LHC Phenomenology A Bard's-Eye View

Stephen Mrenna

Computing Division Fermilab

Aspen Winter Workshop 2006

Shakespeare's Writing Method

- Develop a large vocabulary
- Play with words
- Invent new words and phrases
- Develop the common touch
- Read great literature
- Study the great orators, actors and the popular
- Live with passion
- Write, write, write!!!

How much does the $t\bar{t}$ cross section change from TeV to LHC?

■ 500×

[Kidonakis]

How much does the $t\bar{t}$ cross section change from TeV to LHC?

[Kidonakis]

- How much does the $\tilde{\chi}^+ \tilde{\chi}^- (m_{\chi} = 200 \text{ GeV})$ cross section change from TeV to LHC?
- 10×
- 100×
- 500×

[Pythia]

-

→ ∢ ≣ →

How much does the $\tilde{\chi}^+ \tilde{\chi}^- (m_{\chi} = 200 \text{ GeV})$ cross section change from TeV to LHC?

■ 10×

[Pythia]

-

→ ∢ ≣ →

How much does the W4j cross section change from TeV to LHC?

10×
100×
500×

[MadEvent, $k_T > 20 \text{ GeV}$]

2

- ∢ ≣ ▶

How much does the W4j cross section change from TeV to LHC?

[MadEvent, k_T > 20 GeV]

2

- ∢ ≣ ▶

Dilepton invariant mass spectrum

Heavy Colored Objects Large Kinematic Reach

- LHC phenomenology begins with rediscovering the Standard Model
- The path starts at the Tevatron

Top Background Summary

 $t\bar{t}$ contamination in Njets=3,4 (1.0,1,3)

work on Mistags,Wbb,QCD

QCD,Mistags reducible

/司 ▶ ◀

2

< ∃ →

Method 2

Monte Carlo ratio R = (W + b - jets)/(W + jets)• Common factors cancel Measure W + jets (no b-tag) data(W + b - jets) = $R \times data(W + jets)$ Wcj/Wbb from Monte Carlo • Several R's

High Multiplicity Tree Graph

2

-

→ ∢ Ξ

Tree Graph + Parton Shower

2

-

母▶ ∢ ≣▶

Lower Multiplicity Tree Graph

문제 문

Lower Multiplicity NLO Graph

문제 문

Clever Matching of Tree Graphs and Parton Showers

Make Better Predictions

Stephen Mrenna LHC Phenomenology

Clever Matching of Tree Graphs and Parton Showers

Address Uncertainty

Cross check on Run2 data

New Physics Warm-Up

- current state of single-Top is where we will be at the LHC with a few quality fb⁻¹
- the size of other NP signals
- it is a playground for new analysis techniques
- it challenges our tools

Not specific to NN analyses: may be more sensitive Many (11) Kinematic Variables

	Signal-Background Pairs			
	tb		tq	Ь
	Wbb	tŦ	Wbb	tĒ
Individual object kinematics				
$p_T(jet1_{tagged})$	\checkmark	\sim	\checkmark	_
$p_T(jetl_{untagged})$	_	_	\sim	\checkmark
$p_T(jet2_{untagged})$	_	_	_	\checkmark
$p_T(\text{jet1}_{nonbest})$	\checkmark	\checkmark	_	_
$p_T(\text{jet2}_{nonbest})$	\checkmark	\sim	_	-
Global event kinematics				
M_T (jet1, jet2)		_	_	_
$p_T(jet1, jet2)$	√.		√.	_
M(alljets)	\checkmark	\sim	√.	\checkmark
$H_T(\text{alljets})$	_	_	\sim	_
$M(alljets - jetl_{tagged})$	_	_	_	√
$H(alljets - jet1_{tagged})$	_	\sim	_	√
$H_T(alljets - jet1_{tagged})$	_	_	_	\checkmark
$p_T(alljets - jet1_{taggod})$	_	\checkmark	_	\checkmark
$M(\text{alljets} - \text{jet}_{best})$	_	\checkmark	_	_
$H(alljets - jet_{best})$	_	\checkmark	_	_
$H_T(\text{alljets} - \text{jet}_{best})$	-	\checkmark	-	-
$M(top_{tagged}) = M(W, jetl_{tagged})$	\checkmark	\sim	\checkmark	\checkmark
$M(top_{best}) = M(W, jet_{best})$	\checkmark	_	-	-
$\sqrt{\hat{s}}$	\checkmark	_	\checkmark	\checkmark
Angular variables				
$\Delta R(jet1, jet2)$	\checkmark	_	\checkmark	_
$Q(\text{lepton}) \times \eta(\text{jet1}_{\text{untagged}})$	_	_	\checkmark	\checkmark
$\cos(\text{lepton}, Q(\text{lepton}) \times z)_{topbest}$	\checkmark	_	_	_
$\cos(\text{lepton}, \text{jet1}_{untagged})_{top_{tagged}}$	_	_	\checkmark	_
cos(alljets, jet1 _{tagged}) _{alljets}	_	—	\checkmark	\checkmark
cos(alljets, jet _{nonbest}) _{all jets}	_	\checkmark	_	_

Network Outputs http://www-d0.fnal.gov/Run2Physics/top/public/winter05/singletop/

- How do we convince ourselves of a signal?
- How can we improve upon the search?

F_ For All Channels Bowen et al

At LO, tt removed t-channel s-channel t-channel and W+iets are comparable in size Caveat: NLO tt $\hat{\eta}_{e}$ correction from Kuhn and Rodrigo, '98 Expect QCD . contribution to be small $\hat{\eta}_i$ $\hat{\eta}$ tt W+iets pseudo-rapidity weighted by epton $\hat{\eta}_{e}$ lepton charge $F_{-} = \frac{1}{2} \left[\frac{d^2 \sigma}{d\hat{\eta}_i d\hat{\eta}_j} (\hat{\eta}_j, \hat{\eta}_\ell) - \frac{d^2 \sigma}{d\hat{\eta}_i d\hat{\eta}_\ell} (-\hat{\eta}_j, -\hat{\eta}_\ell) \right]$ $\hat{\eta}_i$ $\hat{\eta}$ 4/29/2004 **CERN TeV4LHC Meeting**

Tevatron hard. Exploit charge asymmetry at LHC.

< 同 > < 三 > <

To understand the data, look at the Vista of final states

Final State	Chi2	data	bkg				
1b3j1pmiss_sumPt400+ [73]	9.0	451	374.5	+-	18	(pyt
2b1e+2j [-]	8.0	15	6.5	+-	1.9	(tto
2j_sumPt0-400 [161]	6.0	69704	67013.6	+-	1171.2	(pyt
7b7j1ph1pmiss [-]	6.0	7	7.1	+-	1.6	(pyt
2j2mu+1pmiss [-]	-5.0	2	12.2	+-	3	(mad
1b2e+2j [-]	5.0	9	3.9	+-	1.5	(mre
1j1ph1pmiss [5]	4.0	2591	2470.1	+-	37.7	(pyt
2j1mu+1ph [-]	4.0	11	11.2	+-	2.2	(mre
1e+1j1mu+ [-]	4.0	13	6.6	+-	2.1	(zto
1e+2j1ph [-]	4.0	31	20.9	+-	2.7	(mad
3j2mu+ [-]	4.0	34	23.2	+-	2.7	(mre
2b2j1pmiss_sumPt400+ [-]	-3.0	17	30.4	+-	4.2	(pyt
1b2j_sumPt400+ [229]	3.0	4669	4518.6	+-	72.7	(pyt
4j_sumPt0-400 [253]	-3.0	2611	2736.9	+-	42.3	(pyt
2b1j1ph1pmiss [-]	3.0	6	2.7	+-	1.5	(pyt
1b1j1mu+ [-]	3.0	67	53.8	+-	4.3	(pyt
1j1ph [277]	3.0	31738	31149.8	+-	352.1	(pyt
1e+1mu+ [-]	3.0	66	53.5	+-	3.2	(zto
4j1mu+ [-]	3.0	73	61.3	+-	2.6	(pyt
5j [269]	3.0	448	406	+-	14.5	(pyt
1b5j [-]	3.0	8	8.9	+-	1.7	(pyt
1b1j1pmiss_sumPt0-400 [-]	2.0	120	104	+-	7.2	(pyt
2j1pmiss_sumPt0-400 [37]	2.0	2381	2281.2	+-	73.9	(pyt

6

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

, ,

Give a complete description of the Standard Model with the best tools

Model-Independent and Quasi-Model-Independent Search for New Physics at CDF

Georgios Choudalakis,⁺ Khaldoun Makhoul,[†] Markus Klute,[‡] Conor Henderson,[§] and Bruce Knuteson[¶] MIT

> Ray Culbertson** FNAL

CDF Collaboration^{††} (Dated: February 1, 2006)

Data collected in Run II of the Fermihab Towaron are searched for indications of new electrowaic scale physics. Rather than focusing on particular more physics scansarios, CDF data are analyzed for discrepancies with the Standard Model prediction. A model-independent approach considers the grees features of the data, and is sensitive to new large cross section physics. A quasi-modelindependent approach emphasizes the high-pr tails, and is particularly sonsitive to new electroweak scale physics. This global search for new physics in $\approx 000 \text{ ph}^{-1}$ of pp collisions at $\sqrt{s} = 1.96 \text{ TeV}$ reveals no indication of physics browd the Standard Model.

Contents		2. Sleuth	22
I. Motivation	1	B. SLEUTH: Minimum number of events	22
II. VISTA	3	C. Cosmic ray and beam halo muons	23
A. Strategy B. Particle identification	3 3	D. Misidentification matrix	23
C. Offline trigger D. Event generation	4 4	E. VISTA: Estimation details 1. Mistaken choice of vertex	27 27
E. Detector simulation F. Fudge factors C. Results	4 4 15	2. Intrinsic k_T 3. Fudge factor covariance matrix	27 27
III. SLEUTH	18	F. Sensitivity	28
A. Strategy B. Final states	18 19	References	29
C. Variable D. Regions	20 20		
E. Results	20		
Acknowledgments	20		
A. Code	22	I. MOTIVATION	
1. VISTA	22		

Use the data to test our modelling of fakes

- The first New Physics to find is the Standard Model
- Need complete description of most important processes
- Understanding comes from looking at consistency of full dataset
- Then, how do we find New Physics?

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三三 - のへで

e⁺ e⁻ bb Final State

4

・ロト ・回ト ・モト ・モト

▲ □ ▶ ▲ 三

▶ ★ 臣 ▶

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

4

▲□ → ▲ □ → ▲ □ →

4

▲□ → ▲ □ → ▲ □ →

æ

・ロン ・雪 と ・ ヨ と ・ ヨ と

Generate Process Code On-Line

Quarks: d u s c b t d~ u~ s~ c~ b~ t~

Leptons: e- mu- ta- ve vm vt e+ mu+ ta+ ve~ vm~ vt~

Bosons: A Z W+W-hg

 Special: P j (sums over d u s c d ~ u ~ s ~ c ~ g)

 Process:
 PP > W+ > e+ ve jijj

 Submit
 EXAMPLES

 Max QCD Order:
 4

 Max QED Order:
 2

To improve our web services we now request that you register. Registration is quick and free. You may register for a password by clicking <u>here</u>

Generic Particles and Vertices

$$\mathcal{L}_{\rm FFV} = \bar{f}' \gamma^{\mu} \left({\rm G}(1) \frac{1-\gamma_5}{2} + {\rm G}(2) \frac{1+\gamma_5}{2} \right) f V_{\mu}^*$$

$$\mathcal{L}_{\rm FFS} = \bar{f}' \left({\rm GC}(1) \frac{1-\gamma_5}{2} + {\rm GC}(2) \frac{1+\gamma_5}{2} \right) f S^*$$

$$\begin{split} \mathcal{L}_{\text{VVV}} &= -i \mathbf{G} \quad \left\{ \begin{array}{l} (\partial_{\mu} V_{1\nu}^{*}) (V_{2}^{\mu*} V_{3}^{\nu*} - V_{2}^{\nu*} V_{3}^{\mu*}) \\ &+ (\partial_{\mu} V_{2\nu}^{*}) (V_{3}^{\mu*} V_{1}^{\nu*} - V_{3}^{\nu*} V_{1}^{\mu*}) \\ &+ (\partial_{\mu} V_{3\nu}^{*}) (V_{1}^{\mu*} V_{2}^{\nu*} - V_{1}^{\nu*} V_{2}^{\mu*}) \right\} \end{split}$$

$$\mathcal{L}_{\rm VVS} = {\rm G} V_1^{\mu*} V_{2\mu}^* S^*$$

$$\mathcal{L}_{\text{SSS}} = \operatorname{G} S_1^* S_2^* S_3^* \qquad \qquad \mathcal{L}_{\text{VSS}} = i \operatorname{G} V_{\mu}^* S_2^* \stackrel{\forall a^*}{\partial} S_1^*$$

411

- ● ● ●

2

∃ >

∢ ≣⇒

⊡ ► < ≣

æ

イロン イロン イヨン イヨン

Quaero - Microsoft Internet Explorer	
e <u>E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u> ools <u>H</u> elp	A
fress 🕘 http://mit1.fnal.gov/~knuteson/Quaero/quaero_development/	🔁 Go 🛛 Links 🌺
Quaero	
Quaero	
A General Interface to HEP Data	
Motivation Interface Manual	
Algorithm FewkDE OptimalBinning	
<u>Development</u> <u>Examples</u> <u>Do Rum</u>	
Signal	
O Pythia O Suspect O MadEvent	
Browse	
Requestor	
Email: Model:	
1 Submit	
	~
🔮 Inter	rnet 🔬
	< 臣 > < 臣 > □ 臣

Story

Fit

5

Compose:	New Physic	s <2>						
<u>Eile</u>	t <u>V</u> iew	Options T	ools <u>W</u> in	dow <u>H</u> elp				
Send	Q Address	• Attach	Spell	Security -	2 Save	•		
From:	Bard <bard< th=""><th>@fnal.gov></th><th></th><th></th><th></th><th></th><th></th><th></th></bard<>	@fnal.gov>						
-	To:	🔝 witten@	Plas.princet	on.edu				
Subject:	New Physi	cs						

Dear Prof Witten,

```
I have analyzed the excesses observed in the data,
and have determined the following stories, ranked in descending
log likelihood:
```

```
Story 1
Particles (SU(3),Q,type)
                                       t4/3f
          555
                         OSV
Mass (GeV)
          251+/-12
                         1043+/-102
                                      341+/-73
Interactions
          sss b b
                                      sss t4/3f t4/3f~ ....
                         SSS WH W-
Coupling
          .1+/-.03
                         .3+/-.1
                                      1.0+/-0.3 ....
Story 2
Could you please tell us the correct string vacuum?
Sincerely,
```

the Bard

BARD: Interpreting New Frontier Energy Collider Physics

Bruce Knuteson^{*} MIT

Stephen Mrenna[†] FNAL

2

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Debunking Anomalies Unexpected Consequences

æ

The Bard at the LHC

- LHC phenomenology begins with understanding the Standard Model
- A look at the full Vista of final states at once is necessary to disentangle the components
- Discrepancies can and will arise in specific final states
- Bard can write a series of ranked stories to describe each
 - bottom-up
- Can test this on Run2 data

The Bard at the LHC

- LHC phenomenology begins with understanding the Standard Model
- A look at the full Vista of final states at once is necessary to disentangle the components
- Discrepancies can and will arise in specific final states
- Bard can write a series of ranked stories to describe each
 - bottom-up
- Can test this on Run2 data
- It works

The Bard at the LHC

- LHC phenomenology begins with understanding the Standard Model
- A look at the full Vista of final states at once is necessary to disentangle the components
- Discrepancies can and will arise in specific final states
- Bard can write a series of ranked stories to describe each

bottom-up

- Can test this on Run2 data
- It works
- No, we haven't found anything · · · yet

Extra Slides

2

∃ >

@▶ ∢ ≣▶

MLM Method

Parton shower and hadronization are essential for studying b-jets

- Parton shower W+Npartons but reject emissions that are too hard (i.e. each post-shower jet should have a pre-shower parton associated with it)
- Build up *inclusive* or *exclusive* samples (i.e. allow or disallow pure PS jets)
- $\delta R/R \sim 25 30\%$

Why it works

- For each N, PS does not add any jet harder than p²_{T cut}
- Can safely add different N samples with no double-counting
 - Apply looser rejection on highest N
- Pseudo-showers assure correct PS limit, while retaining hard emissions
 - Interpolates between limits

Understanding W+Jets is Critically Important

- Signature Wbb + X is common to unconfirmed Standard Model processes and many new physics processes
- we "know" that Standard Model top is there

 $\mathsf{Top} \equiv \mathsf{Data} - \mathsf{Not-Top}$

- As JES uncertainty is reduced (CDF m_t), understanding of Not-Top sets/limits understanding of Top
- Advanced (i.e. NN, DT) search techniques for single t exploit differences in many (11) kinematic variables
- Not-Top challenges our tools

Better tools \Rightarrow more challenging questions

MCFM vs MEPS

Matched Datasets have consistently steeper slopes (note: MCFM steeper than LO)

Truncated Datasets contain only $Wb\bar{b} + Wb\bar{b}j$

Slopes more consistent with MCFM

- ● ● ●

-2

- 🔹 🖻

Kinematic comparisons with Run2 data

æ

▲ 同 ▶ → 三 ▶

Understanding Fakes

Knuteson, Culbertson, et al.

	e^+	e^-	μ^+	μ^{-}	τ^+	τ^{-}	γ	j
e^+	62154	33	0	0	1161	1	3749	25913
e^-	24	62300	0	0	0	1156	3730	25817
μ^+	0	0	50330	0	15	0	0	596
μ^{-}	0	1	0	50294	0	11	0	573
γ	1381	1326	0	0	8	14	67732	21372
π^0	1196	1208	0	0	25	34	59727	31651
π^+	266	0	115	0	72113	42	117	23908
π^-	1	352	0	88	80	71491	169	24499
K^+	150	1	272	1	73333	36	49	21670
K^-	1	249	0	163	112	71701	151	23654

TABLE XIV: Central single particle misidentification matrix. Using a single particle gun, 10^5 particles of each type shown at the left of the table were shot with $p_T = 25$ GeV into the central CDF detector, uniformly distributed in θ and in ϕ .

- **→** → **→**