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ABSTRACT 
The use of small animal models to investigate human diseases is an integral part of the development 
of new diagnostic and treatment regimens. Consequently, functional imaging modalities such as 
single photon emission computed tomography (SPECT) are increasingly being utilized to streamline 
the screening of animal phenotypes and to monitor disease states, progressions, and therapies. This 
paper focuses on the utilization of polarization filtering to minimize specular reflection from a glass 
tube used for holding live human-tumor-mice during functional imaging in a dedicated small animal 
SPECT system. The system presented is potentially useful for the real-time non-invasive 
investigation of diseases, such as cancer, and drug therapies in small animals because it utilizes 
optical motion-registered functional imaging that minimizes the effects of motion artifacts. 
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1. INTRODUCTION 
Small animal imaging is becoming increasingly vital for investigating tumor development and 
therapies, neural mechanisms and pathways, and drug discovery, to name a few.  Typically, this 
entails acquiring high resolution images of mouse models developed to study a specific human 
pathology, mechanism, pathway, and or metabolic response [1-14]. To accomplish this, single 
photon emission computed tomography (SPECT) imaging is becoming increasingly popular, 
primarily in dedicated systems that are optimized for small animal imaging; these are commonly 
referred to as microSPECT systems. One of the current thrusts of microSPECT imaging is its 
application for dynamic functional and quantification studies. For such studies, it is necessary to 
keep the animal alive, preferably without anesthesia (which sometimes interferes with the process or 
processes being studied).  

 
As such, our focus is on the development of a real time non-anesthetized animal imaging system to 
facilitate SPECT functional imaging. This involves the concurrent recording of the radioactive 
emissions and position of a mouse, with the aid of fudicial markers, to enable the motion corrected 
reconstruction of its SPECT activity. The SPECT pose tracking system employed for this study has 
been described elsewhere [15-18] and employs two stereo configuration  cameras to image three 
externally placed fudicial retroreflective markers illuminated by strobed IR LED light sources. Since 
the 3D position of the animal is based on determining the centroid of each marker in the camera 
images, we have discovered that specular reflections of the light source(s) that merge with the 
marker are a source of error. This paper presents a polarization filtration approach that was applied 
for the elimination of this problem. 
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Figure 1: Mouse, with glued on retroreflective markers, in glass tube holder.  Multiple reflections of the 
fluorescent room lights are clearly visible on the curved front surface of the glass tube. 
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he left half shows two reflections of the strobed light source off of the walls of the 
2. THEORY 
mental problem that this paper addresses is the specular reflection of light 
 interface. This accounts for the multiple reflections of the input light source 
ing camera, as illustrated in figures 1-3, which at times merge with the 
 fudicial marker(s) thus creating inaccuracies in their absolute position 

ach to our experimental specular reflection problem is Maulus’ law for 
ht intensity,  
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tected intensity, which is a related to the input light intensity Io by a cosine 
ative angle between the input light state-of-polarization (SOP) axis and the 
preceding polarizer (polarization filter). This is illustrated in figure 4.   
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f input source specular reflections off of the walls of the glass tube mouse holde
rized light beam Is is passed through a linear polarizer where it looses half of 
This can be explained phenomenologically by the following: an unpolarized 
ecomposed into two orthogonal polarization vectors, which upon summation 
 vector of zero; hence, the term unpolarized light can be construed to mean 
rred polarization state. In the terms of Eqn. 1, half of the initial unpolarized 

 because θ=90° for one of any two orthogonal polarization vectors used to 
 now polarized light beam Io propagates through the system and encounters 
, the intensity is based on Eqn. 1 and the SOP is always coincident with the 
e preceding polarizer. 

s’ law to develop a polarization filter by placing a polarizer that is aligned 
he input SOP, i.e. θ=90°, in front of the imaging camera. This results in total 
 polarized image due to blocking of its polarization by the second polarizer. 
e application of this principle to the imaging setup. Note for the purpose of 
markers for tracking purposes, it is necessary for the retroreflective fudicial 
larize the incident SOP (this allows 50% of the retroreflected light through the 
to rotate the plane of linear polarization (0°<θ<90° to allow for some of the 
 make it through the polarization filter) or alternatively the retroreflective 
o both. 
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Figure 4: Illustration of Maulus' law for polarized light intensity 
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n of the elimination of input source specular reflections off of the walls of the glass tube
plication of polarization filtering. 
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3. MATERIALS AND METHODS 
The system employed is illustrated in Figure 5. It consists of additional components added to the 
system described in references [15-18]. The added components are two IR Polaroid sheet polarizers 
(Edmund Optics Inc., Barrington, NJ), the first is installed in front of the IR LED illumination light 
source to polarize the input light, and the second is installed in front of the camera lens with an 
alignment that is crossed to the first.  All animal experiments where conducted under an approved 
animal use protocol.  

 
 

4. RESULTS AND DISCUSSION 
Figure 6 shows some preliminary results that we obtained with the aforementioned system. This 
demonstrates the ability to filter out the polarized right LED source reflection from the stereo 
camera image while the unpolarized left LED source reflection is, as expected, unfiltered. The 
appearance of the 3 retroreflective fudicial markers, labeled 1-3, in the original input SOP 
polarization filtered image is evidence of their ability to depolarize the input polarization and or 
rotate the plane of the linear input SOP. 
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Figure 6: Experimental results from one of the stereo cameras showing the 3 retroreflective fudicial markers, 
labeled 1-3, and the polarization filtration of the image of the Right LED light source which was polarized 
while the left, unpolarized , LED light source is unfiltered. 
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5. CONCLUSION 

By utilizing a polarization filtration system, we have demonstrated the ability to eliminate light 
source specular reflections, which are a source of noise for the absolute registration of retroreflective 
fudicial markers. This gives us the ability to increase the accuracy of registering the position of a live 
mouse during microSPECT functional imaging studies and will enhance our ability to improve the 
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quality of motion corrected reconstruction of functional SPECT activity through more precise 
position tracking.  
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