P is
transferred to each of the remaining components.

We assume an initial disturbance that starts the
cascade by loading each component with an additional amount,
D.  Other components may then fail, depending on their initial
loads, Lj, and the failure of any of these components will
distribute an additional load, P ≥ 0, that can cause further
failures in a cascade. This model describes the cascading failure
as an iterative process. In each iteration, loads fail as the
transfer load, P, from other failures makes them reach the
failure limit. The process stops when none of the remaining
loads reaches the failure limit.

It is convenient to normalize all of the loads in the
system so that they are distributed in the [0,1] interval. Thus,
we normalize the initial load:

l
L L

L Lj
j=

−

−
min

max min

. (1)

Then lj is a random variable uniformly distributed on [0, 1].
Moreover, the failure load is lj = 1. Let

p
P

L L
d

D L L

L L
fail=

−
=

+ −
−max min

max

max min
, . (2)



Then, p is the amount of load increase on any
component when one other component fails when expressed as
a fraction of the load range Lmax – Lmin. Similarly, d is the initial
disturbance expressed as a fraction of the load range.

An analytic solution was found [4,8,9] for the
probability, f(r, d, p, n), of a cascade with r components failing:
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where p is a positive quantity and the function φ is
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Equation (3) uses 0 10 ≡  and 0 0 1≡ where needed. If d˚‡˚0

and d np+ ≤ 1, then φ x x( ) =  and Eq.˚(3) reduces to the
quasibinomial distribution introduced by Consul [10].

For a given system, there are two possible types of
situations: (1) the system has no component failures or (2)
some components in the system have failed. In the CASCADE
model, there is clearly a transition from one situation to the
other and the control parameter is d.  The transition point is
d = 0. The probability of failure is

P d
d

f p d n d dn( ) =
<

− ( ) = − −( ) >




0 0

1 0 1 1 0

,

, , , ,
. (4)

Near the critical point, the transition probability scales
as nd. For large systems, it is better to introduce θ ≡ nd  as the
control parameter for this transition. In this way, θ remains
finite for n → ∞ . It is also useful to consider λ ≡ np, the total
load transfer from a failing component, as the second parameter
in this model. The use of the λ and θ is justified in Ref. [9] by
approximating CASCADE as a branching process and
identifying λ and θ as parameters of the branching process. The
situation with no failures is rather simple, and there is a single
point in configuration space with no ambiguity in its
characterization. However, the failed system has multiple
possible states, each characterized by the number r of failed
loads. For a given set of values for θ  and λ, there is a
distribution of possible states, each characterized by a
probability p r nb , , ,λ θ( ) ,

p r n
f r n

f nb , , ,
, , ,

, , ,
λ θ

λ θ
λ θ

( ) =
( )

− ( )1 0
. (5)

Because we are interested in system-wide collapses, an
important quantity to consider is the probability of a full system
cascade, r = n,

P
f n n

f n∞ =
( )

− ( )
, , ,

, , ,

λ θ
λ θ1 0

. (6)

This probability has the properties of the order parameter in a
critical transition. As shown in Fig. 1, this expression is such as
that P ˚=˚0 at λ˚< λ̊c, where λc is the critical value of λ .
However, above the critical value for λ, system-wide failures
are possible. In the CASCADE model, which assumes a
uniform random distribution of loads, the critical point is
λc˚=˚1. This is the second transition point that we discussed in
the introduction. It separates the localized failures of the system
from system-wide cascading failures.  This type of transition is
the one we want to also characterize for the OPA dynamical
model.
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Figure 1: Probability of system-wide cascade events
as a function of λ.

The parameter λ is a direct measure of the total load
transferred by a failing component to the entire system. It also
characterizes other properties of the system that are useful in
giving a meaningful interpretation of λ for different systems.
One of the approximate properties of the CASCADE model
that applies when the model is not saturated due to finite size
effects is that the average number of failures during the
iteration k is

r
k

k= θλ . (7)

This is an important relationship that will be used in
comparison with the dynamical model.

3. The dynamical OPA model and the cascading
transition

We developed the OPA model to study the dynamics
of a power transmission system [1-3]. In the OPA model, the
dynamics involve two intrinsic time scales.

In the OPA model, there is a slow time scale of the order
of days to years, over which load power demand slowly
increases and the network is upgraded in response to the
increased demand. The upgrades are done in two ways.
Transmission lines are upgraded as engineering responses to



blackouts and maximum generator power is increased in
response to increasing demand.  The transmission line upgrade
is implemented as an increase in maximum power flow, Fij

max ,
for the lines that have overloaded during a blackout. That is,
F t F tij ij

max max( ) = −( )µ 1  if line ij overloads during a blackout.

We take µ to be a constant. These slow, opposing forces of load
increase and network upgrade self-organize the system into a
dynamic equilibrium.  As discussed elsewhere [3], this
dynamical equilibrium is close to the critical points of the
system [5, 6].

In the OPA model, there is also a fast time scale, of the
order of minutes to hours, over which cascading overloads or
outages may lead to a blackout. Cascading blackouts are
modeled by overloads and outages of lines determined in the
context of LP dispatch of a DC load flow model. Random line
outages are triggered with a probability p0. They simulate the
consequence of intentional or accidental events. A cascading
overload may also start if one or more lines are overloaded in
the solution of the LP problem.  In this situation, we assume
that there is a probability, p

1
, that an overloaded line will

become an outage.  When a solution is found, the overloaded
lines of the solution are tested for possible outages. If there are
one or more line outages, we reduce the maximum power flow
allowed through this line by several orders of magnitude.  In
this way, there is practically no power flow through this line.
Once the power flow through the lines is reduced, a new
solution is then calculated.  This process can lead to multiple
iterations, and the process continues until a solution with no
more line outages is found.  The overall effect of the process is
to generate a possible cascade of line outages that is consistent
with the network constraints and the LP dispatch optimization.

The OPA model allows us to study the dynamics of
blackouts in a power transmission system.  This model shows
dynamical behaviors characteristic of complex systems. It has a
variety of transition points as power demand is increased [5, 6].
These transition points are related to a limitation in the
generator power and/or single line overloads.  These transition
points correspond to single failures of the system and are the
first type of transition discussed above. However, in contrast to
the CASCADE model, there are multiple sources of single
failure in this model.

Here, we study the critical point from the perspective
of triggering system-wide blackouts as described in the
previous section. The first thing to consider is the possible
separation between regimes of single failures and regimes with
cascading failures. For this model, calculation of the probability
of a system collapse event is not possible. It would be
necessary to carry out calculations for a very long time to
obtain the necessary statistics. In particular, close to the
transition, the required computational time is beyond our
present capabilities. We need another approach.

In the OPA model, we find the separation between the
two regimes as a function of two parameters, Γ and µ. Here, Γ
is the ratio of minimal generator power margin,
∆P P P P P

c G( ) ≡ −( )0 0 , to the root mean square of the

fluctuation of the load demand g P P PD≡ −( )[ ]0 0
2 1 2/

.

Γ ∆= ( )P P g
c

. (8)

PG is the minimal generator power available, P P e t
0 0= ˆ λ̂  is the

mean load demand that increases at a constant rate λ̂ , and PD is
the actual load demand that fluctuates around the mean value.
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Figure 2: Averaged power delivered and number of
line outages per blackout as a function of Γ.

Varying Γ and/or µ is not necessarily a realistic way of
modeling the transmission system, but it allows us to
understand its dynamics.  For a 46-node tree network, we have
done a sequence of calculations for different values of the
minimal generator power margin ∆P P

c( )  at a constant g and

µ. We have changed this margin from 0 to 100%. For each
value of this parameter, we have carried out the calculations for
more than 100,000 days in a steady-state regime. This number
of days gives us reasonable statistics for the evaluations. One
way of looking at the change of characteristic properties of the
blackouts with Γ is by plotting the power delivered and the
averaged number of line outages per blackout. These plots are
shown in Fig. 2. We can see that at low and high values of Γ
the power served is low. In the first case, because of limited
generator power, the system cannot deliver enough power when
there is a relatively large fluctuation in load demand. At high Γ,
the power served is low because the number of line outages per
blackout is large.
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Figure 3: Averaged load shed per blackout
normalized to the power demand as a function of
iteration number for different values of Γ.

Looking at averaged quantities is not a good way of
identifying the demarcation between single (or a few
independent) failures and cascading events. To have a better
sense of this demarcation, we have calculated the load shed per
iteration, normalized to the total power demand, for all blackout
events. In Fig. 3, we have plotted the averaged value over all
the blackout events for five different values of Γ. We can see
that at very low Γ the averaged event is limited to less than five
iterations; most of the load is shed during the first couple of
iterations.  This is typical of isolated failures in a system.
However, for large values of Γ, sufficient power is available in
the first few iterations with very low load shed. The number of
iterations of the cascade events increases and the load shed
increases with the iteration number. These are the characteristic
properties of large cascading events. At about Γ = 1.0, where
the power served has a maximum (Fig. 2), there is the transition
from one type of event to the other.

A similar study can be done keeping the parameter Γ
fixed and varying the upgrading rate µ. In Fig. 4 and for the 94-
node tree network, we show the distribution of the number of
line outages for the worst blackouts in a year for different
values of µ. We see that for a high upgrade rate, the number of
line outages is rather small. However, as µ decreases, the worst
blackouts involve a large part of the network.

The Γ and µ parameters have no direct connection to
the parameter used in the probabilistic model to characterize the
transition from a single failure to a cascading failure. Using the
guidance of the CASCADE model, we will try to identify a
parameter analogous to λ in the OPA model. To do so, we need
to find a way of comparing both models.
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outages per blackout for the worst yearly blackouts.
The calculation is for the 94-node tree network and
Γ = 0.96.

4. Averaged number of line outages per iteration

In relating the OPA model to CASCADE, we will
interpret the component failures in CASCADE as line outages
in OPA. We can then associate the normalized loads, li ∈[ ]0 1, ,
in CASCADE to the fractional line overloads, M i , in OPA.
The fractional line overload for line i is defined as

M
F

Fi
i

i

= max  , (9)

where Fi is the power flow through line i and Fi
max  is the

maximum possible power flow through this line.  For each
network considered, the fraction of overloads M i  is also
distributed in [0,1], but the distribution is not necessarily
random. The average value of the Mi’s as the average value of
the li’s in the CASCADE model gives no information on the
criticality of the system. It only provides some information on
the distribution of loads.

There are several ways of interpreting the parameter
λ  within the OPA model, and, of course, these different
methods do not necessarily lead to the same value for λ . One
way is to calculate the averaged number of line outages,

N jout ( ) , per step j in cascading failures, and in analogy with

Eq. (7) define

λeff out

jj N j( ) ≡ ( )
1

 . (10)



A priori, there is no reason for λeff to be independent of j or to

have any value similar to the critical value found in the
CASCADE model.
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Figure 5: λeff j( )  as a function of iteration number for

different tree networks.

In Fig. 5, we have plotted λeff j( )  as a function of j for

four network configurations.  These λeff j( )networks have a

tree-like structure with three line connections per node.  These
types of networks were discussed in Ref. [2].  The four
networks considered here have 46, 94, 190, and 382 nodes.

The numerical results in Fig. 5 show that λeff j( )  is
weakly varying with j for j > 1. For large values of j, the
statistics are rather poor and the evaluation of λeff  may have
significant error bars.  For the first iteration, we found strong
variations of λeff (1) with the size and conditions of the

network.  These variations are understandable because the
calculations in Fig. 3 are done for a fixed probability, p0, of the
event being initiated by a line outage. As the number of lines
increases, we can have more than one event simultaneously
triggered by these random events. Changing the value of p0

significantly changes λeff (1). However, the change of p0 has

only a weak effect on λeff j( )  for j > 1. In Fig. 6, we show the
effect of changing p0 on λeff (j).
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different values of Γ for the 46-node tree network.

Let us now consider the sequence of calculations in
which Γ is varied for the 46-node tree network.  We have seen
that by varying Γ we can change the blackout events from a
single failure to cascading events (Fig. 3). In Fig. 7, we have
plotted λeff (j) versus j for these different values of Γ.  We can

see that λeff (j) increases uniformly with Γ. Also, the
dependence on the iteration number, j > 1, becomes weaker.
This may reflect the change in the dynamics going from
blackouts dominated by generation limitations to blackouts that
are dominated by line outages. The comparison with the



CASCADE model is relevant in the latter regime. The
existence of a single λ describing the cascade process is one of
the more significant results of these comparisons.

The dependence of λeff  on j is not just a peculiarity of

the structure of the ideal tree networks.  In Fig. 8, we show the
calculated λeff j( )  for the IEEE 118 bus network [7].  We can

see that λeff j( )  is also weakly dependent on j for j > 1.
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six values of Γ  for the IEEE 118 bus network.

It is not surprising that λeff(j) is larger for the first
iteration than for the following ones. In the OPA model, unlike
in the CASCADE model, there is power shed during each
iteration. This power shed reduces the stress over the system
and accordingly reduces the probability of line outages at high
iterations. Therefore, we believe that the value of λeff(j) for j = 1
is the most significant one to be compared with the parameters
of the CASCADE model.

We can summarize the stability properties to
cascading events of these networks by plotting in the Γ-µ plane
the line λeff(1) = 1.  This line gives the demarcation between the
region with λeff(1) >1, where cascading events are possible, and
λeff(1) < 1, where the cascading events are suppressed. Such a
plot is shown in Fig. 9 for the 46-node and 94-node tree
networks and for the IEEE 118 bus network.  The position of
the line λeff(1) = 1 in the Γ-µ plane changes with the network
configuration, but the three networks show a very similar
structure.
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5. Load transfer during a cascading event

Another interpretation of the parameter λ in the
CASCADE model is the total load transfer associated with a
failing line.  To calculate this transfer load, we use a tree
network and we cause a single line outage at a time.  We
operate at very low power to prevent any of the Mi s from
reaching 1 after the chosen line outage because that can cause a
reorganization of the power that leads to a different solution.
For each line outage, we calculate the effective λ0j in the
following way:

λ0 0
1 0

1

1
j

j
i i

i

N

M
M M

L

= −( )
=
∑ , (11)

where, N L  is the number of lines minus 1 because there is only
one line outage. The superscript of the Mi’s indicates step zero,
the value of the Mi before the line outage, or step 1, after the
line outage. The transfer load is normalized to Mj because we
need the value of the transferred load when Mj = 1.  This
calculation is more elaborate than calculation of a standard line-
outage power-distribution factor because the generation
redispatches after the line outage.

We calculate λ0j for each line j of the network and
repeat the calculation n times for different random values of the
loads. Then, we average λ0j over the lines and over the
calculated n samples. This gives us another determination of
the effective λ, λ0 . We have done the calculation of λ0  for

the tree 46 configuration and several values of Γ. In Fig. 10, we
compare these results to the λeff 1( )  calculated in the previous
section. We can see that the values are quite similar. This result



is interesting because this method for determining λ0  can be
applied to a real power transmission network and this parameter
can be used as an alternative way of determining how close a
system is to the cascading threshold.

6. Conclusions

The CASCADE model gives a simple characterization
for the transition from an isolated failure to a system-wide
collapse. The characterization of this transition is very
important, not only for power systems but for any large, man-
made, networked system. The control parameter for this
transition is directly related to the load transfer during
cascading events. In real systems, perhaps more than one
parameter can characterize this transition. Here, we have
looked for ways of determining this control parameter for
power transmission systems to quantify the way in which
cascading failures propagate.
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the two methods discussed in this paper.

The OPA model gives a test bed to apply some of the concepts
developed in the simpler probabilistic models. Using an
analogy between the two types of models, we have been able to
identify a similar transition from an isolated failure to a system-
wide collapse in OPA. Furthermore, in defining the transition
between these two operational regimes, we have been able to
correlate the two parameters Γ  and µ,  which are related to the
operation of the system,  to λ0 , which can be determined for
a real power transmission system. The relationship between
those parameters and the threshold for cascading failure may
lead to some practical criteria that will be applicable to the
design and operation of power transmission systems.
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ABSTRACT

We generalize an analytically solvable probabilistic model
of cascading failure in which failing components interact
with other components by increasing their load and hence
their chance of failure. In the generalized model, instead of
a failing component increasing the load of all components,
it increases the load of a random sample of the components.
The size of the sample describes the extent of component
interactions within the system. The generalized model is ap-
proximated by a saturating branching process and this leads
to a criticality condition for cascading failure propagation
that depends on the size of the sample. The criticality con-
dition shows how the extent of component interactions con-
trols the proximity to catastrophic cascading failure. Im-
plications for the complexity of power transmission system
design to avoid cascading blackouts are briefly discussed.

1. INTRODUCTION

Industrialized society depends heavily on complicated in-
frastructure systems with many interconnected components.
These infrastructures can suffer widespread failures when
stressed components fail successively, with each failure fur-
ther stressing the system and making further failures more
likely. For example, a long, intricate cascade of events caused
the August 2003 blackout of a substantial portion of the
electrical power system of Northeastern North America af-
fecting fifty million people. The vital importance of the
electrical power infrastructure to society motivates the study
of models that capture salient features of cascading failure.
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Previous work [3, 4, 5] introduced a probabilistic model
of cascading failure with a large number of identical com-
ponents called CASCADE. The components fail when their
load exceeds a threshold, and become more loaded when
any other component fails. The components initially have a
random load and the cascade is started by an initial distur-
bance increasing the loading of all components. The num-
ber of components failed is a measure of the size of the cas-
cade and it has an analytic probability distribution (a satu-
rating form of the quasibinomial distribution). The CAS-
CADE model can be approximated by a saturating Poisson
branching process [6] and the relation of these models to
cascading failure in simulated blackouts of power transmis-
sion systems is studied in [2, 3]. CASCADE is an abstract
model of cascading failure and one of its purposes is help-
ing to explain the results of power system models of cascad-
ing failure blackouts that represent the transmission network
and generation redispatch [1, 3].

The CASCADE model (and its branching process ap-
proximation) show interesting behavior as the average ini-
tial component load is increased. In one scenario, as this
loading is increased, the average number of failures sharply
increases at a critical loading. Moreover, at this critical
loading, the probability distribution of the number of fail-
ures has a power tail of exponent approximately –1.5. The
critical loading marks a phase transition and an operational
boundary with respect to cascading failure. That is, the risk
of cascading failure becomes significant at or above the crit-
ical loading. Studying this criticality and finding ways to
monitor and detect the corresponding criticality in more de-
tailed simulation models or in real infrastructure systems is
a promising new direction of research [6, 2].

One significant limitation of the CASCADE model is
the assumption that all components interact. That is, when
one component fails, the loading of all other components
is increased. In applications such as blackouts, many thou-
sands of components can interact by a variety of mecha-
nisms and the interactions can sometimes span the entire
system. However, it is more realistic to assume that when
one component fails, it interacts with only a subset of the



other components. This paper generalizes the CASCADE
model to this limited interaction case and derives the new
criticality condition from the branching process approxi-
mation to the generalized model. The result has implica-
tions for the interesting question of whether new system
technologies that improve system performance by increased
communication and coordination between system compo-
nents introduce many unlikely failure modes that could in-
crease the risk of catastrophic cascading failure [8].

2. CASCADE MODEL WITH k INTERACTIONS

This section summarizes the generalized CASCADE model.
There are n identical components with random initial loads.
For each component the minimum initial load is Lmin and
the maximum initial load is Lmax. Component j has initial
load Lj that is a random variable uniformly distributed in
[Lmin, Lmax]. L1, L2, · · · , Ln are independent.

Components fail when their load exceeds Lfail. When a
component fails, a fixed amount of load P is transferred to
k samples of the n components. The sampling is uniform
so that the probability of choosing a particular component
is 1/n and the components are sampled independently and
with replacement. Moreover, the k samples are chosen in-
dependently for each failure.

To start the cascade, an initial disturbance loads k sam-
ples of the components by an additional amount D. Other
components may then fail depending on their initial loads
Lj and the failure of each of these components will dis-
tribute an additional load P ≥ 0 that can cause further fail-
ures in a cascade.

It is useful to normalize the model so that Lmin becomes
zero and both Lmax and Lfail become one [4, 5]. The nor-
malized initial load �j = (Lj − Lmin)/(Lmax − Lmin) so
that �j is a random variable uniformly distributed on [0, 1].
Let

p =
P

Lmax − Lmin
, d =

D + Lmax − Lfail

Lmax − Lmin
(1)

Then p is the amount of load increase on any component
when one other component fails expressed as a fraction of
the load range Lmax − Lmin. d is the initial disturbance
shifted by Lmax − Lfail expressed as a fraction of the load
range. (The shift ensures that the failure load is one [4, 5].)

The model produces failures in stages i = 0, 1, 2, ...
where Mi is the number of failures in stage i. It is conve-
nient to state the normalized version of the algorithm. This
can be obtained from [4] by adding the random sampling.

Algorithm for normalized CASCADE with k interactions

0. All n components are initially unfailed and have ini-
tial loads �1, �2, · · · , �n determined as independent
random variables uniformly distributed in [0, 1].

1. Uniformly sample components k times independently
with replacement and add the initial disturbance d to
the load of a component each time it is sampled. Ini-
tialize the stage counter i to zero.

2. Test each unfailed component for failure: For j =
1, ..., n, if component j is unfailed and its load > 1
then component j fails. Suppose that Mi components
fail in this step.

3. Independently for each of the Mi failures, uniformly
sample components k times independently with re-
placement and add p to the load of a component each
time it is sampled.

4. Increment the stage counter i and go to step 2.

3. BRANCHING PROCESS APPROXIMATION

In a Poisson branching process model of cascading failure,
failures are produced in stages. Each failure at a given stage
produces further next stage failures independently accord-
ing to a Poisson distribution of rate λ. This section derives
the Poisson branching process approximation of the gener-
alized CASCADE model and shows that λ = kp. Thus
λ = kp governs the propagation of failures in the cascading
process. The implications are discussed in section 4. Those
readers interested in the details of the approximation in this
section should read the simpler case in [6] first.

Consider the end of step 2 of stage i ≥ 1 in the CAS-
CADE algorithm. The failures that have occurred are M0 =
m0, M1 = m1, ..., Mi = mi, but component loads have not
yet been incremented in the following step 3. Let Tji be the
number of times component j is sampled in the kmi sam-
ples of step 3 of stage i. Then the marginal distributions of
Tji, j = 1, ..., n are binomial so that

P [Tji = t | Mi = mi] =
(

kmi

t

) (
1
n

)t (
1 − 1

n

)kmi−t

(2)

E[Tji | Mi = mi] = kmi/n (3)

Var[Tji | Mi = mi] = (kmi/n)(1 − 1/n) (4)

Write
M i = (M0, M1, ..., Mi),
Si = M0 + M1 + ... + Mi,

Tni = (T1i, T2i, ..., Tni),
T i = (Tn0, Tn1, ..., Tni),
Σji = Tj1 + Tj2 + ... + Tji,

and use the corresponding lower case notation for the sym-
bols mi, si, tni, ti and σji. The complete history of the
component sampling at step 3 of stage i is T i = ti.

Define αji and the saturation function φ as

αji =




0 ; component j failed before stage i
ptji

1 − dtj0 − pσj(i−1)
; component j unfailed at

beginning of stage i

φ(x) =




0 ;x < 0
x ; 0 ≤ x ≤ 1
1 ;x > 1



Consider unfailed component j and suppose its total stage i,
step 2 additional load dtj0 + pσj(i−1) < 1. Then, when
conditioned on T i−1 = ti−1, the load of component j is
uniformly distributed in [dtj0 + pσj(i−1), 1]. In the follow-
ing step 3, the probability that the load increment of ptji

causes component j to fail is φ(αji). Now suppose that
dtj0 + pσj(i−1) ≥ 1. Then the probability that component
j fails is φ(αji) = 1.

When conditioned on T i = ti, the component failures
in step 2 of stage i+1 are independent and hence Mi+1 has
generating function

Eez[Mi+1|T i] =
n∏

j=1

(1 + (z − 1)φ(αji)) (5)

Since P [Mi+1 = mi+1|M i]

=
∑
ti

P [Mi+1 = mi+1|M i, T i = ti]P [T i = ti|M i]

=
∑
ti

P [Mi+1 = mi+1|T i = ti]P [T i = ti|M i] ,

Eez[Mi+1|Mi] =
∑
ti

Eez[Mi+1|T i]P [T i = ti|M i]

=
∑
ti−1

AiP [T i−1 = ti−1|M i] (6)

where Ai =
n∏

j=1

∑
tni

(1 + (z − 1)φ(αji))P [Tni = tni|M i]

=
n∏

j=1

∑
tji

(1 + (z − 1)φ(αji))P [Tji = tji|M i].

Define Xji = dtj0 + pσji. Then Xji ≥ 1 ⇐⇒ ptji ≥
1 − dtj0 − pσj(i−1) ⇐⇒ φ(αji) = 1. Using (3) and (4),

E[Xji | M i] =
kd + kpsi

n
(7)

Var[Xji | M i] =
kd2 + kp2si

n

(
1 − 1

n

)
(8)

It is convenient to renumber the components so that compo-
nents 1, 2, ..., Si are the Si components that have failed in
previous stages. Then αji = 0 for j = 1, 2, ..., Si. More-

over Ai =
n∏

j=Si+1

Bji where

Bji =
∑
tji

[
(1 + (z − 1)αji)P [Tji = tji, Xji < 1|M i]

+zP [Tji = tji, Xji ≥ 1|M i]
]

=
(

1 + (z − 1)
pE[Tji|Xji < 1, M i]
1 − dtj0 − pσj(i−1)

)

P [Xji < 1|M i] + zP [Xji ≥ 1|M i] (9)

Let kp = λ and kd = θ and k/n be fixed and let n, k → ∞
and p, d → 0. If E[Xji] < 1, using (7), (8) and (3),

P [Xji ≥ 1|M i] ≤ P [|Xji − E[Xji]| ≥ |1 − E[Xji]| |M i]

≤ Var[Xji |M i]
(1 − E[Xji |M i])2

≤ (n/k)(θ2 + λ2si)
(n − θ − λsi)2

→ 0

and E[Tji|Xji < 1, M i] → E[Tji | M i] = kmi/n.

Similarly, if E[Xji] > 1, P [Xji < 1 | M i] → 0.

Thus P [Xji < 1|M i] → I[E[Xji] < 1] and

Bji ∼
(
1 +

z − 1
n

λmi

)
I[E[Xji] < 1] + zI[E[Xji] > 1].

Now E[Xji] < 1 ⇐⇒ kd/n + kpsi/n < 1 ⇐⇒
θ + λsi < n.

If si < (n−θ)/λ, since (1+ z−1
n λmi)n−si → eλmi(z−1),

Ai → eλmi(z−1). Moreover, since the limit of Ai is inde-
pendent of ti−1, (6) implies that Eez[Mi+1|Mi] → eλmi(z−1).
If si > (n− θ)/λ, Ai → zn−si . Therefore, similarly to [6],
we can approximate

Eez[Mi+1|Mi=mi] ≈


[
eλmi(z−1)

]†
+ zn−si

(
1 −

[
emiλ(z−1)

]†
(1)

)
;

si < (n − θ)/λ,
zn−si ; si > (n − θ)/λ.

(10)

where [p(z)]† denotes terms of p(z) of degree ≤ n− si −1.
Since emiλ(s−1) =

(
eλ(s−1)

)mi , (10) is the distribu-
tion of the sum of mi independent Poisson random variables
with rate λ with saturation occurring when the total number
of failures exceeds n [6]. Thus we can consider each fail-
ure as independently causing other failures in the next stage
according to a saturating Poisson Galton-Watson branching
process with rate λ = kp. (This result is the same for the
original CASCADE model, except that in the original CAS-
CADE model, λ = np [6].)

The failures produced by the initial disturbance when
i = 0 can also be approximated by a saturating Poisson
distribution with rate θ.

4. CRITICALITY CONDITION & IMPLICATIONS

Galton-Watson branching processes proceed in stages to ran-
domly generate an average of λ failures from each failure in
the previous stage. It is well known [7] that the criticality
condition for branching processes is λ = 1, and this conclu-
sion also applies to saturating branching processes [6] and
in particular to the saturating branching process derived in
the previous section. λ governs the propagation of failures
so that for λ < 1 the propagation of failures is likely to be
limited, whereas for λ > 1 there is a high probability of
propagation of failures to the entire system. Thus criticality
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Fig. 1. Average number of failures versus pk as p is varied
showing change in gradient at critical point pk=1. There are
n=1000 components and the sample size k=100.

in the generalized CASCADE model occurs approximately
at

λ = kp = 1 (11)

Simulations of the generalized CASCADE model con-
firm (11). Figure 1 shows the sharp change at kp = 1 in the
rate of increase of average number of components failed as
initial average load is increased. (According to (1), fixing
Lmax and increasing average initial load (Lmax + Lmin)/2
by increasing Lmin increases p.) Figure 2 shows the power
tail at criticality at kp = 1.

As explained in [6], the risk of cascading failure in these
models can be minimized by fixing a design limit λmax < 1
and requiring λ = kp < λmax. Then, even if p is very small,
large k can cause cascading failure. This suggests that nu-
merous rare interactions between many components can be
equally influential in causing cascading failure as a smaller
number of likely interactions. Indeed, one can deduce that
a design change that introduces a very large number of un-
likely failure interactions, thus greatly increasing k, could
greatly increase the risk of cascading failure, despite the
rarity of the failures (low p). It is conceivable that coupling
infrastructures together such as controlling the power trans-
mission system over an internet or certain types of global
control schemes could make the system more vulnerable to
cascading failure in this fashion. Note that many traditional
power system controls are designed to reduce interactions
by deliberate separation in distance, frequency, and time
scale. Thus the reliability concerns for the effect on cas-
cading failure risk of complicated interconnecting solutions
raised by (11) may be consistent with traditional power en-
gineering practice. Our analysis of cascading failure risk is
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Fig. 2. Probability distribution of number of failures on log-
log plot at criticality kp=1. There are n=1000 components.

indeed highly approximate and global in nature, but it starts
to quantify trade-offs of complexity versus reliability in en-
gineering large networked systems.
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Abstract

We give a comprehensive account of a complex systems ap-
proach to large blackouts caused by cascading failure. In-
stead of looking at the details of particular blackouts, we
study the statistics, dynamics and risk of series of blackouts
with approximate global models. North American blackout
data suggests that the frequency of large blackouts is gov-
erned by a power law. This result is consistent with the
power system being a complex system designed and oper-
ated near criticality. The power law makes the risk of large
blackouts consequential and implies the need for nonstan-
dard risk analysis.

Power system overall load relative to operating limits is a
key factor affecting the risk of cascading failure. Blackout
models and an abstract model of cascading failure show
that there are critical transitions as load is increased. Power
law behavior can be observed at these transitions.

The critical loads at which blackout risk sharply increases
are identifiable thresholds for cascading failure and we dis-
cuss approaches to computing the proximity to cascading
failure using these thresholds. Approximating cascading
failure as a branching process suggests ways to compute
and monitor criticality by quantifying how much failures
propagate.

Inspired by concepts from self-organized criticality, we sug-
gest that power system operating margins evolve slowly
to near criticality and confirm this idea using a blackout
model. Mitigation of blackout risk should take care to ac-
count for counter-intuitive effects in complex self-organized
critical systems. For example, suppressing small blackouts
could lead the system to be operated closer to the edge and
ultimately increase the risk of large blackouts.

1 Introduction

Cascading failure is the usual mechanism for large black-
outs of electric power transmission systems. For example,
long, intricate cascades of events caused the August 1996
blackout in Northwestern America (NERC [44]) that dis-
connected 30,390 MW of power to 7.5 million customers
[41, 57]). An even more spectacular example is the August
2003 blackout in Northeastern America that disconnected

61,800 MW of power to an area spanning 8 states and 2
provinces and containing 50 million people [56]. The vital
importance of the electrical infrastructure to society moti-
vates the understanding and analysis of large blackouts.

Here are some substantial challenges:

• North American power transmission system data ap-
pears to show power tails in the probability distribu-
tion of blackout sizes, making the risk of large black-
outs consequential. What is the origin and the impli-
cations of this distribution of blackout sizes? Can this
probability distribution be changed within economic
and engineering constraints to minimize the risk of
blackouts of all sizes?

• Large blackouts are typically caused by long, intricate
cascading sequences of rare events. Dependencies be-
tween the first few events can be assessed for a sub-
set of the most likely or anticipated events and this
type of analysis is certainly useful in addressing part
of the problem (e.g. [48]). However, this combinatorial
analysis gets overwhelmed and becomes infeasible for
long sequences of events or for the huge number of all
possible rare events and interactions, many of which
are unanticipated, that cascade to cause large black-
outs. How does one do risk analysis of rare, cascading,
catastrophic events? Can one monitor or mitigate the
risk of these cascading failures at a more global level
without working out all the details?

• Much of the effort in avoiding cascading failure has
focussed on reducing the chances of the start of a cas-
cading failure. How do we determine whether power
system design and operation is such that cascades will
tend to propagate after they have started? That is,
where is the “edge” for propagation of cascading fail-
ure?

The aim of global complex systems analysis of power sys-
tem blackouts is to provide new insights and approaches
that could address these challenges. We focus on global
bulk properties of series of blackouts rather than on the de-
tails of a particular blackout. Concepts from complex sys-
tems, statistical physics, probability and risk analysis are
combined with power system modeling to study blackouts
from a top-down perspective.



1.1 Literature review

We briefly review some other approaches to complex sys-
tems and cascading failure in power system blackouts.

Chen and Thorp [17] and Chen, Thorp, and Dobson [18]
model power system blackouts using the DC load flow ap-
proximation and standard linear programming optimiza-
tion of the generation dispatch and represent in detail hid-
den failures of the protection system. The expected black-
out size is obtained using importance sampling and it shows
some indications of a critical point as loading is increased.
The distribution of power system blackout size is obtained
by rare event sampling and blackout risk assessment and
mitigation methods are studied. Rios, Kirschen, Jawayeera,
Nedic, and Allan [51] evaluate expected blackout cost us-
ing Monte Carlo simulation of a power system model that
represents the effects of cascading line overloads, hidden
failures of the protection system, power system dynamic
instabilities, and the operator responses to these phenom-
ena. Kirschen, Jawayeera, Nedic, and Allan [40] then ap-
ply correlated sampling and their Monte Carlo simulation
to develop a calibrated reference scale of system stress that
relates system loading to blackout size and test it on a 1000
bus power system. Hardiman, Kumbale, and Makarov [35]
simulate and analyze cascading failure using the TRELSS
software. In its “simulation approach” mode, TRELSS rep-
resents cascading outages of lines, transformers and gener-
ators due to overloads and voltage violations in large AC
networks (up to 13000 buses). Protection control groups
and islanding are modeled in detail. The cascading outages
are ranked in severity and the results have been applied in
industry to evaluate transmission expansion plans. Other
modes of operation are available in TRELSS that can rank
the worst contingencies and take into account remedial ac-
tions and compute reliability indices.

Ni, McCalley, Vittal, and Tayyib [48] evaluate expected
contingency severities based on real time predictions of the
power system state to quantify the risk of operational con-
ditions. The computations account for current and volt-
age limits, cascading line overloads, and voltage instability.
Zima and Andersson [59] study the transition into subse-
quent failures after an initial failure and suggest mitigating
this transition with a wide-area measurement system.

Roy, Asavathiratham, Lesieutre, and Verghese [52] con-
struct randomly generated tree networks that abstractly
represent influences between idealized components. Com-
ponents can be failed or operational according to a Markov
model that represent both internal component failure and
repair processes and influences between components that
cause failure propagation. The effects of the network degree
and the inter-component influences on the failure size and
duration are studied. Pepyne, Panayiotou, Cassandras, and
Ho [50] also use a Markov model for discrete state power
system nodal components, but propagate failures along the

transmission lines of a power systems network with a fixed
probability. They study the effect of the propagation prob-
ability and maintenance policies that reduce the probability
of hidden failures.

The challenging problem of determining cascading failure
due to dynamic transients in hybrid nonlinear differen-
tial equation models is addressed by DeMarco [24] using
Lyapunov methods applied to a smoothed model and by
Parrilo, Lall, Paganini, Verghese, Lesieutre, and Mars-
den [49] using Karhunen-Loeve and Galerkin model reduc-
tion. Watts [58] describes a general model of cascading
failure in which failures propagate through the edges of a
random network. Network nodes have a random thresh-
old and fail when this threshold is exceeded by a sufficient
fraction of failed nodes one edge away. Phase transitions
causing large cascades can occur when the network becomes
critically connected by having sufficient average degree or
when a highly connected network has sufficiently low av-
erage degree so that the effect of a single failure is not
swamped by a high connectivity to unfailed nodes. Lindley
and Singpurwalla [42] describe some foundations for causal
and cascading failure in infrastructures and model cascad-
ing failure as an increase in a component failure rate within
a time interval after another component fails.

Chen and McCalley [19] fit the empirical probability distri-
bution of 20 years of North American multiple line failures
with a cluster distribution derived from a negative binomial
probability model. Carlson and Doyle have introduced a
theory of highly optimized tolerance (HOT) that describes
power law behavior in a number of engineered or otherwise
optimized applications [6]. Stubna and Fowler [55] pub-
lished an alternative view based on HOT of the origin of the
power law in the NERC data. To apply HOT to the power
system, it is assumed that blackouts propagate one dimen-
sionally [55] and that this propagation is limited by finite
resources that are engineered to be optimally distributed to
act as barriers to the propagation [6]. The one dimensional
assumption implies that the blackout size in a local region
is inversely proportional to the local resources. Minimizing
a blackout cost proportional to blackout size subject to a
fixed sum of resources leads to a probability distribution of
blackout sizes with an asymptotic power tail and two free
parameters. The asymptotic power tail exponent is exactly
–1 and this value follows from the one dimensional assump-
tion. The free parameters can be varied to fit the NERC
data for both MW lost and customers disconnected. How-
ever [55] shows that a better fit to both these data sets can
be achieved by modifying HOT to allow some misallocation
of resources.

The historically high reliability of power transmission sys-
tems in developed countries is largely due to estimating the
transmission system capability and designing and operat-
ing the system with margins with respect to a chosen sub-
set of likely and serious contingencies. The analysis is usu-



ally either deterministic analysis of estimated worst cases or
Monte Carlo simulation of moderately detailed probabilistic
models that capture steady state interactions [4]. Combi-
nations of likely contingencies and some dependencies be-
tween events such as common mode or common cause are
sometimes considered. The analyses address the first few
likely and anticipated failures rather than the propagation
of many rare or unanticipated failures in a cascade.

1.2 Blackout mechanisms

We review cascading failure mechanisms of large blackouts
to provide context for the cascading failure modeling. Bulk
electrical power transmission systems are complex networks
of large numbers of components that interact in diverse
ways. When component operating limits are exceeded pro-
tection acts and the component “fails” in the sense of not
being available to transmit power. Components can also fail
in the sense of misoperation or damage due to aging, fire,
weather, poor maintenance or incorrect design or operat-
ing settings. In any case, the failure causes a transient and
causes the power flow in the component to be redistributed
to other components according to circuit laws, and subse-
quently redistributed according to automatic and manual
control actions. The transients and readjustments of the
system can be local in effect or can involve components
far away, so that a component disconnection or failure can
effectively increase the loading of many other components
throughout the network. In particular, the propagation of
failures is not limited to adjacent network components. The
interactions involved are diverse and include deviations in
power flows, frequency, and voltage as well as operation
or misoperation of protection devices, controls, operator
procedures and monitoring and alarm systems. However,
all the interactions between component failures tend to be
stronger when components are highly loaded. For example,
if a more highly loaded transmission line fails, it produces
a larger transient, there is a larger amount of power to
redistribute to other components, and failures in nearby
protection devices are more likely. Moreover, if the over-
all system is more highly loaded, components have smaller
margins so they can tolerate smaller increases in load before
failure, the system nonlinearities and dynamical couplings
increase, and the system operators have fewer options and
more stress.

A typical large blackout has an initial disturbance or trig-
ger events followed by a sequence of cascading events. Each
event further weakens and stresses the system and makes
subsequent events more likely. Examples of an initial dis-
turbance are short circuits of transmission lines through
untrimmed trees, protection device misoperation, and bad
weather. The blackout events and interactions are often
rare, unusual, or unanticipated because the likely and antic-
ipated failures are already routinely accounted for in power
system design and operation. The complexity is such that

it can take months after a large blackout to sift through
the records, establish the events occurring and reproduce
with computer simulations and hindsight a causal sequence
of events.

2 Blackout data and risk

2.1 Power tails in North American blackout data

We consider the statistics of series of blackouts. The North
American Electrical Reliability Council (NERC) has a doc-
umented list summarizing major blackouts of the North
American power transmission system from 1984 to 1998
[45]. It is apparent that large blackouts are rarer than
small blackouts, but how much rarer are they? One might
expect a probability distribution of blackout sizes to fall off
at most exponentially as the blackout size increases. How-
ever, analyses of the NERC data show that the probability
distribution of the blackout sizes does not decrease expo-
nentially with the size of the blackout, but rather has a
power law tail [15, 7, 8, 16].
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Fig. 1: Log-log plot of scaled PDF of energy unserved
during North American blackouts 1984 to 1998.

For example, Fig. 1 plots on a log-log scale the empirical
probability distribution of energy unserved in the North
American blackouts. The fall-off with blackout size is close
to a power dependence with an exponent between −1 and
−2. (A power dependence with exponent −1 implies that
doubling the blackout size only halves the probability and
appears on a log-log plot as a straight line of slope −1).
Thus the NERC data suggests that large blackouts are
much more likely than might be expected. The power tails



are of course limited in extent in a practical power sys-
tem by a finite cutoff near system size corresponding to the
largest possible blackout.

2.2 Blackout risk with respect to blackout size

Blackout risk is the product of blackout probability and
blackout cost. Here we assume that blackout cost is roughly
proportional to blackout size, although larger blackouts
may well have costs (especially indirect costs) that increase
faster than linearly. In the case of the exponential tail, large
blackouts become rarer much faster than blackout costs in-
crease so that the risk of large blackouts is negligible. How-
ever, in the case of a power law tail, the larger blackouts
can become rarer at a similar rate as costs increase, and
then the risk of large blackouts is comparable to, or even
exceeding, the risk of small blackouts [12]. Thus power laws
in blackout size distributions significantly affect the risk of
large blackouts. Standard probabilistic techniques that as-
sume independence between events imply exponential tails
and are not applicable to systems that exhibit power tails.

Consideration of the probability distribution of blackout
sizes leads naturally to a more sophisticated framing of the
problem of avoiding blackouts. Instead of seeking only to
limit blackouts in general, one can seek to manipulate the
probability distribution of blackouts to jointly limit the fre-
quency of small, medium and large blackouts. This elab-
oration is important because measures taken to limit the
frequency of small blackouts may inadvertently increase
the frequency of large blackouts when the complex dynam-
ics governing transmission expansion are considered as dis-
cussed in section 8.

The strength of our conclusions is naturally somewhat lim-
ited by the short time period (15 years) of the available
blackout data and the consequent limited resolution of the
statistics. To further understand the mechanisms governing
the complex dynamics of power system blackouts, model-
ing of the power system is indicated. We consider both
abstract models of cascading failure and a power system
blackout model in the following section.

3 Three models of cascading failure

This section summarizes three models of cascading failure
that are used to explore aspects of blackouts. The first
two models aim to represent some of the salient features of
cascading failure in blackouts with an analytically tractable
probabilistic model and the third model represents a power
transmission system.

1. The CASCADE model is an abstract probabilistic
model of cascading failure that captures the weakening
of the system as the cascade proceeds [27, 32].

2. The branching process model is a useful approximation
to the CASCADE model [28].

3. The OPA model for a fixed network is a power systems
model that represents cascading line overloads and out-
ages at the level of DC load flow and LP dispatch of
generation [11].

While our main motivation is large blackouts, the abstract
CASCADE and branching process models are sufficiently
simple and general that they could be applied to cascading
failure of other large, interconnected infrastructures [47].

3.1 CASCADE model

The features that the CASCADE model abstracts from the
formidable complexities of large blackouts are the large but
finite number of components, components that fail when
their load exceeds a threshold, an initial disturbance load-
ing the system, and the additional loading of components
by the failure of other components. The initial overall sys-
tem stress is represented by upper and lower bounds on a
range of initial component loadings. The model neglects the
length of times between events and the diversity of power
system components and interactions. Of course, an ana-
lytically tractable model is necessarily much too simple to
represent with realism all the aspects of cascading failure in
blackouts; the objective is rather to help understand some
global systems effects that arise in blackouts and in more
detailed models of blackouts.

3.1.1 Description of CASCADE model

The CASCADE model [27, 32] has n identical components
with random initial loads. For each component the mini-
mum initial load is Lmin and the maximum initial load is
Lmax. For j=1,2,...,n, component j has initial load Lj that
is a random variable uniformly distributed in [Lmin, Lmax].
L1, L2, · · · , Ln are independent.

Components fail when their load exceeds Lfail. When a
component fails, a fixed amount of load P is transferred to
each of the components.

To start the cascade, we assume an initial disturbance that
loads each component by an additional amount D. Other
components may then fail depending on their initial loads
Lj and the failure of any of these components will distribute
an additional load P ≥ 0 that can cause further failures in
a cascade.

Now we define the normalized CASCADE model. The nor-
malized initial load �j is

�j =
Lj − Lmin

Lmax − Lmin
(1)

Then �j is a random variable uniformly distributed on [0, 1].



Let

p =
P

Lmax − Lmin
, d =

D + Lmax − Lfail

Lmax − Lmin
(2)

Then the normalized load increment p is the amount of load
increase on any component when one other component fails
expressed as a fraction of the load range Lmax −Lmin. The
normalized initial disturbance d is a shifted initial distur-
bance expressed as a fraction of the load range. Moreover,
the failure load is �j = 1.

3.1.2 Distribution of the number of failures

The distribution of the total number of component failures
S is

P [S = r] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
n
r

)
φ(d)(d + rp)r−1(φ(1 − d − rp))n−r,

r = 0, 1, ..., n − 1,

1 −
n−1∑
s=0

P (S = s), r = n,

(3)

where p ≥ 0 and the saturation function is

φ(x) =

⎧⎨
⎩

0 ;x < 0,
x ; 0 ≤ x ≤ 1,
1 ;x > 1.

(4)

When using (3) it is assumed that 00 ≡ 1 and 0/0 ≡ 1.

If d ≥ 0 and d+np ≤ 1, then there is no saturation (φ(x) =
x) and (3) reduces to the quasibinomial distribution

P [S = r] =
(

n
r

)
d(d + rp)r−1(1 − d − rp)n−r. (5)

The quasibinomial distribution was introduced by Consul
[21] to model an urn problem in which a player makes
strategic decisions and further studied by Burtin [5], Islam,
O’Shaughnessy, and Smith [37], and Jaworski [38]. The
saturation in (3) extends the parameter range of the qua-
sibinomial distribution and the saturated distribution can
represent highly stressed systems with a high probability of
all components failing.

3.2 Branching process

The branching process approximation to the CASCADE
model gives a way to quantify the propagation of cascad-
ing failures with a parameter λ and further simplifies the
mathematical modeling [28].

In a Galton-Watson branching process [36, 1] the failures
are regarded as produced in stages. The failures in each
stage independently produce further failures in the next
stage according to a probability distribution with mean λ.
An exception is that the first stage assumes a probabil-
ity distribution with mean θ to represent the initial distur-
bance. We assume in this section that each failure produces

0,1,2,3,... further failures according to a Poisson distribu-
tion. Thus, after the initial disturbance, each failure in
each stage independently produces further failures in the
next stage according to a Poisson distribution of mean λ.

The branching process is a transient discrete time Markov
process and its behavior is governed by the parameter λ.
The mean number of failures in stage k is θλk−1. In the
subcritical case of λ < 1, the failures will die out (i.e., reach
and remain at zero failures at some stage) and the mean
number of failures in each stage decreases geometrically.
In the supercritical case of λ > 1, although it possible for
the process to die out, often the failures increase without
bound. Of course, there are a large but finite number of
components that can fail in a blackout and in the CAS-
CADE model, so it is also necessary to account for the
branching process saturating with all components failed.

The stages of the CASCADE model can be approximated
by the stages of a saturating branching process by letting
the number of components n become large while p and d
become small in such a way that λ = np and θ = nd re-
main constant. The number S of components failed in the
saturating branching process is a saturating form of the
generalized Poisson distribution:

For θ ≥ 0,

P [S = r] = θ(rλ + θ)r−1 e−rλ−θ

r!
; 0 ≤ r ≤ (n − θ)/λ, r < n (6)

P [S = r] = 0 ; (n − θ)/λ < r < n, r ≥ 0 (7)

P [S = r] = 1 −
n−1∑
s=0

g(s, θ, λ, n) (8)

In the subcritical or critical case λ ≤ 1, there is no satura-
tion and (6)-(8) reduce to

P [S = r] = θ(rλ + θ)r−1 e−rλ−θ

r!
(9)

which is the generalized (or Lagrangian) Poisson distribu-
tion introduced by Consul and Jain [23, 20, 22].

Further approximation of (6)-(8) yields [30]

P [S = r] ≈ θ e(1−λ)
θ
λ

λ
√

2π
r−1.5e−r/r0 (10)

; 1 � r < r1 = min{n/λ, n}, θ/λ ∼ 1
where r0 = (λ − 1 − lnλ)−1

In the approximation (10), the term r−1.5 dominates for
r � r0 and the exponential term e−r/r0 dominates for r �
r0. Thus (10) reveals that the distribution of the number of
failures has an approximate power law region of exponent
−1.5 for 1 � r � r0 and an exponential tail for r0 � r < r1.
Note that near criticality, λ ≈ 1 and r0 becomes large.



For a very general class of branching processes (not neces-
sarily assuming that each failure produces further failures
with a Poisson distribution), at criticality, the probability
distribution of the total number of failures has a power law
form with exponent −1.5. That is, as one doubles the num-
ber of failures the probability of that number of failures is
divided by 21.5. The universality of the −1.5 power law at
criticality in the probability distribution of the total num-
ber of failures in a branching process suggests that this is
a signature for this type of cascading failure. In particular,
the generalized Poisson distributions (6)-(8) and (9) have a
−1.5 power law at λ = 1.

The approximation of CASCADE by a branching process
implies that the CASCADE model has approximately a
−1.5 power law at np = 1. Moreover, the −1.5 power
law is approximately consistent with the North American
blackout data described in section 2.1.

Criticality or supercriticality in the branching process im-
plies a high risk of catastrophic and widespread cascading
failures. Maintaining sufficient subcriticality in the branch-
ing process according to a simple criterion such as requiring
λ < λmax < 1 would limit the propagation of failures and
reduce this risk. The approximation of CASCADE as a
branching process allows the criterion to be expressed in
terms of system loading. However, implementing the cri-
terion to reduce the risk of catastrophic cascading failure
would require limiting the system throughput and this is
costly. Managing the tradeoff between the certain cost of
limiting throughput and the rare but very costly widespread
catastrophic cascading failure may be difficult. Indeed we
maintain in section 6 that for large blackouts, economic, en-
gineering and societal forces may self-organize the system
to criticality and that efforts to mitigate the risk should
take account of these broader dynamics [12].

Our emphasis on limiting the propagation of system failures
after they are initiated is complementary to more standard
methods of mitigating the risk of cascading failure by re-
ducing the risk of the first few likely failures caused by an
initial disturbance as for example in [48].

The branching process approximation does capture some
salient features of loading dependent cascading failure and
suggests an approach to reducing the risk of large cascad-
ing failures by limiting the average propagation of failures.
However, much work remains to establish the correspon-
dence between these simplified global models and the com-
plexities of cascading failure in real systems.

3.3 OPA blackout model for a fixed network

This section summarizes the OPA blackout model when
the network is assumed to be fixed [11]. This model repre-
sents blackouts caused by probabilistic cascading line over-
loads and outages and is used to produce blackout statistics.

Lines fail probabilistically and the consequent redistribu-
tion of power flows is calculated using the DC load flow
approximation and a standard LP dispatch of generation.
Cascading line outages leading to blackout are modeled.
There is also a version of OPA that additionally represents
the complex dynamics as the network evolves and this is
discussed in section 6.2.

Cascading failure can happen at any time but tends to be
more likely and more widespread at peak load when the
network is most stressed. For simplicity, the daily peak load
is chosen as representative of the loading during each day
and the cascade is computed based on that peak load. Each
day has the possibility of one cascade. The lines involved
in the cascade are represented but the timing of events is
neglected.

The OPA model represents transmission lines, loads and
generators with the usual DC load flow assumptions. Start-
ing from a solved base case, blackouts are initiated by ran-
dom line outages. Whenever a line is outaged, the gen-
eration and load is redispatched using standard linear pro-
gramming methods. The cost function is weighted to ensure
that load shedding is avoided where possible. If any lines
were overloaded during the optimization, then these lines
are outaged with probability p1. The process of redispatch
and testing for outages is iterated until there are no more
outages.

The OPA model does not attempt to capture the intricate
details of particular blackouts, which may have a large va-
riety of complicated interacting processes also involving,
for example, protection systems, dynamics and human fac-
tors. However, the OPA model does represent in a simpli-
fied way a dynamical process of cascading overloads and
outages that is consistent with some basic network and op-
erational constraints.

4 Critical loading

As load increases, it is clear that cascading failure becomes
more likely, but exactly how does it become more likely?
Our results show that the cascading failure does not grad-
ually and uniformly become more likely; instead there is a
point of criticality or phase transition at which the cascad-
ing failure becomes more likely.

In complex systems and statistical physics, criticality is as-
sociated with power tails in probability distributions. Other
indicators of criticality are changes in gradient (for a type 2
phase transition) or a discontinuity (for a type 1 phase tran-
sition) in some measured quantity as system passes through
the critical point.

The importance of the critical loading is that it defines a
reference point for increasing risk of cascading failure. The
terminology of “criticality” comes from statistical physics



and it is of course extremely useful to use the standard sci-
entific terminology. However, while the power tails at crit-
ical loading indicate a substantial risk of large blackouts,
it is premature at this stage of risk analysis to automati-
cally presume that operation at criticality is bad because
it entails some substantial risks. There is also economic
gain from an increased loading of the power transmission
system. Indeed, one of the objectives in pursuing the risk
analysis of cascading blackouts is to determine and quan-
tify the tradeoffs involved so that sensible decisions about
optimal design and operation and blackout mitigation can
be made.

4.1 Qualitative effect of load increase on distribution of
blackout size

Consider cascading failure in a power transmission system
in the impractically extreme cases of very low and very
high loading. At very low loading, any failures that occur
have minimal impact on other components and these other
components have large operating margins. Multiple fail-
ures are possible, but they are approximately independent
so that the probability of multiple failures is approximately
the product of the probabilities of each of the failures. Since
the blackout size is roughly proportional to the number of
failures, the probability distribution of blackout size will
have a tail bounded by an exponential. The probability
distribution of blackout size is different if the power sys-
tem were to be operated recklessly at a very high loading
in which every component was close to its loading limit.
Then any initial disturbance would necessarily cause a cas-
cade of failures leading to total or near total blackout. It
is clear that the probability distribution of blackout size
must somehow change continuously from the exponential
tail form to the certain total blackout form as loading in-
creases from a very low to a very high loading. We are
interested in the nature of the transition between these two
extremes. Our results presented below suggest that the
transition occurs via a critical loading at which there is a
power tail in the probability distribution of blackout size.
This concept is shown in Figure 2.

4.2 Critical transitions as load increases in CASCADE

This subsection describes one way to represent a load in-
crease in the CASCADE model and how this leads to a
parameterization of the normalized model. Then the effect
of the load increase on the distribution of the number of
components failed is described.

We assume for convenience that the system has n = 1000
components. Suppose that the system is operated so that
the initial component loadings vary from Lmin to Lmax =
Lfail = 1. Then the average initial component loading L =
(Lmin + 1)/2 may be increased by increasing Lmin. The
initial disturbance D = 0.0004 is assumed to be the same

Fig. 2: Log-log plots sketching idealized blackout size prob-
ability distributions for very low, critical, and very high
power system loadings.

as the load transfer amount P = 0.0004. These modeling
choices for component load lead via the normalization (2)
to the parameterization

p = d =
0.0004
2 − 2L

, 0.5 ≤ L < 1. (11)

The increase in the normalized power transfer p with in-
creased L may be thought of as strengthening the compo-
nent interactions that cause cascading failure.

The distribution for the subcritical and nonsaturating case
L = 0.6 has an approximately exponential tail as shown
in Figure 3. The tail becomes heavier as L increases and
the distribution for the critical case L = 0.8, np = 1 has
an approximate power law region over a range of S. The
power law region has an exponent of approximately –1.4
and this compares to the exponent of –1.5 obtained by the
analytic approximation discussed in subsection 3.2. The
distribution for the supercritical and saturated case L =
0.9 has an approximately exponential tail for small r, zero
probability of intermediate r, and a probability of 0.80 of
all 1000 components failing. If an intermediate number of
components fail in a saturated case, then the cascade always
proceeds to all 1000 components failing.

The increase in the mean number of failures as the aver-
age initial component loading L is increased is shown in
Figure 4. The sharp change in gradient at the critical load-
ing L = 0.8 corresponds to the saturation of (3) and the



consequent increasing probability of all components failing.
Indeed, at L = 0.8, the change in gradient in Figure 4
together with the power law region in the distribution of
S in Figure 3 suggest a type two phase transition in the
system. If we interpret the number of components failed as
corresponding to blackout size, the power law region is con-
sistent with the North American blackout data discussed in
section 2. In particular, North American blackout data sug-
gest an empirical distribution of blackout size with a power
tail with exponent between –1 and –2. This power tail indi-
cates a significant risk of large blackouts that is not present
when the distribution of blackout sizes has an exponential
tail.

The model results show how system loading can influence
the risk of cascading failure. At low loading there is an ap-
proximately exponential tail in the distribution of number
of components failed and a low risk of large cascading fail-
ure. There is a critical loading at which there is a power law
region in the distribution of number of components failed
and a sharp increase in the gradient of the mean number of
components failed. As loading is increased past the critical
loading, the distribution of number of components failed
saturates, there is an increasingly significant probability of
all components failing, and there is a significant risk of large
cascading failure.

4.3 Critical transitions as load increases in OPA

Criticality can be observed in the fast dynamics OPA model
as load power demand is slowly increased as shown in Fig. 5.
(Random fluctuations in the pattern of load are superim-
posed on the load increase in order to provide statistical
data.) At a critical loading, the gradient of the expected
blackout size sharply increases. Moreover, the PDF of
blackout size shows power tails at the critical loading as
shown in Fig. 6. OPA can also display complicated crit-
ical point behavior corresponding to both generation and
transmission line limits [11].

As noted in section 1.1, the cascading hidden failure model
of Chen and Thorp also shows some indications of criticality
as load is increased [17, 18].

5 Quantifying proximity to criticality

At criticality there is a power tail, a sharp increase in mean
blackout size, and an increased risk of cascading failure.
Thus criticality gives a reference point or a power system
operational limit with respect to cascading failure. That is,
we are suggesting adding an increased risk of cascading fail-
ure limit to the established power system operating limits
such as thermal, voltage, and transient stability. How does
one practically monitor or measure margin to criticality?

One approach is to increase loading in a blackout simula-
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Fig. 3: Log-log plot of distribution of number of compo-
nents failed S for three values of average initial load L.
Note the power law region for the critical loading L = 0.8.
L = 0.9 has an isolated point at (1000, 0.80) indicating
probability 0.80 of all 1000 components failed. Probability
of no failures is 0.61 for L = 0.6, 0.37 for L = 0.8, and 0.14
for L = 0.9.
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Fig. 4: Mean number of components failed ES as a function
of average initial component loading L. Note the change in
gradient at the critical loading L = 0.8. There are n = 1000
components and ES becomes 1000 at the highest loadings.

tion incorporating cascading failure mechanisms until crit-
icality is detected by a sharp increase in mean blackout
size. The mean blackout size is calculated at each load-
ing level by running the simulation repeatedly with some
random variation in the system initial conditions so that a
variety of cascading outages are simulated. This approach
is straightforward and likely to be useful, but it is not fast
and it seems that it would be difficult or impossible to ap-
ply to real system data. Also it could be challenging to de-
scribe and model a good sample of the diverse interactions
involved in cascading failure in a fast enough simulation.
This approach, together with checks on the power law be-
havior of the distribution of blackout size, was used to find
criticality in several power system and abstract models of
cascading failure [11, 17, 18, 32, 28]. Confirming criticality
in this way in a range of power system models incorporat-
ing more detailed or different cascading failure mechanisms
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would help to establish further the key role that criticality
plays in cascading failure.

Another approach that is currently being developed [13,
30, 31] is to monitor or measure from real or simulated
data how much failures propagate after they are initiated.
Branching process models such as the Galton-Watson pro-
cess described in section 3.2 have a parameter λ that mea-
sures both the average failure propagation and proximity
to criticality. In branching process models, the average
number of failures is multiplied by λ at each stage of the
branching process. Although there is statistical variation
about the mean behavior, it is known [1] that for subcriti-
cal systems with λ < 1, the failures will die out and that for
supercritical systems with λ > 1, the number of failures can
exponentially increase. (The exponential increase will in
practice be limited by the system size and any blackout in-
hibition mechanisms; current research seeks to understand
and model the blackout inhibition mechanisms.)

The idea is to statistically estimate λ from simulated or
real failure data. Essentially this approach seeks to ap-
proximate and fit the data with a branching process model.
The ability to estimate λ and any other parameters of the
branching process model would allow the computation of
the corresponding distribution of blackout size probability
and hence estimates of the blackout risk.

Note that the cascading failure limit measures overall sys-
tem stress in terms of how failures propagate once started;
it is complementary to measures to limit cascading failure
by inhibiting the start of cascade such as the n-1 criterion.
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Fig. 6: Blackout size PDF at critical loading P=15392 and
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6 Self-organization and slow dynamics of network
evolution

6.1 Qualitative description of self-organization

We qualitatively describe how the forces shaping the evolu-
tion of the power network could give rise to self-organizing
dynamics. The power system contains many components
such as generators, transmission lines, transformers and
substations. Each component experiences a certain load-
ing each day and when all the components are considered
together they experience some pattern or vector of load-
ings. The pattern of component loadings is determined by
the power system operating policy and is driven by the
aggregated customer loads at substations. The power sys-
tem operating policy includes short term actions such as
generator dispatch as well as longer term actions such as
improvements in procedures and planned outages for main-
tenance. The operating policy seeks to satisfy the customer
loads at least cost. The aggregated customer load has daily
and seasonal cycles and a slow secular increase of about 2%
per year.

The probability of component failure generally increases
with component loading. Each failure is a limiting or zero-
ing of load in a component and causes a redistribution of
power flow in the network and hence a discrete increase in
the loading of other system components. Thus failures can
cascade. If a cascade of events includes limiting or zeroing
the load at substations, it is a blackout. A stressed power



system experiencing an event must either redistribute load
satisfactorily or shed some load at substations in a black-
out. A cascade of events leading to blackout usually occurs
on a time scale of minutes to hours and is completed in less
than one day.

It is customary for utility engineers to make prodigious ef-
forts to avoid blackouts and especially to avoid repeated
blackouts with similar causes. These engineering responses
to a blackout occur on a range of time scales longer than one
day. Responses include repair of damaged equipment, more
frequent maintenance, changes in operating policy away
from the specific conditions causing the blackout, installing
new equipment to increase system capacity, and adjusting
or adding system alarms or controls. The responses re-
duce the probability of events in components related to the
blackout, either by lowering their probabilities directly or
by reducing component loading by increasing component
capacity or by transferring some of the loading to other
components. The responses are directed towards the com-
ponents involved in causing the blackout. Thus the prob-
ability of a similar blackout occurring is reduced, at least
until load growth degrades the improvements made. There
are similar, but less intense responses to unrealized threats
to system security such as near misses and simulated black-
outs.

The pattern or vector of component loadings may be
thought of as a system state. Maximum component load-
ings are driven up by the slow increase in customer loads
via the operating policy. High loadings increase the chances
of cascading events and blackouts. The loadings of com-
ponents involved in the blackout are reduced or relaxed by
the engineering responses to security threats and blackouts.
However, the loadings of some components not involved
in the blackout may increase. These opposing forces driv-
ing the component loadings up and relaxing the component
loadings are a reflection of the standard tradeoff between
satisfying customer loads economically and security. The
opposing forces apply over a range of time scales. We sug-
gest that the opposing forces, together with the underlying
growth in customer load and diversity give rise to a dynamic
equilibrium.

These ideas of complex dynamics by which the network
evolves are inspired by corresponding concepts of self-
organized criticality (SOC) in statistical physics. As a brief
introduction to the concept, a self-organized critical system
is one in which the nonlinear dynamics in the presence of
perturbations organize the overall average system state near
to, but not at, the state that is marginal to major disrup-
tions. Self-organized critical systems are characterized by a
spectrum of spatial and temporal scales of the disruptions
that exist in remarkably similar forms in a wide variety of
physical systems [2, 3, 39]. In these systems, the proba-
bility of occurrence of large disruptive events decreases as
a power function of the event size. This is in contrast to

many conventional systems in which this probability decays
exponentially with event size.

6.2 OPA blackout model for a slowly evolving network

The OPA blackout model [14, 25, 9, 10] represents the es-
sentials of slow load growth, cascading line outages, and
the increases in system capacity caused by the engineering
responses to blackouts. Cascading line outages leading to
blackout are regarded as fast dynamics and are modeled as
described in section 3.3 and the lines involved in a blackout
are predicted. The slow dynamics model the growth of the
load demand and the engineering response to the blackout
by upgrades to the grid transmission capability. The slow
dynamics represents the complex dynamics outlined in sec-
tion 6.1. The slow dynamics is carried out by the following
small changes applied at each day: All loads are multiplied
by a fixed parameter that represents the daily rate of in-
crease in electricity demand. If a blackout occurs, then the
lines involved in the blackout have their line flow limits in-
creased slightly. The generation is increased at randomly
selected generators subject to coordination with the limits
of nearby lines when the generator capacity margin falls
below a threshold. The OPA model is “top-down” and rep-
resents the processes in greatly simplified forms, although
the interactions between these processes still yield complex
(and complicated!) behaviors. The simple representation of
the processes is desirable both to study only the main inter-
actions governing the complex dynamics and for pragmatic
reasons of model tractability and simulation run time.

6.3 Self-Organization

We propose one way to understand the origin of the dynam-
ics and distribution of power system blackouts. Indeed, we
suggest that the slow, opposing forces of load increase and
network upgrade in response to blackouts shape the system
operating margins so that cascading blackouts occur with a
frequency governed approximately by a power law relation-
ship between blackout probability and blackout size. That
is, these forces drive the system to a dynamic equilibrium
just below and near criticality.

The load increase is a force weakening the power system
(reducing operating margin) and the system upgrades are
a force strengthening the system (increasing operating mar-
gin). If the power system is weak, then there will be more
blackouts and hence more upgrades of the lines involved in
the blackout and this will eventually strengthen the power
system. If the power system is strong, then there will be
fewer blackouts and fewer line upgrades, and the load in-
crease will weaken the system. Thus the opposing forces
drive the system to a dynamic equilibrium that keeps the
system near a certain pattern of operating margins relative
to the load. This process is observed in OPA results. Note
that engineering improvements and load growth are driven



by strong, underlying economic and societal forces that are
not easily modified.

Moreover, when the generator upgrade process is suitably
coordinated with the line upgrades and load increase, OPA
results show power tails in the PDF of blackout sizes. For
example, OPA results for the IEEE 118 bus network and an
artificial 382 bus tree-like network are shown in Figure 7.
Both the power law region of the PDF and the consistency
with the NERC blackout data are evident. We emphasize
that this criticality was achieved by the internal dynamics
modeled in the system and is in this sense self-organizing
to criticality.

Fig. 7: Blackout size PDF resulting from self-organization
showing OPA results on 2 networks. The NERC blackout
data is also shown for comparison.

6.4 Blackout mitigation

While much remains to be learned about these complex dy-
namics, it is clear that these global dynamics have impor-
tant implications for power system control and operation
and for efforts to reduce the risk of blackouts.

The success of mitigation efforts in self-organized crit-
ical systems is strongly influenced by the dynamics of
the system. Unless the mitigation efforts alter the self-
organization forces driving the system, the system will be
pushed to criticality. To alter those forces with mitiga-
tion efforts may be quite difficult because the forces are an

intrinsic part of our society. Then the mitigation efforts
can move the system to a new dynamic equilibrium while
remaining near criticality and preserving the power tails.
Thus, while the absolute frequency of disruptions of all sizes
may be reduced, the underlying forces can still cause the
relative frequency of large disruptions to small disruptions
to remain the same.

Fig. 8: Number of blackouts as number of line outages
varies for differing inhibition of line outages (nmax is the
maximum number of line overloads for which outages are
inhibited). Results are obtained using OPA model on the
IEEE 118 bus system.

Indeed apparently sensible efforts to reduce the risk of
smaller blackouts can sometimes increase the risk of large
blackouts. This occurs because the large and small black-
outs are not independent but are strongly coupled by the
dynamics. For example the longer term response to small
blackouts can influence the frequency of large blackouts in
such a way that measures to reduce the frequency of small
blackouts can eventually reposition the system to have an
increased risk of large blackouts. The possibility of an over-
all adverse effect on risk from apparently sensible mitiga-
tion efforts shows the importance of accounting for complex
system dynamics when devising mitigation schemes [12].
For example [12], Figure 8 shows the results of inhibiting
small numbers of line outages using the OPA model with
self-organization on the IEEE 118 bus system. One of the



causes of line outages in OPA is the outage of lines with
a probability p1 when the line is overloaded. The results
show the effect of inhibiting these outages when the num-
ber of overloaded lines is less than nmax. The inhibition
corresponds to more effective system operation to resolve
these overloads. Blackout size is measured by number of
line overloads. The inhibition is, as expected, successful in
reducing the smaller numbers of line outages, but eventu-
ally, after the system has repositioned to its dynamic equi-
librium, the number of larger blackouts has increased. The
results shown in Figure 8 are distributions of blackouts in
the self-organized dynamic equilibrium and reflect the long-
term effects of the inhibition of line outages. It is an in-
teresting open question to what extent power transmission
systems are near their dynamic equilibrium, but operation
near dynamic equilibrium is the simplest assumption at the
present stage of knowledge of these complex dynamics.

Similar effects are familiar and intuitive in other complex
systems. For example, more effectively fighting small forest
fires allows the forest system to readjust with increased
brush levels and closer tree spacing so that when a forest
fire does happen by some chance to progress to a larger fire,
a huge forest fire is more likely [12].

7 Conclusions

We have summarized and explained an approach to series of
cascading failure blackouts at a global systems level. This
way of studying blackouts is complementary to existing de-
tailed analyses of particular blackouts and offers some new
insights into blackout risk, the nature of cascading failure,
the occurrence of criticality, and the complex system dy-
namics of blackouts.

The power law region in the distribution of blackout sizes
in North American blackout data [15, 16] has been repro-
duced by power system blackout models [11, 14, 18] and
some abstract models of cascading failure [32, 28] and en-
gineering design [55]. The power law profoundly affects the
risk of large blackouts, making this risk comparable to, or
even exceeding the risk of small blackouts. The power law
also precludes many conventional statistical models with
exponential-tailed distributions and new approaches need
to be developed such as [32, 28, 31, 19].

We think that the power law in the distribution of black-
out sizes arises from cascading failure when the power sys-
tem is loaded near a critical loading. Several power system
blackout models [11, 18] and abstract models of cascad-
ing failure [32, 28] show evidence of a critical loading at
which the probability of cascading failure sharply increases.
We suggest that determining the proximity to critical load-
ing from power system simulations or data is an important
problem. It seems that Monte-Carlo simulation methods
will be able to usefully compute the proximity to critical

loading [11, 18, 40]. Moreover, branching process models of
cascading failure provide ways of quantifying with a param-
eter λ the extent to which failures propagate after they are
started. We are pursuing practical methods of estimating
λ from real or simulated failure data [28, 30, 31].

A novel and much larger view of the power system dynam-
ics considers the opposing forces of growing load and the
upgrade of the transmission network in response to real
or simulated blackouts. Our simulation results show that
these complex dynamics can self-organize the system to be
near criticality [14]. These complex dynamics are driven
by strong societal and economic forces and the difficul-
ties or tradeoffs in achieving long-term displacement of the
power system away from the complex systems equilibrium
caused by these forces should not be underestimated. In-
deed we have simulated a simple example of a blackout
mitigation method that successfully limits the frequency
of small blackouts, but in the long term increases the fre-
quency of large blackouts as the transmission system read-
justs to its complex systems equilibrium [12]. In the light
of this example, we suggest that the blackout mitigation
problem be reframed as jointly mitigating small and large
blackouts.

There are good prospects for extracting engineering and
scientific value from the further development of models,
simulations and computations and we hope that this pa-
per encourages further developments and practical applica-
tions in this emerging and exciting area of research. There
is an opportunity for systems research to make a substan-
tial contribution to understanding and managing the risk
of cascading failure blackouts.
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Ian Dobson Benjamin A. Carreras Vickie E. Lynch Bertrand Nkei David E. Newman

Abstract— We compare and test statistical estimates of failure
propagation in data from versions of a probabilistic model
of loading-dependent cascading failure and a power systems
blackout model of cascading transmission line overloads. The
comparisons suggest mechanisms affecting failure propagation
and are an initial step towards monitoring failure propagation
from practical system data. Approximations to the probabilistic
model describe the forms of probability distributions of cascade
sizes.

I. INTRODUCTION

Large blackouts of electric power transmission systems
are typically caused by cascading failure of loaded system
components. For example, long, intricate cascades of events
caused the Western North American blackout of 30,390 MW
in August 1996 [18] and the Eastern North America blackout
of 61,800 MW in August 2003 [21]. The vital importance of
the electrical infrastructure to society motivates the analysis
and monitoring of the risks of cascading failure. In particular,
in addition to limiting the start of outages that cascade, it is
useful to be able to monitor the tendency of cascading failures
to propagate after they are started [14], [5].

CASCADE is a probabilistic model of loading-dependent
cascading failure that is simple enough to be analytically
tractable [13], [16], [15]. CASCADE contains no power sys-
tem modeling, but does seem to approximately capture some of
the salient features of cascading failure in large blackouts. The
CASCADE model has many identical components randomly
loaded. An initial disturbance adds load to each component
and causes some components to fail by exceeding their loading
limit. Failure of a component causes a fixed load increase for
other components. As components fail, the system becomes
more loaded and cascading failure of further components
becomes likely.

The CASCADE model can be well approximated by a
Galton-Watson branching process in which failures occur in
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stages and each failure in each stage causes further failures
in the next stage according to a Poisson distribution [14].
The average number of failures in the initial disturbance is
θ and the subsequent stochastic propagation of the failures is
controlled by the parameter λ, which is the average number
of failures caused by each failure in the previous stage.

OPA is a power system blackout model that represents
probabilistic cascading line outages and overloads [3]. The
network is conventionally modeled using DC load flow and LP
dispatch of the generation. The initial disturbance is generated
by random line outages and load variations. Overloaded lines
outage with a given probability and the subsequent power flow
redistribution and generator redispatch can overload further
lines, which can then probabilistically outage in a cascading
fashion. There is no attempt to represent all the diverse interac-
tions that can occur during a blackout. However, the modeling
does represent a feasible cascading blackout consistent with
some basic network and operational constraints. OPA can also
model the slow evolution of the network as load grows and
the network is upgraded in response to blackouts [1], [12], [2],
[4], but in this paper the network is assumed to be fixed and
these complex systems dynamics are neglected.

Other authors have constructed power system blackout mod-
els involving cascading failure emphasizing different aspects
of the problem. Chen and Thorp [6], [7] model hidden failures
and compute vulnerability of key lines using importance
sampling and examine criticality and blackout mitigation. Ni,
McCalley, Vittal, and Tayyib [19] show how to monitor the
risk of a variety of system limits being exceeded; minimizing
this risk would have the effect of limiting the risk of cascading
events starting. Chen, Zhu, and McCalley [8] show how to
evaluate the risk of the first few likely cascading failures. Rios,
Kirschen, Jawayeera, Nedic, and Allan [20] use Monte Carlo
simulation to estimate the cost of security taking account of
hidden failures, cascading outages and transient instability.

Our ultimate goal is to understand cascading failure in large
blackouts from a global systems point of view, identify the
main parameters governing the cascading process, and suggest
ways to estimate these parameters from real or simulated
outage data. These metrics will allow monitoring of the risk
of cascading failure and quantifying of the tradeoffs involved
in blackout mitigation. In this paper, we take a step towards
this goal by comparing the abstract cascading failure model
CASCADE with the power system blackout model OPA. The
comparison reveals which features of the OPA blackouts are
captured by the CASCADE model. In particular, we seek
to characterize in OPA and measure from OPA results the
parameter λ governing the propagation of failures after the



start of the cascade. Resolving problems in measuring λ from
OPA results is a first step towards measuring the degree to
which failures propagate in power systems. If the overall
system stress is such that failures propagate minimally, then
any failures that occur are likely to be a single failure or
a short sequences of failures that cause small blackouts or
no blackout. However, if the overall system stress is such
that failures propagate readily, then there is a substantial risk
of cascading failure leading to large blackouts and it is in
the national interest to quantify this risk and examine the
economics and engineering of mitigating this risk.

II. CASCADE MODEL AND BRANCHING PROCESS

PARAMETERS

This section summarizes the CASCADE model of proba-
bilistic load-dependent cascading failure and its branching pro-
cess approximation [13], [16], [15], [14]. (Here the normalized
version of CASCADE is summarized; for many purposes, the
unnormalized version is more useful and flexible [13], [16].)

The CASCADE model has n identical components with
random initial loads. For each component the minimum initial
load is 0 and the maximum initial load is 1. For j=1,2,...,n,
component j has initial load �j that is a random variable
uniformly distributed in [0, 1]. �1, �2, · · · , �n are independent.

Components fail when their load exceeds 1. When a com-
ponent fails, a fixed amount of load p ≥ 0 is transferred to
each of k components. The k components to which load is
transferred are chosen randomly each time a component fails
[15].

To start the cascade, we assume an initial disturbance that
loads each component by an additional amount d. Other
components may then fail depending on their initial loads �j

and the failure of any of these components will distribute the
additional load p that can cause further failures in a cascade.
The cascade proceeds in stages with M1 failures due to the
initial disturbance, M2 failures due to load increments from
the M1 failures, M3 failures due to load increments from the
M2 failures, and so on. The size of the cascading failure is
measured by the total number of components failed S.

For the case k = n in which load is transferred to all the
system components when each failure occurs, the distribution
of S is a saturating quasibinomial distribution [16], [13], [9]:

P [S = r] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
n
r

)
φ(d)(d + rp)r−1(φ(1 − d − rp))n−r,

r = 0, 1, ..., n − 1

1 −
n−1∑
s=0

P [S = s], r = n,

(1)

where the saturation function φ is

φ(x) =

⎧⎨
⎩

0 ;x < 0,
x ; 0 ≤ x ≤ 1,
1 ;x > 1.

(2)

Note that (1) uses 00 ≡ 1 and 0/0 ≡ 1 when needed.
In the case k < n, no analytic formula such as (1) is

currently available, but it can be shown that the following
approximation (4) remains valid [15].

Define
λ = kp and θ = nd (3)

λ may be interpreted as the total amount of load increment
associated with any failure and is a measure of how much
the components interact. θ may be interpreted as the average
number of failures due to the initial disturbance.

Now we approximate the CASCADE model [14], [15]. Let
n → ∞, k → ∞ and p → 0, d → 0 in such a way that λ = kp
and θ = nd are fixed. For θ ≥ 0,

P [S = r] ≈⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ(rλ + θ)r−1 e−rλ−θ

r!
; 0 ≤ r ≤ (n − θ)/λ, r < n

0 ; (n − θ)/λ < r < n, r ≥ 0

1 −
n−1∑
s=0

P [S = s] ; r = n

(4)

The approximate distribution (4) is a saturating form of the
generalized Poisson distribution [11], [10]. Moreover, under
the same approximation, the stages of the CASCADE model
become stages of a Galton-Watson branching process [14],
[17]. In particular, the initial failures are produced by a
Poisson distribution with parameter θ. Each initial failure
independently produces more failures according to a Poisson
distribution with parameter λ, and each of those failures
independently produces more failures according to a Poisson
distribution with parameter λ, and so on. This branching
process leads to another interpretation of λ as the average
number of failures per failure in the previous stage. λ is a
measure of the average propagation of the failures [14].

The expected number of failures in stage j of the branching
process is given by

EMj = θλj−1 (5)

until saturation due to the system size occurs. Formula (5)
is exact for the branching process before saturation and an
approximation for the expected number of failures in each
stage of CASCADE.

Further approximation is useful. Using Stirling’s formula
and a limiting expression for an exponential for r � 1, (4)
becomes

P [S = r] ≈ θ

λ
√

2π
exp[(1 − λ) θ

λ ]
exp[−r(λ − 1 − lnλ)]

(r + θ
λ )
√

r

; 1 	 r < r1 = min{n/λ, n} (6)

and if θ/λ ∼ 1 so that also r � θ/λ,

P [S = r] ≈ θ exp[(1 − λ) θ
λ ]

λ
√

2π
r−

3
2 exp[−r(λ − 1 − lnλ)]

; 1 	 r < r1 = min{n/λ, n} (7)

Let
r0 = (λ − 1 − lnλ)−1 (8)

In the approximation (7), the term r−
3
2 dominates for r �

r0 and the exponential term dominates for r � r0. Thus (7)
reveals that the distribution of the number of failures has an
approximate power law region of exponent −1.5 for 1 	 r �
r0 and an exponential tail for r0 � r < r1. The approximation



(7) implies that r0 is only a function of λ and does not depend
on θ or the system size n.

We discuss some of the implications of the approximation
for the form of the distribution of S.

1) For λ = 1, (6) becomes P [S = r] ≈ θ√
2π

r−
3
2 , r0

becomes infinite and the power law region extends up
to the system size.

2) r−1
0 = λ− 1− lnλ is a nonnegative function of λ with

a quadratic minimum of zero at λ = 1. Therefore, for a
range of λ near 1, r0 = (λ − 1 − lnλ)−1 is large and
the power law region extends to large r.

3) The risk of large cascades as compared with the risk
of small cascades is approximately determined by λ.
Small λ gives a distribution with an exponential tail past
a small number of failures and a negligible probability
of large cascades. λ near 1 gives a power tail with a
significant probability of large cascades and λ > 1 gives
a significant probability of all components failing.

4) If λ < 1, then P [S = r] increases with θ. The increase
is linear for small θ and exponential with large θ. Thus
reducing the probability of failures by decreasing the
size of the initial disturbance is most effective when λ
is less than and bounded away from 1 and θ is large.

III. OPA BLACKOUT MODEL

In the OPA model [3], there is a fast time scale of the
order of minutes to hours, over which cascading overloads
or outages may lead to a blackout. Cascading blackouts are
modeled by overloads and outages of lines determined in the
context of LP dispatch of a DC load flow model. To start the
cascade, random line outages are triggered with a probability
p0. A cascading overload may also start if one or more lines
are overloaded in the solution of the LP optimization. In this
situation, we assume that there is a probability p1 that an
overloaded line will outage. When a solution is found, the
overloaded lines of the solution are tested for possible outages.
Outaged lines are in effect removed from the network and
then a new solution is calculated. This process can lead to
multiple iterations, and the process continues until a solution
with no more line outages is found. We regard each iteration
as one stage of the cascading blackout process. The overall
effect of the process is to generate a possible cascade of line
outages that is consistent with the network constraints and the
LP dispatch optimization.

The parameters p0 and p1 determine the initial disturbance.
The level of stress on the system is determined by a multiplier
on the loads in the power system.

IV. ESTIMATING θ AND λ FROM DATA

This section proposes methods of estimating θ and λ from
the data produced by CASCADE or OPA. Both CASCADE
and OPA produce a stochastic sequence of failures in stages
with M1 failures due to the initial disturbance and subsequent
numbers of failures M2, M3,.... In the case of OPA the failures
are transmission line outages. If at any stage (including the
first stage), there are zero failures, then the cascade of failures
ends.

For d > 0, the probability of a nontrivial cascade in the
CASCADE model is easily obtained from (1) as

P [S > 0] = 1 − P [S = 0]
= 1 − (1 − d)n = 1 − (1 − θ/n)n (9)

Let the observed frequency of nontrivial cascades be

f =
# cascades with S > 0

# samples
(10)

Then (9) suggests the following estimator for θ:

θ̂ = n − n(1 − f)
1
n (11)

Let the sample mean of the number of failures in stage j
of the cascade be

mj =
1

# samples

∑
samples

# failures in stage j (12)

Then (5) suggests the following estimator for λ based on the
data from stage j of the cascade:

λ̂j = (mj/θ̂)
1

j−1 (13)

The naive estimators in (11) and (13) have been tested on
data produced by CASCADE and they appear empirically to
be useful statistics. For example, for λ < 1.3, Fig. 1 shows
the estimated λ̂j as constant with respect to the stage j as
expected. (For λ > 1.3, the estimated λ̂j decreases with the
stage j because at higher λ and at higher j there are more
cascades with all 190 components failed and this saturation
effect reduces λ̂j . Recall that the formula (5) used to derive
(13) assumes no saturation.)

stage number j

λj
^

Fig. 1. λ̂j as a function of stage number j from CASCADE model for
λ = 0.0017, 0.0114, 0.038, 0.106, 0.408, 0.7125, 1.13, 1.467, and 1.56.
There are n = 190 components and θ = 0.095.



V. RESULTS

A. Comparing CASCADE and OPA

The OPA model on a 190 node tree-like network [2] was
used to produce line outage data. The load multiplier param-
eter was varied to vary the system stress. The λ̂j computed
from the OPA results is plotted in Fig. 2. We can see that at
high load λ̂j is a decreasing function of the stage j while for
low loads λ̂j is an increasing function of the stage j. This
functional form is not seen in the CASCADE model results
in Fig. 1.

The probability distributions for number of lines outaged
in OPA corresponding to Fig. 2 are shown in Fig. 3. We
can attempt to match these probability distributions with
CASCADE by using θ̂ from the OPA results as an estimate of
θ and using λ̂1 from the OPA results as an estimate of λ. The
resulting CASCADE probability distributions are shown in
Fig. 4. Although there is reasonable qualitative agreement be-
tween the probability distributions from OPA and CASCADE
for smaller λ, the OPA probability distributions for larger
λ contain a peak not present in the CASCADE probability
distributions. We consider a modification to CASCADE to
explain this peak in subsection V-B.

Fig. 2. λ̂j as a function of stage number j from OPA model for various
values of loading multiplier.

B. Blackout inhibition modification to CASCADE

In a blackout, there is not only an effect by which line
outages further load the system and tend to cause further
outages. There is also an effect by which sufficient line outages
will cause load to be shed and this load shedding reduces
the load on the system. (It is also possible, but perhaps less
common, for load shedding to introduce large disturbances
and imbalances that further stress portions of the system.)
Moreover sufficient line outages will tend to island the system

Fig. 3. Probability distributions of number of line outages from OPA model
for various values of loading multiplier.

and this can have the effect of limiting further outages. That
is, sufficiently many line outages can have an inhibitory effect
on further cascading outages.

We attribute the peak in the OPA probability distributions
for larger λ to this inhibitory effect. One can argue that for
small λ, it is not likely that the cascade will include enough
line outages to encounter the inhibitory effect. Moreover, the
inhibitory effect could result in the decrease in λ̂j as the stage
j increases observed for larger λ in Fig. 2.

CASCADE does not model the inhibitory effect and one
way to test these explanations is to modify CASCADE to
model the inhibitory effect. A crude modeling of the inhibitory
effect in CASCADE is to halt the cascading process after a
fixed number of components rmax have failed. That is, when
rmax components have failed, the current stage of the cascade
is completed, thus allowing more than rmax components to
fail, but the next stage of the cascade is suppressed.

The results of the modified CASCADE model with rmax =
10 are shown in Figs. 5 and 6. The decrease in λ̂j with j for
larger λ is evident in Fig. 5 and the peak in the probability
distribution for larger λ is evident in Fig. 6. These qualitative
dependencies in the modified CASCADE results are similar
to the OPA results in Figs. 3 and 4. However, Fig. 5 does
not show the increase in λ̂j with j for smaller λ observed in
Fig. 2 and a further modification to CASCADE to examine
this is considered in subsection V-C.

We comment further on the modified CASCADE results in
Fig. 5. The value λ̂1 in the first stage agrees with the input
λ. That is, the inhibition does not seem to affect the initial
propagation of the cascade. Also λ̂j appears to decrease to a
limiting value λ̂∗ for values of λ > λ̂∗. For λ < λ̂∗, λ̂j is
independent of the stage j.
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Fig. 4. Probability distributions of number of failures from CASCADE
model using the values of λ̂1 from Fig. 2 and θ̂ = 0.095. There are n = 190
components. Results for λ > 1 show a significant probability of all 190
components failing.

C. Random line failure modification to CASCADE

One effect present in OPA but not present in CASCADE is
that overloaded lines do not always fail, but rather fail with
probability p1. Implementing this additional modification in
CASCADE for various values of p1 gives λ̂j values as shown
in Fig. 7. Some similar results for OPA are shown in Fig. 8
and there is now some qualitative similarity between OPA and
the further modified version of CASCADE. In particular, for
lower values of p1, λ̂j increases with stage j.

VI. CONCLUSION

We have used the CASCADE probabilistic model of cas-
cading failure and its approximations to define an estimator
λ̂j of the propagation of failures at stage j of the cascade.
The approximations to CASCADE also describe the extent of
the region of power law behavior in probability distributions
of cascade size. Testing the estimator λ̂j on data produced
by the cascading blackout model OPA suggests that, while
λ̂1 appears to reflect the initial propagation of line outages,
λ̂j may decrease or increase with j. Modifications to the
CASCADE model that also produce the decrease or increase of
λ̂j with j suggest explanations of these effects. For example,
the decrease in λ̂j for larger λ may be attributed to the
inhibition of line outages by load shedding after a sufficient
number of lines are outaged.

These initial results show that the interplay between the
CASCADE and OPA models is useful for understanding the
propagation of failures in cascading blackouts and in particular
will be helpful in devising and testing statistical estimators to
quantify this propagation.

Fig. 5. λ̂j as a function of stage j from CASCADE model with inhibition
of line outages for various values of λ.

Fig. 6. Probability distributions of number of failures from CASCADE model
with inhibition of line outages for various values of λ.

REFERENCES

[1] B.A. Carreras, V.E. Lynch, M. L. Sachtjen, I. Dobson, D.E. Newman,
“Modeling blackout dynamics in power transmission networks with
simple structure,” 34th Hawaii Intl. Conf. System Sciences, Maui,
Hawaii, Jan. 2001.
Note: authors’ papers are available at
http://eceserv0.ece.wisc.edu/∼dobson/home.html

[2] B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman, “Dynamics,
criticality and self-organization in a model for blackouts in power
transmission systems,” 35th Hawaii Intl. Conf. System Sciences, Hawaii,
Jan. 2002.

[3] B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman, “Critical points
and transitions in an electric power transmission model for cascading
failure blackouts,” Chaos, vol. 12, no. 4, December 2002, pp. 985-994.



[4] B.A. Carreras, V.E. Lynch, D.E. Newman, I. Dobson, “Blackout
mitigation assessment in power transmission systems,” 36th Hawaii
Intl. Conf. System Sciences, Hawaii, Jan. 2003.

[5] B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman, “Dynamical and
probabilistic approaches to the study of blackout vulnerability of the
power transmission grid,” 37th Hawaii Intl. Conf. System Sciences,
Hawaii, Jan. 2004.

[6] J. Chen, J.S. Thorp, “A reliability study of transmission system protec-
tion via a hidden failure DC load flow model,” IEE Fifth International
Conference on Power System Management and Control, 2002, pp. 384-
389.

[7] J. Chen, J.S. Thorp, I. Dobson, “Cascading dynamics and mitigation
assessment in power system disturbances via a hidden failure model,”
preprint, 2003.

[8] Q. Chen, K. Zhu, J.D. McCalley, “Dynamic decision-event trees for
rapid response to unfolding events in bulk transmission systems,” IEEE
Porto Power Tech Proceedings, vol. 2, Portugal 2001.

[9] P.C. Consul, “A simple urn model dependent upon predetermined
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A criticality approach to monitoring cascading
failure risk and failure propagation in transmission

systems
Ian Dobson, Benjamin A. Carreras, David E. Newman

Abstract— We consider the risk of cascading failure of electric
power transmission systems as overall loading is increased.
There is evidence from both abstract and power systems models
of cascading failure that there is a critical loading at which
the risk of cascading failure sharply increases. Moreover, as
expected in a phase transition, at the critical loading there is
a power tail in the probability distribution of blackout size.
(This power tail is consistent with the empirical distribution of
North American blackout sizes.) The importance of the critical
loading is that it gives a reference point for determining the
risk of cascading failure. Indeed the risk of cascading failure
can be quantified and monitored by finding the closeness to
the critical loading. This paper suggests and outlines ways of
detecting the closeness to criticality from data produced from a
generic blackout model. The increasing expected blackout size at
criticality can be detected by computing expected blackout size
at various loadings. Another approach uses branching process
models of cascading failure to interpret the closeness to the
critical loading in terms of a failure propagation parameter λ. We
suggest a statistic for λ that could be applied before saturation
occurs. The paper concludes with suggestions for a wider research
agenda for measuring the closeness to criticality of a fixed power
transmission network and for studying the complex dynamics
governing the slow evolution of a transmission network.

Index Terms— blackouts, power system security, stochastic
processes, branching process, cascading failure, reliability, risk
analysis, complex system, phase transition.

I. INTRODUCTION

Cascading failure is the usual mechanism for large blackouts
of electric power transmission systems. For example, long,
intricate cascades of events caused the August 1996 blackout
in Northwestern America that disconnected 30,390 MW to
7.5 million customers [29], [28], [39]) and the August 2003
blackout in Northeastern America that disconnected 61,800
MW to an area containing 50 million people [38]. The vital
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importance of the electrical infrastructure to society motivates
the understanding and analysis of large blackouts.

Electric power transmission systems are complex networks
of large numbers of components that interact in diverse ways.
When component operating limits are exceeded, protection
acts and the component “fails” in the sense of not being
available to transmit power. Components can also fail in the
sense of misoperation or damage due to aging, fire, weather,
poor maintenance or incorrect settings. In any case, the failure
causes a transient and causes the power flow in the component
to be redistributed to other components according to circuit
laws, and subsequently redistributed according to automatic
and manual control actions. The transients and readjustments
of the system can be local in effect or can involve components
far away, so that a component disconnection or failure can
effectively increase the loading of many other components
throughout the network. In particular, the propagation of
failures is not limited to adjacent network components. The
interactions involved are diverse and include deviations in
power flows, frequency, and voltage as well as operation or
misoperation of protection devices, controls, operator proce-
dures and monitoring and alarm systems. However, all the
interactions between component failures tend to be stronger
when components are highly loaded. For example, if a more
highly loaded transmission line fails, it produces a larger tran-
sient, there is a larger amount of power to redistribute to other
components, and failures in nearby protection devices are more
likely. Moreover, if the overall system is more highly loaded,
components have smaller margins so they can tolerate smaller
increases in load before failure, the system nonlinearities and
dynamical couplings increase, and the system operators have
fewer options and more stress.

A typical large blackout has an initial disturbance or trigger
events followed by a sequence of cascading events. Each event
further weakens and stresses the system and makes subsequent
events more likely. Examples of an initial disturbance are
short circuits of transmission lines through untrimmed trees,
protection device misoperation, and bad weather. The blackout
events and interactions are often rare, unusual, or unanticipated
because the likely and anticipated failures are already routinely
accounted for in power system design and operation.

Blackouts are traditionally analyzed after the blackout by a
thorough investigation of the details of the particular sequence
of failures. This is extremely useful for finding areas of
weakness in the power system and is good engineering practice
for strengthening the transmission system [29], [38], [28], [39].
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We take a different and complementary approach and seek
to determine the risk of series of blackouts from a global,
top-down perspective. That is, we are not concerned with the
deterministic details of a particular blackout, but rather the
overall probability and risk of blackouts from a bulk systems
perspective. Our overall approach draws from probability and
statistics, power systems engineering, statistical physics, risk
analysis, and modeling and simulation.

There are two measures of blackout size that immediately
present themselves as useful for blackouts. Utilities are inter-
ested in number of failures such as transmission line failures
because these are operational data that can be monitored in a
control center and can sometimes be prevented or mitigated.
Customers, industry, regulators and politicians are interested
in quantities that directly affect them such as load shed or
energy not served.

For an extensive listing and short description of previous
work by other authors in cascading failure blackouts we refer
the reader to [18] (particularly for cascading failure in power
systems) and [22] (cascading failure in general). Much of the
authors’ previous work in cascading failure blackouts ([8], [4],
[7], [22], [6], [17]) is summarized in [18].

We now briefly summarize the most immediate technical
background for this paper. Branching processes [26], [2], [24]
are shown to approximate an abstract model of cascading
failure called CASCADE in [17]. CASCADE is compared to
a power systems model of cascading line outages in order to
estimate failure propagation in [6], [20]. Initial work fitting
supercritical branching processes in discrete and continuous
time to observed blackout data is in [21].

II. CRITICALITY AND BLACKOUT RISK

As load increases, it is clear that cascading failure becomes
more likely, but exactly how does it become more likely?
Our previous work shows that the cascading failure does not
gradually and uniformly become more likely; instead there
is a transition point at which the cascading failure becomes
increasingly more likely. This transition point has some of the
properties of a critical transition or a phase transition.

In complex systems and statistical physics, a critical point
for a type 2 phase transition is characterized by a discontinuity
of the gradient in some measured quantity. At this point
fluctuations of this quantity can be of any size and their
correlation length becomes of the order of the system size.
As a consequence, the probability distribution of the fluctu-
ations has a power tail. Figures 1 and 2 show the criticality
phenomenon in the branching process cascading failure model
that is introduced in section III. At criticality Figure 2 shows
a power dependence with exponent −1.5 before saturation. (A
power dependence with exponent −1 implies that doubling the
blackout size only halves the probability and appears on a log-
log plot as a straight line of slope −1. An exponent of −1.5
as shown by the slope −1.5 in the log-log plot of Figure 2
implies that doubling the blackout size divides the probability
by 21.5.)

A similar form of critical transition has been observed in
blackout simulations [4], [11] and abstract models of cascading

Fig. 1. Average number of failures in branching process model with n =
1000 as λ increases. Critical loading occurs at kink in curve at λ = 1 where
the average number of failures sharply increases.
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Fig. 2. Log-log plot of PDF of total number of failures in branching process
model at criticality.

failure [22], [17]. A power law distribution of blackout size
with exponent between −1 and −2 is also consistent with
the empirical probability distribution of energy unserved in
North American blackouts from 1984 to 1998 [8], [9]. This
suggests that the North American power system has been
operated near criticality. The power tails are of course limited
in extent in a practical power system by a finite cutoff near
system size corresponding to the largest possible blackout. The
distribution of the number of elements lost in North American
contingencies from 1965 to 1985 [1] also has a heavy tail
distribution [13].

Blackout risk is the product of blackout probability and
blackout cost. Here we conservatively assume that blackout
cost is roughly proportional to blackout size, although larger
blackouts may well have costs (especially indirect costs) that
increase faster than linearly [3]. The importance of the power
law tail in the distribution of blackout size is that larger black-
outs become rarer at a similar rate as costs increase, so that the
risk of large blackouts is comparable to, or even exceeding,
the risk of small blackouts [5]. For example, if the power
law tail for the blackout size has exponent −1, then doubling
blackout size halves the probability and doubles the cost and
the risk is constant with respect to blackout size. A little less
approximately, consider in Figure 3 the variation of blackout
risk with blackout size computed from the branching process
model at criticality. The pdf power law exponent of −1.5 is
combined with the assumed linear increase in costs to give
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Fig. 3. Blackout risk rP [S = r] as a function of number of failures r. Cost
is assumed to be proportional to the number of failures and is measured in
arbitrary units.

a modest −0.5 power law decrease in risk before saturation.
The risk of the saturated case of all 1000 components failing
is substantial. We conclude that the power law tails in both
the NERC data and the blackout simulation results imply that
large blackouts cannot be dismissed as so unlikely that their
risk is negligible. On the contrary, the risk of large blackouts
is substantial near criticality. Standard probabilistic techniques
that assume independence between events imply exponential
tails and are not applicable to blackout risk.

The terminology of “criticality” comes from statistical
physics and it is of course extremely useful to use the standard
scientific terminology. However, while the power tails at
critical loading indicate a substantial risk of large blackouts,
it is premature at this stage of knowledge to automatically
presume that operation at criticality is bad simply because it
entails some substantial risks. There is also economic gain
from an increased loading of the power transmission system.

III. BRANCHING PROCESS MODEL

One approach models the growth of blackout failures using
a branching process and then estimates the branching process
parameter λ that measures both the extent to which failures
propagate after they are started and the margin to criticality.
We first summarize a basic branching process model. Branch-
ing process models are an obvious choice of stochastic model
to capture the gross features of cascading blackouts because
they have been developed and applied to other cascading
processes such as genealogy, epidemics and cosmic rays [26].
The first suggestion to apply branching processes to blackouts
appears to be in [17].

There are more specific arguments justifying branching pro-
cesses as useful approximations to some of the gross features
of cascading blackouts. Our idealized probabilistic model of
cascading failure [22] describes with analytic formulas the
statistics of a cascading process in which component failures
weaken and further load the system so that subsequent failures
are more likely. We have shown that this cascade model
and variants of it can be well approximated by a Galton-
Watson branching process with each failure giving rise to a
Poisson distribution of failures in the next stage [17], [19].
Moreover, some features of this cascade model are consistent

with results from cascading failure simulations [6], [20]. All of
these models can show criticality and power law regions in the
distribution of failure sizes or blackout sizes consistent with
NERC data [8]. While our main motivation is large blackouts,
these models are sufficiently simple and general that they could
be applied to cascading failure of other large, interconnected
infrastructures.

The Galton-Watson branching process model [26], [2] gives
a way to quantify the propagation of cascading failures with
a parameter λ. In the Galton-Watson branching process the
failures are produced in stages. The process starts with M0

failures at stage zero to represent the initial disturbance. The
failures in each stage independently produce further failures
in the next stage according to an probability distribution with
mean λ. The failures “produced” by one of the failures in
the previous stage can be thought of that failure’s children
or offspring and the distribution of failures produced by one
of the failures in the previous stage is sometimes called the
offspring distribution.

The branching process is a transient discrete time Markov
process and its behavior is governed by the parameter λ. In
the subcritical case of λ < 1, the failures will die out (i.e.,
reach and remain at zero failures at some stage) and the mean
number of failures in each stage decreases exponentially. In
the supercritical case of λ > 1, although it possible for the
process to die out, often the failures increase exponentially
without bound.

There are obviously a finite number of components that
can fail in a blackout, so it must be recognized that the
cascading process will saturate when most of the components
have failed. Moreover, many observed cascading blackouts do
not proceed to the entire interconnection blacking out. The
reasons for this may well include inhibition effects such as
load shedding relieving system stress, or successful islanding,
that apply in addition to the stochastic variation that will limit
some cascading sequences. Understanding and modeling these
inhibition or saturation effects is important. However, in some
parts of this paper such as estimating λ, we avoid this issue
by analyzing the cascading process before saturation occurs.

Analytic formulas for the total number of components
failed can be obtained in some cases. For example, assume
that there are M0 initial failures, the offspring distribution
is Poisson with mean λ, and the process saturates when
n components fail. Then the total number of failures S is
distributed according to a saturating Borel-Tanner distribution:

P [S = r] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M0λ(rλ)r−M0−1 e−rλ

(r − M0)!
; M0 ≤ r < n

1 −
n−1∑

s=M0

M0λ(sλ)s−M0−1 e−sλ

(s − M0)!
; r = n

(1)
Forms of saturation different than that in (1) are described in
[17], [20].

Approximation of (1) for large r < n using Stirling’s
formula and a limiting expression for an exponential yields
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Fig. 4. Log-log plot of PDF of total number of failures in branching process
model for three values of λ. λ = 0.6 is indicated by the diamonds. λ = 1.0
(criticality) is indicated by the boxes. λ = 1.2 is indicated by the triangles.
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Fig. 5. Blackout risk rP [S = r] as a function of number of failures r for
three values of λ. λ = 0.6 is indicated by the diamonds. λ = 1.0 (criticality)
is indicated by the boxes. λ = 1.2 is indicated by the triangles. Cost is
assumed to be proportional to the number of failures and is measured in
arbitrary units.

P [S = r] ≈ M0√
2π

λ−M0 r−1.5e−r/r0 ; 1 � r < n (2)

where r0 = (λ − 1 − lnλ)−1

In approximation (2), the term r−1.5 dominates for r � r0

and the exponential term e−r/r0 dominates for r0 � r < n.
Thus (2) reveals that the distribution of the number of failures
has an approximate power law region of exponent −1.5 for
1 � r � r0 and an exponential tail for r0 � r < n.

The qualitative behavior of the distribution of blackout size
as λ is increased can now be described. This behavior is
illustrated in Figure 4. For subcritical λ well below 1, r0

is well below n and the exponential tail for r0 � r < n
implies that the probability of large blackouts of size near n is
exponentially small. The probability of large blackouts of size
exactly n is also very small. As λ increases in the subcritical
range λ < 1, the mechanism by which there develops a
significant probability of large blackouts of size near n is that
r0 increases with λ so that the power law region extends to
the large blackouts. For near critical λ ≈ 1, r0 becomes large
and exceeds n so that power law region extends up to r = n.
For supercritical λ well above 1, r0 is again well below n
and there is an exponential tail for r0 � r < n. This again
implies that the probability of large blackouts of size near n is

exponentially small. However there is a significant probability
of large blackouts of size exactly n and this probability of
total blackout increases with λ.

Figure 5 shows the distribution of risk with respect to the
number of failures for the same values of λ considered in
Figure 4. The essential point is that, given an assumption about
the blackout cost as a function of blackout size, the branching
process model gives a way to compute blackout risk in terms
of λ. Both the expected risk of Figure 1 and the distribution
of that risk over blackout size of Figure 5 can be computed.

A variant of the branching process produces potential fail-
ures at each stage according to the offspring distribution. Then
the potential failures fail independently with probability p. For
example, if one thinks of each failure as overloading other
components according to the offspring distribution, then this
corresponds to either the failure overloading and failing only
a fraction of the components [19] or only a fraction of the
overloaded components failing [20]. This is a simple form
of emigration added to the branching process in the sense
that the potential failures leave the process [2, page 266].
If the offspring distribution without emigration has generat-
ing function f(s) and propagation λ, then the process with
emigration is a branching process with generating function
g(s) = f(1 − p + ps). It follows that

λemigration = g′(1) = pf ′(1) = pλ (3)

IV. DETECTING CRITICALITY IN BLACKOUT MODELS

We suggest and outline methods of detecting subcriticality
or supercriticality and the closeness to criticality from a
generic blackout simulation model.

A. Blackout model assumptions

For a given initial failure and a given loading or stress level
L, the model produces

1) A sequence of failures. The failures correspond to the
internal cascading processes such as transmission line
outages. Often models will naturally produce failures in
stages in an iterative manner. If not, then the failures
need to be grouped into stages. In run j, the model
produces failures Mj0, Mj1, Mj2, .... where Mjk is the
number of failures in stage k.

2) A blackout size such as load shed or energy unserved.
In run j, the model produces blackout size Bj .

There is a means of randomizing the initial failure and the
system initial conditions so that different sequences of failures
at the loading level L are generated for each run. There are a
number of different blackout models that satisfy these generic
assumptions [4], [11], [23], [25], [27].

Although L may often be chosen as an overall system
loading such as total system load or total mean of random
loads, there are other important ways of parameterizing the
overall system stress. L could measure the overall system
margin or reserves, as for example in [6], where the system
“loading” is measured by the ratio of generator reserve to load
variability or the average ratio of transmission line power flow
to line maximum power rating. L could also be the amount of
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a power transfer across a system. In the sequel we will refer to
L as “loading” for convenience while retaining its expansive
interpretation as a measure of overall system stress.

One important issue is that instead of regarding all the
failures as equivalent and counting them equally, one can
weight them according to their importance. For example, the
relative impact of a transmission line failure on the system
is roughly proportional to the power flowing on it, so that
an appropriate weight is the maximum power rating. If the
maximum power ratings for individual lines are not available,
then the nominal voltage squared (proportional to the surge
impedance loading) could be used for the weight.

B. Distribution of blackout size

The model is run to accumulate statistics of the pdf of
blackout size. Inspection of the probability of a large blackout
at saturation and the extent to which there is a power law
region reveals whether the pdf is subcritical or supercritical.
This method has been applied to several power system black-
out models [4], [11] and was also used to process observed
blackout data from NERC [8]. The method does not quantify
the closeness to criticality and it is very time consuming to
approximate the pdf accurately, especially for the rare large
blackouts near criticality. For example, in [4] 60 000 runs were
used to estimate the pdf of blackout size of a 382 bus network.

C. Mean blackout size

The mean blackout size µ(L) at the loading level L can be
estimated by J runs using

µ(L) =
1
J

J∑
j=1

Bj (4)

Then the sharp change in the slope of the expected blackout
size at criticality can be exploited to test for subcriticality
or supercriticality (this assumes a type 2 phase transition at
criticality). Suppose it is known from previous computations
that the slope of the mean blackout size with respect to loading
L is approximately slopesub below the critical value of L and
approximately slopesuper above the critical value of L. Define
the average slope

slopeaverage =
1
2
(slopesub + slopesuper) (5)

Estimate the local slope by evaluating with the model µ(L +
∆L) and µ(L) for small ∆L and using

slopeµ(L) =
µ(L + ∆L) − µ(L)

∆L
(6)

Then

stress L is

{
subcritical if slopeµ(L) < slopeaverage

supercritical if slopeµ(L) > slopeaverage
(7)

This approach gives as a useful byproduct the slope of the
mean blackout size with respect to loading.

Now the critical loading and hence the margin to critical
loading can be found with further computations of µ(L) at
different values of L. Since (7) gives a way to test whether L

Fig. 6. Standard deviation of the total number of failures S as a function of
λ for saturation at n = 20 failures and n = 100 failures.

is less than or above the critical loading, it is straightforward
to approximate the critical loading by first finding an interval
containing the critical loading and then interval halving. The
interval containing the critical loading is found by increasing
L until supercriticality if the first tested L is subcritical
and decreasing L until subcriticality if the first tested L is
supercritical.

We now roughly estimate the number of runs J needed to
accurately obtain µ(L) at a single loading level L. We assume
that the runs correspond to independent samples, each starting
from one initial failure, and that the failures are generated by
a branching process with a Poisson offspring distribution with
mean λ and saturation at n failures. Then in run j, the total
number of failures Sj is distributed according to the Borel-
Tanner distribution (1) with M0 = 1. We also make the simple
assumption that the blackout size Bj is proportional to the
total number of failures Sj . The standard deviation of µ(L)
is then proportional to σ(S)/

√
J , so that the number of runs

depends on the standard deviation σ(S) of S. If saturation
is neglected, σ(S) =

√
λ/(1 − λ)3 becomes infinite as λ

increases to criticality at λ = 1. The saturation makes σ(S)
larger but finite near criticality as shown in Figure 6. (To obtain
Figure 6, the variance of S was obtained via evaluating D2

t EtS

at t = 1 with computer algebra.) For example, if saturation is
at 100 components and λ = 1.3, then σ(S) = 48 and a mean
blackout size standard deviation corresponding to 0.5 failures
requires (48/0.5)2 = 9200 runs. If saturation is instead at
20 components then σ(S) = 9 and the same accuracy can
be achieved with (9/0.5)2 = 320 runs. The number of runs
depends greatly on λ, the accuracy required and the saturation.

The mean blackout size µ(L) was computed for a range of
system loadings for several different power system cascading
failure models in [4], [11], [27].

D. Propagation λ

We would like to estimate the average propagation λ over a
stages. The a stages are limited to the period before saturation
effects apply, because the branching process model assumed
for the estimation is a branching process model without
saturation that only applies to the propagation of failures
before saturation. Define the total number of failures in each
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stage by summing over the J runs

Mk = M1k + M2k + ... + MJk, k = 1, 2, ..., a (8)

Define the cumulative number of failures up to and including
stage k to be

Sk = M0 + M1 + M2 + ... + Mk (9)

Then an estimator for λ is [24], [15]

λ̂ =
M1 + M2 + ... + Ma

M0 + M1 + ... + Ma−1
=

Sa − M0

Sa−1
=

Sa − M0

Sa − Ma
(10)

λ̂ is a maximum likelihood estimator when observing numbers
of failures in each stage for a wide class of offspring distri-
butions, including the exponential family. λ̂ is biased and its
mean underestimates λ, but the bias is inversely proportional
to the number of runs J [24, pp. 37-39]. In the special case
of a = 1, λ̂ = M1/M0.

The first stage is usually comprised of the initiating failures.
The number of stages a could be limited by one of several
methods. For example, to avoid the saturation effects the
number of stages could be limited so that the fraction of
components failed was below a threshold.

If grouping failures into stages is needed, then, since (10)
only requires Sa, M0, and Ma, it is only necessary to group
failures into the first stage to obtain M1 and into the last stage
to obtain Ma. To group failures into stages, the failure data
will be assumed to include the time of each failure and perhaps
some additional data explaining the causes of the failure and
specifying the type and location of the failure. Factors that
would tend to group several failures into the same stage could
be their closeness in time or location, or being caused by
failures in the previous stage.

We now roughly estimate the number of runs J needed
to accurately obtain λ̂. We assume that the runs correspond
to independent samples, each starting from one initial failure,
and that the failures are generated by a branching process with
a Poisson offspring distribution with mean λ. Then as J tends
to infinity, the standard deviation of λ̂ is asymptotically [24,
p. 53]

σ(λ̂) ∼ σS1a
(λ, a)√
J

=
1√
J

√∑2a
j=0 λj+1 − (2a + 1)λa+1

(λ − 1)2
(11)

where σS1a(λ, a) is the standard deviation of the total number
of failures S1a produced by one initial failure M10 = 1. That
is, S1a = M10 + M11 + . . . + M1a. Note that σS1a(1, a) =√

(a + 3a2 + 2a3)/6. Figure 7 shows σS1a(λ, a). For exam-
ple, if λ = 1.3 and the number of stages a = 5, then
σS1a

(1.3, 5) = 15 and σ(λ̂) = 0.05 requires (15/0.05)2 =
90 000 runs. If instead the number of stages a = 2 then
σS1a(1.3, 2) = 3 and the same accuracy can be achieved with
(3/0.05)2 = 3600 runs. The number of runs depends greatly
on λ, the accuracy required, and the number of stages a.

To illustrate the choice of the number of stages a to avoid
saturation, suppose that the failures saturate at n = 100 and
that we can assume that λ ≤ 1.5. Then in the most rapidly
saturating case of λ = 1.5, the mean number of failures in
stage k is 1.5k. The mean total number of failures in stage 6

Fig. 7. σ(λ̂)
√

J = σS1a
(λ, a) as a function of λ for number of stages

a = 1, 2, 3, 4, 5.

is 32 and the standard deviation of the total number of failures
is σS1a

(1.5, 6) = 38. Therefore to avoid saturation we can
choose the number of stages a in the computation of λ̂ in the
range 1 ≤ a ≤ 6.

V. CONCLUSIONS AND RESEARCH AGENDA

This paper discusses branching process models for cas-
cading failure and shows how assuming these models gives
a way to roughly estimate expected blackout risk and risk
of blackouts of various sizes as a function of the branching
process parameter λ. λ describes the average extent to which
failures propagate and measures the closeness to criticality.
At criticality λ = 1 and the branching process models show
a power tail in the distribution of blackout size and a sharp
rise in expected blackout size. The way in which the power
law region extends as criticality is approached is described.
Then we suggest approaches to determining the closeness
to criticality via the expected blackout size or λ from runs
of a generic cascading failure blackout model. Some rough
estimates of computational effort are made. The approaches in
this paper augment previous work relating branching models
and other abstract models of cascading failure to power
system blackout models and power system data [6], [20], [21].
Further development and testing of measures of closeness to
criticality is needed. In particular, estimating λ and assuming
a branching process model can yield the distribution of the
risk of blackouts of various sizes as well as the average risk.

We now expand our focus and address more generally the
research needed to further explore and develop the possibilities
of bulk statistical analysis of blackout risk. We consider
key research issues for two aspects. In the first aspect the
power transmission system is assumed to be fixed and the
main objective is to determine how close the system is to
a critical loading at which the expected blackout size rises
sharply and there is a substantial risk of large blackouts. In the
second aspect, the power transmission system slowly evolves
subject to the forces of rising demand and the upgrade of
the transmission system in response to the blackouts. These
dynamics of transmission system evolution can be seen as a
form of self-organization in a complex system [7], [5].
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A. Measuring proximity to criticality in a fixed network

Some research issues are:

Research access to blackout data. To develop models and
methods based on reality, it is essential for blackout data to
be collected and for researchers to have access to the data.
Although the precise data needs have not yet evolved and
will require iteration, it is clear that bulk statistical analysis
of blackouts will neglect much of the blackout detail, so that
concerns about confidentiality and homeland security can be
addressed by only releasing a suitably and substantially filtered
record of the blackout events. Discussion about which filters
succeed in resolving confidentiality and homeland security
concerns would be helpful. One specific goal is to gain
research access to the data from the August 2003 blackout
of Northeastern America that was collected for the blackout
report [38].

Blackout costs. To estimate blackout risk, blackout cost
needs to be approximated as a function of blackout size and,
while there is considerable information available for smaller
blackouts, the direct and indirect costs of large blackouts seem
to be poorly known.

Confirm criticality phenomenon. While criticality has been
observed in several power system blackout models [4], [11],
it needs to be confirmed in power system blackout models
representing different interactions and with varying levels of
detail in order to be able to conclude that it is a universal
feature of cascading failure blackouts. If no criticality or
a different sort of criticality is observed, this needs to be
understood.

Power system blackout models. The main issues are the
tradeoffs between what interactions to model and in what
detail to model them, test system size and computational
speed.

Abstract cascading failure models. These models presently
include branching process models in discrete and continuous
time and CASCADE models. These models require substantial
refinement and further comparison and validation with real
and simulated blackout data to ensure that the main features
of blackouts are represented. In particular, blackouts being
inhibited and saturating at a fraction of the system size needs
to be understood and better modeled.

Monitoring closeness to criticality. Suggested initial ap-
proaches are described in this paper and [6], [20], [21].
Much more needs to be done to establish practical statistical
methods for monitoring closeness to criticality. Processing of
failure data into stages and the appropriate scalings need to
be investigated.

The critical loading as a power system limit. The critical
loading essentially provides an additional system limit that
guides power system planning and operation with respect to
the risk of cascading failure. In contrast to an indirect way of
limiting cascading failure such as the n-1 criterion, the critical
loading directly relates to the risk of cascading failure. The
appropriate operating margin to this limit should be based
on risk computations and is not yet known. Little is known
about the properties of the critical loading as power system

conditions change. It would be very useful to be able to
identify some easily monitored quantities that are strongly
correlated to the critical loading [6], because this would open
up the possibility of monitoring the closeness to criticality
via these quantities. It would also be useful to evaluate the
performance of the n-1 criterion when used as a surrogate for
the critical loading limit.

Progression from understanding phenomena to offline
models to online monitoring. The research questions above
focus on understanding phenomena, developing and validating
models and measuring closeness to criticality in power system
models and in past blackouts. Once these questions start
to be resolved, there is a natural progression to consider
the feasibility of schemes to practically monitor closeness to
criticality of power systems online.

B. Complex systems dynamics of power systems.

The complex systems dynamics of transmission network
upgrade can explain the power tails and apparent near-
criticality in the NERC data [8]. The complex system studied
here includes the engineering and economic forces that drive
network upgrade as well as the cascading failure dynamics. As
a rough explanation, below criticality increasing load demand
and economic pressures tend to increasingly stress the system.
But when the system is above the critical loading, blackout
risk rises and the response to real or simulated blackouts is
to upgrade the system and relieve the system stress. Thus the
system will tend to vary near criticality in a complex systems
equilibrium. The system can be said to self-organize to near
criticality. A power systems model that incorporates slow load
growth and a simple form of transmission upgrade at lines
involved in cascading blackouts converges to such a complex
systems equilibrium [7]. Moreover, as might be expected in a
complex system, simple forms of blackout mitigation can have
the desired effect of decreasing small blackouts but also the
somewhat counterintuitive effect of ultimately increasing large
blackouts [5]. Other theories that can generate power laws
or similar behavior include the influence model [34], highly
optimized tolerance [35], graph-theoretic network analysis
[40] and cluster models for line outages [13].

Some research issues are:

Reframing the problem of blackouts. Instead of simply
avoiding all blackouts, the problem is to manage blackout risk
both by manipulating the probability distribution of blackout
size [5] and by finding ways to minimize blackout costs [36].
Blackout mitigation should take into account complex systems
dynamics by which the power system and society slowly
readjust themselves to any changes made.

Models for complex system dynamics. For theories such
as the influence model, highly optimized tolerance, or graph-
theoretic network analysis the challenge is to construct models
of power systems and their evolution with an explicit corre-
spondence to the abstract model and study their properties.
For the self-organizing complex systems theory, such a model
already exists and the challenge is to improve its representation
of the engineering and economic forces, and particularly the
transmission upgrade, economic investment and human factor
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aspects. Part of the challenge is understanding cascading fail-
ure and complex systems dynamics across several interacting
or coupled complex systems [31]. It is necessary to balance
the requirements for computational speed and accessibility of
data against the requirements of a detailed model. It may be
necessary to develop a hierarchy of models of varying detail to
accommodate varying emphases on speed versus model detail.

Analysis tools. Diagnostics for monitoring and studying com-
plex systems dynamics need to be developed.

REFERENCES

[1] R. Adler, S. Daniel, C. Heising, M. Lauby, R. Ludorf, T. White, An
IEEE survey of US and Canadian overhead transmission outages at 230
kV and above, IEEE Transactions on Power Delivery, vol. 9, no. 1, Jan.
1994, pp. 21 -39

[2] K.B. Athreya, P.E. Ney, Branching Processes, Dover NY 2004 (reprint
of Springer-verlag Berlin 1972).

[3] R. Billington, R.N. Allan, Reliability evaluation of power systems (2nd
ed.), Plenum Press New York 1996.

[4] B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman, Critical points and
transitions in an electric power transmission model for cascading failure
blackouts, Chaos, vol. 12, no. 4, 2002, pp. 985-994.

[5] B.A. Carreras, V.E. Lynch, D.E. Newman, I. Dobson, Blackout miti-
gation assessment in power transmission systems, 36th Hawaii Interna-
tional Conference on System Sciences, Hawaii, 2003.

[6] B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman, Dynamical and
probabilistic approaches to the study of blackout vulnerability of the
power transmission grid, 37th Hawaii International Conference on
System Sciences, Hawaii, 2004.

[7] B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman, Complex dynamics
of blackouts in power transmission systems, Chaos, vol. 14, no. 3,
September 2004, pp. 643-652.

[8] B.A. Carreras, D.E. Newman, I. Dobson, A.B. Poole, Evidence for
self organized criticality in electric power system blackouts, IEEE
Transactions on Circuits and Systems I, vol. 51, no. 9, September 2004,
pp. 1733-1740.

[9] J. Chen, J.S. Thorp, M. Parashar, Analysis of electric power system
disturbance data, Thirty-fourth Hawaii International Conference on
System Sciences, Maui, Hawaii, January 2001.

[10] J. Chen, J.S. Thorp, A reliability study of transmission system protection
via a hidden failure DC load flow model, IEE Fifth International
Conference on Power System Management and Control, 2002, pp. 384-
389.

[11] J. Chen, J.S. Thorp, I. Dobson, Cascading dynamics and mitiga-
tion assessment in power system disturbances via a hidden failure
model, PSerc report 03-09, August 2003. Power Systems Engineering
Research Center, Cornell University, Ithaca NY. [Online]. Available:
http://www.pserc.org submitted to International Journal of Electrical
Power and Energy Systems.

[12] Q. Chen, K. Zhu, J.D. McCalley, Dynamic decision-event trees for rapid
response to unfolding events in bulk transmission systems, 2001 IEEE
Porto Power Tech Proceedings, vol. 2, Portugal 2001.

[13] J. Chen, J.D. McCalley, A cluster distribution as a model for estimating
high-order event probabilities in power systems, Eighth International
Conference on Probability Methods Applied to Power Systems, Ames
Iowa, September 2004.

[14] P.C. Consul, Generalized Poisson distributions, Dekker, NY 1989.
[15] J.-P. Dion, N. Keiding, Statistical inference in branching processes, in

Branching Processes, editors A. Joffe, P. Ney, Marcel Dekker, New York
1978, pp. 105-140.

[16] I. Dobson, J. Chen, J.S. Thorp, B.A. Carreras, D.E. Newman, Examining
criticality of blackouts in power system models with cascading events,
35th Hawaii International Conference on System Sciences, Hawaii,
January 2002.

[17] I. Dobson, B.A. Carreras, D.E. Newman, A branching process ap-
proximation to cascading load-dependent system failure, 37th Hawaii
International Conference on System Sciences, Hawaii, 2004.

[18] I. Dobson, B.A. Carreras, V. Lynch, D.E. Newman, Complex systems
analysis of series of blackouts: cascading failure, criticality, and self-
organization, Bulk Power System Dynamics and Control - VI, August
22-27, 2004, Cortina dAmpezzo, Italy.

[19] I. Dobson, B.A. Carreras, D.E. Newman, Probabilistic load-dependent
cascading failure with limited component interactions, IEEE Interna-
tional Symposium on Circuits and Systems, Vancouver Canada, May
2004.

[20] I. Dobson, B.A. Carreras, V.E. Lynch, B. Nkei, D.E. Newman, Esti-
mating failure propagation in models of cascading blackouts, Eighth
International Conference on Probability Methods Applied to Power
Systems, Ames Iowa, September 2004.

[21] I. Dobson, B.A. Carreras, D.E. Newman, Branching process models for
the exponentially increasing portions of cascading failure blackouts, 38th
Hawaii International Conference on System Sciences, January 2005,
Hawaii.

[22] I. Dobson, B.A. Carreras, D.E. Newman, A loading-dependent model
of probabilistic cascading failure, Probability in the Engineering and
Informational Sciences, vol. 19, no. 1, 2005, pp. 15-32.

[23] Transmission reliability evaluation for large-scale systems (TRELSS):
version 6.0 User’s manual, EPRI, Palo Alto, CA: 2000. 1001035

[24] P. Guttorp, Statistical inference for branching processes, Wiley, NY, 1991
[25] R. C. Hardiman, M. T. Kumbale, Y. V. Makarov, An advanced tool

for analyzing multiple cascading failures, Eighth International Confer-
ence on Probability Methods Applied to Power Systems, Ames Iowa,
September 2004.

[26] T.E. Harris, Theory of branching processes, Dover NY 1989.
[27] D.S. Kirschen, D. Jawayeera, D.P. Nedic, R.N. Allan, A probabilistic

indicator of system stress, IEEE Transactions on Power Systems, vol.
19, no. 3, 2004, pp. 1650-1657.

[28] D.N. Kosterev, C.W. Taylor, W.A. Mittelstadt, Model validation for the
August 10, 1996 WSCC system outage, IEEE Transactions on Power
Systems, vol. 13, no. 3, pp. 967-979, 1999.

[29] NERC (North American Electric Reliability Council), 1996 system
disturbances, (Available from NERC, Princeton Forrestal Village, 116-
390 Village Boulevard, Princeton, New Jersey 08540-5731), 2002.

[30] Information on Blackouts in North America, Disturbance Analysis
Working Group (DAWG) Database, North American Electric Reliability
Council (NERC), Princeton, New Jersey USA 08540-5731. [Online].
Available: http://www.nerc.com/∼dawg/database.html

[31] D.E. Newman, B. Nkei, B.A. Carreras, I. Dobson, V.E. Lynch, P.
Gradney, Risk assessment in complex interacting infrastructure systems,
Thirty-eighth Hawaii International Conference on System Sciences,
Hawaii, January 2005

[32] M. Ni, J.D. McCalley, V. Vittal, T. Tayyib, Online risk-based security
assessment, IEEE Transactions on Power Systems, vol. 18, no 1, 2003,
pp. 258-265.

[33] M.A. Rios, D.S. Kirschen, D. Jawayeera, D.P. Nedic, R.N. Allan,
Value of security: modeling time-dependent phenomena and weather
conditions, IEEE Transactions on Power Systems, vol. 17, no 3, 2002,
pp. 543-548.

[34] S. Roy, C. Asavathiratham, B. C. Lesieutre, G. C. Verghese, Network
models: growth, dynamics, and failure, 34th Hawaii International Con-
ference on System Sciences, Maui, Hawaii, Jan. 2001.

[35] M.D. Stubna, J. Fowler, An application of the highly optimized tolerance
model to electrical blackouts, International Journal of Bifurcation and
Chaos, vol. 13, no. 1, 2003, pp. 237-242.

[36] S.N. Talukdar, J. Apt, M. Ilic, L.B. Lave, M.G. Morgan, Cascading
failures: survival versus prevention, Electricity Journal, November 2003,
vol. 16, no. 9, pp. 25-31.

[37] J.S. Thorp, A.G. Phadke, et al., Anatomy of power system disturbances:
Importance sampling, Power System Computation Conference, Dresden,
Germany Aug. 1996.

[38] U.S.-Canada Power System Outage Task Force, Final Report on the
August 14th blackout in the United States and Canada. United States
Department of Energy and National Resources Canada. April 2004.

[39] V. Venkatasubramanian, Y. Li, Analysis of 1996 Western American
Electric Blackouts, Bulk Power System Dynamics and Control - VI,
Cortina d’Ampezzo, Italy, August 2004.

[40] D.J. Watts, A simple model of global cascades on random networks,
Proceedings of the National Academy of Sciences USA, vol. 99, no. 9,
2002, pp. 5766-5771.

Ian Dobson received the BA degree in Mathematics from
Cambridge, England in 1978 and the PhD degree in Electrical
Engineering from Cornell University in 1989. He worked
from 1978 to 1983 as a systems analyst for the British firm
EASAMS Ltd. In 1989 he joined the University of Wisconsin-
Madison, where he is now a professor in electrical and



9

computer engineering. His current interests are applications of
complex systems and nonlinear dynamics, electric power sys-
tem blackouts and instabilities, and risk analysis of cascading
failure.

Benjamin A. Carreras received the Licenciado en Ciencias
degree in Physics from the University of Barcelona, Spain
in 1965 and the PhD degree in Physics from Valencia Uni-
versity, Spain in 1968. He has worked as a researcher or
as a professor at the University of Madrid, Spain, Glasgow
University, Scotland, Daresbury Nuclear Physics Laboratory,
England, Junta de Energia Nuclear, Madrid, Spain, and the
Institute for Advanced Study, Princeton, NJ USA. He is now
corporate fellow at Oak Ridge National Lab, TN USA. He is
a fellow of the American Physical Society.

David E. Newman received the BS degree in Physics and
Mathematics from the University of Pittsburgh, PA in 1983 and
the Ph.D. degree in Physics from the University of Wisconsin,
Madison, WI in 1993. He was a Wigner fellow and research
scientist at Oak Ridge National Laboratory from 1993 to 1998.
In 1998 he joined the Physics department at the University of
Alaska, Fairbanks, where he is now associate professor.



6.7 The Impact of Various Upgrade Strategies on the Long-Term Dynamics and
Robustness of the Transmission Grid

D. E. Newman, B. A. Carreras, V. E. Lynch, I. Dobson

Electricity Transmission in Deregulated Markets
Conference at Carnegie Mellon University

Pittsburgh PA USA December 2004



1

 

Abstract— We use the OPA global complex systems model of
the power transmission system to investigate the effect of a
series of different network upgrade scenarios on the long time
dynamics and the probability of large cascading failures. The
OPA model represents the power grid at the level of DC load
flow and LP generation dispatch and represents blackouts
caused by randomly triggered cascading line outages and
overloads. This model represents the long-term, slow evolution
of the transmission grid by incorporating the effects of
increasing demand and engineering responses to blackouts
such as upgrading transmission lines and generators. We
examine the effect of increased component reliability on the
long-term risks, the effect of changing operational margins and
the effect of redundancy on those same long-term risks. The
general result is that while increased reliability of the
components decreases the probability of small blackouts,
depending on the implementation, it actually can increase the
probability of large blackouts. When we instead increase some
types of redundancy of the system there is an overall decrease
in the large blackouts with a concomitant increase of the
smallest blackouts. As some of these results are counter
intuitive these studies suggest that care must be taken when
making what seem to be logical upgrade decisions.

Index Terms—blackouts, power system security, cascading
failure, reliability, risk analysis, complex system, phase
transition.
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I. INTRODUCTION

H E  recent large scale disruptions to the power
transmission network [1] have once again focused a great

deal of attention on improving the reliability of the network.
However, because of the many different approaches that can be
taken in moving toward the goal of improving the robustness
of the Electric Power Transmission systems the understanding
of the system wide effect of various improvement measures
becomes a high priority task for the community.  This is both
because the expense of these improvements can be enormous
and one would like some estimate as to their effectiveness as
well as because it is possible that some of the improvements
could have counter intuitive results [8].  

In this paper we use a global dynamic model (OPA) [2, 3]
for the evolution of a large transmission network with which
we can explore the long time effects of various improvement
schemes.  This model is used because it has been found to
exhibit long time dynamics with characteristics found in the
real power transmission system [4].  As these characteristics
include the long time correlations of the system and the
frequency of blackouts of various sizes (the blackout PDF), it
is appropriate for investigating the impact of the improvement
schemes.   Specifically, we can characterize the impact of these
improvements on the probability or frequency of blackouts of
various sizes.  The schemes we investigate here are three.
First we investigate the impact of increasing the reliability of
individual components of the system.  Due to the way the
components are represented, it is not easy to discriminate from
a second improvement method, namely changing the operating
safety margin.  Finally, we look at the impact of
implementing component redundancy on the system.  Because
of the general nature of the model and because each of these
techniques themselves have many ambiguities in their
implementation, this should be thought of as an initial survey
which perhaps highlights the complexity of the question and
the need for further study rather than giving definitive
answers.

In the next section we will briefly describe the model and
present the results of the different improvement schemes.
Finally there is a section on discussion, conclusions and
suggestions for further work.
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II. MODELING RELIABILITY AND REDUNDANCY

A. OPA
The OPA model [2, 3] has been developed as a realization

of the global complex dynamics briefly described in the
previous section.  The OPA model represents the essentials of
slow load growth, cascading line outages, and the increases in
system capacity caused by the engineering responses to
blackouts.  Lines fail probabilistically and the consequent
redistribution of power flows is calculated using the DC load
flow approximation and a standard LP re-dispatch of
generation.  Cascading line outages leading to blackouts are
modeled and the lines involved in a blackout are predicted.
The engineering response to the blackout is crudely modeled
as an increase in line margin for the lines that were involved
in the blackout.  The OPA model clearly represents the
processes in greatly simplified forms, although the
interactions between these processes still yield complex (and
very complicated!) behavior.  The simple representation of the
processes is desirable both to study only the main interactions
governing the complex dynamics and for pragmatic reasons of
model tractability and simulation run time.  This also allows
the study of various network configurations, from simple tree
type networks that allow some analytic analysis, to a more
realistic IEEE test networks such as those shown in Figures 1
and 2.

Blackouts in OPA are complicated events involving line
outages and limitations in generation. We can characterize
them by two limiting situations each with different dynamical
properties [3, 5]. One type of blackout is associated with
multiple line outages. The second type of blackout involves
loss of load due to generators reaching their limits but no line
outages. In general, both effects appear in most blackouts, but
for a given blackout, one of these characteristic properties is
dominant. The dominance of one type of blackouts versus the
other depends on operational conditions and the proximity of
the system to one of its two critical points [6]. The first
critical point is characterized by operation with lines close to
their limits.  The second critical point is characterized by the
maximum fluctuations of the load demand being near the
generator margin capability. When the generator upgrade is
suitably coordinated with the line upgrade, the critical points
coincide and the model can show a probability distribution of
blackout sizes with power tails similar to that observed in
NERC blackout data [7]. Similar results are found in both the
idealized tree network and a more realistic network (Figs. 1
and 2).  One of the important results from these models is that
even though the individual causes of each blackout event
might vary, the statistics of these events remain remarkably
robust.  This is because the system rearranges itself to stay
near the operational limit at which these statistics (PDFs etc)
are characteristic.  This rearrangement is likely the result of a
combination of the social and economic pressures on the
system interacting with the system design and operation and
the engineering responses to the blackouts.

Here we look at some different responses and differently
engineered systems in order to investigate whether these

different systems have similar dynamics and statistics. Note
that in this paper we are not studying the short-term effect of
the different engineering measures on a fixed network. Instead
we are investigating the effect of the different engineering
measures on the complex systems equilibrium that is achieved
after the system has rearranged itself on the time scale of the
dynamics of load growth and network upgrade.

Fig. 1.  Example of a tree network with 94 nodes. The red squares are
generator nodes.

For the results presented here we work mainly with the
IEEE 118 bus network, however, this network is modified for
the redundancy studies.

Fig. 2.  The IEEE 118 bus network. The red squares are generator nodes.

B. Reliability/Margin Improvements
At the initial level of inquiry, the investigations of the

improvements in component reliability are, in this model, an
investigation of both component reliability and operating
margin.   This is because of the way we implement reliability
improvement in the model.  Due to the general nature of the
model we do not model the individual components in any
detail. For example, transmission lines and transformers are
both considered as part of the lines joining nodes and in this
paper when we refer to lines, we mean the lines and the
components that make them up. The lines, and their
constituent components, have failure probabilities for different
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situations.  For example, each line has a certain probability of
random failure (P0).  These can be thought of as failures
caused by either uncontrolled external influences (a lightning
strike, a squirrel in a transformer etc) or by the random failure
of the line due to a defect or ageing.  Each line also has a load
driven or stress failure specified by P1.  We use the fraction of
overloading, M = F Fmax , as a measure of the stress on the
line, where F is the power flow in a given line and Fmax is the
limiting power flow. When a component is within a given
distance (margin) of its operating limit, MR, it has a
probability of failing (P1) and then being upgraded.  Reducing
the random failure probability P0 does little to the dynamics
over a range of values.  However changing the margin MR at
which P1 starts to have an influence can have a significant
effect on the system.  The margin MR for onset of P1 can be
interpreted in a number of ways.  The first and perhaps most
straightforward is that this onset margin is simply the
operating margin that the operators strive to maintain given
the knowledge that there is an increased failure probability
above that point.  Because the lines at their onset margins are
not yet at their hard limits (emergency ratings) there is some
additional margin engineered into the system.  In this system
if there is a line outage (even if there is no power shed) the
line (component) is upgraded.  This tends to keep the overall
system farther from the critical point.  The other way of
interpreting the margin MR is in terms of line reliability. If a
line is made more reliable then it has a smaller probability of
failing before its hard limit is reached.  That can be thought of
as a decrease in the margin to the hard limit.  That is, a more
reliable line can carry higher loadings that have no chance of
loading induced failure. There could be a concomitant decrease
in P0 but, as stated before, that has a small effect.  

The effect of changing the probability P1 was studied in
detail in [8]. The expectation from this form of increase in the
reliability of the lines is an overall decrease in the frequency of
the blackouts. Furthermore, large blackouts with many failures
are also expected to be less likely because of the decreased
probability of cascading line failures.  As expected, we saw in
previous work [8] that reducing P1 reduces the probability of
large blackouts. However, this is not the only change observed
in the dynamics. With the decrease of large blackouts, there is
a concomitant increase in the number of small blackouts. The
overall result is that there is hardly any change on the
frequency of blackouts. As discussed in [8], the increase of
reliability through P1 induces only a logarithmic decrease in
cost of the blackouts

When the margin 1-MR is changed a very noticeable change
in the distribution of power shed and outages is seen.    
Figure 3 shows a large reduction in the largest blackouts when
1-MR is increased from zero (i.e. it is at the hard limit) to
20%.  That is, the local load point at which failures start and
upgrades can occur is in the best case 0.8 times the hard limit
for the individual lines.  This decrease in the largest event
probability is up to a factor of five for the largest blackouts.
Looked at in the other interpretation, this implies that
increasing the component reliability can increase the
probability of the largest events by a significant amount.  
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Fig. 3.  The probability distribution of blackout size for 3 operating margins,
0, 0.1 and 0.2.  The blackout size is measured by the power shed normalized
by the total power demand. A marked decrease is seen in the cases with an
increases margin, or conversely, a marked increase in the largest events is
seen when the system has the most reliable components.  

In Fig. 4 the probability distribution of line outages is
plotted for the same cases.  This shows clearly that as the
margin increases the largest outages (those that often cause
blackouts) are decreased while there is a concomitant increase
in the smaller outages. This is consistent with the power-shed
results and again suggests that the increased margin makes the
system less prone to large failures, which could be interpreted
making the system more robust.  Once again, the other way of
interpreting this is that as the line reliability increases, the
probability of large failures increases which is perhaps a
counterintuitive result.
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Fig. 4. The probability distribution of number of line outages for 3 operating
margins, 0, 0.1 and 0.2.  A marked decrease in the largest sizes and an
increase in the smallest sizes is seen in the cases with an increased margin,
or, conversely, a marked increase in the largest events is seen when the
system has the most reliable components.
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The upgrades to this system can be handled in two different
ways.  The standard method is to wait for a component failure
and blackout and then upgrade the components after the
failure.  This is the standard implementation used for OPA in
most cases.  However, one can also envisage strengthening the
network by increasing the operating margins of stressed lines
before they fail. This implementation keeps track of the line
loading and those lines that are in their margin region are
upgraded preventatively at the end of the day.  Surprisingly,
both methods had the same effect on the system at least in the
parameter range we are using.  Figure 5 shows the blackout
frequency as a function of the operating limit (MR) for both
upgrade methods.  The daily, prophylactic upgrades are a little
bit better but are effectively the same as the failure based
upgrades in decreasing the blackout frequency.  

Figure 6 shows that not only does the frequency of the
blackouts decrease, but also the blackout size decreases as the
margin is made larger.  Once again the two upgrade schemes
give approximately the same results.  

It should be seen that for both of these measures, the
blackout frequency and size, the largest improvement (a factor
of more then 2) is found in going from no margin to the 20%
margin.  After that, the improvement with increasing margin
is much slower.  Stated using our reliability interpretation of
the margin, this means that improving line reliability up to a
point does not seriously impact the statistics, but after that
point it can have a major effect.

Figure 7 shows the number of blackouts of a given size for
the various margins.  This shows even more clearly that the
largest change in the distribution comes in going from no
margin (MR=1) to a 20% margin (MR=0.8).  After this, the
distributions change little except for a modest decrease in the
smaller blackouts.
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Fig. 6. The mean number of outages per blackout is also seen to decrease as
the operating limit decreases.  The two upgrade schemes (failure based or
daily prophylactic upgrades) again give approximately the same
improvement.

The actual power shed per blackout has a minimum around
MR =0.7-0.8.  This is because after the largest events are
removed, a further decrease in the smallest blackouts (which
are more likely) actually increases the mean size since now the
larger blackouts are reduced less.  This can be seen in Fig. 7
looking carefully at the smallest sizes or much more easily in
Fig. 8.
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Fig. 7. The number of large blackouts as a function of blackout size for
various operating limits MR The overall decrease in the number of blackouts
is much larger for the first 20% increase in margin.

Figure 8 shows the stark difference between the
distributions in the first 20% margin increase followed by the
overall reduction of the frequency and a slow decrease in the
larger events.
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Fig. 5.  Frequency of blackouts decreases as the fractional margin point
decreases.  The two upgrade schemes (failure based or daily prophylactic
upgrades) give approximately the same improvement.  
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Fig. 8. The maximum number of outages decreases dramatically for the first
20% increase in margin, then the smallest number decreases faster (note the
vertical log scale)

This suggests that a working margin of 20-30% is for this
model near optimum in terms of both robustness of the
overall system and economic efficiency. Likewise, if the
component reliability becomes such that the upgrades are not
done until just before their hard limit, the system is likely to
be more susceptible to large cascading failures.

C. Redundancy
Within the OPA model, investigating redundancy has even

more ambiguities of definition.  For example one can have
redundant capacity without having redundant components
(lines).  This would be accomplished by making the
operational margin at least 50%.  This would be the same as
increasing the margin as in the last section but would do
nothing for the random failures.  Another possibility is having
parallel lines, each of which is able to carry the entire load.  In
normal operation they will each run at 50% capacity (i.e. with
MR for each line at 0.5).  This allows for a failure in one line
being fully mitigated by the other line.  Finally there is a
variant on the last option that involves having a fully
redundant second component that is not used unless the main
component fails.  The first two cases have the difficulty of
being susceptible to the strong social and economic pressures
to utilize the unused capacity.  This would tend over the
course of time to remove the redundancy from the system and
simply end up with two parallel fully utilized components at
which point the system is likely to be in a more vulnerable
situation then before [10, 11]. The methods we have
investigated are the first 2.   

Figure 9 shows the effect of adding redundant lines.
Adding the lines around the generators, which tend to be the
limiting areas, reduces the frequency of the largest blackouts,
with a modest increase in the smallest blackouts.  However
the largest change in large blackout frequency is seen when all
lines are doubled (made redundant).  In this case the large
blackout frequency is reduced by almost 30% and the overall

frequency of blackouts is not much changed.  
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Fig. 9. Doubling lines from the generators decreases the number of large
blackouts somewhat. Doubling all lines has the largest effect on reducing the
number of large blackouts.

Adding levels of redundancy does little to further protect
the system.  Figure 10 shows a system in which the lines are
doubled and then tripled.  The improvement in the doubling
of the lines is not enhanced in any significant way by tripling
the lines.
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Fig. 10. Reductions in the largest blackouts are seen when adding a set of
redundant lines. However adding additional lines beyond that does little
additional good.

III. DISCUSSION AND CONCLUSION

In dynamic complex systems models of the power
transmission system can reproduce the dynamics, power tails
and apparent near criticality observed in the NERC data [4].
The complex system model, studied here includes a
representation of the engineering and economic forces that
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drive network upgrades as well as leading to the cascading
failure dynamics. These dynamics come from a competition
between two forces.  On one side, the increasing load demand
and economic pressures that tend to add stress to the system.
On the other side, as the system becomes more stressed, the
blackout risk rises and the response to blackouts is upgrades
to the system which then relieves the system stress. From the
competition between the forcing and upgrades, the system
tends to organize it self near to the critical point in a complex
systems equilibrium. The utility of this type of model is not
in the analysis of an individual blackout but rather overall
system dynamics as the system responds to slow forcing.

This type of model allows the exploration of various
changes in the system engineering and operation in order to
investigate the effect of these changes on risk of large failures
and system dynamics.  In this paper we looked at two of these
changes, line component reliability (or margin improvements)
and redundancy.  The result from these preliminary studies
suggests that improving the reliability of lines (or line
components) can have a counter intuitive effect.  That effect is
an increase in large blackouts as the reliability is increased (or
the operating margin is decreased).  Adding redundant lines on
the other hand is found to reduce the probability of large
blackouts.  

This type of model, with these results, lead naturally to a
series of areas for further/future research:
1) System upgrade schemes - Modeling of redundancy and
reliability need to be improved and explored in more depth.
This should include real reliability characteristics, various
redundancy models and a combination of both.  Reliability
modeling should include at least 4 probabilities associated
with component reliability; external random failure, defect
failure, aging failure, and stress failure.  In addition to these
simple system upgrade explorations this type of model allows
for the investigation the impact of various islanding schemes
on blackout risk.
2)  Interacting complex systems – In reality, the complex
system model of the power transmission network is one part
of the interacting infrastructure system that controls the
transmission grid.  These interacting infrastructures include
economic systems, IT systems and human decision making
systems.  Incorporating these as separate interacting complex
systems or as “agent based models” within the transmission
network complex system model needs to be investigated to
explore the effect on risk from the system interactions.
3) In order to both compare models to the real system and to
develop for real time control and risk assessment techniques,
new system state metrics need to be developed.  These should
be developed for system monitoring and comparison.

.
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Abstract

Critical infrastructures have some of the characteristic
properties of complex systems. They exhibit infrequent large
failures events. These events, though infrequent, often obey a
power law distribution in their probability versus size. This
power law behavior suggests that ordinary risk analysis might
not apply to these systems. It is thought that some of this
behavior comes from different parts of the systems interacting
with each other both in space and time. While these complex
infrastructure systems can exhibit these characteristics on their
own, in reality these individual infrastructure systems interact
with each other in even more complex ways. This interaction
can lead to increased or decreased risk of failure in the
individual systems. To investigate this and to formulate
appropriate risk assessment tools for such systems, a set of
models are used to study to impact of coupling complex
systems. A probabilistic model and a dynamical model that
have been used to study blackout dynamics in the power
transmission grid are used as paradigms. In this paper, we
investigate changes in the risk models based on the power law
event probability distributions, when complex systems are
coupled.

1. Introduction

It is fairly clear that many important infrastructure
systems exhibit the type of behavior that has come to be
associated with “Complex System” dynamics. These systems
range from electric power transmission and distribution
systems, through communication networks, commodity
transportation infrastructure arguably all the way to the
economic markets themselves. There has been extensive work
in the modeling of some of these different systems. However,
because of the intrinsic complexities involved, modeling of the
interaction between these systems has been limited [1,2].
While understandable from the standard point of view that
espouses understanding the components of a large complex
system before one tries to understand the entire system, this
approach can unfortunately overlook important consequences

of the coupling of these systems that impact their safe operation
and overlooks critical vulnerabilities of these systems. At the
same time, one cannot simply take the logical view that the
larger coupled system is just a new larger complex system
because of the heterogeneity introduced through the coupling of
the systems. While the individual systems may have a
relatively homogeneous structure, the coupling between the
systems is often both in terms of spatial uniformity and in terms
of coupling strength, fundamentally different (Figure 1). This
in the most extreme case leads to uncoupled systems but in the
more normal region of parameter space in which the inter-
system coupling is weaker or topologically different then the
intra-system coupling can lead to important new behavior.
Understanding the effect of this coupling on the system
dynamics is necessary if we are to accurately develop risk
models for the different infrastructure systems individually or
collectively.

Figure 1: Cartoon of two homogeneous systems with
a heterogeneous coupling

Examples of the types of potential coupled infrastructure
systems to which this would be relevant include power-
communication systems, power-market systems,
communication-transportation systems, and even market-
market systems. Interesting examples of these interactions are
discussed in ref. [3]. The effect of this coupling can be critical
and obvious for systems that are strongly coupled such as the
power – market coupled system. Perturbations in one can have
a rapid and very visible impact on the other. In fact, in many
ways such systems are often thought of as one larger system
even though the coupling is not homogeneous and each of the
component systems (namely the market and the power
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transmission system) can have their own separate perturbations
and dynamics. For other less tightly coupled systems, such as
power-communications systems, the effect can be much more
subtle but still very important. In such systems small
perturbations in one might have very little obvious effect on the
other system, yet the effect of the coupling of the two systems
can have a profound effect on the risk of large, rare
disturbances.

In this paper, we will investigate some of these effects
using two different approaches. First we will use a simple
probabilistic model for cascading failures (CASCADE) that has
been extensively studied for individual systems [4-6]. This
model allows us to probe the impact of the coupling on the
failure risks and the critical point that has been previously
found for the uncoupled systems. This model also has the
advantage of allowing some analytic solutions. Next we will
present results from a dynamical model of coupled complex
systems. This model has dynamic evolution and many of the
characteristics found in complex systems.

Throughout this paper for reference purposes we will use
the power transmission system as the primary system and the
communications systems as the coupled secondary system. In
reality, the models discussed have very little specific to these
systems. They will be used so the results are more general in
nature and we use these reference systems simply to be able to
give concrete examples of the actions and effects we discuss.

Many complex systems are seen to exhibit similar
characteristics in their failures. While it is useful and important
to do a detailed analysis of the specific causes of these failures
such as individual blackouts, it is also important to understand
the global dynamics of the systems like the power transmission
network. This allows some insight into the frequency
distribution of these events (e.g. blackouts) that the system
dynamics creates. There is evidence that global dynamics of
complex systems is largely independent of the details of the
individual triggers such as shorts, lightning strikes etc in power
systems. In this paper, we focus on the intrinsic dynamics of
failures and how this complex system dynamics impacts failure
risk assessment in interconnected complex systems. It is found,
perhaps counter intuitively, that even weak coupling of
complex systems can have adverse effects on both systems and
therefore risk analysis of an isolated system must be
approached with care.

Several particular issues induced by the interdependence
of systems will be addressed in this paper. The first one is how
coupling between the systems modifies conditions for safe
operation. These systems are characterized by a critical loading
[7, 8]. They must operate well-below this critical loading to
avoid “normal accidents” [9] and large scale failures. We will
explore how the coupling between systems changes the value of
this critical loading.

We will also consider the effect of the heterogeneity
introduced through in two different ways. Through the different
properties of each individual system, like having different
critical points, and the coupling of the systems.

Finally we will contrast probabilistic models with
dynamical models in order to see the effect of memory in the
system impacts the consequences of the couplings.

The rest of the paper will be organized as follows: Section
2 reviews some of the characteristics of complex systems.
Section 3 contains a description of the coupled cascade model

and results from that model. Section 4 describes the dynamic
model with results from that model, followed by section 5 that
has a discussion of the implications of these results and
conclusions.

2. Coupled CASCADE model

2.1 Individual CASCADE model

The basic CASCADE model [4-6] has n identical
components with random initial loads. For each component the
minimum initial load is Lmin and the maximum initial load is
Lmax. For j=1,2,...,n, component j has an initial load of lj that is a
random variable uniformly distributed in [Lmin, Lmax]. l1,l2, · · · ,
ln are independent. Components fail when their load exceeds
Lfail. When a component fails, a fixed amount of load p is
transferred to each of the components.

To start the cascade, we assume an initial disturbance
that loads each component with an additional amount, d .
Components may then fail depending on their initial loads, lj,
and the failure of any of these components will distribute an
additional load, p ≥ 0, that can cause further failures in a
cascade. This model describes the cascading failure as an
iterative process. In each iteration, loads fail as the transfer
load, p, from other failures makes them reach the failure limit.
The process stops when none of the remaining loads reaches
the failure limit. It is useful to define l ≡ np , the total load
transferred from a failing component. This system is found to
have a transition in the probability of system wide failures (P∞ )
at a critical value of l. As shown in Fig. 2, when l < lc, where
lc is the critical value of l, P∞ = 0. However, above the critical
value for l , system wide failures are possible. In the
CASCADE model if we assume a uniform random distribution
of loads, the critical point is lc = 1.
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Figure 2: Probability of cascade events of the system
size as a function of l

An important characteristic of the CASCADE model is
that around the critical point, the probability distribution



function (pdf) of the size of the failures develops a power law
tail. In the uniform load case, this power law tail has a
characteristic exponent of approximately –1.5. This power law
behavior is important because the effect of a failure is
proportional to its size so if the probability of failures falls as a
power law less steep then –2.0, the large failures dominate the
“cost” of failure.

2.2 Coupled CASCADE models

Generalizing the CASCADE model to a pair of coupled
CASCADE systems is straightforward. We consider two
systems L and M with random loads (normalized on 0 to 1):

System L li Œ 0,1[ ] i = 1,...nL

System M mj Œ 0,1[ ] j = 1,...nM

At the beginning of each “day” (realization), the random initial
loads are generated. We will simplify the situation by
considering only initial perturbations in the system L. As an
initial perturbation, we add an increment d to all loads of the
components in system L. As before, a component fails if its
normalized load is greater than 1. For each failed component,
we transfer a load pLL to the loads of all other components in
the same way that we did in the individual model. Now
however, when component i of L fails, all loads of the
components of system M are increased by an amount pML. This
cross system loading is the inter-system coupling. It should not
be thought of as actually distributing the load for L to the other
system, rather one can think of it as an increased stress in
system M due to failures in system L.

Likewise, when a component in the system M fails a load
pMM is transferred to all loads of the other components of the
system M in the same way as was done in system L. Finally,
we have the back cross loading coming when a component j of
M fails then all loads of the components of system L are
increased by an amount pLM.

The basic steps of the algorithm proceed as follows:
At Step t

1) Test stability of all loads in L based on their values at
step t-1.

2) Test possible transfer from L to M based on the load
values at step t-1.

3) Test stability of all loads in M based on their values at
step t-1.

4) Test possible transfer from M to L based on the load
values at step t-1.

Now update all loads

At the end of each “day” we collect information on how many
components failed in L and how many in M , how long the
whole cascade took, and accumulate information for a pdf of
failures in both systems. We also accumulate data per iteration
from each system, in order to calculate the number of failures
per iteration.

The CASCADE model can be re-interpreted as a
branching process [10]. This allows the application of the
branching process methods [11] to analyze and interpret the
results of the cascade model. In trying to understand the
consequences of the coupled CASCADES model, we
approximate it by a branching process. For simplicity we

assume that the two systems have the same size and have
symmetric couplings. From the load transfers we can construct
the corresponding the transition probability as was done in
Ref.[10]. In this case, we define l ij=n pij. Then if FL(t) and
FM(t) are the mean number of failures in systems L and M
respectively, we have

FL t( )
FM t( )

Ê

ËÁ
ˆ

¯̃
=

l LL lLM

l ML lMM

Ê

ËÁ
ˆ

¯̃

FL t -1( )
FM t -1( )

Ê
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ˆ

¯̃
(1)
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FL 1( )
FM 1( )

Ê

ËÁ
ˆ

¯̃
=

q

0
Ê
Ë
Á

ˆ
¯
˜ (2)

and
q=nd

This a 2 type branching process approximation to the evolution
of the means in the coupled CASCADE model that generalizes
the approximation in [10]. Therefore, iteration of Eq. (1) with
the initial condition (2) leads to

FL t( )
FM t( )

Ê

ËÁ
ˆ

¯̃
=

l LL lLM

l ML lMM

Ê

ËÁ
ˆ

¯̃

t -1
q

0
Ê
Ë
Á

ˆ
¯
˜ (3)

To solve this system of equations we have to find the
eigenvalues of the matrix, they are

l± =
1
2

l LL + lMM ± l LL - lMM( )2
+ 4lLMl ML

È
ÎÍ

˘
˚̇

(4)

Since all l’s are positives the largest eigenvalue is l+. Because
of the initial conditions,

FL t( ) = q
l+ - l MM( )l+

t-1 + l+ - lLL( )l-
t-1

lLL - lMM( )2
+ 4lLMl ML

(5)

and

FM t( ) = q
l+

t-1 - l-
t-1

lLL - l MM( )2
+ 4lLM lML

lML (6)

As an easy test to start comparing the code, we could use
lLL = lMM = l  and lLM = l ML = d . In this case, l± = l ±d
and

FL t( ) =q
l +d( )t -1

+ l - d( )t -1

2
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˚
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(7)

and

FM t( ) =
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- l -d( )t -1
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˘

˚
˙
˙

(8)



Because of the cascade nature of the process, the average
number of failures diverges if the largest eigenvalue is greater
than 1 and converges if it is less than 1. Therefore the critical
point is now given by

lc = 1-d (9)

This means that the coupling of the systems has shifted the
critical point to a lower value of l. The size of this shift is
related to the strength of the coupling. This shift makes the
system more susceptible to large failures. It is again important
to note that the inter-system load transfer is intrinsically
different then the intra-system load transfer. It is this difference
that allows the shift in the critical point.

2.3 Numerical results

Numerically one can explore the parameter space to
investigate the transition characteristics as a function of these
parameters. Initially, we have considered only cases with
lLL = lMM = l  and lLM = l ML = d in order to explore a small
space to start with. For this situation we have only to worry
about a single new parameter d. Calculations have been done
for two systems of size 400.

For a fixed initial perturbation, q = 0.2, applied to the
system L, we can see that the frequencies of the cascades in
system M increases with l+d. This increase is faster when the
system is close to the critical point (Fig. 3).

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2 2.5 3 3.5

PLM= .00015

PLM = .0005

PLM = .00085

System L

Fr
eq

ue
nc

y 
of

 F
ai

lu
re

s

l + d

Figure 3: Frequency of failure as a function of l + d

Because system M is not perturbed, it is clear that the
failures in system L drive the failures in system M. Below the
critical point, the effect is weak. However, at the critical point
both systems become strongly coupled. They act more like a
single system.
In addition to the drive of system M by system L, there is clear
feedback of system M on system L, because the critical point is
shifted downwards as given by Eq. (9). The numerical results
are consistent with the analytical calculation: both systems have
the same critical point and the critical point is given by the
largest eigenvalue l+d. This is shown in Figs. 4 and 5. . In
Fig.4, we have plotted the probability of a system-size failure
(the system as size 400) for system L as a function of l for the

different values of the coupling pLM. Here, pLM is the load
transferred to each load of the system L by each failure in the
system M . Then, d = n pLM. We can see that the critical point is
shifted to lower l as pLM increases. Note that with the strongest
coupling there is almost a factor of 2 change in the critical
point.
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Figure 4: Probability of cascade events of the
system size as a function of l

That the shift in the critical point is given by d is
clearly shown in Fig. 5, where we have replotted the data in
Fig. 4 as a function of l+d. A universal curve emerges from
this plot. Plots of the system-size failure probability for system
M are identical to the plots for system L.
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Figure 5: Probability of system size cascade events
as a function of l+d

In Fig. 6, we have plotted the pdf of the cascade size for
l = 0.95 and d = 0.06(just 0.01 above the threshold). Keep in
mind that for system M there would be no failures at all if the
systems were uncoupled while for system L , without the
coupling the system would still be significantly sub-critical.
The pdf of failures for system L has the usual slope of –1.5.
Remarkably, the slope for system M is actually lower than for



system L and is close to –1.2. The probability of small cascade
in L triggering cascades in M is small. However, large cascades
in L often trigger cascades in M. Therefore, the probability of
system wide cascades is practically the same in both systems.
It is this combination that leads to the shallower slope for
systemM.
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In Figures 7 and 8 we see the evolution of a cascade for a
case in which there would have been no cascade in M and the
cascade in L would have stopped after 4 iterations had the
systems been uncoupled. Figure 7 shows the number of failures
per iteration as the cascade evolves and in this case the two
systems are tightly coupled so number of failures per iteration
is approximately the same for both systems.
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Figure 7: The evolution of failures in a cascade as
a function of iteration for both systems.

In figure 8, which shows the cumulative number of failures in
each of the two systems, the cascade can be seen to go all the
way to the system size (400) in system L at approximately

iteration 25. The cascade stops in system M when it reaches the
full system size in L because it is no longer being driven by
anything. System L is gone!

Figure 8: Evolution of the cumulative number of
failures in a cascade as a function of iteration for

both systems.

 If one thinks of system L as a power transmission system
and system M as an information communications system the
meaning and effect of the coupling is fairly clear. The two
systems are coupled in both directions at the simplest level
because the communications system uses power to operate and
because the communications system carries the information
needed to operate the power transmission system. Failure in
one increases the probability of failure in the other. For
example a power failure increases the probability of a router
failing, leading to information packet losses. This failure in the
second system then can react back on the first system
increasing its probability of further failure. For example, lack of
knowledge of the operating state of a line increases the
probability of an overload condition. This process facilitates the
propagation of the cascade that is the mechanism by which the
critical point is lowered.

Both the numeric and analytic approaches to
understanding this model can be extended to cases that relax
some of the simplifications we have made. Of most interest is
relaxing the symmetry assumption in the coupling. This work
will be presented in a subsequent paper.
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3. A coupled complex system model

3.1 The simple dynamical complex system model

Probabilistic models such as the CASCADE model can
shed light on the changes in the critical point and pdf of
failures. However, their value is limited by their probabilistic
nature. In order to develop sufficient statistics for these
measures many realizations with independent initial conditions
are performed with no knowledge of earlier cases. We know
however that the real systems are deterministic and its state
today knows about its state yesterday at least to some degree.
Therefore, to investigate the dynamics of these systems we
utilize a coupled dynamic complex system model (DCSM).

This DCSM is a cellular automata based model. It is set
on a regular grid with fixed interaction rules. The systems we
will discuss here are a subset in which the rules are local and
the grid is regular. Both of these restrictions are
straightforward to generalize (and for some systems other
choices make more sense) but we use them as a reasonable
starting point.

The rules for the single, uncoupled systems are simple:
1) A node has a certain (usually small) probability of

failure (pf)
2) A node neighboring a failed node has another

(higher) probability of failing (ps)
3) A failed node has a certain (usually high)

probability of being repaired (pr)

The steps taken in the evolution are equally simple:
At step t
1) The nodes are evaluated for random failure based on

their state at the end of the t-1 step.
2) The nodes are evaluated for repair based on their state

at the end of the t-1 step.
3) The nodes are evaluated for failure due to the state of

their neighbors at step t-1.
4) All nodes are advanced to their new state

Outages (failures) in these systems can grow and evolve in non-
uniform clusters and display a remarkably rich variety of spatial
and temporal complexity. They can grow to all sizes from
individual node failures to system size events. The repair rate
for nodes is usually slower then the time scale of a cascading
failure so repairs to an evolving cascade are unlikely. The main
difference between this model and the CASCADE model
discussed in Section 2, is the continued evolution of the system
after a failure. In this system, the “memory” of previous
failures is in the structure of failed and fixed nodes in the
system. The characteristic time scales of the system are also
captured in the repair time and random failure probability. This
type of model gives power law tails in the pdf, as before, in
addition to long time correlations and anti-correlations between
the failures (Figure 9), something that comes from the
dynamical memory of the system.
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Figure 9: R/S as a function of time lag for a DCSM
time series showing a Hurst exponent greater then
0.5 in the mesoscale region, signifying long time

correlations.

3.2 The coupled complex system model

The coupling of these systems is achieved along similar
line to that done in the CASCADE model. Namely, failures in
one system change the probability of failure in the other
system. The difference being that since, beyond mean field
theory, the details of which will be presented elsewhere, we are
unable to make much analytic progress with this model we do
not worry about simplifying assumptions. Therefore we couple
the two dynamical complex systems models DCSM1 and
DCSM2 using two coupling variables. The first of these
variables is the spatial structure of the coupling. Since all nodes
in one system do not need to be coupled to all nodes in the
other systems (in fact usually would not be), we can change the
fraction of the nodes coupled (randomly or with a fixed
structure). See figure 1 for a cartoon representation of this.
The second variable is the strength and direction of the
coupling. The strength of the coupling is the cross system
probability of failure, similar to the pML from the coupled
CASCADE model. However we do not restrict this coupling to
being symmetric. In reality, some systems failures can have a
major impact on its counterpart system while a failure in the
counterpart system would have little or no effect on the first
system. An example of this might be a co-located
pipeline/communications system. The communication system
is used to monitor the pipeline state. Failure of the
communications system can (or often will) cause a failure (or
shutdown) of the pipeline system. The converse is usually not
true, a failure in the pipeline, unless it is a catastrophic failure,
will have no impact on the communications system. Therefore
both the strength and direction can be varied.

3.3 Preliminary results from the Coupled DCSM

As described here, the DCSM dynamically arranges itself
to sit right at, or near the critical point for a wide range of
parameters as long as we are above the percolation limit, which



 

 

will be discussed below.  This is why it is called a self-
organized critical system.   So unlike the CASCADE model we 
cannot do a simple λ scan in DCSM to explore the critical point 
because the system tries to arrange itself arranges to live at that 
point.  However by changing the parameters in both the local 
coupling and the cross system coupling we can see changes in 
the failures which can be made explore similar dynamic 
changes as the lambda scans in CASCADE.   

Figure 10 shows the time series of failures for a coupled 
system and an uncoupled system (with the same parameters 
other then the coupling), showing a large change in the 
dynamics of the system. 
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Figure 10: Time series of failure sizes in coupled and 
uncoupled DCSM  

 
This figure simply illustrates the extreme differences that 

can be found between coupled and uncoupled systems, in this 
case when the coupling is strong and 2 way, causing constant 
small failures in the 2 systems.   To begin a systematic 
understanding of the parameter space we first note a few of the 
characteristics of the uncoupled system.  First is the local 
coupling parameter ps, which when below a certain value makes 
the system sub-critical to the percolation threshold. This means 
that when the individual elements are coupled to few other 
elements, or when the coupling is very weak, the cascading 
failures will be self-limiting.  That is, they will have a very low 
probability of propagating across the entire system and the 
distribution (PDF) of failure sizes will be exponential (Fig. 11).    
The threshold is reached when there is at least one failure on 
average caused by a failed site.  This “percolation” threshold 
can be analytically approximated [12], using mean field theory, 
as Pncrit ~ 1/f, with f being the average number of unfailed sites a 
site is connected to.  This is approximately the number of 
connections-1 since, during a cascading failure, one of the 
connections will already be failed.  Therefore, for our 
uncoupled DCSM model with four connections per site, the 
critical Pn is about 0.333.  In reality, mean field theory 
underestimates the threshold value because long time 
correlations are not considered but the value is not far from that 
found as seen in figure 12.    
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In this figure the critical point can be characterized as the 

point at which the average number of new failures caused by a 
failure (λ) equals, or exceeds, one.  This is found to be 
approximately 0.4 for the full DCSM model, just a little above 
the mean field approximation.  Once the system is above the 
critical point it display all the characteristics of a self-organized 
complex system.   
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These include the long time correlations (Fig. 9) and 
power law PDFs.  The appearance of the power law size 
distribution as we cross the critical point is shown in figure 13 
which has PDFs for a just barely critical case and a case with Pn 
well above the critical point.  The power laws found have 
exponents of approximately –1 and exhibit the standard 
exponential cutoff at largest sizes due to finite system size 
effects.  It should be noted that the power law of –1 is in 
contrast to the CASCADE model which, in the uncoupled case, 
has a power law of approximately –1.5 and is due to the 
dynamical evolution of the system. 
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Figure 13: PDFs of failure sizes in 2 uncoupled DCSM

calculations with the neighbor coupling parameter
Pn=0.4 and 0.5, just at and above the critical value.

The PDFs show a power law size distribution.

One of the simplest consequences of coupling the 2
systems is to give another propagation path for failures. If this
did in fact occur one would expect that the critical point could
be crossed by increasing the cross system coupling as well as
by increasing the nearest neighbor coupling in a given system.
This consequence can be seen in figure 14 in which the Pn is
sub critical but the cross system coupling is able to make the
system critical.
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Figure 14: PDFs of failure sizes in 2 coupled DCSM

calculations with coupling parameter Pn=0.4 and 0.5,
just at and above the critical value.

In the coupled case, the power law found is somewhat
weaker then the –1 found for the uncoupled system and is
approximately 0.8. The direction of change (ie the weaker
power law) is consistent with the effect seen in the coupled
CASCADE model discussed in section 2.3, though the coupled
DCSM power law is still significantly less steep then the
coupled CASCADE result. The actual slope is critical for
calculating and understanding the risk of events of various sizes
and while changing from an exponential distribution to a power
law is much more significant, going from a power law of –1.5

to -.8 will have a large impact on the probability of the largest
failures.

Another obvious potential impact of the coupling is the
possible synchronization of the failures in the two systems.
Using a measure developed by Gann et al in [13] for
synchronization, we investigate this effect. Figure 15 shows
the synchronization function described in [13] which is
basically an average normalized difference between events in
the 2 systems. For this measure, a value of 1 means the
difference is effectively 100% or no synchronization, while a
value of 0 means all events are the same in the 2 systems, or
they are synchronized. These values are then plotted as a
function of the event sizes. It can be readily seen that small
events for all three of the coupling strengths are largely
uncorrelated (unsynchronized). The synchronization however
increases as the size increases. This makes physical sense since
as the even gets larger there are more sites interacting and this
increases the probability that a failure in one system will trigger
a failure in the other system. It should be noted that this is
likely to be sensitive to the spatial homogeneity of the coupling
that is being investigated.
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Figure 15: Synchronization functions for coupled
DCSM calculations for 3 values of the coupling

parameter Ca.  A value of 1 is unsynchronized and 0
is synchronized.

This synchronization of large events is important in
assessing the impact of the coupling. It may be that small
failures in one system are unlikely to trigger a failure in the
coupled system, however if a large failure is likely to trigger a
coupled failure then the dynamical state of system one (ie it’s
proximity to a major failure) becomes very critical in assessing
the risk of failure of the perhaps more reliable system two.

The results presented here have been for a very small
subset of the parameter space. That subset being, symmetric
homogeneous coupling with an increased failure probability
from an coupled failed or failing site. The rest of the parameter
space described earlier is being investigated and will be
reported on later.



4. Discussion and Conclusions

Modern societies rely on the smooth operation of many of
the infrastructure systems. We normally take them for granted.
However, we are typically shocked when one of these systems
fails. Therefore, understanding these systems is a high priority
for ensuring security and social wellbeing. Because none of
these infrastructure systems operate in a vacuum, understanding
how these complex systems interact with each other gains
importance when we recognize how tightly coupled some of
these systems are. Because of the great complexity of even the
individual systems it is unrealistic to think that we can
presently dynamically model interacting infrastructure systems
in full detail.

In this paper, we have investigated some of the general
features of interactions between infrastructure system by using
very simple models. We look for general dynamical features
without trying to capture the details of the individual systems.
From this we try to build a hierarchy of models with increasing
levels of detail for these systems.

Here, we have shown two such models. One is a
probabilistic model, CASCADE. The other model is a dynamic
complex system model (DCSM) which can work in a self-
organized critical state. Both models are characterize by a
percolation threshold above which cascading failures of all
sizes are possible, In both models this threshold can be
characterized by the branching parameter l , the average
number of new failures caused by a failure. The percolation
point is at l = 1, where the probability density of failures for
CASCADE is a power law with exponent -1.5 while for DCSM
it is somewhat closer to –1.0. These exponents are close to the
one found in analysis of blackout data.

It has been found that symmetric coupling of these
systems actually decreases the threshold. That is, it makes
access to the critical point easier, which means that the systems
when coupled are more susceptible to large-scale failures and a
failure in one system can cause a similar failure in the coupled
system. The parameter l, can be also used to characterize the
cascading threshold in the coupled systems. This suggests the
existence of a metric that can be generalized for practical
application to more realistic systems.

For the DCSM model in addition, it is found that large
failures are more likely to be "synchronized" across the two
dynamical systems, which is likely to be the reason that the
power law found in the probability of failure with size is less
steep with the coupling. This means that in the coupled
systems there greater probability of large failures and less of
smaller failures.

With the DCSM model other important aspects of the
infrastructure can be explored, such as non-uniform and non-
symmetric couplings. This will be the object of future studies.

With this model there is a large parameter space that must
be explored with different regions of parameter space having
relevance to different infrastructure systems. There is also a
rich variety of dynamics to be characterized. Characterizing
the dynamics in the different regimes is more then an academic
exercise since as we engineer higher tolerances in individual
systems and make the interdependencies between systems
stronger we will be exploring these new parameter regimes the

hard way, by trial and error. Unfortunately error in this case
has the potential to lead to global system failure. By
investigating these systems from this high level, regimes to be
avoided can be identified and mechanisms for avoiding them
can be explored.
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Abstract 
 

As we progress, society must intelligently address the 
following question: How much risk is acceptable?  How we 
answer this question could have important consequences for 
the future state of our nation and the dynamics of its social 
structure. In this work, we will elucidate and demonstrate using 
a physically based model that the attempt to eliminate all 
thinkable risks in our society may be setting us up for even 
larger risks. The simplest example to illustrate this point is 
something with which we are all familiar and have known from 
the time we were very young. When children burn their finger 
on a hot item they learn the consequences of touching fire. This 
small risk has taught the child to avoid larger risks.  In trying 
to avoid these small risks as well as larger risks, one runs the 
dual danger of not learning from the small ones and of having 
difficulty in differentiating between large and small risks. 

 We will illustrate this problem with a series of social 
dynamics examples from the operation of NASA to network 
operation and then make an analogy to a complex system 
model for this type of dynamics.  From these results, 
recommendations will be made for the types of risk responses 
that improve the situation versus those that worsen the 
situation.   

  In order to progress, society has to recognize that 
accidents are unavoidable and therefore an intelligent risk 
management program must be implemented aimed toward 
avoiding or reducing major accidents.  It is not possible to 
avoid all risk but it is better to avoid the greater risk situations 
for society.  

  
 
1. Introduction 

 
Society must intelligently address the following 

question: How much risk is acceptable? How we answer this 
question could have important consequences for the future state 
of our nation. This world would not have progressed as far as it 
has if people were not willing to take risks. People took risks in 
the early days of global exploration, aviation, pioneering, and 
other facets of life. If pervious generations were not willing to 
take risks then society would not have progressed to where it is 
today.  

 In this work we will elucidate and demonstrate using 
a physically based model that the desire to eliminate all 
thinkable risks in our society may be setting us up for even 
larger risks. Perhaps, the proper strategy in dealing with risk is 

to develop within society the ability to rationally differentiate 
acceptable from unacceptable risk [1]. A physical example of 
the inability to differentiate between risks is when snow piles 
up on a mountainside. If the stress is relieved through small 
avalanches (analogous to small accidents) then the probability 
of a large avalanche (catastrophic accident) is reduced. 
Conversely, if all the small avalanches (the inconsequential 
accidents) are suppressed then the probability of a large 
avalanche (major accident) is increased. Therefore, the ability 
to differentiate between what is a major and what is a minor 
accident is of critical importance for society. The reporting 
style of the news media, which often does not differentiate 
between major or minor incidents, only foments often irrational 
hysteria over all issues and in the end leads to excessive 
aversion to all risk. 

All engineered systems have a variety of modes of 
failure. There are normal accidents  such as random failure of a 
piece of equipment or human error, however, these accidents 
can be compounded by operator/societal reactions to the 
accident.  These responses are encompassed in the decision 
making process both on the short and long time scales. If the 
operators of the infrastructure or the society at large -are 
particularly risk averse then the responses to the small 
incidence are likely to be overblown. This can then mask larger 
problems, which can in turn increase the probability of a larger, 
even system-size, failure. In order to conduct proper risk 
assessment, the human decision making component of 
infrastructure operation must be included as an intrinsic part of 
that complex system [3].  

Why is this issue important? In order to progress, society 
has to recognize that accidents are unavoidable therefore an 
intelligent risk management program must be implemented in 
which the risk of major accidents is reduced. It is not possible 
to avoid all risk but it is better to avoid the greater risk 
situations for society.  

The remainder of the paper is organized as follows. In 
Section 2, we will present three examples of human systems in 
which risk-averse behavior can have counter productive effects. 
Section 3 will present a model and preliminary results from this 
model showing the effects of risk-averse behavior. We will 
conclude in Section 4 with a discussion of the implications for 
infrastructures.  
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2. Examples of Risk Averse Operations 
     To illustrate the effects of behavior based on risk aversion 
we choose three very disparate systems. These systems are 
children’s learning, corporate safety culture, and NASA space 
safety culture. These three form a nice hierarchical set, in that 
we all go through the childhood learning process and on a large 
scale most of us exist in a corporate safety culture, and on the 
largest scale, governmental programs like NASA permeate 
society.   

   The example of how children’s behavior in regard to safety 
develops is one that is familiar to all of us. Upon first 
introduction to a dangerous system such as fire, there are two 
ways that the child’s development can be influenced. First a 
parent can see a child pick up a match, become frightened, 
display their fear to the child, and then remove the match from 
the child. This behavior of the parent inculcates into the child 
the feeling that the match and by extension the fire is an 
extremely dangerous thing to be feared. Alternatively, the 
parent could supervise and observe the child playing with the 
match and even go so far as to allow the child to feel the heat 
from the match. That latter method, combined with a discussion 
of fire and heat allows the child to develop a healthy respect 
and understanding of the real dangers of fire. This way the 
child can understand that the fire from a match is less 
intrinsically risky than a forest fire. In the first case the child 
who learned that fire from a match is something that is very 
dangerous and something to fear will not be able to 
differentiate between the risks of lighting a match and the risk 
of lighting a forest on fire. This is of course an extreme 
example but illustrates the point that a child must learn to 
differentiate between the levels of risky behavior. This is done 
by allowing them to experience some of the consequences of 
the risky, yet less dangerous behaviors [4], such as falling off of 
a jungle gym or a bicycle and getting a scraped knee. 

    Turning to corporate culture, we have all seen the sign, ‘100 
days of accident free operation’. That sign typifies the lack of 
differentiation between different levels of accidents. Many 
corporations in their desire to be able report ‘X’ days of 
accident free operation, with X getting larger and larger, do not 
differentiate between different types of accidents. Clearly, there 
is a difference between getting a paper cut and loosing a finger 
in industrial operations. And yet, in many industries if medical 
personnel are involved it is considered a reportable incident. 
Therefore, in the admirable but misguided desire to increase 
safety in the workplace, accident avoidance training is often 
mandatory. As is natural, this accident avoidance training is 
usually reactive so that the personnel undergo training in 
response to most recent incidences that have occurred. Many of 
us, therefore have undergone training sessions on the 
importance of holding a banister when walking down stairs, or 
not taking the steps two at a time, or not walking with a pencil 
of scissors. One might ask what is wrong with reminding 
people to hold onto the banister in order to avoid a fall. The 
problem is not that the training attempts to prevent people from 
falling but rather the problem is that the training does not 
differentiate between the real risks of different behaviors and 
different potential accidents. If the operational staff of an 
organization is trained with the same frequency and intensity 
about the dangers of paper cuts, tripping down stairs, or 
electrocution, then they will come to treat all three of those as 
having the same level of risk. In reality, we would like to 

prevent catastrophic accidents much more than we would like 
to avoid minor incidences. The zero-risk tolerance culture 
which does not differentiate between the severity of risks can 
actually increase the risk of the catastrophic incidents by 
overwhelming the personnel with small risk warnings, which 
mask the important ones. For example, one can imagine 
operating a table saw and on the table saw there are warnings 
which are all written red and are all the same size. “Warning, 
corner of table can poke you”; “Warning, table surface can be 
hot”; “Warning, splinters can jab you”; “Warning moving saw 
blade can cut you”; “ Warning, will not operate if not plugged 
in”; “Warning, saw can eject wood”; and “Warning do not eat 
or drink on surface”.  Buried in the middle of these warnings, 
were one or two real, important messages, however, if all the 
warnings were present, then the user would get used to them as 
background noise and pay attention to none of them. This then 
could actually increase the risk of a serious accident.  

       At the largest scale, governmental organizations, 
such as NASA, in their desire to avoid bad publicity and to 
make the operations as safe as possible try to mitigate all risks 
by extensive planning and training [16].  It is of course 
ridiculous to argue against planning and training, however, it is 
also clearly impossible to plan and train for all eventualities. 
Therefore, the danger in over planning and overtraining for 
avoiding specific incidences is that then one is completely 
unprepared for the unexpected. The NASA space program as 
contrasted to the former Soviet space program provide two 
extreme examples. In the case of NASA, extensive contingency 
planning for all foreseeable incidents is done. The astronauts 
are trained and equipped to deal with all of these foreseeable 
incidents. For the Soviet program the astronauts were given 
basic training, some tools, and ”duct tape and bailing wire” and 
are told that they can deal with any problems that arise. 
Remarkably enough, they were usually able to do so. In a 
culture like NASAs, which reflects the broader US societal 
culture, where when something unexpected occurs there can 
often be difficulty in dealing with the event and even 
recognizing it because it falls outside of the planned-for and 
trained-for sphere. Additionally, in a culture like ours, the 
planning of responses to all foreseen or foreseeable events has 
the same effect that we were discussing in regard to corporate 
culture and childhood learning, the lack of differentiation 
between different risk levels. This is not to say that the planners 
are not aware of the different risk levels, rather when the 
culture overwhelms the personnel with the planned responses, it 
becomes difficult for individuals and by extension the whole 
organization to rationally differentiate between risks. It is an 
excellent experience for the NASA astronauts to live on MIR 
and see how people use innovative ideas when risk has not been 
minimized. You can only plan for so much before you go into 
unexplored territory. So it is essential to train people to be 
innovative under stressful conditions.   Being able to 
differentiate risk  is also important for an organization to 
survive under it’s load of regulations. As Bill Weber said about 
NASA “Many now worry that risk will become the single 
management metric du jour. It's the obvious reaction to a series 
of failures. However, risk reduction costs money. At what point 
do you draw the line? In the space business, no mission will 
ever be risk free, regardless of the amount of money spent. 
Thus, too much risk aversion and NASA is on another path to 
oblivion” [15] 
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In large complex infra-structures systems, decision 
making and operations planning are based on an evolving 
assessment of risk. This assessment of risk, or aversion to risk, 
depends upon the size and frequency of failures in the recent 
past and on an overall cultural or societal acceptance of risk. 
Therefore, understanding how different levels of risk aversion 
effect decision making and how failures effect the risk aversion 
are fundamentally important to properly model complex 
infrastructure systems.  
 
 

 
3. A dynamical model of risk averse systems 

 
 

In order to quantify this type of behavior we have 
developed a simple deterministic dynamical model for the 
response to incidents. The dynamical deterministic nature is 
important since we know that the real behavior is deterministic 
and reaction today depends on what happened yesterday at least 
to some degree.   At the same time the forcing for the model is 
a random forcing which is consistent with the idea that it is 
events outside the system, which are forcing the system. 

This model is a cellular automaton based model set on 
a regular grid with fixed interaction rules.  The system we will 
discuss here are a subset of that general class of models in 
which the rules are local and the grid is regular.  Both of these 
restrictions are straightforward to generalize, and for some real 
decision making processes other choices might make more 
sense, but we use them as a reasonable starting point. 

The rules for this simple dynamical system are: 
1) A node has a certain (usually small) probability of 

failure (pf) 
2) A node neighboring a failed node has another 

(higher) probability of failing (ps) 
3) A failed node has a certain (usually higher) 

probability of being repaired (pr) 
 The steps taken in the evolution are equally simple:  
 At step t  

1) The nodes are evaluated for random failure based on 
their state at the end of the t-1 step. 

2) The nodes are evaluated for repair based on their state 
at the end of the t-1 step. 

3) The nodes are evaluated for failure due to the state of 
their neighbors at step t-1. 

4) All nodes are advanced to their new state 
The nodes can be thought of as elements in an 

“incident” space.   The responses to the incident are in the short 
term a suppression of a repeat of the same incident, followed, 
after a recovery period, by a return to the former risk level (as 
memory fades).  Incidents (failures) in these systems can grow 
and evolve in non-uniform clusters and display a remarkably 
rich variety of spatial and temporal complexity.   They can 
grow to all sizes from individual node failures to system size 
events.   The recovery rate for nodes is usually slower then the 
time scale of a cascading failure so recovery during an evolving 
cascade are unlikely.  An important feature of this model is the 
“memory” of previous incidents in the structure of failed and 
recovered nodes within the system.  The characteristic time 
scales of the system are also captured in the repair time and 
random failure probability.  This type of model gives long time 
correlations between the failures, a feature that comes from the 

dynamical memory of the system.  This model is not intended 
to simulate a particular decision making system.  Rather the 
simple nature of the system allows one to investigate the effect 
of suppression of small events (as a result of risk aversion) on 
the incidence of larger events.  

Figure 1 shows the time history of incidents for 2 
systems.  The normal system is shown by the solid line and has 
a variety of incident sizes.  The dashed line is for a system with 
the same parameters but with incidents under a size of ten 
suppressed.  In this case one can see more large incidents.   
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Figure 1: Time evolution of incidents for a risk 

averse system (dashed) and a normal system (solid), 
showing increased large events when small events 
are suppressed. 

  
This is quantified in figure 2 in which the PDF of the 

incident sizes is shown for the two systems.  At smaller scales 
there is a reduction in incidents (though it should be noted not 
at the smallest scale).  At the larger scales, there are more and 
larger incidents.   From the arguments given earlier, this type of 
result makes some sense as by focusing on the smaller risks 
(incidents) the system modeled no longer pays attention to the 
larger events, this increases the probability of such an incident.  
This type of model can be coupled to an infrastructure model 
and driven by the events in that model so that the repair 
responses in the infrastructure model are modified by the state 
of the risk/decision making model. 

A much more readily understood physical example of 
this type of phenomena is the dynamics of a forest or brush fire 
system.  In an area with a very efficient fire fighting system, 
small fires are effectively suppressed.  This reduces the 
probability of small fires.  However, it also increases the 
density of the foliage.  Now, when a few random fires are 
started (lightning strikes, careless people, etc), the fire can 
spread and get beyond the controllable stage quickly and can 
lead to larger fires. If you suppress the small-scale events you 
are more likely to experience large events. The fire control 
complex has come to understand this so instead of fighting all 
small fire, some are allowed to burn, others are intentionally lit 
and clearing (a fire surrogate) is performed.   
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Figure 2: PDF of incident size for a risk averse 

system (solid squares) and a normal system (open 
circles), showing more large events when small 
events are suppressed. 

 
The model can be used to investigate both the effects 

of risk aversion as well as other types of decision-making 
paradigms and their effect on overall risk. Which could be used 
to investigate more intelligent risk management techniques.  

 
 
4. Implications for coupled infrastructure systems 
 

In the management of complex infrastructure systems 
the planners and operators of the system both explicitly and 
implicitly take into account the acceptable level of risk of 
failures at various levels.  While we often make the statement 
that a system or system component must be made failure free, 
most planners and operators realize that it is impossible to 
eliminate all risk and the best we can do is to minimize the 
most serious risks.  However the level of acceptable risk is 
highly dependent on the time history of incidents in the system 
(and to some degree outside the system in society as a whole).  
Therefore in modeling the infrastructure systems the level of 
risk acceptance or avertion must be taken into account in 
describing the short/ long term responce of the system 
(operators/planners) to incidents.    

In response to a major incident, risk aversion 
increases, this leads to operators and planners trying to reduce 
risk as much as possible.  Since this is most easily done in the 
simplest areas, it can end up reducing the risk of small events 
but actually increasing the risk of the larger events.  To 
improve the accuracy of the modeling of such complex 
infrastructure systems, the infrastructure models should be 
coupled to risk based desision make models in order to capture 
this important response feedback. 

 
 
 
 
 
 

 
5. Discussion and Conclusions 
 

 
In a society such as ours, in which major risks have 

been removed from our lives, it is natural to start focusing on 
the smaller risks. That combined with the natural human desire 
to assess blame when something goes wrong, leads to a 
universal attempt to remove all risks, large and small. 
Perception of risk is an important component of this desire to 
remove all risk [14].  Yet, since clearly it is impossible to 
remove all risks the very act of attempting to do this could have 
the counter productive effects described earlier.  Therefore 
using models and planning, this instinctive behavior must be 
kept in check.  

These dynamic complex systems range from: 
 • Congress with legislation 
 • Employee accidents (OSHA) 
 • Industrial safety 

  • Mississippi Floods 
In all of these systems what is key is to differentiate 

between what is important and what is less important. More and 
more society is moving towards avoiding all risks and this 
could be a very dangerous thing for our survival.  

In order to progress, society has to recognize that 
accidents are unavoidable therefore an intelligent risk 
management program must be implemented in which major 
accidents can be avoided. It is not possible to avoid all risk but 
it is better to avoid the greater risk situations for society.  

The most important remediation to this problem is the 
ability to differentiate between large and small risks in planning 
and response: 

Without this,  “We may wake up one morning and find 
the human race is in decline, undone by something as simple as 
being unable to take a risk.” [13] 
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Abstract

We introduce branching process models in discrete and
continuous time for the exponentially increasing phase of
cascading blackouts. Cumulative line trips from real black-
out data have portions consistent with these branching pro-
cess models. Some initial calculations identifying parame-
ters and using a branching process model to estimate black-
out probabilities are illustrated.

1. Introduction

We aim to capture gross features of large, cascading fail-
ure blackouts using probabilistic branching process mod-
els. Galton-Watson and Markov branching processes are
related to the timing of failures and this extends previous
work that models the evolution but not the timing of the
blackout failures with Galton-Watson branching processes
[5]. This overall approach is complementary to the tradi-
tional and useful detailed analysis of blackouts and offers
a number of possibilities for understanding and monitoring
the risk of large blackouts.

Section 2 examines transmission line failure data from
three recent North American blackouts for exponentially
increasing portions and estimates the exponents of the ex-
ponential increases. Section 3 considers Markov branch-
ing process models in discrete and continuous time that
reflect the exponential increase [1, 8] and suggests meth-
ods of identifying branching process parameters. Section
4 shows sample calculations of how a branching process
model could be used to explore the likelihood of a particu-
lar blackout occurring and the value of including real time
data on the cumulative number of line trips in estimates of
the blackout propagation.

2. Blackout data

This section examines cumulative high voltage line trips
in observed blackout data from the July and August 1996
WSCC blackouts [9, 11] and the August 2003 Eastern in-
terconnect blackout [10].

It is supposed that are three phases to the blackout. The
effect of the first phase is summarized as an initial distur-
bance that causes a certain number of line trips at the begin-
ning of the cascading phase. In the second, cascading phase,
the cascading process can cause exponentially increasing
cumulative line trips. In the final phase, the cascading pro-
cess saturates and the blackout starts to slow down and con-
verge to its final extent. The identification of the boundaries
between the blackout phases is done by inspection of the
data.

For each blackout, we plot the cumulative line trips with
respect to time to examine the overall trajectory of the
blackout. If there is an exponentially increasing phase, then
this should appear as a straight line portion in a plot of the
logarithm of the cumulative line trips with respect to time
and the slope of the line gives the exponent of the exponen-
tial growth.

There is no attempt to filter the data by, for example,
combining trips of parallel lines. Generator trips are not
included in the data. Trips of lines of different ratings are
counted in the same way. These assumptions are made for
simplicity in order to make a first analysis of the data from
this new perspective.

2.1. July 1996 WSCC blackout

Figure 1 shows cumulative line trips as function of time
extracted from the 1996 NERC system disturbance report
[9], page 28. The lines tripped include lines of ratings from
120 kV to 500 kV. The initial disturbance is taken as 2 line
trips at 14:24 MDT. Examining the logarithm of the cumu-
lative line trips in excess of 2 in Figure 2 suggests an expo-
nential growth between times 14:24 to 14:31 MDT. The ex-



ponent of the exponential growth isµ ≈ 0.47 min−1. This
corresponds to multiplication of the cumulative line trips by
a factor of 1.6 every minute.
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Figure 1. Cumulative line trips in WSCC July
1996 blackout. Time scale is minutes after
14:00 MDT.
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Figure 2. Log[cumulative line trips in excess
of 2] in WSCC July 1996 blackout. The
straight line growth corresponds to 1.6time.
Time scale is minutes after 14:00 MDT.

2.2. August 1996 WSCC blackout

Figure 3 shows cumulative line trips as function of time
extracted from the 1996 NERC system disturbance report
[9], page 38. The initial disturbance is taken as 2 line trips
at 14:46 PDT. Examining the logarithm of the cumulative
line trips in excess of 2 in Figure 4 suggests an exponential
growth between times 13:46 to 13:49 PDT. The exponen-
tial growth is somewhat less clear cut than in the July 1996
blackout because it evolves quickly in only a few jumps.

The exponent of the exponential growth isµ ≈ 1.4 min−1.
This corresponds to multiplication of the cumulative line
trips by a factor of 4 every minute.
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Figure 3. Cumulative line trips in WSCC Au-
gust 1996 blackout. Time scale is minutes
after 15:00 PDT.
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Figure 4. Log[cumulative line trips in ex-
cess of 2] in WSCC August 1996 blackout.
The straight line growth corresponds to 4time.
Time scale is minutes after 15:00 PDT.

2.3. August 2003 Eastern interconnect blackout

Figure 5 shows cumulative line and transformer trips as
function of time reprinted from the final blackout report
[10]. Since the data underlying Figure 5 is not yet avail-
able to us for study, we digitized by hand the cumulative
line and transformer trips curve in Figure 5 to obtain ap-
proximate data and then replotted the logarithm of the cu-
mulative trips as Figure 6. One way to parse the data in
Figure 6 is to consider a slowly cascading phase from time



5.5 to 8.5 and a fast cascading phase from time 8.5 to 9.5,
and then saturation of the fast cascading phase. The slow
cascading phase fits an exponential more approximately.
The slow cascading phase has exponent of the exponential
growthµ ≈ 0.34 min−1. This corresponds to multiplication
of the cumulative line trips by a factor of 1.4 every minute.
The fast cascading phase has exponent of the exponential
growthµ ≈ 2.9 min−1. This corresponds to multiplication
of the cumulative line trips by a factor of 18 every minute.

There are other ways of parsing the data in Figure 6; one
could simply fit the data with a single exponential cascad-
ing phase from time 5.5 to 9.5. One reason for preferring
the fit with two cascading phases considered in the preced-
ing paragraph in an initial exploration of the data is that
power system experts identified two cascading phases [10].
However, Figure 6 raises the question of whether the data is
best fit by one or two cascading phases.

Figure 5. Cumulative line and transformer
trips in August 2003 blackout. Reprinted from
[10].

We conclude that several recent North American black-
outs show a region or regions of exponential increase in cu-
mulative line failures.

3. Branching process models

Branching process models are an obvious choice of
stochastic model to capture the gross features of cascading
blackouts because they have been developed and applied to
other cascading processes such as genealogy, epidemics and
cosmic rays [8]. The first suggestion to apply branching
processes to blackouts appears to be in [5].

There are more specific arguments justifying branching
processes as good approximations to some of the gross fea-
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Figure 6. Log[cumulative line and transformer
trips in excess of 22] in August 2003 black-
out. The straight line growths correspond to
1.4time and 18time respectively. Time scale is
minutes after 16:00 EDT.

tures of cascading blackouts. An idealized probabilistic
model of cascading failure [7, 4] describes with analytic
formulas the statistics of a cascading process in which com-
ponent failures weaken and further load the system so that
subsequent failures are more likely. It is known that this cas-
cade model and variants of it can be well approximated by a
Galton-Watson branching process with each failure giving
rise to a Poisson distribution of failures in the next stage.
[5, 6]. Moreover, some features of this cascade model are
consistent with results from cascading failure simulations
[2, 4]. All of these models can show power law regions in
the distribution of failure sizes or blackout sizes consistent
with NERC data [3].

All the cascading failure models and branching pro-
cesses considered above make no reference to the time of
failures; the failures are produced in successive stages with-
out reference to the time of each stage. This raises the issues
of how to relate the stages to data that arises in real time and
whether a branching process model in continuous time can
be applied. We consider three possible approaches below.
The first two approaches consider a Galton-Watson branch-
ing process in which the failures occur in stages and the
third approach considers a continuous time branching pro-
cess. All the standard facts quoted below about branching
processes are available in [1, 8].

3.1. Galton-Watson branching process with vari-
able time between stages

The Galton-Watson branching process is assumed to
have each failure generate failures in the subsequent stage
according to a distribution with meanλ. λ is a measure of



the propagation of the failures. There is an initial number of
failuresθ. The number of failures at stagej is the random
variableMj . The mean number of failuresEMj increases
by a factorλ in each stage. More precisely,

EMj = θλj (1)

The mean cumulative number of failures at stagej is

E

j∑
i=0

Mi = θ(1 + λ + λ2 + ... + λj) = θ
λj+1 − 1

λ − 1
(2)

The critical case occurs forλ = 1 [8, 5]. Moreover, if
λ > 1, asj → ∞,

Mjλ
−j → θW a.s. (3)

whereW is a random variable withEW = 1 that is con-
stant in time. That is, asj → ∞,

log Mj ∼ jλ + log(θW ) (4)

To give some examples of this convergence, we simulate
the branching process for various values ofλ. This is shown
in Figures 7-10. The convergence improves asλ increases
away from 1.
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Figure 7. 40 samples of Galton-Watson
branching process for λ = 0.9. The lower
curve is λi − 1 where i is stage number to
show the form but not vertical placing of (11).

The subcritical case ofλ = 0.9 looks quite different
from the other figures as shown in Figure 7. The asymp-
totic slope is zero as the cascade ends. The supercritical
case ofλ = 1.1 contains some samples in which the cas-
cade dies out as shown in Figure 8. This is expected and
the probability of this can be computed fromλ as explained
in section 4.1. The slightly supercritical cases that die out
are qualitatively similar to slightly subcritical cases that die
out. However, when we identify an exponentially growing
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Figure 8. 40 samples of Galton-Watson
branching process for λ = 1.1. The lower
curve is λi − 1 where i is stage number to
show the form but not vertical placing of (11).
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Figure 9. 40 samples of Galton-Watson
branching process for λ = 1.5. The lower
curve is λi − 1 where i is stage number to
show the form but not vertical placing of (11).

phase in blackout data, we already know that the cascade
did not die out and we can expect the measured slope on the
log plot to reflect the value ofλ.

The discussion so far has not specified the relation of the
stages of the Galton-Watson branching process to time and
we now outline the first approach to this issue. We sup-
pose that failure data is available that includes the time of
each failure and perhaps some additional data explaining the
causes of the failure and specifying the type and location of
the failure. Then these data used to group the failures into
stages. Examples of factors that would tend to group sev-
eral failures into the same stage could be their closeness in
time or location, or being caused by failures in a previous
stage. In the initial analysis in this paper we only consider
the closeness in time; that is, we group together several fail-
ures if they are close in time and neglect the other possible
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Figure 10. 40 samples of Galton-Watson
branching process. The lower curve is λi − 1
where i is stage number to show the form but
not vertical placing of (11).

factors. In any case one applies criteria to group the fail-
ures into stages and then regards the failures in each stage
as arising from a Galton-Watson branching process. In this
model, there is no attempt to represent the time at which the
stages occur. Indeed the series of times near which failures
in each stage occur will generally be non-uniformly spaced.
That is, one can regard the stages as occurring with a vari-
able time between stages and this timing is not specified
within the branching process model in this approach.

3.2. Galton-Watson branching process with fixed
time between stages

We now discuss the second approach to relating the
Galton-Watson branching process to time. This approach
groups the failures into stages as in the first approach in
section 3.1, but then makes the explicit simplification or ap-
proximation that the stages occur with fixed timeb between
the stages.b is chosen to be the average time between stages
and is computed by dividing the time intervalT over which
the branching process model is applied by the number of
stagesJ .

This explicit description of the stage times has several
consequences. At each stage of timeb minutes, the mean
number of failuresEMj increases by a factorλ so that the
mean number of failures grows exponentially in time with
exponent

µ = ln(λ)/b (5)

min−1. More precisely, the mean number of failures is
θeµtj at the stage timestj = jb.

The mean cumulative number of failures at timejb is
given by (2). The mean cumulative number of failures is
piecewise constant with jumps at each stage and samples of

the cumulative number of failures at each stage are asymp-
totically exponential with exponentµ = ln(λ)/b min−1, the
same as the exponent for the mean number of failures.

When fitting this branching process model to failure
data, one can fit an exponentialeµt to a time interval of
the data of lengthT as is done in section 2. This yields an
estimate of the number of stageŝJ and an estimate of the
time between stageŝb = T/Ĵ . Then from (5) we have

λ̂ = eµb̂ = eµT/Ĵ (6)

One consequence of this approach is that in cases where
there are several plausible ways to group the failure data
into stages, there can be different estimatesĴ of the num-
bers of stages and hence different estimatesλ̂. A larger
number of stages yields âλ closer to 1. The variation of
λ̂ with the estimated number of stageŝJ is expected be-
causeλ is defined as the expected number of failures per
failure in the previous stage and so depends on the stages.
In the supercritical case ofλ > 1, increasing the number of
stages shortens the time between stages and must decrease
the average number of failures that occur over the shorter
time between stages. However the supercriticality (λ > 1)
or subcriticality (λ < 1) is independent of the time between
stages.

3.3. Continuous time Markov branching process

The third approach to relating the Galton-Watson
branching process to time considers a branching process
that produces failures at variable intervals in continuous
time. One simple assumption is that each failure causes its
subsequent failures at a constant rate1/a. That is, when
each failure occurs, the next failures “caused” by this par-
ticular failure will occur at a random time governed by an
exponential random variable with parameter1/a. The mean
time to this next failures isa. When these next failures oc-
cur, their number is governed by a fixed distribution with
mean valueλc. For example, the fixed distribution could
be a Poisson distribution. The failures existing at any time
propagate to cause more failures independently and at dif-
ferent random times. It follows that if there areM(t) fail-
ures at timet, then the next failures occur after a time in-
terval governed by an exponential random variable with pa-
rameterM(t)/a. This is a standard one dimensional con-
tinuous time Markov branching process [1]. WriteZ(t) for
the number of failures at timet andθ for the initial num-
ber of failures at time zero. The mean number of failures is
exponential:

EZ(t) = θeµt (7)

where

µ = (λc − 1)/a (8)



Moreover, ifµ > 0, ast → ∞,

Z(t)e−µt → θW a.s. (9)

whereW is a random variable withEW = 1 that is con-
stant in time. That is, ast → ∞,

log Z(t) ∼ µt + log(θW ) (10)

(SamplingZ(t) at regular intervalsδ of time yieldsZ(0),
Z(δ), Z(2δ), Z(3δ),... and this is a Galton-Watson branch-
ing process. However, one does not necessarily recover the
original Galton-Watson branching process by this sampling.
For example, a Galton-Watson branching process produced
with a Poisson distribution is not embeddable in any contin-
uous time Markov branching process [1] and so cannot be
the sampled Galton-Watson process.)

It follows from (7) that the mean cumulative number of
failures is

E

∫ t

0

Z(τ)dτ =
θ

µ

(
eµt − 1

)
(11)

If µ > 0, it follows from (9) that
∫ t

0

Z(τ)dτ ∼ θ

µ

(
eµt − 1

)
W (12)

and, ast → ∞,

log
∫ t

0

Z(τ)dτ ∼ µt + log(θW/µ) (13)

so that plottinglog
∫ t

0
Z(τ)dτ againstt gives an asymptotic

slope ofµ. This result supports the procedure in section 2 as
long as convergence near to the asymptotic slope is achieved
before saturation effects apply.

Examining the cumulative number of failures as a func-
tion of time avoids much of the difficulties of grouping
blackout data into stages. That is, this approach is largely
insensitive to how previous failures were grouped, it only
needs to know that they happened in the past.

For the continuous time Markov branching process
model, the process evolves in jumps. (See [1], where the
jumps are also referred to as splits. Note that the jumps
in this process do not correspond to the stages of the fixed
stage Galton-Watson branching process model.) At each
jump, one of the previous failures is replaced by an aver-
age ofλc failures so that the average number of failures
increases byλc − 1. Write S1, S2, S3, ... for the num-
ber of failures at jumps1, 2, 3, ... Then the increments in
theSr are independent, identically distributed random vari-
ables with meanλc − 1. Under suitable conditions assuring
that the considered cascades do not die out as detailed in
[1],

Sr

r
→ λc − 1 as r → ∞ (14)

This motivates us to group the more nearly simultaneous
failures in the exponential increasing phase into jumps to
obtainS1, S2, S3, ..., and to examineS1/1, S2/2, S3/3, ...
for any indication of convergence toλc − 1.

3.4. Fitting branching models to the blackout data

One can readily conclude that both a supercritical fixed
stage Galton-Watson branching process and a supercriti-
cal continuous time Markov branching process model are
consistent with the exponentially increasing phases of the
blackout data in section 2. This conclusion is insensitive to
the generating function of the branching process. The crit-
icality for both processes occurs atλ = 1 or λc = 1 (in
the case of the continuous time Markov branching process
modelλc = 1 corresponds toµ = 0 according to (8)). (Ot-
ter’s theorem [8] shows that the power tail in the distribution
of total number of failures occurs atλ = 1 for generic as-
sumptions on the generating function.)

To progress beyond this qualitative modeling of the ex-
ponential blackout phases as a supercritical branching pro-
cess, we need to estimate model parameters. Since the
WSCC August 1996 blackout has very sparse data and the
raw data for the August 2003 blackout is not yet available
for study, we illustrate estimating model parameters for the
WSCC July 1996 blackout using the discrete and continu-
ous time branching process models. The time period of the
exponential growth is chosen to be the 7 minutes from 14:24
to 14:31 MDT. Section 2 fit the exponent of the exponential
growth in this time period asµ = 0.47 min−1. The failure
times are shown in Figure 11 and Table 1.

For the Galton-Watson branching process models, we
group the failures into stages according to their closeness
in time. Successive failures are grouped into the same stage
if the time between them is less than a fractionδ of the
average time between failures. For illustration we choose
δ = 0.5. The average time between failures for the fail-
ure times in Figure 11 is0.42 min so that (average time
between failures)δ = 0.21 and the corresponding grouping
into 8 stages is indicated in the third column of Figure 11.

In the first modeling approach of section 3.1, we plot
the logarithm of the cumulative staged failures as a function
of stage number and fit these data with an exponential as
shown in Figure 12 to obtain̂λ = 1.4.

In the second modeling approach of section 3.2, the esti-
mated number of stages iŝJ = 8. Then the estimated stage
time b̂ = T/Ĵ = 7/Ĵ = 0.875 and (6) giveŝλ = 1.5. As
discussed in section 3.2, a different assumption about the
grouping into stages would give different estimates. For ex-
ample, choosingδ = 1 would result in fewer stages so that
Ĵ = 5, b̂ = 1.2 andλ̂ = 1.9.

In the third, continuous time modeling approach of sec-
tion 3.3, we need to group the failure data into jumps.



Although the jumps in the continuous time process do
not directly correspond to the stages of the Galton-Watson
branching process, we can for illustrative purposes use the
same grouping of failure data into jumps as used for stages
in Table 1. The consequent evolution of the number of fail-
ures and the series (14) is shown in Table 2. The series in
Table 2 is too short and noisy for convergence to be verified,
but the average of the last four elements estimates the limit
of series (14) as≈ 0.5 and this yieldŝλc = 1.5. This im-
plies usingµ = 0.47 and (8) that the average time for one
failure to split isâ = 1.1.
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Figure 11. Times of line trips in WSCC July
1996 blackout in minutes after 14:00 MDT.
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Figure 12. Log cumulative failures in expo-
nential phase of WSCC July 1996 blackout as
a function of stage number. The straight line
is an exponential with exponent 1.4.

We do not yet have evidence available that the continu-
ous time Markov branching process approximates the time
sequence of actual failures; the present argument in favor of
this modeling is that the assumptions are simple. Given a
longer time series of failure data, such as the failure times
in the August 2003 blackout, we could try to discriminate
between the models and approaches suggested here and sta-
tistically or qualitatively test the fit of the models to the data.
The data currently available to us is too limited to attempt
this.

Table 1. Line trip times and stage numbers for
exponential phase of July 1996 WSCC black-
out. Time units are minutes after 14:00 MDT.

trip time increment in trip time stage number
23.867 1
27.219 3.352 2
27.336 0.117 2
27.868 0.532 3
28.052 0.184 3
28.319 0.267 4
29.602 1.283 5
29.608 0.006 5
29.695 0.087 5
29.835 0.140 5
30.144 0.309 6
30.145 0.001 6
30.159 0.014 6
30.604 0.445 7
30.953 0.349 8
30.965 0.012 8
30.971 0.006 8
31.045 0.074 8
31.094 0.049 8
31.815 0.721

Table 2. Evolution of number of failures in
jumps

r 1 2 3 4 5 6 7 8
Sr 1 2 2 1 4 3 1 5

Sr/r 1 1 0.67 0.25 0.8 0.5 0.14 0.63

4. Implications of branching model

Now we suppose that blackouts can be approximated by
a discrete time Galton-Watson branching process model and
explore some illustrative calculations using the model.

4.1. Probability of a given large blackout not hap-
pening

One interesting exercise is to use values ofλ estimated
from the large real blackouts that occurred with a region of
exponential increase to compute the probabilityq of those
blackoutsnot having the region of exponential increase. Of
course there may be a blackout without the region of expo-
nential increase, but such a blackout will have much more
limited size. Thus we considerq to be the probability that
the cascade dies out for that given value ofλ. (This was
alluded to in the discussion of Figure 8 above.) The value



of q is the same for the Galton-Watson branching process
and for the continuous time Markov branching process, but
it does depend on the generating functionf(s) that is used
to construct these branching processes. Here we will as-
sume that the generating function corresponds to a Poisson
distribution so thatf(s) = eλ(s−1), as suggested by the
branching process approximation to the abstract cascading
failure model in [7, 5]. The probabilityq is easily computed
as a root of the equationf(s) = s and the results are shown
in Table 3.

Suppose that a blackout has an exponential phase with
λ ≈ 2. This would imply that the probability that the ex-
ponential phase of the blackout did not occur is about 0.2.
This calculation is made in hindsight after the blackout, but
it does highlight the difficulties of making optimal decisions
during the evolution of the blackout, even given good infor-
mation. Blackouts with lower values ofλ will have higher
values ofq. Suppose thatλ = 1.1 and an exponentially in-
creasing blackout occurred. The probability that it did not
occur is0.82 and one could argue that, in the absence of real
time information about risk, a competent and well-informed
system operator might well have acted properly by assum-
ing the most likely outcome of no large blackout.

Table 3. Probability q of large blackout not oc-
curring

λ q

0.9 1.00
1.0 1.00

1.1 0.82
1.2 0.69
1.3 0.58
1.4 0.49
1.5 0.42
1.6 0.36
1.7 0.31
1.8 0.27
1.9 0.23

2.0 0.20
3.0 0.06
4.0 0.02
5.0 0.01

4.2. An initial approach to real time monitoring of
cascading blackouts

The exponential cascading phase starts slowly and ac-
celerates later. As we accumulate more failures, the prob-
ability of an exponentially accelerating cascade increases.
Is it possible to detect this increased probability during the

slow part? This subsection outlines an approach to quan-
tify the statistics of this problem by monitoring cumulative
line failures. Monitoring cumulative line failures would be
practical in real time in a well-instrumented control center.

We regard theλ parameter of a staged branching process
as a random variableΛ. Let the probability density function
of Λ for a given system condition (i.e. stress level) befΛ(λ)
in [λmin, λmax]. We assume that for given system condition
we have either historical data or off-line simulations giving
fΛ(λ).

We have set a threshold to limit cascading failure risk of
λ < λt. Presumablyλt < 1 to exclude the possibility of
exponentially increasing phases when the power system is
operated withλ < λt.

Let the cumulative line failures observed in real time be
S. Note that it would be necessary to somehow distinguish
line failures involved in the initial disturbance from those
involved in the cascading phase.

Suppose that we observe in real time thatS = k. Then
we know thatS ≥ k for the final cascade. So what, knowing
thatS ≥ k, is the probability of cascading failure caused by
λ > λt? That is, what isP [Λ > λt|S ≥ k]? We give a
sample calculation ofP [Λ > λt|S ≥ k] below. In particu-
lar, we numerically evaluateP [Λ > λt|S ≥ k] under some
assumptions for increasing values ofk. This quantifies how
the probability of a large cascade increases as the number
of observed line trips increases.

The calculations are done by evaluating the formula (27)
derived in the appendix. The assumptions are that the cas-
cade is modeled by a Galton-Watson branching process gen-
erated by a Poisson distribution. The distribution ofΛ on
[λmin, λmax], in the absence of any information about the
likely form of this distribution, is assumed to be uniform.
Saturation effects are neglected.

The data needed is the initial number of failuresθ and
the range[λmin, λmax] for the uniform distribution ofΛ.
We choose values of these parameters for a sample calcu-
lation and varyk. The results are shown in Table 4. When
k = 1 there is no information supplied by the line trip that
is additional to the information that a cascade has started
(the probability ofλ > 0.9 is clearly0.5 whenλ is uni-
formly distributed in[0.7, 1.1]. The probability ofλ > 0.9
increases withk, but the rate of increase is modest in this
example. Thus in this example the real time monitoring of
k would add little value to the offline calculation of the dis-
tribution of Λ. Note that waiting until largek is observed
does not help manage the cascading blackout because then
the cascading process is well under way and cannot readily
be corrected.



Table 4. Probability of λ exceeding threshold
λt when k line trips are observed.

k P [Λ > λt|S ≥ k] parameters

1 0.50 λt = 0.9
2 0.52 [λmin, λmax] = [0.7, 1.1]
3 0.53 θ = 1
4 0.55
5 0.57
6 0.58
7 0.60
8 0.61
9 0.62

10 0.63
15 0.69
20 0.73

5. Conclusion

The main contribution of this paper is to observe in re-
cent North American cascading failure blackouts exponen-
tially increasing phases of cumulative line trips and suggest
that these be modeled by supercritical Markov branching
processes. Simple discrete time branching process models
and a continuous time Markov branching process model are
considered. Several initial calculations illustrating how pa-
rameters may be estimated and these models might be ap-
plied are suggested. One interesting consequence of this
statistical blackout modeling is that the probability of a
given blackoutnot occurring could be estimated after the
blackout. A preliminary approach to real time blackout
monitoring is considered.

The blackout data sets currently available to us are not
long enough to distinguish between the models or defini-
tively estimate the parameters, but, when they are super-
critical, all the branching process models do qualitatively
reproduce the exponential growth of failures that seems to
be the manner in which the 1996 and 2003 North American
blackouts became widespread.
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A. Probability of λ > λt givenk failures

For a Galton-Watson branching process with a finite
number of components, the probability distribution of total
number of failuresS for a given value ofλ is P [S = s|Λ =
λ] given by saturating generalized Poisson distribution [5].

g(r, θ, λ, n) = θ(rλ + θ)r−1 e−rλ−θ

r!
; 0 ≤ r ≤ (n − θ)/λ, r < n (15)

g(r, θ, λ, n) = 0 ; (n − θ)/λ < r < n, r ≥ 0 (16)

g(n, θ, λ, n) = 1 −
n−1∑
s=0

g(s, θ, λ, n) (17)

Then joint distribution of(S, Λ) is

fS,Λ(s, λ) = P [S = s|Λ = λ]fΛ(λ) (18)

P [Λ > λt|S ≥ k] =
P [Λ > λt andS ≥ k]

P [S ≥ k]
(19)

=

n∑
s=k

∫ λmax

λt

fS,Λ(s, λ) dλ

n∑
s=k

∫ λmax

λmin

fS,Λ(s, λ) dλ

(20)

=

∫ λmax

λt
P [S ≥ k|Λ = λ]fΛ(λ) dλ∫ λmax

λmin
P [S ≥ k|Λ = λ]fΛ(λ) dλ

(21)

Since Λ is assumed to be uniformly distributed on
[λmin, λmax],

P [Λ > λt|S ≥ k] =

∫ λmax

λt
P [S ≥ k|Λ = λ] dλ∫ λmax

λmin
P [S ≥ k|Λ = λ] dλ

(22)

=

∫ λmax

λt
1 − FS|Λ=λ(k − 1) dλ∫ λmax

λmin
1 − FS|Λ=λ(k − 1) dλ

(23)

=

λmax − λt −
k−1∑
s=0

∫ λmax

λt

g(s, θ, λ, n) dλ

λmax − λmin −
k−1∑
s=0

∫ λmax

λmin

g(s, θ, λ, n) dλ

(24)

=

(λmax − λt)(1 − e−θ) −
k−1∑
s=1

∫ λmax

λt

g(s, θ, λ, n) dλ

(λmax − λmin)(1 − e−θ) −
k−1∑
s=1

∫ λmax

λmin

g(s, θ, λ, n) dλ

(25)

Suppose thatk − 1 is small enough to avoid saturation ef-
fects. Then

∫ λmax

λt

g(s, θ, λ, n) dλ = − θ

ss!
Γ[s, θ + sλ]

]λmax

λt

(26)

and

P [Λ > λt|S ≥ k] =

(λmax − λt)(1 − e−θ) −
k−1∑
s=1

θ

ss!
Γ[s, θ + sλ]

]λt

λmax

(λmax − λmin)(1 − e−θ) −
k−1∑
s=1

θ

ss!
Γ[s, θ + sλ]

]λmin

λmax

(27)
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Evidence for Self-Organized Criticality in a Time
Series of Electric Power System Blackouts

Benjamin A. Carreras, David E. Newman, Ian Dobson, Senior Member, IEEE, and A. Bruce Poole

Abstract—We analyze a 15-year time series of North American
electric power transmission system blackouts for evidence of self-
organized criticality (SOC). The probability distribution functions
of various measures of blackout size have a power tail and rescaled
range analysis of the time series shows moderate long-time corre-
lations. Moreover, the same analysis applied to a time series from
a sandpile model known to be self-organized critical gives results
of the same form. Thus, the blackout data seem consistent with
SOC. A qualitative explanation of the complex dynamics observed
in electric power system blackouts is suggested.

Index Terms—Blackouts, complex systems, power system secu-
rity, reliability, risk analysis, time series.

I. INTRODUCTION

E LECTRIC power transmission networks are complex
systems that are commonly run near their operational

limits. Major cascading disturbances or blackouts of these
transmission systems have serious consequences. Individually,
these blackouts can be attributed to specific causes, such as
lightning strikes, ice storms, equipment failure, shorts resulting
from untrimmed trees, excessive customer-load demand, or
unusual operating conditions. However, an exclusive focus on
these individual causes can overlook the global dynamics of
a complex system in which repeated major disruptions from
a wide variety of sources are a virtual certainty. We analyze a
time series of blackouts to probe the nature of these complex
system dynamics.
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The North American Electrical Reliability Council (NERC)
has a documented list summarizing major blackouts1 of the
North American power grid [1]. They are of diverse magnitude
and of varying causes. It is not clear how complete this data
is, but it is the best-documented source that we have found for
blackouts in the North American power transmission system.
An initial analysis of these data [6] over a period of five years
suggested that self-organized criticality (SOC) [2], [3], [23]
may govern the complex dynamics of these blackouts. Here,
we further examine this hypothesis [7], [13] by extending the
analysis to 15 years. These extended data allow us to develop
improved statistics and give us longer time scales to explore.
We compare the results to the same types of analysis of time
sequences generated by a sandpile model known to be SOC.
The similarity of the results is quite striking and is suggestive
of the possible role that SOC plays in power system blackouts.
A plausible qualitative explanation of SOC in power system
blackouts is outlined in Section VI.

As an introduction to the concept, an SOC system is one in
which the nonlinear dynamics in the presence of perturbations
organize the overall average system state near, but not at, the
state that is marginal to major disruptions. SOC systems are
characterized by a spectrum of spatial and temporal scales of
the disruptions that exist in remarkably similar forms in a wide
variety of physical systems [2], [3], [23]. In these systems, the
probability of occurrence of large disruptive events decreases as
a power function of the event size. This is in contrast to many
conventional systems in which this probability decays exponen-
tially with event size.

It is apparent that large blackouts are rarer than small black-
outs, but how much rarer are they? Fig. 1 shows the probability
distribution of blackout size from the North American blackout
data that is discussed in detail in Section II. Fig. 2 shows a prob-
ability distribution of number of line outages obtained from a
blackout model that represents cascading failure and complex
dynamics [11]. These data suggest a power law relationship
between blackout probability and blackout size. For compar-
ison, Fig. 2 also shows the binomial probability distribution of
number of line outages and its exponential tail that would be
obtained if the line outages were independent. Blackout risk is
the product of blackout probability and blackout cost. Here, we
assume that blackout cost is roughly proportional to blackout
size, although larger blackouts may well have costs (especially

1The NERC data arise from government incident reporting requirements. The
thresholds for the report of an incident include uncontrolled loss of 300 MW
or more of firm system load for more than 15 min from a single incident, load
shedding of 100 MW or more implemented under emergency operational policy,
loss of electric service to more than 50 000 customers for 1 h or more, and other
criteria detailed in the U.S. Department of Energy form EIA-417.

1057-7122/04$20.00 © 2004 IEEE
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Fig. 1. Log–log plot of PDF of the number of customers unserved comparing
the total data set with the data excluding the weather related events.

Fig. 2. Log–log plot of PDF of number of line outages from blackout model
compared with binomial random variable with exponential tail.

indirect costs) that increase faster than linearly. In the case of
the exponential tail, large blackouts become rarer much faster
than blackout costs increase, so that the risk of large blackouts
is negligible. However, in the case of a power law tail, the larger
blackouts can become rarer at a similar rate as costs increase,
and then the risk of large blackouts is comparable to, or even
exceeding, the risk of small blackouts [11]. Thus power laws in
blackout size distributions significantly affect the risk of large
blackouts and the evidence for power laws in real blackout data
that we address in this paper is pertinent. Standard probabilistic

techniques that assume independence between events imply ex-
ponential tails and are not applicable to systems that exhibit
power tails.

Large blackouts are typically caused by long, intricate cas-
cading sequences of rare events. Dependencies between the first
few events can be assessed for a subset of the most likely or
anticipated events and this type of analysis is certainly useful
in addressing a part of the problem (e.g., [26]). However, this
combinatorial analysis gets overwhelmed and becomes infea-
sible for long sequences of events or for the huge number of all
possible rare events and interactions, many of which are unantic-
ipated, that cascade to cause large blackouts. One aim of global
complex systems analysis of power system blackouts is to pro-
vide new insights and approaches that could address these chal-
lenges. As a first step toward this aim, this paper analyzes ob-
served blackout data and suggests one way to understand the
origin of the dynamics and distribution of power system black-
outs. Indeed, we suggest that the slow, opposing forces of load
increase and network upgrade in response to blackouts shape
the system operating margins so that cascading blackouts occur
with a frequency governed by a power law relationship between
blackout probability and blackout size. Moreover, we discuss
the dynamical dependencies and correlations between blackouts
in the NERC data.

II. TIME SERIES OF BLACKOUT DATA

We have analyzed 15 years of data for North America from
1984 to 1998 that is publicly available from NERC [1]. There
are 427 blackouts in 15 years and 28.5 blackouts per year.
The average period of time between blackouts is 12.8 days.
The blackouts are distributed over the 15 years in an irregular
manner. We have detected no evidence of systematic changes in
the number of blackouts or periodic or quasi-periodic behavior.
However, it is difficult to determine long term trends or periodic
behavior in just 15 years of data. We constructed time series
from the NERC data with the resolution of a day for the number
of blackouts and for three different measures of the blackout
size. The length of the time record is 5479 days. The three
measures of blackout size are:

1) energy unserved (MW h);
2) amount of power lost (MW);
3) number of customers affected.

Energy unserved was estimated from the NERC data by multi-
plying the power lost by the restoration time.

III. ANALYSIS OF BLACKOUT TIME SERIES

In order to gain an understanding of the dynamics of a system
from analysis of a time series, one must employ a variety of
tools beyond basic statistical analysis. Among other measures
which should be employed, the tails of the probability distri-
bution function (PDF) should be investigated for normality and
frequency spectra should be viewed in order to begin to look at
dependencies in the time domain. The time domain is particu-
larly important as the system dynamics are expressed in time.
Periodicities and long-time correlations must both be exam-
ined and compared to systems with known dynamics. We will
present details of the analysis of the PDFs later; however, the
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Fig. 3. Complementary cumulative frequency of the number of customers
unserved.

first striking characteristic of the data is the power law tail of
these PDFs. This power law tail is shown in Fig. 1, where we
have plotted the PDF of the number of customers unserved for
all events (the squares) on a log–log plot. The PDF falls off with
a power of approximately , which implies a divergent vari-
ance. The PDF is clearly not a distribution with exponential tails.
In this paper, the PDFs are noncumulative PDFs obtained by
binning the data.2 An alternative way to estimate the distribution
is to plot the number of blackouts with more than customers
unserved against to give the complementary cumulative fre-
quency shown in Fig. 3. The empirical data in Fig. 3 falls off
with a power of approximately (all tail points considered)
or (last seven tail points neglected due to sparse data). The
relationship for an exact distribution is that a power law expo-
nent in a PDF yields a power law exponent of in the
corresponding complementary cumulative frequency. Thus the
power law exponents obtained from Figs. 1 and 3 are consistent.

Looking in the time domain, a time series is said to have
long-range dependence if its autocorrelation function falls off
asymptotically as a power law. This type of dependence is diffi-
cult to determine because noise tends to dominate the signal for
long time lags. One way to address this problem is the rescaled
range (R/S) statistics proposed by Mandelbrot and Wallis [24]
and based on a previous hydrological analysis by Hurst [21].
The R/S statistics consider blocks of successive points in the
integrated time series and measure how fast the range of the
blocks grows as increases. The calculation of the R/S sta-
tistics is further described in the Appendix.

It can be shown that in the case of a time series with
an autocorrelation function that has a power law tail, the R/S

2The bins are chosen to require a minimum number of points per bin. The
minimum number of points per bin is reduced when the weather-related black-
outs are excluded.

TABLE I
HURST PARAMETERH FROM R/S ANALYSIS OF BLACKOUT SIZE TIME SERIES

statistic scales proportionally to , where is the Hurst ex-
ponent. Thus, is the asymptotic slope on a log–log plot of
the R/S statistic versus the time lag. If , there
are long-range time correlations, for , the series
has long-range anticorrelations, and if , the process
is deterministic. Uncorrelated noise corresponds to .
A constant parameter over a long range of time-lag values
is consistent with self-similarity of the signal in this range [32]
and with an autocorrelation function that decays as a power of
the time lag with exponent .

We have determined the long-range correlations in the 15 year
blackout time series using the R/S method. The time series has
5479 days and 427 blackouts. The calculated Hurst exponents
[21] for the different measures of blackout size are shown in
Table I. The values are obtained by fitting over time lags
between 100 and 3000 days. In this range, the behavior of the
R/S statistic is power like. The values of obtained for all the
time series are close to 0.6. This seems to indicate that they are
all equally correlated over the long range. These values of
are somewhat lower than the previously obtained values [6], but
still significantly above 0.5. Note that the “events” in the time
series are the events that have produced a blackout and not all
the events that occurred. The latter are supposed to be random
( ); however, the events that produce a blackout may
indeed have moderate correlations because they depend on the
state of the system.

A method of testing the independence of the triggering events
has been suggested by Boffetta et al. [4]. They evaluated the
times between events (waiting times) and argued that the PDF
of the waiting times should have an exponential tail. Such is
clearly the case for the waiting times of sandpile avalanches
(Fig. 4). In the case of waiting times between blackouts, we also
have observed the same exponential dependence of the PDF tail
(Fig. 5). This observation is confirmed in [13]. This strengthens
the contention that the apparent correlations in the events come
from SOC-like dynamics within the power system rather than
from the events driving the power system dynamics.

Examining the R/S results in more detail, Fig. 6 shows the R/S
statistic for the time series of the number of customers affected
by blackouts. The average period of time without blackouts is
12.8 days, hence, in looking over time lags of this order we typ-
ically find either one blackout or none. For the shorter time lags
less than 50 days, we are unable to get information on correla-
tions between blackouts because the time intervals are too short
to contain several blackouts. We see a correlation between ab-
sence of blackouts, and because these time intervals tend to only
contain absences of blackouts, we see close to 1 (trivially de-
terministic). For time lags above 50 days, the R/S shows a power
behavior and gives a correct determination of blackout correla-
tion. The R/S calculation is sensitive to this change in regime
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Fig. 4. Distribution of waiting times between avalanches in a sandpile for two
values of the probability of adding grains of sand.

Fig. 5. PDF of the waiting times between blackouts.

and there is an obvious change of behavior for time intervals
around 50 days. An alternative method of determining correla-
tions is the scaled window variance method. We do not use the
scaled window variance method in this paper because in this
method, the correlations between absences of blackouts skew
the correlations between blackouts at larger time lags [7].

IV. EFFECT OF WEATHER

Approximately half of the blackouts (212 blackouts) are char-
acterized as weather related in the NERC data. In attempting
to extract a possible periodicity related to seasonal weather, we
consider separately the time series of all blackouts and the time
series of blackouts that are not weather related. An important

Fig. 6. R/S for the number of customers affected by blackouts.

TABLE II
HURST PARAMETERH FOR MEASURES OF BLACKOUT SIZE COMPARING ALL

DATA WITH DATA EXCLUDING BLACKOUTS TRIGGERED BY WEATHER

issue in studying long-range dependencies is the possible pres-
ence of periodicities. Both R/S analysis and spectral analysis of
this data do not show any clear periodicity. However, since the
weather related events may play an important role in the black-
outs, one may suspect seasonal periodicities. However, the data
combines both summer and winter peaking regions of North
America. Because of the limited amount of data, it is not pos-
sible to separate the blackouts by geographical location and redo
the analysis. What we have done is to reanalyze the data ex-
cluding the blackouts triggered by weather related events. The
results are summarized in Table II. As can be seen, the exclu-
sion of the blackouts triggered by weather related events does
not significantly change the value of . When looking solely at
the blackouts triggered by weather related events, the value of

is closer to 0.5 (random events), although the available data
is too sparse to be sure of the significance of this result.

Another question to consider is the effect of excluding the
weather related events on the PDF. We have recalculated the
PDF for all the measures of blackout size when the weather re-
lated events are not included. The PDFs obtained are the same
within the numerical accuracy of this calculation. This is illus-
trated in Fig. 1, where we have plotted the PDFs of the number of
customers unserved for all events and for the nonweather related
events. Therefore, for both long-range dependencies and struc-
ture of the PDF, the blackouts triggered by weather events do not
show any particular properties that distinguish them from the
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other blackouts. Therefore, both the long time correlations and
the PDFs of the blackout sizes remain consistent with SOC-like
dynamics.

In addition to weather effects, one might expect spatial struc-
ture of the grid to have an effect on the dynamics. However, anal-
ysis of the NERC data by Chen et al. in [13] suggests that sim-
ilar results are obtained when data for the eastern and western
North American power systems is analyzed separately. Since
the eastern and western power systems have different charac-
teristics, this interesting result tends to support the notion that
there are some underlying common principles for the system
dynamics.

V. COMPARISON TO SOC SANDPILE MODEL

The issue of determining whether power system blackouts
are governed by SOC is a difficult one. There are no unequiv-
ocal determining criteria. One approach is to compare charac-
teristic measures of the power system to those obtained from a
known SOC system. The prototypical model of a SOC system
is a one-dimensional idealized running sandpile [22]. The mass
of the sandpile is increased by adding grains of sand at random
locations. However, if the height at a given location exceeds a
threshold, then grains of sand topple downhill. The topplings
cascade in avalanches that transport sand to the edge of the sand-
pile, where the sand is removed. In the running sandpile, the
addition of sand is on average balanced by the loss of sand at
the edges and there is a globally quasi-steady state or dynamic
equilibrium close to the critical profile that is given by the angle
of repose. There are avalanches of all sizes and the PDF of the
avalanche sizes has a power law tail. The particular form of the
sandpile model used here is explained in [25] and the sandpile
length used in the present calculations is . We are, of
course, not claiming that the running sandpile is a model for
power system blackouts. We only use the running sandpile as a
black box to produce a time series of avalanches characteristic
of a SOC system.

It is convenient to assume that every time iteration of the sand-
pile corresponds to one day. When an avalanche starts, we inte-
grate over the number of sites affected and the number of steps
taken and assign them to a single day. Thus we construct a time
series of the avalanche sizes. The sandpile model has a free pa-
rameter , which is the probability of a grain of sand being
added at a location. is chosen so that the average frequency
of avalanches is the same as the average frequency of blackouts.

In evaluating the long-range time dependence of the black-
outs, we use the rescaled range or R/S [24] technique described
earlier. As stated before, the R/S technique is useful in deter-
mining the existence of a power law tail in the autocorrelation
function and calculating the exponent of the decay of the tail
(see Appendix for details). The same R/S analysis used for
the blackout time series is applied to the avalanche time series.
Fig. 7 shows the R/S statistic for the time series of avalanche
sizes from the sandpile and for the time series of power lost by
the blackouts. The similarity between the two curves is remark-
able. A similarly good match of the R/S statistics between the
blackout and sandpile time series is obtained for the other mea-
sures of blackout size.

Fig. 7. R/S for avalanche sizes in a running sandpile compared to R/S for
power lost in blackouts.

Fig. 8. Rescaled PDF of energy unserved during blackouts superimposed on
the PDF of the avalanche size in the running sandpile.

Fig. 8 shows the PDF of the avalanche sizes from the sandpile
data together with the rescaled PDF of the energy unserved from
the blackout data. The resemblance between the two distribu-
tions is again remarkable. The rescaling is necessary because of
the different units used to measure avalanche size and blackout
size. That is, we assume a transformation of the form

(1)

is the variable that we are considering, is the corre-
sponding PDF, and is the rescaling parameter. If the transfor-
mation (1) works, is the universal function that describes the
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PDF for the different parameters. Transformation (1) is used to
overlay the sandpile and blackout PDFs.

We can consider PDFs of the other measures of blackout size
and use transformation (1) to plot each of these PDFs with the
sandpile avalanche size PDF. In all cases, the agreement is very
good. Of course, the rescaling parameter differs for each mea-
sure of blackout size. The exponents obtained for these PDFs
tails are between and . These exponents imply diver-
gence of the variance, one of the characteristic features of sys-
tems with SOC dynamics. In fact, divergence of the variance
is a general feature of systems near criticality. This comparison
of the PDFs of the measures of blackout and avalanche sizes is
useful in evaluating the possible errors in the determination of
the power law decay exponent of the PDFs. One can see that for
the large size events where the statistics are sparse, there may
be deviations from the curve. These deviations can influence the
computed value of the exponent, but they are probably of little
significance for the present comparisons.

VI. POSSIBLE EXPLANATION OF POWER SYSTEM SOC

To motivate comparisons between power system blackout
data and SOC sandpile data, we suggest a qualitative descrip-
tion of the structure and effects in a large-scale electric power
transmission system which could give rise to SOC dynamics.
The power system contains many components such as gener-
ators, transmission lines, transformers and substations. Each
component experiences a certain loading each day and when
all the components are considered together, they experience
some pattern or vector of loadings. The pattern of component
loadings is determined by the power system operating policy
and is driven by the aggregated customer loads at substations.
The power system operating policy includes short term actions
such as generator dispatch as well as longer term actions such
as improvements in procedures and planned outages for main-
tenance. The operating policy seeks to satisfy the customer
loads at least cost. The aggregated customer load has daily and
seasonal cycles and a slow secular increase of about 2% per
year.

Events are either the limiting of a component loading to a
maximum or the zeroing of the component loading if that com-
ponent trips or fails. Events occur with a probability that de-
pends on the component loading. For example, the probability
of relay misoperation [13] or transformer failure generally in-
creases with loading. Another example of an event could be an
operator redispatching to limit power flow on a transmission line
to its thermal rating and this could be modeled as probability
zero when below the thermal rating of the line and probability
one when above the thermal rating. Each event is a limiting or
zeroing of load in a component and causes a redistribution of
power flow in the network and hence a discrete increase in the
loading of other system components. Thus events can cascade. If
a cascade of events includes limiting or zeroing the load at sub-
stations, it is a blackout. A stressed power system experiencing
an event must either redistribute load satisfactorily or shed some
load at substations in a blackout. A cascade of events leading to

blackout usually occurs on a time scale of minutes to hours and
is completed in less than one day.

It is customary for utility engineers to make prodigious efforts
to avoid blackouts and especially to avoid repeated blackouts
with similar causes. These engineering responses to a blackout
occur on a range of time scales longer than one day. Responses
include repair of damaged equipment, more frequent mainte-
nance, changes in operating policy away from the specific con-
ditions causing the blackout, installing new equipment to in-
crease system capacity, and adjusting or adding system alarms
or controls. The responses reduce the probability of events in
components related to the blackout, either by lowering their
probabilities directly or by reducing component loading by in-
creasing component capacity or by transferring some of the
loading to other components. The responses are directed toward
the components involved in causing the blackout. Thus the prob-
ability of a similar blackout occurring is reduced, at least until
load growth degrades the improvements made. There are sim-
ilar, but less intense responses to unrealized threats to system
security such as near misses and simulated blackouts.

The pattern or vector of component loadings may be thought
of as a system state. Maximum component loadings are driven
up by the slow increase in customer loads via the operating
policy. High loadings increase the chances of cascading events
and blackouts. The loadings of components involved in the
blackout are reduced or relaxed by the engineering responses
to security threats and blackouts. However, the loadings of
some components not involved in the blackout may increase.
These opposing forces driving the component loadings up and
relaxing the component loadings are a reflection of the stan-
dard tradeoff between satisfying customer loads economically
and security. The opposing forces apply over a range of time
scales. We suggest that the opposing forces, together with the
underlying growth in customer load and diversity give rise
to a dynamic equilibrium and conjecture that this dynamic
equilibrium could be SOC-like. It is important to note that this
type of system organizes itself to an operating point near to but
not at a critical value. This could make the system intrinsically
vulnerable to cascading failures from unexpected causes as the
repair and remediation steps taken to prevent a known failure
mode are part of the system dynamics.

We briefly indicate the roughly analogous structure and ef-
fects in an idealized sand pile model. Events are the toppling of
sand and cascading events are avalanches. The system state is a
vector of maximum gradients at all the locations in the sand pile.
The driving force is the addition of sand, which tends to increase
the maximum gradient, and the relaxing force is gravity, which
topples the sand and reduces the maximum gradient. SOC is a
dynamic equilibrium in which avalanches of all sizes occur and
in which there are long time correlations between avalanches.
The rough analogy between the sand pile and the power system
is shown in Table III. There are also some distinctions between
the two systems. In the sand pile, the avalanches are coinci-
dent with the relaxation of high gradients. In the power system,
each blackout occurs on fast time scale (less than one day), but
the knowledge of which components caused the blackout deter-
mines which component loadings are relaxed both immediately
after the blackout and for some time after the blackout.
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TABLE III
ANALOGY BETWEEN POWER SYSTEM AND SAND PILE

VII. CONCLUSION

We have calculated long time correlations and PDFs for
several measurements of blackout size in the North Amer-
ican power transmission grid from 1984 to 1998. These long
time correlations and PDFs seem consistent with long-range
time dependencies and PDFs for avalanche sizes in a running
sandpile known to be SOC. That is, for these statistics, the
blackout size time series seem indistinguishable from the sand-
pile avalanche size time series. This similarity suggests that
SOC-like dynamics may play an important role in the global
complex dynamics of power systems.

We have outlined a possible qualitative explanation of the
complex dynamics in a power system which proposes some of
the opposing forces that could give rise to a dynamic equilib-
rium with some properties of SOC. The opposing forces are,
roughly speaking, a slow increase in loading (and system aging)
weakening the system and the engineering responses to black-
outs strengthening parts of the system. Here we are suggesting
that the engineering and operating policies of the system are im-
portant and integral parts of the system long-term complex dy-
namics. Carlson and Doyle have introduced a theory of highly
optimized tolerance (HOT) that describes power law behavior
in a number of engineered or otherwise optimized applications
[5]. After this paper was first submitted, Stubna and Fowler [33]
published an alternative view based on HOT of the origin of the
power law in the NERC data.3

The PDFs of the measures of blackout size have power tails
with exponents ranging from to and therefore have
divergent variances. Thus large blackouts are much more fre-
quent than might be expected. In particular, the application of
traditional risk evaluation methods can underestimate the risk of
large blackouts. R/S analysis of the blackout time series shows
moderate ( ) long time correlations for several mea-
sures of blackout size. Excluding the weather related blackouts
from the time series has little effect on the results. The expo-
nential tail of the PDF of the times between blackouts supports
the contention that the correlations between blackouts are due
to the power system global dynamics rather than correlations in
the events that trigger blackouts.

3To apply HOT to the power system, it is assumed that blackouts propagate
one dimensionally [33] and that this propagation is limited by finite resources
that are engineered to be optimally distributed to act as barriers to the propa-
gation [5]. The one-dimensional assumption implies that the blackout size in
a local region is inversely proportional to the local resources. Minimizing a
blackout cost proportional to blackout size subject to a fixed sum of resources
leads to a probability distribution of blackout sizes with an asymptotic power
tail and two free parameters. The asymptotic power tail exponent is exactly�1
and this value follows from the one dimensional assumption. The free param-
eters can be varied to fit the NERC data for both MW lost and customers dis-
connected. Moreover, [33] shows that a better fit to both these data sets can be
achieved by modifying HOT to allow some misallocation of resources.

The strength of our conclusions is naturally somewhat limited
by the short time period (15 years) of the available blackout data
and the consequent limited resolution of the statistics. To further
understand the mechanisms governing the complex dynamics of
power system blackouts, modeling of the power system is indi-
cated. There is substantial progress in modeling and analyzing
the approach inspired by SOC outlined in Section VI [8]–[12],
[17] and in modeling blackouts and cascading failure from other
perspectives [14]–[16], [18]–[20], [27], [29]–[31], [34].

If the dynamics of blackouts are confirmed to have some char-
acteristics of SOC, this would open up possibilities for moni-
toring statistical precursors of large blackouts or controlling the
power system to modify the expected distribution of blackout
sizes [11]. Moreover, it would suggest the need to revisit the tra-
ditional risk analysis based on random variables with exponen-
tial tails since these complex systems have statistics with power
tails.

APPENDIX

Consider the time series .
We construct the series that is
the original series integrated in time: . For
the series and for each a new series

is generated. The ele-
ments of the series are blocks of elements of so that

. We then calculate the range
and standard deviation within each of the blocks of
elements of , and compute for each block . The
R/S statistic as a function of the time lag is then the average

.
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In order to study the complex global dynamics of a series of blackouts in power transmission
systems a dynamical model of such a system has been developed. This model includes a simple
representation of the dynamical evolution by incorporating the growth of power demand, the
engineering response to system failures, and the upgrade of generator capacity. Two types of
blackouts have been identified, each having different dynamical properties. One type of blackout
involves the loss of load due to transmission lines reaching their load limits but no line outages. The
second type of blackout is associated with multiple line outages. The dominance of one type of
blackout over the other depends on operational conditions and the proximity of the system to one of
its two critical points. The model displays characteristics such as a probability distribution of
blackout sizes with power tails similar to that observed in real blackout data from North America.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1781391#
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Power transmission systems are complex systems tha
evolve over years in response to the economic growth o
the country and to continuously increasing power de-
mand. In spite of the reliability of these systems, there are
widespread disturbances that have significant cost to so
ciety. The average frequency of blackouts in the United
States is about one every 13 days. This frequency has no
changed over the last 30 years. Also the probability dis-
tribution of blackout sizes has a power tail; this depen-
dence indicates that the probability of large blackouts is
relatively high. Indeed, although large blackouts are
rarer than small blackouts, it can be argued that their
higher societal cost makes the risk of large blackouts
comparable to or exceed the risk of small blackouts. The
operation of power transmission systems is studied from
the perspective of complex dynamics in which a diversity
of opposing forces regulate both the maximum capabili-
ties of the system components and the loadings at whic
they operate. These forces enter in a nonlinear manne
and may cause an evolution process to be ultimately re
sponsible for the regulation of the system. This view of a
power transmission system considers not only the engi
neering and physical aspects of the power system, bu
also the economic, regulatory, and political responses to
blackouts and increases in load power demand. From this
perspective, the search for the cause of the blackout
must not be limited to the trigger of the blackout, which
is normally a random event, but it must also consider the
dynamical state of the power transmission system. A de
tailed incorporation of all these aspects of the dynamics
into a single model is extremely complicated. Here, a sim
plified model is discussed with some approximate overal
6431054-1500/2004/14(3)/643/10/$22.00

ownloaded 03 Oct 2004 to 128.104.182.203. Redistribution subject to AIP l
representation of the opposing forces controlling the sys-
tem dynamics. This model reproduces some of the main
features of North American blackout data.

I. INTRODUCTION

Power transmission systems are complex systems
evolve over years in response to the economic growth of
country and to continuously increasing power demand. T
evolution and reliability of these systems are leading en
neering accomplishments of the last century that unde
developed societies. Nevertheless, widespread disturba
of power transmission systems that have significant cos
society are consistently present. An analysis of blackou1

done in the 1970s indicated that the average frequenc
blackouts in the United States was one every 14 days. M
recent analyses2,3 of 15 years of North American Electrica
Reliability Council ~NERC! data on blackouts of the North
American power grid4 gave an average frequency of blac
outs of one every 13 days. Furthermore, these analyses s
that the distribution of blackout sizes has a power tail with
exponent of about21.360.2. These results indicate that th
probability of large blackouts is relatively high. Indeed, a
though large blackouts are rarer than small blackouts, it
be argued that combining their higher societal costs w
their relatively high probability makes the risk of larg
blackouts comparable to or greater than the risk of sm
blackouts.5

It is clear that individual blackouts are triggered by ra
dom events ranging from equipment failures and b
weather to vandalism.4 The blackouts then typically becom
widespread through a series of cascading events. Howev
must be remembered that these individual blackouts occu
© 2004 American Institute of Physics
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a power transmission system that is itself slowly and
namically evolving in its design, configuration, and ope
tion. For example, the loading of system components rela
to their maximum loading is a key factor governing t
propagation of component failures and this loading evol
as the system components or operational policies are
graded. The existence of a power tail in the distribution
blackouts and the long time correlations seen in the sys
suggests that underlying the large-scale blackouts may
dynamically caused proximity to a critical point. It should b
noted that the size of a given blackout is unrelated to
particular triggering event that initiated that blackout.

To investigate such a possibility, we propose a model
power transmission systems6,7 that involves not only the dy-
namics of the generator dispatch but also the evolution of
system under a continuous increase in demand. This m
shows how the slow opposing forces of load growth a
network upgrades in response to blackouts could s
organize the power system to a dynamic equilibrium. Bla
outs are modeled by overloads and outages of transmis
lines determined in the context of linear programming~LP!
dispatch of a dc load flow model. This model shows comp
dynamical behaviors and has a variety of transition points
a function of increasing power demand.8 Some of these tran
sition points have the characteristic properties of a criti
transition. That is, when the power demand is close t
critical value, the probability distribution function~PDF! of
the blackout size has an algebraic tail, and the sys
changes sharply across the critical point. Because of this
risk of a global blackout increases sharply at the critical tr
sition.

The fact that, on one hand, there are critical points w
maximum power flow through the network and, on the oth
hand, there is a self-organization process that tries to m
mize efficiency and minimize risk, may lead to a pow
transmission model governed by self-organized critica
~SOC!.9 Such a possibility was first explored with a simp
cellular automaton model10 that incorporates neither the ci
cuit equations nor the type of long-term dynamics discus
above. In this paper, we study the dynamical properties
power transmission model6,7 that does incorporate these tw
components.

There have been some other complex system approa
to modeling aspects of power system blackouts. In the m
closely related work, Chen and Thorp11,12 modeled power
system blackouts using dc load flow and LP dispatch
represented in detail hidden failures of the protection syst
They obtained the distribution of power system blackout s
by rare event sampling, and studied blackout risk assessm
and mitigation methods. Stubna and Fowler13 applied a
modified ‘‘Highly Optimized Tolerance’’~HOT! model to fit
North American blackout data for blackout sizes measu
by both power shed and customers disconnected. Usin
different approach, Roy, Asavathiratham, Lesieutre, a
Verghese constructed randomly generated tree networks
abstractly represent influences between ideali
components.14 In that work, components can be failed
operational according to a Markov model that represe
both internal component failure and repair processes and
ownloaded 03 Oct 2004 to 128.104.182.203. Redistribution subject to AIP l
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fluences between components that cause failure propaga
The effects of the network degree of connectivity and int
component influences on the failure size and duration w
studied. Similarly, Pepyneet al.15 used a Markov model for
discrete-state power system nodal components but had
ures propagate along the transmission lines of a power
tem network with a fixed probability. DeMarco16 and Parrilo
et al.17 addressed the challenging problem of determin
cascading failure due to dynamic transients by using hyb
nonlinear differential equation models. DeMarco us
Lyapunov methods applied to a smoothed model; Par
et al. used Karhunen–Loeve and Galerkin model reduct
to address the problem.

The rest of this paper is organized as follows: In Sec.
we introduce a dynamical model of power transmission s
tem evolution over long time scales. Details of the pow
flow model and of the fast time scale dynamics are provid
in the Appendix. In Sec. III, numerical results of the mod
are reported with an analysis of the time and space corr
tions introduced by the dynamics. In Sec. IV, we analyze
effect of changing the ratio of generator capacity margin
maximum load fluctuation. This ratio allows the separati
of the dynamics into two different regimes. The conclusio
are given in Sec. V.

II. DYNAMICAL MODEL FOR POWER TRANSMISSION

In modeling the dynamics of power transmission sy
tems, one must consider two intrinsic time scales. There
slow time scale, of the order of days to years, over wh
load power demand slowly increases. Over this time sc
the network is upgraded in engineering responses to bla
outs and in providing more generator power in response
demand. As we shall see, these slow opposing forces of lo
increase and network-upgrade self-organize the system
dynamic equilibrium. The dynamical properties of this mod
are the main topic of this paper. In power transmission s
tems, there is also a fast time scale, of the order of minute
hours, over which power is dispatched through the netw
within which ~depending on the conditions of the networ!
cascading overloads or outages may lead to a blackout.

Over the fast time scale, we solve the standard dc po
flow equation for a given distribution of load demand. W
use the standard LP method18–20 with the usual constraints
on generating power capability and transmission line lim
to solve the generator power dispatch. An example o
power transmission network used in these studies is the IE
118 bus network21 shown in Fig. 1. Details of the fast dy
namics can be found in Refs. 6 and 7 and a summary
scription is given in the Appendix.

In any network, the network nodes~buses! are either
loads~L! ~black squares in Fig. 1!, or generators~G!, ~gray
squares in Fig. 1!. The powerPi injected at each node i
positive for generators and negative for loads, and the m
mum power injected isPi

max. The transmission line connec
ing nodesi and j has power flowFi j , maximum power flow
Fi j

max, and impedancezi j . There areNl lines andNN5NG

1NL total nodes, whereNG is the number of generators an
NL is the number of loads.
icense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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The slow dynamics proposed in Refs. 6 and 7 has th
components:~1! the growth of the demand,~2! response to
blackouts by upgrades in the grid transmission capabi
and ~3! response to increased demand by increasing m
mum generator power. These components of the model
translated into a set of simple rules. We simplify the tim
scale by regarding one blackout to be possible each da
the peak loading of that day. At the beginning of the dayt,
we apply the following rules:

~1! The demand for power grows. All loads are multiplie
by a fixed parameterl that represents the daily rate o
increase in electricity demand. On the basis of past e
tricity consumption in the United States, we estimate t
l51.00005. This value corresponds to a yearly rate
1.8%,
Pi~t!5lPi~t21! for i PL. ~1!

To represent the daily local fluctuations in power d
mand, all power loads are multiplied by a random nu
ber r , such that 22g<r<g, with 1<g<2. The power
transmission grid is improved. We assume a gradual
provement in the transmission capacity of the grid
response to outages and blackouts. This improveme
implemented through an increase ofFi j

max for the lines
that have overloaded during a blackout. That is,

Fij
max~t!5mFij

max~t21!, ~2!

if the line i j overloads during a blackout. We takem to
be a constant greater than 1 and in the present studie
have variedm in the range 1.01<m<1.1.
It is customary for utility engineers to make prodigio
efforts to avoid blackouts, and especially to avoid
peated blackouts with similar causes, which we ha
simplified into this one parameterm. In general, these
responses to blackouts occur on a range of time sc
longer than one day. Responses include repair of d
aged equipment, more frequent maintenance, change
operating policy away from the specific conditions cau
ing the blackout, installing new equipment to increa
system capacity, and adjusting or adding system ala
or controls. The responses reduce the probability
events in components related to the blackout, either

FIG. 1. Diagram of the IEEE 118 bus network. Generators are gray squ
loads are the black squares.
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lowering their probabilities directly or by reducing com
ponent loading by increasing component capacity or
transferring some of the loading to other componen
The responses are directed toward the components
volved in causing the blackout. Thus the probability o
similar blackout occurring is reduced; at least until lo
growth degrades the improvements that were ma
There are similar but less intense responses to unrea
threats to system security, such as near misses and s
lated blackouts.
By simplifying all engineering responses into a sing
parameterm we crudely represent all these responses t
blackout. The response is modeled as happening on
next day, but the effect is eventually cancelled by t
slow load increase. Because of the disparity betwe
these two time scales, at this level of modeling it do
not seem crucial to have an accurate estimate of the
sponse time, and the one-day time scale may be rea
able.

~2! The maximum generator power is increased in respo
to the load demand as follows:

~a! The increase in power is quantized. This can refl
either the upgrade of a power plant or the addition
generators. The increase is taken to be a fixed r
to the total power. Therefore, we introduce the qua
tity

DPa[k~PT /NG!, ~3!

wherePT is the total power demand,NG the number
of generators, andk is a parameter that we hav
taken to be a few percent.

~b! To be able to increase the maximum power in no
j , the sum of the power flow limits of the lines con
nected toj should be larger than the existing gene
ating power plus the addition at nodej . This re-
quirement maintains the coordination of th
maximum generator power ratings with the line ra
ings.

~c! A second condition to be verified before any max
mum generator power increase is that the mean g
erator power margin has reached a threshold va
That is, we define the mean generator power mar
at a timet as

DP

P
5

(jPGPj2P0e
(l21)t

P0e
(l21)t , ~4!

whereP0 is the initial power load demand.

~d! Once condition~c! is verified, we choose a node a
random to test condition~b!. If the chosen node veri-
fies condition ~b!, we increase its power by th
amount given by Eq.~3!. If condition ~b! is not veri-
fied, we choose another node at random and iter
After power has been added to a node, we use
~4! to recalculate the mean generator power mar
and continue the process untilDP/P is above the
prescribed quantity (DP/P)c .

s;
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~3! We also assign a probabilityp0 for a random outage of a
line. This value represents possible failures caused
phenomena such as accidents and weather related ev

After applying these three rules to the network, we lo
for a solution of the power flow problem by using line
programming as described in the Appendix.

It is also possible to introduce a time delay between
detection of a limit in the generation margin and the incre
in maximum generator power. This delay would repres
construction time. However, the result is the same as incr
ing the value ofk in Eq. ~3!, which can also give an alter
native interpretation fork.

Five basic parameters control the dynamics of t
model. One is the rate of increase in power demandl,
which we keep fixed at 1.8% per year on the basis of
averaged value for the U.S. grid in the last two decades.22 A
second parameter is the improvement rate of the trans
sion grid,m. This is not an easy parameter to estimate. Ho
ever, oncem is given, there is a self-regulation process
which the system produces the number of blackouts
would stimulate the engineering response needed to m
demand. This is a necessary condition for the dynam
equilibrium of the system. The rate of increase in pow
demand for the overall transmission system is essent
given by RD'(l21)NL . The system response isRR'(m
21) f blackout̂ l o&NL , where f blackout is the frequency of
blackouts and̂ l o& is a weighted average of the number
lines overloaded during a blackout. Dynamical equilibriu
implies thatRD5RR . That is, the increase in demand and t
corresponding increase in power supply must be matche
improvements in the transmission grid. Because those
provements are in response to real or simulated blacko
this relation implies thatm must be greater thanl; otherwise,
the system would be collapsing with constant blackouts
the numerical calculations and for the value of the dem
increase of 1.8% per year, we found thatm must be.1.01 in
order to avoid this collapse regime. In the present calcu
tions, we keepm in the range 1.01–1.1. In this regime, r
sults depend weakly onm.

A third parameterG is a measure of the generation c
pacity of the power system in response to fluctuations in
power demand.G is the ratio of the reserve generator pow
to the maximum daily fluctuation of the power demand. T
averaged power demand increases exponentially in tim
P̄D(t)[P0e(l21)t. However, the real instantaneous dema
is PD(t), different from the averaged power demand beca
of daily fluctuations. The generator power installedPG(t) is
also different from the averaged power demand. The dif
enceDP(t)[PG(t)2 P̄D(t) is the generator capability mar
gin used to cope with fluctuations in power demand. In o
calculations, the generator capability margin is varying
time, but we require it to be larger than a minimum pr
scribed valueDPc . Because the power demand is contin
ously increasing, it is convenient to normalize all these qu
tities to P̄D(t). Thus we defineG as the ratio of the
normalized minimal generator capability marginDPc / P̄D(t)
to the maximum fluctuation of the load demandg
[max(@(PD(t)2P̄D(t))/P̄D(t)#2)1/2,
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G5@DPc / P̄D#/g. ~5!

There is a simple relation betweeng and the load fluctuation
parameterg. The parameterG is the main parameter varie
in the calculations presented here. In the U.S., the gener
power capability margin has had a wide variation over
years, but an estimated mean value22 falls into the range of
15%–30%.

The fourth parameter is the probability of an outa
caused by a random event (p0). This parameter can be use
to partially control the frequency of blackouts, although t
relation between them is not linear. The fifth parameter is
probability for an overloaded line to undergo an outage (p1).
We keep this parameter in the range 0.1<p1<1.0.

Since each calculation can be done for different spec
network configurations, in this work we will use idealize
treelike networks, which were discussed in Ref. 8, as wel
more realistic networks, such as the IEEE 118 bus netw
depicted in Fig. 1.

The time evolution of a power transmission system re
resented by this model leads, after a transient, to a ste
state regime. Here ‘‘steady state’’ is defined with relation
the slow dynamics of the blackouts because the power
mand is constantly increasing, as shown in Fig. 2. The ti
evolution in the model shows the transient period follow
by steady-state evolution. This is illustrated in Fig. 2, whe
we have plotted the number of blackouts per 300 days a
function of time. We can see a slight increase in the aver
number of blackouts during the first 20 000 days. This tra
sient period is followed by the steady state where the num
of blackouts in an averaged sense is constant. The prope
in the slow transient are not very different from those in t
steady state. However, for statistical analysis, we use
steady-state information to avoid contamination of the sta
tics. The length of the transient depends on the rate of gro
in power demand. In the following calculations, we evalua
the blackout statistics by ignoring the initial transients a
doing the calculations for a time period of 80 000 days in
steady state. Of course, the use of these long time s
steady-state results is driven by the need for large statis
samples and it is arguable whether the real electric po
grid ever actually reaches a steady state.

III. DYNAMICAL EVOLUTION OF THE POWER
TRANSMISSION MODEL

Looking at the time evolution of the different paramete
that characterize the blackouts, one observes a noisy si
that could be mistaken for random. One could assume
this is in fact the situation because many of the blackouts
triggered by random events with probabilityp0 . However,
that is not the case. It is instead found that there are sig
cant space and time correlations resulting from the unde
ing dynamics of the power transmission model.

To investigate the time correlations in this apparen
noisy system we calculate the Hurst exponent23 of time se-
ries of blackout sizes. Here, we consider two measures of
size of a blackout. One is the load shed during a black
normalized to the total power demand; the other is the nu
ber of line outages during a blackout.
icense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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We use theR/S method24 to calculate the Hurst expo
nent. An example of the result of this analysis is shown
Fig. 3. For times of the order of a few days and a few yea
both series show weak persistence. They have the s
Hurst exponent (H50.5560.02). This result is close to th
one obtained in the analysis2 of NERC data on blackouts o

FIG. 2. ~Color! Time evolution of the power served and number of blac
outs per year from the model.

FIG. 3. ~Color! R/S for the time series of normalized load shed and li
outages for a 46-node tree network.
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the North American power grid.4 In this range of time scales
the value of the exponent does not depend on the value oG.
For longer times, each time series shows a different beha
The load shed has a nearly random character withH50.5 for
G,1. ForG.1, the value ofH decreases and in many cas
is below 0.5. For these longer time scales, the time serie
the number of line outages has a clear antipersistent cha
ter with H ranging from 0.2 to 0.4, depending on the netwo
structure. In Fig. 4, the value ofH resulting from a fit ofR/S

FIG. 4. ~Color! The Hurst exponentH as a function ofG for the time series
of normalized load shed~a! and line outages~b!. The exponent is calculated
from a fit of R/S in the time range 600<t<105 for 46, 94, and 190 nodes
tree networks and for the IEEE 118 bus network.
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in the time range 600<t<105 is given as a function ofG for
three of the tree networks and for the IEEE 118 bus netwo
Antipersistency in the time sequence of number of line o
ages can be expected from the model. Blackouts with a la
number of line outages happen rarely, only once every
years. When they happen, there is a great deal of repair
enhancement of many transmission lines. As a conseque
blackouts with a large number of line outages become
probable after one of those events. Therefore, there is a
persistency at that time scale. In the present model, load
does not have a direct impact on the repair and upgrad
the system. Therefore, time correlations are weak. As we
discuss in the next section, forG.1, blackouts with large
load sheds are associated with a large number of line
ages. Therefore, in thisG range we see some level of an
persistency due to the coupling of load shed and the num
of line outages. The available data from NERC are limited
15 years, and we therefore do not have any direct way
confirming this long-term behavior of the model in the re
power system.

The time lag during which the number of line outag
changes from weak persistency to antipersistency is inde
dent of the network size but depends on the repair rate~m!.
As m increases, it takes longer time lags for the change
occur. Increasingm causes a slight increase inH, but H
remains less than 0.5.

Within this model the correlations are not limited to tim
correlations. The PDFs of the load shed and the numbe
line outages both have power-scaling regions implying s
tial correlations. The correlations responsible for these po
tails are the result of the system being near a critical poi

In Ref. 7, we studied the critical points of the pow
transmission model as the total load demand was varied.
slow dynamics described in Sec. II were not modeled.
found two types of critical points: one type was related to
limiting power flows in the transmission lines; the other ty
was related to the limit in the power generation. When th
types of critical points are close to each other, the probab
distribution of the blackout size as measured by the amo
of load shed has a power law dependence for a rang
values of the load shed. Away from the critical point, th
power law dependence no longer exists.

When the dynamical evolution over long time scales
included and the value ofG is about 1, the system naturall
evolves to a situation in which these critical points are clo
to each other. In this situation, the PDFs of the power s
will have a region of algebraic decay. In Fig. 5, we ha
plotted the relative cumulative frequency calculated from
time series of the blackout data from the numerical resu
The cumulative frequency has been calculated directly fr
these data using the rank function. In Fig. 5, the load she
normalized to the total power demand. The calculation w
done for three of the tree network configurations. These
tributions are compared with those obtained from a load s
without dynamical evolution when the load value was at
critical point. We cannot distinguish between the two calc
lations; the relative cumulative frequencies are practica
the same. The overlap between the two results indicates
the dynamical model described in Sec. II intrinsically lea
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to operation of the system close to the critical points. A sim
lar result has been obtained for the IEEE 118 bus network
Fig. 5, we have given an arbitrary shift to the relative cum
lative frequencies for a given size network to better obse
the three different cases.

The relative cumulative frequency plotted in Fig. 5 h
three characteristic regions. They all have an exponential
reflecting the finite size effect of the network~region III!.
Region II is characterized by an algebraic decay. This pow
law-scaling region increases with the number of nodes in
network, suggesting that it is a robust feature of the syst
The power decay index is practically the same for the fo
networks and is close to20.55. The particular values of th
decay index for each tree network are given in Table I,
which the range of the power tail region is defined as
ratio of the maximum load shed to the minimum load sh
described by the power law. From the values obtained for
four networks listed in Table I, we can see that this ran
scales with the network size.

The functional form of the relative cumulative fre
quency, or at least their power-scaling region, seems to h
a universal character. Therefore, we can compare the rela
cumulative frequency of the normalized load shed obtain
for the largest network with the relative cumulative fr
quency of the blackouts obtained in the analysis of the
years of NERC data.4 In Fig. 6, we have plotted the relativ
cumulative frequency of the NERC data together with t
relative cumulative frequencies for the 382-node tree a
IEEE 118 bus networks. We have normalized the black
size to the largest blackout over the period of time cons
ered. We can see that the present model, regardless o
network configuration, reproduces quite well the pow
scaling region from the NERC data. The size of this region
shorter for the calculations. This is because the calculati
are done for relatively small networks. The level of agre
ment between the algebraic scaling regions of the rela
cumulative frequencies is remarkable and indicates that
dynamical model for series of blackouts has captured so
of the main features of the NERC data.

IV. DYNAMICAL REGIMES

Calculations carried out with this model show the ex
tence of two different dynamical regimes. The first regime
characterized by the low value ofG ~that is, a low generator
capability margin and/or large fluctuations in the power d
mand!. In this regime, the available power is limited and h
difficulties in meeting demand. Blackouts are frequent,
they affect only a limited number of loads. In this regim
there are very few line outages. In the opposite limit,G is
large and the blackouts are less frequent, but they ten
involve multiple line outages when they happen. This lat
regime is interesting because there are many casca
events that can cause blackouts in a large part of the netw
This suggests a possible separation between regimes of
failures and regimes with cascading failures both of wh
are physically interesting.

Let us investigate in a quantitative way the separat
between these two regimes by varying the parameterG.
icense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Varying G is not necessarily a realistic way of modeling t
transmission system but it allows us to understand some
tures of the dynamics of the model. For several tree n
works, we have done a sequence of calculations for diffe
values of the minimal generator power margin (DP/P)c at a
constantg. We have changed this margin from 0 to 100
For each value of this parameter, we have carried out
calculations for more than 100 000 days in a steady s
regime. One way of looking at the change of characteri
properties of the blackouts withG is by plotting the power
delivered and the averaged number of line outages per bl
out. For a 94-node tree network, these plots are show
Fig. 7. We can see that at low and high values ofG, the
power served is low. In the first case, because of the lim
generator power, the system cannot deliver enough po
when there is a relatively large fluctuation in load dema
At high G, the power served is low because the number
line outages per blackout is large.

Looking at averaged quantities is not a good way
identifying the demarcation between single failures and c
cading events. To have a better sense of this demarcation
have calculated the PDF of the number of line outages
blackout. In Fig. 8, we have plotted these PDFs for differ
values ofG. The calculation was done for a 94-node tr
network. We can see that at very lowG there is a clear peak
at 4 outages per blackout with very low probability f
blackouts with more than 10 outages per blackout. AsG in-

FIG. 5. ~Color! Relative cumulative frequency of the load shed normaliz
to the total power demand for three different tree networks. The rela
cumulative frequencies obtained from a load scan near the critical poin
compared with the relative cumulative frequencies obtained from the
namical model discussed in this paper.

TABLE I. Power law exponent of the PDF of the normalized power she

Number of nodes PDF decay index Range of power tail

46 20.56 4
94 20.51 8
190 20.55 13
382 20.58 31
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creases, a second peak at about 17 outages emerges a
height of the peak increases withG. At the highestG value,
this second peak is comparable to the peak at low num
outages per blackout. In Fig. 9, we have plotted the ratio
the frequency of blackouts with more than 15 outages to
mean frequency of blackouts. We can see that forG.1, this
ratio reaches 0.007. This gives a measure of the frequenc
what we can consider large-scale blackouts~more than 16%
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FIG. 6. ~Color! Relative cumulative frequencies of the normalized load sh
for the 382-node tree, the IEEE 118 bus networks, and the North Amer
blackouts in 15 years of NERC data normalized to the largest blackout

FIG. 7. ~Color! Averaged power delivered and number of line outages

blackout for the 94-node tree network as a function ofG̃

.

icense or copyright, see http://chaos.aip.org/chaos/copyright.jsp



d,
ts
t
ly

o
ou

ns-
ngi-
cient
he
nd
ata

outs
ust
ad,
erm

c-
bil-
ic

m-
wo
t,

ut-
ad-

m-
for
me
ugh
he

gly
der-
ces
i-
re
ss
al
ard
y
of
we
to

y
-
der-
ge

rt
69.
rt
-
re-
of
of
35
ith
has

de

n
as

650 Chaos, Vol. 14, No. 3, 2004 Carreras et al.

D

of the whole grid!. We can apply this result to the U.S. gri
taking into account that the average frequency of blackou
one every 13 days. In the low-G regime, the ratio is abou
0.001; this would imply that a large scale blackout is like
every 35 years. In the high-G regime, the ratio goes up t
0.007; this implies a frequency of one large-scale black
every 5 years.

FIG. 8. ~Color! PDF of the number of outages per blackout for the 94-no
tree network for different values ofG.

FIG. 9. ~Color online! Ratio of the frequency of blackouts with more tha
15 outages to the frequency of blackouts for the 94-node tree network
function of G.
ownloaded 03 Oct 2004 to 128.104.182.203. Redistribution subject to AIP l
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V. CONCLUSIONS

The simple mechanisms introduced into the power tra
mission model and representing the economical and e
neering responses to increasing power demands are suffi
to introduce a complex behavior in the power system. T
results of the complex dynamics, time correlations, a
PDFs of blackout sizes are consistent with the available d
on blackouts of the North American electrical grid.

This model suggests that the real cause of the black
in the electric power system should not be identified j
with the immediate random events that trigger them; inste
the real underlying cause is at a deeper level in the long-t
forces that drive the evolution of the power system.

An important parameter in the system,G, is the ratio of
the generator margin capability to the maximum daily flu
tuation of the loads. This is a surrogate for the systems a
ity to absorb fluctuations. We do not yet have an econom
model for the time evolution ofG which would be the next
level of self-consistent evolution for the system. This para
eter allows us to classify the dynamics of the model into t
regimes. At lowG, blackouts and brownouts are frequen
and a typical blackout is characterized by very few line o
ages. ForG.1, blackouts are less frequent, but large casc
ing events involving many line outages are possible.

The dynamical behavior of this model has important i
plications for power system planning and operation and
the mitigation of blackout risk. The present model has so
of the characteristic properties of a SOC system, altho
one cannot unequivocally prove that is strictly the case. T
success of mitigation efforts in complex systems is stron
influenced by the dynamics of the system. One can un
stand the complex dynamics as including opposing for
that drive the system to a ‘‘dynamic equilibrium’’ near crit
cality in which disruptions of all sizes occur. Power tails a
a characteristic feature of this dynamic equilibrium. Unle
the mitigation efforts alter the self-organizing dynamic
forces driving the system, the system may be pushed tow
criticality. To alter those forces with mitigation efforts ma
be quite difficult because the forces are an intrinsic part
our society and therefore the power system. Therefore,
expect that feasible mitigation efforts can move the system
a new dynamic equilibrium which will remain near criticalit
and preserve the power tails.5 Thus, while the absolute fre
quency of disruptions of all sizes may be reduced, the un
lying forces can still cause the relative frequency of lar
blackouts to small blackouts to remain the same.
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been carried out at Oak Ridge National Laboratory, mana
by UT-Battelle, LLC, for the U.S. Department of Energ
under Contract No. DE-AC05-00OR22725.

APPENDIX

The blackout model is based on the standard dc po
flow equation,

F5AP, ~A1!

where F is a vector whoseNL components are the powe
flows through the lines,Fi j , P is a vector whoseNN21
components are the power of each node,Pi , with the excep-
tion of the reference generator,P0 , andA is a constant ma-
trix. The reference generator power is not included in
vector P to avoid singularity ofA as a consequence of th
overall power balance.

The input power demands are either specified determ
istically or as an average value plus some random fluctua
around the average value. The random fluctuation is app
to either each load or to ‘‘regional’’ groups of load nodes

The generator power dispatch is solved using stand
LP methods. Using the input power demand, we solve
power flow equations, Eq.~A1!, with the condition of mini-
mizing the following cost function:

Cost5 (
i PG

Pi~ t !2W(
j PL

Pj~ t !. ~A2!

We assume that all generators run at the same cost
that all loads have the same priority to be served. Howe
we set up a high price for load shed by settingW at 100. This
minimization is done with the following constraints:

~1! Generator power 0<Pi<Pi
max i PG,

~2! Load powerPj<0 j PL,
~3! Power flowsuFi j u<Fi j

max,
~4! Power balance( i PGøLPi50.

This linear programming problem is numerically solv
by using the simplex method as implemented in Ref. 25. T
assumption of uniform cost and load priority can of cou
be relaxed, but changes to the underlying dynamics are
likely from this.

In solving the power dispatch problem for low-loa
power demands, the initial conditions are chosen in suc
way that a feasible solution of the linear programming pro
lem exists. That is, the initial conditions yield a solutio
without line overloads and without power shed. Increase
the average load powers and random load fluctuations
cause a solution of the linear programming with line ov
loads or requiring load power to be shed. At this point
cascading event may be triggered.

A cascading overload may start if one or more lines
overloaded in the solution of the linear programming pro
lem. We consider a line to be overloaded if the power fl
through it is within 1% ofFi j

max. At this point, we assume
that there is a probabilityp1 that an overloaded line wil
cause a line outage. If an overloaded line experiences
ownloaded 03 Oct 2004 to 128.104.182.203. Redistribution subject to AIP l
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outage, we reduce its correspondingFi j
max by a large amount

~making it effectively zero! to simulate the outage, and ca
culate a new solution. This process can require multiple
erations and continues until a solution is found with no mo
outages.

This fast dynamics model does not attempt to capture
intricate details of particular blackouts, which may have
large variety of complicated interacting processes also
volving, for example, protection systems, and dynamics a
human factors. However, the fast dynamics model does
resent cascading overloads and outages that are cons
with some basic network and operational constraints.
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