Generalized Parton Distributions: Recent Results

M. Diehl

Deutsches Elektronen-Synchroton DESY

PANIC 2005, 28 October 2005

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
●000	0000	0000000	0000000	0

Generalized parton distributions in a nutshell

► GPDs \leftrightarrow matrix elements $\langle p' | \mathcal{O} | p \rangle$ $\mathcal{O} =$ non-local operator with quark/gluon fields e.g. $\bar{q}(-z) z_{\mu} \gamma^{\mu} q(z) |_{z^2=0}$

A (P) + A (B) + A (B) +

- ▶ $p \neq p' \rightsquigarrow$ depend on two momentum fractions* x, ξ and on $t = (p p')^2$
- for unpolarized quarks two dist's:
 - H^q conserves proton helicity
 - E^q responsible for proton helicity flip analogs for polarized quarks and gluons

* fractions of light-cone momentum $k^+ = \frac{1}{\sqrt{2}}(k^0 + k^3)$

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
•000	0000	0000000	0000000	0

Generalized parton distributions in a nutshell

► GPDs \leftrightarrow matrix elements $\langle p' | \mathcal{O} | p \rangle$ $\mathcal{O} =$ non-local operator with quark/gluon fields e.g. $\bar{q}(-z) z_{\mu} \gamma^{\mu} q(z) |_{z^2=0}$

- ▶ $p \neq p' \rightsquigarrow$ depend on two momentum fractions x, ξ and on $t = (p p')^2$
- for unpolarized quarks two dist's:
 - H^q conserves proton helicity
 - E^q responsible for proton helicity flip
- if $p = p' \rightsquigarrow$ ordinary parton densities

$$H^q(x,\xi=0,t=0) = \left\{ \begin{array}{cc} q(x) & \mbox{for } x>0 \\ -\bar{q}(x) & \mbox{for } x<0 \end{array} \right.$$

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
●000	0000	0000000	0000000	0

Generalized parton distributions in a nutshell

► GPDs \leftrightarrow matrix elements $\langle p' | \mathcal{O} | p \rangle$ $\mathcal{O} =$ non-local operator with quark/gluon fields e.g. $\bar{q}(-z) z_{\mu} \gamma^{\mu} q(z) |_{z^2=0}$

- ▶ $p \neq p' \rightsquigarrow$ depend on two momentum fractions x, ξ and on $t = (p p')^2$
- for unpolarized quarks two dist's:
 - H^q conserves proton helicity
 - E^q responsible for proton helicity flip

►
$$\int dx \, x^n \operatorname{GPD}(x,\xi,t) \to \operatorname{local operators} \to \operatorname{form factors}$$

 $\sum_{q} e_q \int_{-1}^{1} dx \, H^q(x,\xi,t) = F_1(t) \quad \operatorname{Dirac}$
 $\sum_{q} e_q \int_{-1}^{1} dx \, E^q(x,\xi,t) = F_2(t) \quad \operatorname{Pauli}$

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
0000	0000	0000000	00000000	0

Processes

factorization theorems: GPDs appear in hard exclusive processes

full results at NLO in α_s :

▶ deeply virtual Compton scattering (DVCS) $\gamma^* p \rightarrow \gamma p$ first results at NNLO D. Müller and A. Schäfer '05

$$\mathcal{A}(\xi, t) = \sum_{i} \int dx \, C_i(x, \xi) \, \mathrm{GPD}_i(x, \xi, t) \qquad \qquad \xi = \frac{x_B}{2 - x_B}$$

up to $\log Q^2$ dependence from evolution and running α_s (calculable in perturbation theory)

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
0000	0000	0000000	00000000	0

Processes

factorization theorems: GPDs appear in hard exclusive processes

full results at NLO in α_s :

- ► deeply virtual Compton scattering (DVCS) $\gamma^* p \rightarrow \gamma p$ first results at NNLO D. Müller and A. Schäfer '05
- ▶ light meson production $\gamma^* p \rightarrow \rho p, \pi n, \ldots$ A. Belitsky and D. Müller '01, D. Ivanov et al. '04

• $\gamma p
ightarrow J\!/\Psi p$ D. Ivanov et al. '04

in meson production NLO corrections can be large
 more detailed studies needed

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
0000		00000000	00000000	O

Evolution

- ▶ GPDs depend on resolution scale µ ~ large momentum in hard process
- evolution interpolates between DGLAP eqs. (parton densities) and ERBL eqs. (meson distribution amplitudes)
- kernels known to NLO
- new: explicit solution of LO evolution A. Manashov et al. '05
 - usual parton densities: Mellin transform

$$\begin{split} M^{j}(\mu) &= \int dx \; x^{j-1} \, q(x,\mu) \quad \text{evolves multiplicatively} \\ q(x,\mu) &= -\frac{1}{2\pi i} \int_{\Omega} dj \; x^{-j} \; M^{j}(\mu) \end{split}$$

- generalization for $\xi \neq 0$ involves Legendre functions
- ▶ → fast numeric implementation analytic approximations, e.g. in small-x limit

白 医水疱 医水黄 医水黄素 医

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
0000	0000	0000000	00000000	0

typical strategy for modeling GPDs:

- ▶ use conventional $g(x), q(x), \bar{q}(x)$ as input
- generate ξ dependence consistent with Lorentz invariance (polynomiality) relations

$\gamma^* p \to \gamma p$ d (nb) H1 ZEUS 10 W=82 GeV 10 20 $O^{2}(GeV^{2})$ 40 60 hep-ph/0507183

ansätze based on

- "double distributions"
 - I. Musatov and A. Radyushkin '99
- evolution for small x, ξ
 A. Shuvaev et al. '99
- moments
 - D. Müller and A. Schäfer '05
 - V. Guzey and M. Polyakov '05 \rightarrow
 - \rightsquigarrow with LO calculation good description of DVCS at low x_B

Introduction 0000	Quarks and gluons	Impact parameter 00000000	Spin 0000000

- vector meson production:
 quark and gluon GPDs at same O(α_s)
- schematically:

$$\begin{split} \mathcal{A}_{\rho^0} &\propto \frac{1}{\sqrt{2}} \Big[\frac{2}{3} (u + \bar{u}) + \frac{1}{3} (d + \bar{d}) + \frac{3}{4} g \Big] \\ \mathcal{A}_{\phi} &\propto \frac{1}{3} (s + \bar{s}) + \frac{1}{4} g \end{split}$$

• ordinary parton densities \rightarrow CTEQ6L at $\mu = 2 \text{ GeV}$

Introduction 0000	Quarks and gluons	Impact parameter 00000000	Spin 00000000

schematically:

0.4

Q² [GeV²]

Conclusions

 $\begin{array}{c} \mathbf{x_{s}} \\ \mathsf{CTEQ6NLO} \\ Q^{2} = 2.5 \ \mathsf{GeV}^{2} \\ \end{array} \qquad \begin{array}{c} \mathbf{\mathsf{MRST2001NLO}} \\ \mathsf{MRST2001NLO} \\ \end{array}$

gluons may be non-negligible even in "valence quark region"

substantial uncertainties on conventional gluon densities

Quarks and gluons

Impact parameter 00000000

Spin 000000 Conclusions

- ► leading-twist calculations for vector meson production overshoot data factors of several at Q² ≤ 5 GeV²
- strong suppression from meson k_T in
 - hard scattering
 - L. Frankfurt et al. '95; M. Vanderhaeghen et al. '99
- new analysis for small x_B (gluons only)
 P. Kroll, S. Goloskokov '05

E.

hep-ph/0501242, CTEQ5M gluon, double distribution model

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
0000	0000	0000000	0000000	0

J/Ψ production at small x_B

data clearly disfavor some gluon distrib's in conjunction with model for $g(x) \rightsquigarrow \text{GPD}$

H1 Collab., hep-ex/0510016

 roduction
 Quarks and gluons
 Impact parameter
 Spin
 Conclusions

 000
 0000
 00000000
 00000000
 0

Localizing partons: impact parameter

 states with definite light-cone momentum p⁺ can stay in frame where proton moves fast and transverse position (impact parameter) eigenstates of 2 dim. position operator

$$|p^+, \mathbf{b}\rangle = \int d^2 \mathbf{p} \, e^{-i\mathbf{b} \, \mathbf{p}} \, |p^+, \mathbf{p}\rangle$$

b is center of momentum of the partons in proton

$$\boldsymbol{b} \underbrace{ \begin{array}{c} \boldsymbol{b} \\ \hline \boldsymbol{p}_{i}^{+}, \boldsymbol{b}_{i} \end{array}}_{\boldsymbol{p}_{i}^{+}, \boldsymbol{b}_{i}} \qquad \boldsymbol{b} = \frac{\sum_{i} p_{i}^{+} \boldsymbol{b}_{i}}{\sum_{i} p_{i}^{+}} \qquad (i = q, \bar{q}, g)$$

consequence of Lorentz invariance nonrelativistic analog: Galilei invariance \Rightarrow center of mass

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
0000		0000000	00000000	0

Impact parameter GPDs

impact parameter distribution

$$q(x, b^2) = (2\pi)^{-2} \int d^2 \mathbf{\Delta} \, e^{-i\mathbf{\Delta} \cdot \mathbf{b}} H^q(x, \xi = 0, t = -\mathbf{\Delta}^2)$$

gives distribution of quarks with

- longitudinal momentum fraction \boldsymbol{x}
- transverse distance b from proton center M. Burkardt '00 can generalize to $\xi \neq 0$
- average impact parameter

$$\langle b^2 \rangle_x = \frac{\int d^2 b \ b^2 \ q(x, b^2)}{\int d^2 b \ q(x, b^2)} = 4 \frac{\partial}{\partial t} \log H(x, \xi = 0, t) \Big|_{t=0}$$

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
0000		0000000	00000000	0

Impact parameter GPDs

impact parameter distribution

$$q(x, b^2) = (2\pi)^{-2} \int d^2 \mathbf{\Delta} e^{-i\mathbf{\Delta} \cdot \mathbf{b}} H^q(x, \xi = 0, t = -\mathbf{\Delta}^2)$$

gives distribution of quarks with

- longitudinal momentum fraction \boldsymbol{x}
- transverse distance b from proton center M. Burkardt '00 can generalize to $\xi \neq 0$
- ► measured t dependence ~→ spatial distribution of partons data at small x for
 - J/Ψ production ZEUS '04, H1 '05 \leftrightarrow gluons
 - DVCS H1 '05 \leftrightarrow sea quarks and gluons

ntroduction	Quarks and gluons	Impact parameter	Spin	Conclusions
0000	0000	0000000	0000000	0

impact parameter distributions depend on resolution scale μ

- ▶ $q(x, b^2)$ fulfills usual DGLAP evolution equation
- ▶ for non-singlet distribution (e.g. valence q_v = q q̄) average impact parameter

$$\langle b^2 \rangle_x = \frac{\int d^2 b \ b^2 \ q_v(x, b^2)}{\int d^2 b \ q_v(x, b^2)}$$

evolves as

$$\mu^2 \frac{d}{d\mu^2} \langle b^2 \rangle_x = -\frac{1}{q_v(x)} \int_x^1 \frac{dz}{z} P_{qq}\left(\frac{x}{z}\right) q_v(z) \left[\langle b^2 \rangle_x - \langle b^2 \rangle_z \right]$$

M.D. et al. '04

analogous for quark singlet and gluons

 $\blacktriangleright \ d = b/(1-x)$

= distance of selected parton from spectator system gives lower bound on overall size of proton

 \blacktriangleright finite size of configurations with $x \rightarrow 1$ implies

$$\langle b^2 \rangle_x \sim (1-x)^2$$

M. Burkardt '02, '04

イロト イポト イヨト イヨト

Small x: simplest Regge behavior gives $GPD \sim x^{-(\alpha + \alpha' t)} e^{tB} \quad \rightsquigarrow \quad \langle b^2 \rangle_x \sim B + \alpha' \log(1/x)$

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
0000	0000	00000000	00000000	0

Constraints from Dirac form factors

sum rule $\sum_{q} e_q \int dx H^q(x,\xi,t) = F_1(t)$ \oplus functional ansatz for valence $(q - \overline{q})$ part of $H^q(x,\xi = 0,t)$

 \rightsquigarrow good description of proton and neutron Dirac form factors

M.D. et al. '04, M. Guidal et al. '04

M.D. et al, hep-ph/0408173

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
0000	0000	00000000	0000000	0

Lesson from the fit

▶ clear drop with x of average distance d = b/(1 - x)
 ↔ strong correlation of x and t dependence

trend also clearly seen in lattice calculations

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
0000	0000	00000000	0000000	0

Compare with lattice results

matrix elements of local operators \leftrightarrow form factors calculate in lattice QCD

- J. Negele et al., hep-lat/0404005
 - Wilson fermions
 - ▶ $m_{\pi} = 870 \text{ MeV}$

• typical x in $\int dx \, x^n q(x, b)$ estimated as

$$\langle x \rangle = \frac{\int dx \, x^{n+1} q(x)}{\int dx \, x^n q(x)}$$

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
0000	0000	0000000	00000000	0

Consequences for hadron-hadron collisions

 ▶ hard inclusive process, e.g. pp → jet jet + X
 → no impact parameter dependence integrate over b₁ and b₂ independently

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
0000	0000	0000000	0000000	0

Consequences for hadron-hadron collisions

- ▶ hard inclusive process, e.g. $pp \rightarrow jet jet + X$
 - \rightarrow no impact parameter dependence

integrate over b_1 and b_2 independently

- secondary soft or hard interactions do not affect inclusive cross section but change event structure
- larger mom. fractions x_1 , x_2 in hard subprocess
 - \rightsquigarrow more central collision
 - \rightsquigarrow more secondary interactions

M. Strikman, C. Weiss, session II.1

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
0000		00000000	●0000000	0

Transverse spin and helicity flip

► $E \leftrightarrow$ nucleon helicity flip $\langle \downarrow | \mathcal{O} | \uparrow \rangle$ \leftrightarrow transverse pol. difference $|X\pm\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle \pm |\downarrow\rangle)$ $\langle X+|\mathcal{O}|X+\rangle - \langle X-|\mathcal{O}|X-\rangle = \langle \uparrow |\mathcal{O}| \downarrow \rangle + \langle \downarrow |\mathcal{O}| \uparrow \rangle$

• quark density in proton state $|X+\rangle$

$$q_v^X(x, \boldsymbol{b}) = q_v(x, \boldsymbol{b}^2) - \frac{b^y}{m} \frac{\partial}{\partial \boldsymbol{b}^2} e_v^q(x, \boldsymbol{b}^2)$$

 $\begin{array}{ll} \mbox{shifted in }y \mbox{ direction} & \mbox{M. Burkardt '02} \\ e^q_v(x,b) \mbox{ is Fourier transform of } E^q_v(x,\xi=0,t) \end{array}$

- \rightarrow large spin-orbit correlations
- relation with transverse momentum dependent densities
 Sivers effect
 M. Burkardt et al. '04

also: F. Yuan, session III.6

イロト 不得下 イヨト イヨト

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
0000	0000	0000000	0000000	0

density representation

$$q_v^X(x, \boldsymbol{b}) = q_v(x, \boldsymbol{b}^2) - \frac{b^y}{m} \frac{\partial}{\partial \boldsymbol{b}^2} e_v^q(x, \boldsymbol{b}^2)$$

gives positivity bound

M. Burkardt '03

$$\left|E^{q}(x,\xi=0,t=0)\right| \leq q(x) m \sqrt{\langle \boldsymbol{b}^{2} \rangle_{x}}$$

have more restrictive bounds involving polarized distributions $\Rightarrow E^q$ must fall faster than H^q at large x

► E ↔ orbital angular momentum
⇒ carried by partons with x not large

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusion
0000		00000000	00000000	O

Constraints from Pauli form factors

► sum rule $\sum_{q} e_q \int dx E^q(x,\xi,t) = F_2(t)$ ⊕ functional ansatz for valence part of $E^q(x,\xi=0,t)$ do not know forward limit $E^q(x,\xi=0,t=0)$

M.D. et al. '04, M. Guidal et al. '04

 obtain good fits of F^p₂(t) and Fⁿ₂(t) data large allowed regions of fit parameters but positivity constraints seriously limit parameter space
 can estimate orbital angular momentum

carried by valence quarks (q-ar q) Ji's sum rule

$$\langle L_v^q \rangle = \frac{1}{2} \int dx \, x \left[E_v^q(x,0,0) + q_v(x) \right] - \frac{1}{2} \int dx \, \Delta q_v(x)$$

 $\begin{array}{l} 2\langle L_v^u\rangle=-(0.47\div 0.54) \ \, \text{and} \ \, 2\langle L_v^d\rangle=0.30\div 0.38 \ \ \, \text{M.D. et al} \\ 2\langle J_v^u\rangle=2\langle L_v^u\rangle+0.93 \ \ \, \text{and} \ \, 2\langle J_v^d\rangle=2\langle L_v^d\rangle-0.34 \end{array}$

Introduction 0000	Quarks and gluons	Impact parameter	Spin 0000●000	Conclusions 0

Comparison with lattice calculations

► form factor analysis $2\langle L_v^u - L_v^d \rangle = -(0.77 \div 0.92)$ $2\langle L_v^u + L_v^d \rangle = -(0.11 \div 0.22)$

M.D. et al '04

► lattice results QC $2\langle L_v^u - L_v^d \rangle = -0.9 \pm 0.12$ $2\langle L_v^u + L_v^d \rangle = 0.06 \pm 0.14$

► lattice for $m_{\pi} = 897 \text{ MeV}$ $2\langle L_v^u - L_v^d \rangle = -0.25 \pm 0.05$ $2\langle L_v^u + L_v^d \rangle = -0.10 \pm 0.05$

all results for $\mu = 2 \text{ GeV}$

```
lattice "valence" contributions in sense of "connected quark diagrams"
```

QCDSF, G. Schierholz at LC 2005

LHPC, from hep-ph/0410017

▲ @ ▶ < ≥ ▶</p>

Introduction 0000	Quarks and gluons	Impact parameter 00000000	Spin 00000●00	Conclusions O
►	e.m. form factors \rightsquigarrow only	$q-ar{q}$ and as $\int dx$		
►	$DVCS \rightsquigarrow sea\xspace$ quarks and c	correlated with x		
►	ongoing experimental effor	t		
	• HERMES transverse p \rightsquigarrow sensitive to $\frac{4}{9}E^{u}$ +	target $\cdot \frac{1}{9}E^d$ E. Asch	enauer, session	111.5
	► JLAB Hall A Hall A E0 \rightsquigarrow sensitive to $\frac{1}{9}E^u$ +	3-106 n target - $\frac{4}{9}E^d$		
	 JLAB Halls A and B, H unpolarized proton targ 	ERMES, H1 and ZEU et \rightsquigarrow mainly $rac{4}{9}H^u +$	${1\over 9} H^d$ and H^g	
	in addition: vector mes	on production J. Dre	eschler, session	111.5
•	future prospects: Compase	s, JLAB upgrade, eF	HIC/ELIC	

◆□ → < @ → < 差 → < 差 → < 差 → の < ??</p>

DVCS transverse target spin asymmetries proton polarization \perp or \parallel to plane spanned by final $\gamma\,p$

Many other things not covered in this talk, e.g.

- dynamical models Kvinihkidze, Blankleider '04; Pasquini et al. '04; Tiburzi et al. '04; Noguera et al. '04, Scepetta, Vento '04; Mineo et al '05; Ossmann et al. '05
- transverse lattice Dalley '04
- nuclear GPDs Scopetta '04; Liuti, Taneja '04, '05; Guzey, Siddikov '05
- exclusive dijet production Braun, Ivanov '05; D. Ashery session II.4
- exotic meson production Anikin et al. '04, '05
- hadron-photon and baryon-meson transitions Pire, Szymanowski '04, '05; Tiburzi '05
- ▶ large-angle processes Miller '04; M.D. et al. '04; Kroll, Schäfer '05
- vp scattering Amore et al. '04; Psaker '04

イロト 不得下 イヨト イヨト

Introduction	Quarks and gluons	Impact parameter	Spin	Conclusions
0000		00000000	00000000	•

Conclusions

- technical progress: evolution, full NLO, first NNLO results
- vector meson production: very sensitive to gluon distrib'n even in fixed-target kinematics theory description more involved than for DVCS
- impact parameter representation: $F_1(t)$ data and lattice \rightsquigarrow strong decrease of $\langle b^2 \rangle$ with x
- towards quantitative understanding of L^q
 - progress in lattice calculations
 - first model dependent analyses of form factor and DVCS data

 \rightsquigarrow "valence" part of L^{u-d} big and of L^{u+d} small