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Disclaimer

We (TH) can compute observables in pQCD with high precision

But about errors  ..hmmmmmmm

1.1± 0.1± 0.2

1.1±
√

0.12 + 0.22

1.1 ±0.1± 0.2



Fragmentation functions

Represent the probability that a parton hadronizes in h

From TH point of view at the same level of pdfs

Relevant any time a hadron is produced in high energy collisions

e+e- : primary “source”

SIDIS : complement DIS to allow flavor separation

pp collisions:  signal and “background” for a lot of physics

Heavy Ions
polarized pdfs

Global Fit (DSS)  that includes all those processes



In the framework of this workshop: 
Fragmentation functions play a very relevant role

Single hadron production in polarized pp collisions great tool to 
unveil the gluon distribution : gluons enter at LO

Precise FF needed to perform pdf extraction

Otherwise:  “error” in FF propagates to pdf

Trivial example: if gluon FF too small, the mistake in analysis of pp 
collisions will result in a gluon pdfs too large to compensate!
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parabola and the 1σ uncertainty in any observable would correspond to ∆χ2 = 1. In order to account for unexpected
sources of uncertainty, in modern unpolarized global analysis it is customary to consider instead of ∆χ2 = 1 between
a 2% and a 5% variation in χ2 as conservative estimates of the range of uncertainty.

As expected in the ideal framework, the dependence of χ2 on the first moments of u and d resemble a parabola
(Figures 3a and 3b). The KKP curves are shifted upward almost six units relative to those from KRE, due to the
difference in χ2 of their respective best fits. Although this means that the overall goodness of KKP fit is poorer than
KRE, δd and δu seem to be more tightly constrained. The estimates for δd computed with the respective best fits
are close and within the ∆χ2 = 1 range, suggesting something close to the ideal situation. However for δu, they only
overlap allowing a variation in ∆χ2 of the order of a 2%. This is a very good example of how the ∆χ2 = 1 does not
seem to apply due to an unaccounted source of uncertainty: the differences between the available sets of fragmentation
functions.
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FIG. 4: Parton densities at Q2 = 10 GeV2, and the uncertainty bands corresponding to ∆χ2 = 1 and ∆χ2 = 2%

An interesting thing to notice is that almost all the variation in χ2 comes from the comparison to pSIDIS data.
The partial χ2 value computed only with inclusive data, χ2

pDIS , is almost flat reflecting the fact the pDIS data are

not sensitive to u and d distributions. In Figure 3, we plot χ2
pDIS with an offset of 206 units as a dashed-dotted line.

The situation however changes dramatically when considering δs or δg as shown in Figures 3c and 3f, respectively.
In the case of the variation with respect to δs, the profile of χ2 is not at all quadratic, and the distribution is much
more tightly constrained (notice that the scale used for δs is almost four times smaller than the one used for light
sea quarks moments). The χ2

pDIS corresponding to inclusive data is more or less indifferent within an interval around
the best fit value and increases rapidly on the boundaries. This steep increase is related to a positivity constraints on
∆s and ∆g. pSIDIS data have a similar effect but also helps to define a minimum within the interval. The preferred
values for δs obtained from both NLO fits are very close, and in the case of KRE fits, it is also very close to those
obtained for δu and δd suggesting SU(3) symmetry.

Actual example: analysis of polarized pdfs from SIDIS using 
different FF (see Rodolfo’s talk)

Using Kretzer or KKP can lead to very 
different sea distributions

DdeF, G.Navarro, R.Sassot



e+e-  (SIA) single-inclusive annihilation

densities. For instance, the singlet evolution equation
schematically reads

d

d ln Q2
!DH(z, Q2) =

[
P̂ (T ) ⊗ !DH

]
(z, Q2), (2)

where

!DH ≡
(

DH
Σ

DH
g

)
, DH

Σ ≡
∑

q

(DH
q + DH

q̄ ) (3)

and

P̂ (T ) ≡
(

P (T )
qq 2nfP (T )

gq

1
2nf

P (T )
qg P (T )

gg

)
. (4)

is the matrix of the singlet timelike evolution kernels.
The NLO splitting functions P (T )

ij have been computed
in [26, 27] or can be related to the corresponding spacelike
kernels by proper analytic continuation [28].

The range of applicability for fragmentation functions
as defined above is severely limited to medium-to-large
values of z. On the one hand, the timelike evolution ker-
nels in (4) develop a strong singular behavior as z → 0,
and, on the other hand, the produced hadrons are con-
sidered to be massless. More specifically, the splitting
functions P (T )

gq (z) and P (T )
gg (z) have a dominant, large

logarithmic piece $ ln2 z/z in their NLO part, which
ultimately leads to negative fragmentation functions for
z % 1 in the course of the Q2 evolution and, perhaps, to
unphysical, negative cross sections, even if the evolution
starts with positive distributions at some scale Q0 < Q.
At small z, also finite mass corrections proportional to
MH/(sz2) become more and more important. While
there are ways to resum the singular small-z behavior
to all orders in αs, there is no systematic or unique way
to correct for finite hadron masses, for instance by intro-
ducing some “re-scaled” variable z′ in SIA. Inseparably
entwined with mass effects are other power corrections
or “dynamical higher twists”.

Anyway, including small-z resummations or mass cor-
rections in one way or the other in the analysis of hadron
production rates is not compatible with the factoriza-
tion theorem and the definition of fragmentation func-
tions outlined above. “Resummed” or “mass corrected”
fragmentation functions should not be used with fixed or-
der expressions for, say, the semi-inclusive deep-inelastic
production of a hadron, eN → e′HX , discussed in
Sec. II C. Therefore we limit ourselves in our global
analysis to kinematical regions where mass corrections
and the influence of the singular small-z behavior of the
evolution kernels is negligible. It turns out that a cut
z > zmin = 0.05 (0.1) is sufficient for data on pion (kaon)
production.

Finally, conservation of the momentum of the frag-
menting parton f in the hadronization process is sum-
marized by a sum rule stating that

∑

H

∫ 1

0
dzzDH

i (z, Q2) = 1, (5)

i.e., each parton will fragment with 100% probability into
some hadron H . Equation (5) is compatible with the evo-
lution kernels in the MS scheme, although not for each
individual contribution

∫ 1
0 dzzDH

i (z, Q2). Of course, the
sum rule (5) should be dominated, perhaps almost sat-
urated, by the fragmentation into the lightest hadrons
such as pions and kaons. The unstable small-z behav-
ior, however, prevents Eq. (5) from being a viable con-
straint in a global analysis. Only truncated moments∫ 1

zmin
dzzDH

i (z, Q2) are meaningful.

B. Single-inclusive e+e− Annihilation

The cross sections for the single-inclusive e+e− anni-
hilation (SIA) into a specific hadron H ,

e+e− → (γ, Z) → H, (6)

at a center-of-mass system (c.m.s.) energy
√

s and in-
tegrated over the production angle can be written as
[29, 30]

1
σtot

dσH

dz
=

σ0∑
q ê2

q

[
2 FH

1 (z, Q2) + FH
L (z, Q2)

]
. (7)

The energy EH of the observed hadron scaled to the beam
energy Q/2 =

√
s/2 is denoted by z ≡ 2pH · q/Q2 =

2EH/
√

s with Q being the momentum of the intermedi-
ate γ or Z boson.

σtot =
∑

q

ê2
q σ0

[
1 +

αs(Q2)
π

]
(8)

is the total cross section for e+e− → hadrons including
its NLO O(αs) correction and σ0 = 4πα2(Q2)/s. The
sums in (7) and (8) run over the nf active quark flavors q,
and the êq are the corresponding appropriate electroweak
charges (see App. A of Ref. [24] for details).

To NLO accuracy, the unpolarized “time-like” struc-
ture functions FH

1 and FH
L in (7) are given by

2FH
1 (z, Q2) =

∑

q

ê2
q

{
[
DH

q (z, Q2) + DH
q̄ (z, Q2)

]

+
αs(Q2)

2π

[
C1

q ⊗ (DH
q + DH

q̄ )

+C1
g ⊗ DH

g

]
(z, Q2)

}
, (9)

FH
L (z, Q2) =

αs(Q2)
2π

∑

q

ê2
q

[
CL

q ⊗ (DH
q + DH

q̄ )

+CL
g ⊗ DH

g

]
(z, Q2), (10)

with ⊗ denoting a standard convolution. The relevant
NLO coefficient functions C1,L

q,g in the MS scheme can be
found in App. A of Ref. [24].
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sidered to be massless. More specifically, the splitting
functions P (T )
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gg (z) have a dominant, large

logarithmic piece $ ln2 z/z in their NLO part, which
ultimately leads to negative fragmentation functions for
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there are ways to resum the singular small-z behavior
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ducing some “re-scaled” variable z′ in SIA. Inseparably
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tions outlined above. “Resummed” or “mass corrected”
fragmentation functions should not be used with fixed or-
der expressions for, say, the semi-inclusive deep-inelastic
production of a hadron, eN → e′HX , discussed in
Sec. II C. Therefore we limit ourselves in our global
analysis to kinematical regions where mass corrections
and the influence of the singular small-z behavior of the
evolution kernels is negligible. It turns out that a cut
z > zmin = 0.05 (0.1) is sufficient for data on pion (kaon)
production.

Finally, conservation of the momentum of the frag-
menting parton f in the hadronization process is sum-
marized by a sum rule stating that
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some hadron H . Equation (5) is compatible with the evo-
lution kernels in the MS scheme, although not for each
individual contribution

∫ 1
0 dzzDH

i (z, Q2). Of course, the
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and, on the other hand, the produced hadrons are con-
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gg (z) have a dominant, large
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ultimately leads to negative fragmentation functions for
z % 1 in the course of the Q2 evolution and, perhaps, to
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there are ways to resum the singular small-z behavior
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to correct for finite hadron masses, for instance by intro-
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Anyway, including small-z resummations or mass cor-
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tions outlined above. “Resummed” or “mass corrected”
fragmentation functions should not be used with fixed or-
der expressions for, say, the semi-inclusive deep-inelastic
production of a hadron, eN → e′HX , discussed in
Sec. II C. Therefore we limit ourselves in our global
analysis to kinematical regions where mass corrections
and the influence of the singular small-z behavior of the
evolution kernels is negligible. It turns out that a cut
z > zmin = 0.05 (0.1) is sufficient for data on pion (kaon)
production.

Finally, conservation of the momentum of the frag-
menting parton f in the hadronization process is sum-
marized by a sum rule stating that
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i (z, Q2) = 1, (5)
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some hadron H . Equation (5) is compatible with the evo-
lution kernels in the MS scheme, although not for each
individual contribution
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sum rule (5) should be dominated, perhaps almost sat-
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ior, however, prevents Eq. (5) from being a viable con-
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and the êq are the corresponding appropriate electroweak
charges (see App. A of Ref. [24] for details).

To NLO accuracy, the unpolarized “time-like” struc-
ture functions FH

1 and FH
L in (7) are given by

2FH
1 (z, Q2) =

∑

q

ê2
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Only fragmentation functions enter (clean process)

SIA data dominated by precise LEP/SLD measurements at MZ

weak scale dependence (bad resolution for g fragmentation)

mostly determine “singlet” distribution (high precision)

not precise at large z (relevant for pp collisions)

Σ = Du + Dū + Dd + Dd̄ + Ds + Ds̄ + Dc + Dc̄ + Db + Db̄

Disadvantages

Dh
q (z,Q2) from Dh

q (z,Q2)Can not separate

e+e-  (SIA) single-inclusive annihilation



Some ansatz needed if only SIA data used, like “linear suppression”

Dh+

q (z,Q2) = (1− z) Dh+
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SIDIS

Advantages :   allows flavor/charge separation
                     larger z
                     smaller Q2, improves scale coverage in evolution : Dg                       
                     Hermes and Compass kinematics

Disadvantage : would introduce “dependence” on pdfs (but unpolarized pdfs 
very well constrained from DIS in the same kinematical range)
                     non-perturbative corrections at small Q2?

We note that the longitudinal structure function FL

in Eq.(10) receives its leading nonzero (finite and scheme
independent) contribution at O(αs). We treat, however,
the O(αs) expressions in (10) as sub-leading (=NLO)
in calculations of the total (longitudinal plus transverse)
cross section (7). For predictions of only the longitu-
dinal cross section at NLO, the O(α2

s) corrections [26]
should be included. However, such measurements are
not available for identified pions or kaons considered in
this analysis.

C. Semi-Inclusive Deep-Inelastic Scattering

The cross section for the semi-inclusive deep-inelastic
production of a hadron, eN → e′HX , is proportional to
certain combinations of both the parton distributions of
the nucleon N and the fragmentation functions for the
hadron H . It can be written in factorized form in a way
very similar to the fully inclusive DIS case [24, 29–31]:

dσH

dx dy dzH
=

2 πα2

Q2

[
(1 + (1 − y)2)

y
2 FH

1 (x, zH , Q2)

+
2(1 − y)

y
FH

L (x, zH , Q2)
]

, (11)

with x and y denoting the usual DIS scaling variables
(Q2 = sxy), and where [29, 30] zH ≡ pH · pN/pN · q
with an obvious notation of the four-momenta, and with
−q2 ≡ Q2. Strictly speaking, Eq. (11) and the vari-
able zH only apply to hadron production in the current
fragmentation region. This is usually ensured by a cut
xF > 0 on the Feynman-variable representing the frac-
tional longitudinal c.m.s. momentum. If necessary, target
fragmentation could be accounted for by transforming to
the variable [31, 32] zH → z ≡ EH

EN (1−x) , the energies EH ,
EN defined in the c.m.s. frame of the nucleon and the vir-
tual photon, and by introducing the so-called “fracture
functions” [32].

The structure functions FH
1 and FH

L in (11) are given
at NLO by

2FH
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{
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with the NLO (MS) coefficient functions C1,L
ij [24, 29–31].

In our global analysis of fragmentation functions we
will make use of (preliminary) data for charged pion and
charged kaon multiplicities taken by the HERMES exper-
iment [18]. The multiplicities (1/NDIS)dNH/dzdQ2 are
defined as the ratio of the semi-inclusive deep-inelastic
scattering (SIDIS) cross section (11) in a certain bin of,
say, Q2 and z, to the totally inclusive DIS rate. The par-
ticular value of this data in the global analysis emerges
from the sensitivity to individual quark and anti-quark
flavors in the fragmentation process which is not accessi-
ble from e+e− annihilation.

D. Hadron-Hadron Collisions

The single-inclusive production of a hadron H at high
transverse momentum pT in hadron-hadron collisions is
also amenable to QCD perturbation theory. Up to correc-
tions suppressed by inverse powers of pT , the differential
cross section can be written in factorized form as [25, 33]

EH
d3σ

dp3
H

=
∑

a,b,c

fa ⊗ fb ⊗ dσ̂c
ab ⊗ DH

c , (14)

where the sum is over all contributing partonic channels
a + b → c + X , with dσ̂c

ab the associated partonic cross
section. dσ̂c

ab can be expanded as a power series in the
strong coupling αs and the O(α3

s) NLO corrections are
available [25, 33]. As always, the factorized structure (14)
forces one to introduce into the calculation scales of the
order of the hard scale in the reaction – but not specified
further by the theory – that separate the short- and long-
distance contributions. We have suppressed the explicit
dependence on these renormalization and factorization
scales in Eq. (14), for details, see, e.g., Ref. [25].

In studies and quantitative analyzes of hadronic cross
sections, NLO corrections are of particular importance
and generally indispensable in order to arrive at a firm
theoretical prediction for (14). Since NLO corrections
are known to be significant, LO approximations usually
significantly undershoot the available data. In addition,
hadronic reactions suffer from much enhanced theoretical
uncertainties than the reactions described above due to
the presence of more non-perturbative, scale dependent
functions. The dependence on the unphysical factoriza-
tion and renormalization scales can be only controlled
and quantified at NLO (or beyond).

As will be discussed below, the special value of
hadronic cross sections in a global analysis of fragmenta-
tion functions is their enhanced sensitivity to the gluon
fragmentation function through the dominance of gg →
gX processes for hadrons produced at low-to-medium
transverse momenta and their sensitivity to fragmenta-
tion at very high z. Charge separated data for H = π±

and K± provide additional information on the flavor sep-
aration of the DH

i .

We note that the longitudinal structure function FL

in Eq.(10) receives its leading nonzero (finite and scheme
independent) contribution at O(αs). We treat, however,
the O(αs) expressions in (10) as sub-leading (=NLO)
in calculations of the total (longitudinal plus transverse)
cross section (7). For predictions of only the longitu-
dinal cross section at NLO, the O(α2

s) corrections [26]
should be included. However, such measurements are
not available for identified pions or kaons considered in
this analysis.
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The cross section for the semi-inclusive deep-inelastic
production of a hadron, eN → e′HX , is proportional to
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hadron H . It can be written in factorized form in a way
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with x and y denoting the usual DIS scaling variables
(Q2 = sxy), and where [29, 30] zH ≡ pH · pN/pN · q
with an obvious notation of the four-momenta, and with
−q2 ≡ Q2. Strictly speaking, Eq. (11) and the vari-
able zH only apply to hadron production in the current
fragmentation region. This is usually ensured by a cut
xF > 0 on the Feynman-variable representing the frac-
tional longitudinal c.m.s. momentum. If necessary, target
fragmentation could be accounted for by transforming to
the variable [31, 32] zH → z ≡ EH

EN (1−x) , the energies EH ,
EN defined in the c.m.s. frame of the nucleon and the vir-
tual photon, and by introducing the so-called “fracture
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and generally indispensable in order to arrive at a firm
theoretical prediction for (14). Since NLO corrections
are known to be significant, LO approximations usually
significantly undershoot the available data. In addition,
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III. OUTLINE OF THE ANALYSIS

In this Section, we outline the details of our analysis.
More specifically, we discuss our choice of parametriza-
tion, the selection of data sets, treatment of experimental
normalization uncertainties, and how we determine the
parameters by means of a global χ2 minimization. We
also briefly sketch how we make use of Mellin moments
to include exact NLO expressions for the cross sections
(7), (11), and (14) in our analysis and how we assess un-
certainties in the extraction of fragmentation functions
with the help of the Lagrange multiplier technique.

A. Parametrization

All recent analyses of fragmentation functions are
based exclusively on SIA data [7–10] and have cho-
sen the most simple functional form Nizαi(1 − z)βi to
parametrize the DH

i at some initial scale µ0 for the Q2-
evolution (2). The structure of the SIA cross section
(7)-(10) allows to extract only information on Dπ++π−

q+q̄
from data (similarly for kaons). Without assumptions it
is impossible to distinguish “favored” or “valence” from
“unfavored” or “sea” fragmentation, for instance, Dπ+

u

from Dπ+

ū where |π+〉 = |ud̄〉. This is a serious limitation
of all present analyses [7–10], as the obtained fragmenta-
tion functions cannot be used to compare to a wealth of
recent data on the production of charged pions and kaons
in SIDIS [18] or proton-proton collisions [21]. In Ref. [7]
a linear suppression factor Dπ+

ū /Dπ+

u = (1 − z) was as-
sumed to break this “deadlock”. This was later shown to
be in fair agreement with charged pion multiplicities in
SIDIS from HERMES [18] within a LO combined analysis
of SIA and SIDIS data [34]; see also Fig. 4 and discussions
below.

In our global analysis we will determine for the first
time individual fragmentation functions for quark and
anti-quarks for all flavors as well as gluons from data.
To accommodate also the experimental information from
lepton-nucleon and hadron-hadron scattering data, we
adopt a somewhat more flexible input distribution than
in [7–10]

DH
i (z, µ0) =

Nizαi(1 − z)βi[1 + γi(1 − z)δi ]
B[2 + αi, βi + 1] + γiB[2 + αi, βi + δi + 1]

,

(15)
where B[a, b] represents the Euler Beta-function and Ni

is normalized such to represent the contribution of DH
i to

the sum rule (5). A more restrictive initial parametriza-
tion with γi = 0 in Eq. (15) would introduce artifi-
cial correlations between the behavior of fragmentation
functions in different regions of z obscuring also the as-
sessment of uncertainties. We find that the extra term
∼ (1− z)δi in Eq. (15) considerably improves the quality
of the global fit, closely related to the fact that the anal-
ysis of fragmentation functions is restricted to medium-

to-large z. Accordingly, additional power terms in z, em-
phasizing the small z region, have little or no impact on
the fit and are not pursued further. The initial scale µ0

for the Q2-evolution is taken to be µ0 = 1 GeV in our
analysis.

Since the initial fragmentation functions (15) at scale
µ0 should not involve more free parameters than can be
extracted from data, we have to impose, however, cer-
tain relations upon the individual fragmentation func-
tions for pions and kaons. We have checked in each case
that relaxing these assumptions indeed does not signif-
icantly improve the χ2 of the fit of presently available
data to warrant any additional parameters. In detail, for
{u, ū, d, d̄} → π+ we impose isospin symmetry for the
sea fragmentation functions, i.e.,

Dπ+

ū = Dπ+

d , (16)

but we allow for slightly different normalizations in the
q + q̄ sum:

Dπ+

d+d̄ = NDπ+

u+ū. (17)

For strange quarks it is assumed that

Dπ+

s = Dπ+

s̄ = N ′Dπ+

ū (18)

with N ′ independent of z.
It is worth noticing that assuming N = N ′ = 1 [7, 10]

in Eqs. (17) and (18), respectively, SIA data alone allow
to distinguish between favored and unfavored fragmenta-
tion functions in principle. We shall scrutinize the com-
patibility of these assumptions with SIDIS and hadronic
scattering data in Sec. IVF. At any rate, their impact
on the assessment of uncertainties of fragmentation func-
tions is highly non trivial.

For charged kaons we fit DK+

u+ū and DK+

s+s̄ independently
to account for the phenomenological expectation that the
formation of secondary ss̄ pairs, which is required to form
a |K+〉 = |us̄〉 from a u but not from an s̄ quark, should
be suppressed. Indeed, we find from our fit, see Sec.
IV below, that DK+

s+s̄ > DK+

u+ū in line with that expec-
tation. For the unfavored fragmentation the data are
unable to discriminate between flavors and, consequently,
we assume that all distributions have the same functional
form:

DK+

ū = DK+

s = DK+

d = DK+

d̄ . (19)

We adopt the functional form (15) also for the fragmen-
tation of heavy charm and bottom quarks into charged
pions and kaons but setting γi = 0. As in [7–10] we as-
sume that DH

c = DH
c̄ and DH

b = DH
b̄

for H = π+, K+.
Heavy flavors are included discontinuously as massless
partons in the evolution (2) above their MS “thresholds”,
Q = mc,b, with mc,b denoting the mass of the charm and
bottom quark, respectively. This treatment of heavy fla-
vors is very much at variance with heavy quark parton
densities, where very elaborate schemes have been devel-
oped to properly include mass effects near threshold and
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phasizing the small z region, have little or no impact on
the fit and are not pursued further. The initial scale µ0

for the Q2-evolution is taken to be µ0 = 1 GeV in our
analysis.

Since the initial fragmentation functions (15) at scale
µ0 should not involve more free parameters than can be
extracted from data, we have to impose, however, cer-
tain relations upon the individual fragmentation func-
tions for pions and kaons. We have checked in each case
that relaxing these assumptions indeed does not signif-
icantly improve the χ2 of the fit of presently available
data to warrant any additional parameters. In detail, for
{u, ū, d, d̄} → π+ we impose isospin symmetry for the
sea fragmentation functions, i.e.,

Dπ+

ū = Dπ+

d , (16)

but we allow for slightly different normalizations in the
q + q̄ sum:

Dπ+

d+d̄ = NDπ+

u+ū. (17)

For strange quarks it is assumed that

Dπ+

s = Dπ+

s̄ = N ′Dπ+

ū (18)

with N ′ independent of z.
It is worth noticing that assuming N = N ′ = 1 [7, 10]

in Eqs. (17) and (18), respectively, SIA data alone allow
to distinguish between favored and unfavored fragmenta-
tion functions in principle. We shall scrutinize the com-
patibility of these assumptions with SIDIS and hadronic
scattering data in Sec. IVF. At any rate, their impact
on the assessment of uncertainties of fragmentation func-
tions is highly non trivial.

For charged kaons we fit DK+

u+ū and DK+

s+s̄ independently
to account for the phenomenological expectation that the
formation of secondary ss̄ pairs, which is required to form
a |K+〉 = |us̄〉 from a u but not from an s̄ quark, should
be suppressed. Indeed, we find from our fit, see Sec.
IV below, that DK+

s+s̄ > DK+

u+ū in line with that expec-
tation. For the unfavored fragmentation the data are
unable to discriminate between flavors and, consequently,
we assume that all distributions have the same functional
form:

DK+

ū = DK+

s = DK+

d = DK+

d̄ . (19)

We adopt the functional form (15) also for the fragmen-
tation of heavy charm and bottom quarks into charged
pions and kaons but setting γi = 0. As in [7–10] we as-
sume that DH

c = DH
c̄ and DH

b = DH
b̄

for H = π+, K+.
Heavy flavors are included discontinuously as massless
partons in the evolution (2) above their MS “thresholds”,
Q = mc,b, with mc,b denoting the mass of the charm and
bottom quark, respectively. This treatment of heavy fla-
vors is very much at variance with heavy quark parton
densities, where very elaborate schemes have been devel-
oped to properly include mass effects near threshold and

III. OUTLINE OF THE ANALYSIS

In this Section, we outline the details of our analysis.
More specifically, we discuss our choice of parametriza-
tion, the selection of data sets, treatment of experimental
normalization uncertainties, and how we determine the
parameters by means of a global χ2 minimization. We
also briefly sketch how we make use of Mellin moments
to include exact NLO expressions for the cross sections
(7), (11), and (14) in our analysis and how we assess un-
certainties in the extraction of fragmentation functions
with the help of the Lagrange multiplier technique.

A. Parametrization

All recent analyses of fragmentation functions are
based exclusively on SIA data [7–10] and have cho-
sen the most simple functional form Nizαi(1 − z)βi to
parametrize the DH

i at some initial scale µ0 for the Q2-
evolution (2). The structure of the SIA cross section
(7)-(10) allows to extract only information on Dπ++π−

q+q̄
from data (similarly for kaons). Without assumptions it
is impossible to distinguish “favored” or “valence” from
“unfavored” or “sea” fragmentation, for instance, Dπ+

u

from Dπ+

ū where |π+〉 = |ud̄〉. This is a serious limitation
of all present analyses [7–10], as the obtained fragmenta-
tion functions cannot be used to compare to a wealth of
recent data on the production of charged pions and kaons
in SIDIS [18] or proton-proton collisions [21]. In Ref. [7]
a linear suppression factor Dπ+

ū /Dπ+

u = (1 − z) was as-
sumed to break this “deadlock”. This was later shown to
be in fair agreement with charged pion multiplicities in
SIDIS from HERMES [18] within a LO combined analysis
of SIA and SIDIS data [34]; see also Fig. 4 and discussions
below.

In our global analysis we will determine for the first
time individual fragmentation functions for quark and
anti-quarks for all flavors as well as gluons from data.
To accommodate also the experimental information from
lepton-nucleon and hadron-hadron scattering data, we
adopt a somewhat more flexible input distribution than
in [7–10]

DH
i (z, µ0) =

Nizαi(1 − z)βi[1 + γi(1 − z)δi ]
B[2 + αi, βi + 1] + γiB[2 + αi, βi + δi + 1]

,

(15)
where B[a, b] represents the Euler Beta-function and Ni

is normalized such to represent the contribution of DH
i to

the sum rule (5). A more restrictive initial parametriza-
tion with γi = 0 in Eq. (15) would introduce artifi-
cial correlations between the behavior of fragmentation
functions in different regions of z obscuring also the as-
sessment of uncertainties. We find that the extra term
∼ (1− z)δi in Eq. (15) considerably improves the quality
of the global fit, closely related to the fact that the anal-
ysis of fragmentation functions is restricted to medium-

to-large z. Accordingly, additional power terms in z, em-
phasizing the small z region, have little or no impact on
the fit and are not pursued further. The initial scale µ0

for the Q2-evolution is taken to be µ0 = 1 GeV in our
analysis.

Since the initial fragmentation functions (15) at scale
µ0 should not involve more free parameters than can be
extracted from data, we have to impose, however, cer-
tain relations upon the individual fragmentation func-
tions for pions and kaons. We have checked in each case
that relaxing these assumptions indeed does not signif-
icantly improve the χ2 of the fit of presently available
data to warrant any additional parameters. In detail, for
{u, ū, d, d̄} → π+ we impose isospin symmetry for the
sea fragmentation functions, i.e.,

Dπ+

ū = Dπ+

d , (16)

but we allow for slightly different normalizations in the
q + q̄ sum:

Dπ+

d+d̄ = NDπ+

u+ū. (17)

For strange quarks it is assumed that

Dπ+

s = Dπ+

s̄ = N ′Dπ+

ū (18)

with N ′ independent of z.
It is worth noticing that assuming N = N ′ = 1 [7, 10]

in Eqs. (17) and (18), respectively, SIA data alone allow
to distinguish between favored and unfavored fragmenta-
tion functions in principle. We shall scrutinize the com-
patibility of these assumptions with SIDIS and hadronic
scattering data in Sec. IVF. At any rate, their impact
on the assessment of uncertainties of fragmentation func-
tions is highly non trivial.

For charged kaons we fit DK+

u+ū and DK+

s+s̄ independently
to account for the phenomenological expectation that the
formation of secondary ss̄ pairs, which is required to form
a |K+〉 = |us̄〉 from a u but not from an s̄ quark, should
be suppressed. Indeed, we find from our fit, see Sec.
IV below, that DK+

s+s̄ > DK+

u+ū in line with that expec-
tation. For the unfavored fragmentation the data are
unable to discriminate between flavors and, consequently,
we assume that all distributions have the same functional
form:

DK+

ū = DK+

s = DK+

d = DK+

d̄ . (19)

We adopt the functional form (15) also for the fragmen-
tation of heavy charm and bottom quarks into charged
pions and kaons but setting γi = 0. As in [7–10] we as-
sume that DH

c = DH
c̄ and DH

b = DH
b̄

for H = π+, K+.
Heavy flavors are included discontinuously as massless
partons in the evolution (2) above their MS “thresholds”,
Q = mc,b, with mc,b denoting the mass of the charm and
bottom quark, respectively. This treatment of heavy fla-
vors is very much at variance with heavy quark parton
densities, where very elaborate schemes have been devel-
oped to properly include mass effects near threshold and

Allowing for possible breaking 
of SU(3) of sea and SU(2) in 

favored distributions

unless data can not discriminate
for unfavored fragmentations

Normalizations for different experiments (if not included in syst.)
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Distributions (pions)
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Differences with HKNS also sizeable : gluons, unfavored and large z (pp)
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Uncertainties

Use Lagrange multipliers technique to estimate uncertainties (from exp. 
errors) on some observables

Φ(λi, {aj}) = χ2({aj}) +
∑

i

λi Oi({aj})

See how fit deteriorates when FFs forced to give different prediction for  Oi

should be parabolic if data set can determine the observable 
(otherwise monotonic o flat) 

∆χ2
n

We study truncated moments:
∫ 1

0.2
z DH

i (z,Q = 5GeV) dz
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Conclusions

NLO (and LO) fragmentation functions from a global fit: electron-
positron, lepton-nucleon and hadron-hadron scattering

Charge and flavor separation from data (no ad-hoc assumptions)

For this workshop: ffs work in the kinematic range relevant for 
polarized pdfs extraction: RHIC, Hermes, Compass

First “global” fit fully developed using Mellin techniques : it can be done!

FFs are a fundamental tool to describe HEP observables within pQCD


