
1. Introduction

Most applications of diffraction theory in optics are
based on the scalar approximation of Huygens’ princi-
ple, and it is usually understood that polarization is
ignored. A notable exception to this practice is the clas-
sical pseudo-vectorial theory formulated by Rayleigh
[1,2] and Bouwkamp [3] for the diffraction of plane-
polarized light by small metallic apertures as illustrated
in Fig. 1. The results obtained by these authors implied
large polarization effects in the case of aperture sizes
smaller than the wavelength of light, λ. Specifically,
Rayleigh and Bouwkamp predicted that unpolarized
light diffracted by very narrow aperture will become
strongly p-polarized, as indicated by the ratio τ (p)

RB/τ (s)
RB

of the transmission coefficients of circular apertures
and slits illuminated by normally incident p- or s-polar-
ized light plotted in Fig. 2 for the range 0 < kw ≤ 0.75,
where 2w is the aperture width and k = 2π/λ is the cir-
cular wave number. Regarding the case of slits,

Rayleigh commented: “It appeared that if the width of
the slit is very small in comparison with the wave-
length, there is a much more free passage when the
electric vector is perpendicular to the slit than when it
is parallel to the slit, so that unpolarized light incident
upon the screen will, after passage, appear polarized in
the former manner.” While this may be plausible as far
as slits are concerned, it seems impossible that a circu-
lar aperture can behave in the same manner because
normal incidence is assumed so that symmetry would
dictate a complete absence of polarization. Apparently
Rayleigh had similar doubts. He remarked that the p-
solution has “no simple application” in the case of cir-
cular apertures, but nonetheless the discrepancy is dis-
turbing as the Rayleigh-Bouwkamp theory is common-
ly referred to as a “rigorous” theory, and in this connec-
tion it should also be noted that later authors, such as
Levine and Schwinger [4,5], considered only the s-
solution and, in doing so, made no reference to polar-
ization. In the present paper the Rayleigh-Bouwkamp
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Fig. 1. The Rayleigh-Bouwkamp diffraction problem. A very narrow aperture A in a metal-
lic screen S which is located in the xy-plane is illuminated by a monochromatic, p- or s-polar-
ized plane wave eikz, and solutions are constructed so that the optical field is everywhere con-
tinuous with continuous first derivatives.

Fig. 2. Polarization ratios, ρ = τRB
(p)/τRB

(s), of circular apertures and slits vs. aperture size kw according to
Bouwkamp [3, p.71ff].



theory will be reexamined with respect to its physical
significance, mathematical rigor, and accuracy.

Rayleigh considered a monochromatic plane wave
of unit irradiance, u0 = eikz, which is incident from the
half space z < 0 on a circular aperture or slit A con-
tained in an infinite, infinitesimally thin, opaque screen
S that lies in the xy-plane of a cartesian coordinate sys-
tem (Fig. 1). He also assumed that the diffracted field
in the half space z ≥ 0 obeys the Rayleigh-Sommerfeld
integral equations,

(1a)

(1b)

where Q = (ξ, η, 0) is a point in A , P = (x, y, z) is an
arbitrary point in space, QP is the distance between
them, u(p,s) are scalar wave functions, and ∂ u(p)(Q)/∂ z
and u(s)(Q) are zero on the opaque portion of S as if the
screen is a perfect metallic reflector and the incident
light is p- or s-polarized. Furthermore, Rayleigh
assumed that field on the source side of S is a modi-
fied geometrical field of the form

(1c)

and hence the objective of the theory is to find the
unknown quantities u(p,s)(P) and u–

(p,s)(P) so that the
overall field is continuously differentiable in the aper-
ture plane.

From Eq. (1c) it follows that ∂ u(p)/∂ z and u(s) will be
continuous for z = 0 if

(2a)

so that

(2b)

(2c)

Thus, u(p) = 2 – u(p), ∂u(s)/∂z = 2ik – ∂u(s)/∂z when z = 0,
so that u(p) and ∂u(s)/∂z will also be continuous if

(2d)

The conditions [Eq. (2d)] represent the underlying
integral equations of the Rayleigh-Bouwkamp and
other so-called “rigorous” diffraction theories which
are intended to solve the wave equation in the presence
of prescribed boundary conditions. To this author’s
knowledge, all existing solutions with the sole excep-
tion of Sommerfeld’s half-plane theory are approxima-
tions of some sort and in the cases considered here
these approximations take the form of ascending power
series in kw which were derived on the assumption that
the unknown aperture distributions in Eqs. (1a,b) can
be expressed in the form

(3)

where                           , q is the distance of Q from the
coordinate origin, and the coefficients pn and sn are to
be chosen so that Eqs. (2d) are satisfied. The determi-
nation of these coefficients is tedious and will not be
repeated here as the results have been detailed in Ref.
[3]. In the following the corresponding solutions will
be denoted by the subscript ‘RB’ and it will be suffi-
cient to consider only the initial terms of the expansions
[Eq. (3)] by assuming, as Rayleigh did originally, that
kw → 0.

2. Circular Apertures

For circular apertures it is appropriate to use polar
coordinates inside the aperture and in the plane of
observation, so that

(4a)

(4b)

(4c)

The initial terms of the trial solutions of Eq. (3) were
determined by Rayleigh and Bouwkamp as p0 = s1 =
–2/π and thus the first-order solutions for circular aper-
tures are

(4d)
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(4e)

2.1 Fresnel Approximation

The evaluation of Eqs. (4d,e) in the Fresnel limit is
simple. When z >> λ, and thus z >> q, the dependence
of QP on the aperture coordinates can be ignored, so
that

(5a)

and

(5b)

where q/w = sinα was substituted in both integrals.
Hence, the total radiant fluxes transmitted by the aper-
ture and incident on the inside of a large hemisphere
with radius r are given by

(5d)

and the corresponding transmission coefficients of the
aperture are

(5f)

where Φ0 = πw2 is the geometrical flux incident on the
aperture.

These results can now be checked for consistency
with Eqs. (2d) and (3) by using an alternative expres-
sion [3,6] for transmission coefficients,

(6a)

where A is the area of the aperture and u(Q) is the field
inside it. According to Eq. (2d) we expect u(p)

RB(Q) = 1
and therefore

(6b)

whereas from Eq. (3) and s1 = –2/π it follows that

(6c)

The p-coefficients of Eqs. (5f) and (6b) agree reason-
ably well. On the other hand, there is a considerable
difference between the corresponding s-coefficients.

2.2 Near-Field Solution

In the immediate proximity of the aperture plane the
exponential eikQP is effectively constant and equal to 1
inside the aperture, and Eqs. (4d,e) can be simplified as
follows,

(7a)

(7b)

As these wave functions must be rotationally sym-
metrical about the z-axis it suffices to evaluate the χ-
integrals appearing in these expressions for ϕ = 0.
Substituting α = (χ – π)/2, we find

(8a)

(8b)

and hence

(8c)

(8d)
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(8e)

where K(m) and E(m) are the complete elliptical inte-
grals of the first and second kinds [7,8].

Upon substitution of Eq. (8c), Eq. (7a) is reduced to
the single integral

(9a)

where relative coordinates are used. This expression
was evaluated by numerical integration to analyze its
behavior in the aperture plane, using a polynomial
approximation for K(m) given in Ref. [7] and assuming
z/w = 0 as well as z/w = 0.01 in order to find ∂u(p)

RB/∂z by
numerical differentiation. The results of these computa-
tions are listed in the left-hand portion of Table 1,
which shows that they are in satisfactory agreement
with the values expected from Eqs. (2d) and (4d).

The corresponding expressions for u(s)
RB are obtained

from Eqs. (7b) and (8d) and can be expressed as fol-
lows,

(10a)

where

(10b)

(10c)

and E(m) can also be expressed by a polynomial
approximation [7]. It was ascertained that the integrals
A and B are everywhere finite, and hence it follows
from the first Eq. (10a) that the aperture values of u(s)

RB
are identically equal to zero. This is in disagreement
with Eq. (4e), and it was also found that the computed
aperture values of (1/ik)∂u(s)

RB/∂z do not satisfy the sec-
ond integral equation, [Eq. (2d)]. These discrepancies
are documented in the right-hand portion of Table 1.

3. Slits

The second case considered by Rayleigh and
Bouwkamp is that of an infinitely long, narrow slit of
width 2w which is centered on the y-axis of a rectangu-
lar coordinate system. As the resulting diffraction pat-
tern will be independent of y, it is sufficient to compute
its variation in the xz-plane by assuming

(11a)

and then Eqs. (1a,b) are reduced to

(11c)

where the infinite η-integral in Eq. (10b) was evaluat-
ed in terms of the Hankel function H0

(1)(β) [8] and the
relationship dH0

(1)(β)/dβ = –H1
(1)(β) was used in Eq.

(10c). According to Rayleigh and Bouwkamp the initial
terms of the series expansions [Eq. (3)] are p0 = 1/(o –
iπ/2) and s1 = 1 where and o = ln(γkw/4) and γ = 0.577..
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Table 1. Aperture values of wave functions and normal derivatives for circular apertures of width kw = 0.1, as computed from Eqs. (9a) and
(10a,b,c) and expected from Eqs. (2d) and (3)

u(p)
RB(Q) (1/ik)∂u(p)

RB(Q)/∂z u(s)
RB(Q) (1/ik)∂u(s)

RB(Q)/∂z
ρ /w computed expected computed expected computed expected computed expected

0.01 0.99 1 –0.62 –0.66 0 0.064 i 0.5 i 1
0.25 0.99 1 –0.64 –0.66 0 0.062 i –30 + 0.5 i 1
0.50 0.99 1 –0.72 –0.74 0 0.055 i –216 + 0.4 i 1
0.75 0.99 1 –0.94 –0.96 0 0.042 i –558 + 0.3 i 1
0.99 0.98 1 –3.91 –4.51 0 0.009 i –276 1

( )
( ) RB
RB 3/ 2

3/ 2

(P)i 1(P) ,
/ ( / )

i .
// )(

s
s ukwA Bu kz

w ik zw
B A

ww

ρ ρ

ρρ

⎡ ⎤ ∂
= +⎢ ⎥ ∂⎣ ⎦

= −

21

0

d( / ) 1 ( / )1 , ,
2 1

q w m q w
A z

m
λ

−
= − <<

π −∫
3/ 2 21

2
0

d( / ) 1 ( / ) E( )1 , ,
2 (1 ) /

q w m q w m
B z

m q w
λ

−
= − <<

π −∫

P ( ,0, ), Q ( , ,0),x z ξ η= =

2 2 2i ( )( )
( ) RB
RB 2 2 2

( )
(1) 2 2RB
0

( ,0)1 e(P) d d
2 ( )

( ,0)i d H ( ), ( ) , (11b)
2

w k x zp
p

w

w p

w

uu
z x z

u k x z
z

ξ ηξξ η
ξ η

ξξ β β ξ

∞ − + +

− −∞

−

∂
=−

π ∂ − + +

∂
=− = − +

∂

∫ ∫

∫

(1)
( ) ( ) 0
RB RB

(1)2
( ) 1
RB

H ( )i(P) d ( ,0)
2

H ( )i d ( ,0) ,
2

w
s s

w
w

s

w

u u
z

k z u

βξ ξ

βξ ξ
β

−

−

∂
= −

∂

= −

∫

∫



is Euler’s constant, and hence the first-order solutions
for slits are

(11d)

(11e)

3.1 Fresnel Approximation

At large distances from the slit (z >> w), the phase
difference β defined in Eq. (11b) is effectively a large
constant and equal to , and the Hankel
functions in Eqs. (11d,e) can be replaced by their
asymptotic expansions

(12a)

so that

(12b)

where cosθ = z/r and the two integrals were again eval-
uated by substituting ξ/w = sinα. These expressions can
now be used to compute the quantities

(12d)

which represent the radiant flux emerging from a slit
segment of length ∆y and falling on the corresponding
annular segment of a semicylinder of radius r which is
centered on the y-axis. As the geometrical flux incident
on the slit segment is ∆Φ0 = 2w∆y, this leads at once to
the following expressions for the transmission coeffi-
cients of the slit,

As in Sec. 2.1 alternative expressions for these trans-
mission coefficients can be obtained from Eq. (6a),
which in this case is equivalent to

(13a)

Hence we find, using Eqs. (2d) and (3) with s1 = 1,

(13b)

(13c)

Both of these results disagree with the corresponding
values in Eq. (12e).

3.2 Near-Field Solution

The integrals [Eq. (11d,e)] can be evaluated without
simplifying assumptions for arbitrary values of z, and it
was found that they are finite in the aperture plane in
spite of the singularities of H0

(1)(β) and H1
(1)(β)/β for

β = 0.
For p-polarized light we find

(14)

where Jn and Yn are Bessel functions of the first and
second kinds and M = o2 + π2/4. The integral [Eq. (14)]
was evaluated numerically for kw = 0.1 and z = 0 as
well as z = 0.01w, yielding the results for uRB

(p) and
∂uRB

(p)/∂z shown in the left-hand portion of Table 2. The
table also shows the corresponding values expected
from Eqs. (2d) and (3), and the agreement was judged
satisfactory in view of the approximations made in
Rayleigh’s derivations.

The corresponding expression obtained from Eq.
(11e) is

(15a)
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where

(15b)

It was found that the integrals [Eq. (15b)] are finite in
the aperture plane, so that according to Eq. (15a) the
aperture values of uRB

(s) are identically zero and thus do
not agree with the assumed values of Eq. (3). Equation
(15a) also shows that

(15c)

which obviously disagrees with Eq. (2d). The various
numerical results obtained for uRB

(s) and ∂uRB
(s)/∂z are list-

ed on the right-hand side of Table 2.

4. Conclusion

Based on the above-mentioned results and illustrated
by the numerical examples shown in Tables 1 and 2
there can be no doubt that the Rayleigh-Bouwkamp
theory is mathematically flawed and fails to give a
credible account of the diffraction of polarized light.
The reasons for this conclusion are twofold.

The near-field solutions derived in Secs 2.2 and 3.2
for p-polarized incident light (∂u0/∂z = 0 on S ) are in
approximate agreement with the conditions in Eqs. (2d)
and (3) that were assumed in their derivation, and thus
appear to be free of contradictions. On the other hand,
the corresponding solutions for s-polarization (u0 = 0
on S ) do not obey these conditions at all. This discrep-
ancy was found for circular apertures and slits alike,
and thus points to a general problem associated with the
second integral equation [Eq. (2d)] as such. Bouwkamp
[3] mentioned that this integral equation [Eq. (2d)] is
notoriously difficult as it requires differentiation with

respect to z under the integral sign and can lead to
divergent solutions. He pointed out that these divergen-
cies can be eliminated, but this was not attempted in
this work. In any case, the polarization effects shown in
Fig. 1 must be dismissed as wrong.

A second, and most likely uncorrectable, problem
arises from the fact that the ‘polarization effects’ pre-
dicted by the Rayleigh-Bouwkamp theory run counter
to common experience. As mentioned in the
Introduction, a polarized field behind a circular aper-
ture illuminated by normally incident, unpolarized light
is impossible for reasons of symmetry. Yet the exis-
tence of such a field is implied by the upper curve in
Fig. 1, and the discrepancy persists even when the sus-
pect transmission coefficient τRB

(s) in Eq. (5f) is replaced
by the improved coefficient (τRB

(s))' in Eq. (6c).
Additionally, the different values obtained in Secs. 2.1
and 3.1 for the far- and near-field transmission coeffi-
cients seemed paradoxical because the polarization of
light cannot change during free-space propagation. As
this discrepancy was encountered for both states of
polarization, it also cannot be blamed on the mathemat-
ical problem mentioned in the previous paragraph.

Hence it is concluded that the Rayleigh-Bouwkamp
theory cannot be relied upon for describing the diffrac-
tion of polarized light by small apertures. Virtually the
same determination was made in an earlier paper [6] on
the feasibility of using the Rayleigh-Sommerfeld
boundary-value integrals for analyzing diffraction by
apertures of arbitrary size, and thus the overall conclu-
sion is that the inability to account for polarization
effects is an inherent property of scalar diffraction the-
ories, no matter what boundary conditions are assumed.
The fact of the matter appears to be that, in scalar dif-
fraction theory, the boundary conditions ∂u0/∂z = 0 or
u0 = 0 are necessary and sufficient to satisfy Helmholtz’
theorem. As it happens, the same conditions also per-
tain to the metallic reflection of p- or s-polarized light
but it does not follow that they are sufficient to ensure
conformance with electromagnetic theory.
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Table 2. Aperture values of wave functions and normal derivatives for slits of width kw = 0.1, as computed from Eqs. (14) and (15a,b,c) and
expected from Eqs. (2d) and (3)

u(p)
RB(Q) (1/ik)∂u(p)

RB(Q)/∂z u(s)
RB(Q) (1/ik)∂u(s)

RB(Q)/∂z
ρ /w computed expected computed expected computed expected computed expected

0.01 0.76 1 0.75 + 2.0 i 0.76 + 2.1 i 0 –0.10 i 8.6 – 38 i 1
0.25 0.76 1 0.78 + 2.1 i 0.79 + 2.1 i 0 –0.10 i 8.3 – 37 i 1
0.50 0.76 1 0.87 + 2.3 i 0.89 + 2.4 i 0 –0.09 i 7.4 – 33 i 1
0.75 0.76 1 1.1 + 3.1 i 1.2 + 3.1 i 0 –0.05 i 5.8 – 25 i 1
0.99 0.75 1 4.7 + 13 i 5.5 + 15 i 0 –0.01 i 1.6 – 4 i 1

21
1

1

21
1

1

d( / ) 1 ( / ) J ( )
,

d( / ) 1 ( / ) Y ( )
.

w w
C

w w
D

ξ ξ β
β

ξ ξ β
β

−

−

−
=

−
=

∫

∫

( )
RB (P)1 ( i ) , if 0,

i z 2

su kw D C z
k
∂

= − =
∂



In Ref. [6] it was also shown that a modified theory
of unpolarized diffraction can be formulated in which
the Rayleigh-Sommerfeld integrals are used to describe
a continuous, bidirectional flow of energy in the near
zones on either side of an aperture. The transmission
coefficients computed in this manner are similar to
those published by Levine and Schwinger [4,5] for sub-
wavelength aperture sizes, so that a special theory for
this region may not be needed.
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