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Basic description of light

Three basic parameters describe light:

Intensity: I (brightness)

Polarization state: S (subtle)

Wavelength: λ (color)



Polarized light in everyday life

Bee navigation: Sunlight is polarized as it scatters from 
the atmosphere

Glare reduction: Light reflects from 
surfaces with a preferred polarization state

Flat panel display technology: Liquid crystal 
displays use to control pixel intensity



Polarized light in the lab

Sources: Lasers and LEDs emit polarized light

Detectors: Can be affected by polarization

Components: Light propagation depends on polarization state

Telecom Example: System performance
bit error rate, power penalty strongly affected by polarization



Outline

I. Describing polarized light (qualitative).
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Describing polarized light (qualitative)

Linear: Orientation of the 
plane of vibration

Elliptical: Ellipticity and 
orientation of the major axis

Abbreviations:
H (horizontal) +45 (+45 ° w/horizontal) RHC (right-hand circular)
V (vertical) -45 (-45 ° w/horizontal) LHC (left-hand circular)



“Unpolarized light”

Strictly speaking: There is no such thing as “unpolarized light”

• At any instant all light is perfectly polarized

• “Unpolarized” or “depolarized” light means the polarization 
state changes too fast to measure.

• “It’s just a matter of time” – Randy Travis

To generate “unpolarized” light:

• Make the polarization state change quickly with time

• Increase the time constant of your detector



Describing polarized light (quantitative)

It only takes 2 numbers to describe the state of polarization of light.

Ellipticity χ

a
b±

=χtan

Handedness

Orientation of 
major axis ψ

State of polarization is commonly described in one of two ways:

Jones vectors/matrices and Stokes vectors/Meuller matrices



Describing polarized light: Stokes vectors

Stokes vectors describe the state of polarization using INTENSITY

• Easier to measure (based on observables)

• Includes “unpolarized” light

• Includes the total intensity of the light

S0 = Total intensity of light*

S3 = Amount of light that is RHC or LHC

S2 = Amount of light that is ±45° (linear)
S1 = Amount of light that is Horiz. or Vert. (linear)
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*Stokes vector often reported “normalized” (S0=1).



Describing polarized light: Stokes vectors
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Normalized intensity

RHC or  LHC
±45° (linear)
Horiz. or Vert. (linear)
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QUIZ: What kind of polarization 
states do we have here?

General
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Stokes vectors: graphical approach

Poincaré sphere

The Poincaré sphere:
• Plots Stokes vectors
• Linear states on the equator
• Elliptical states off the equator
• The poles are RHC and LHC
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Normalized intensity

RHC or  LHC
±45° (linear)
Horiz. or Vert. (linear)



Where does “elliptical” polarization come from?

Phase: ∆φ = 0
Ay

Ax

Relative amplitudes Ax and Ay determine axis orientation (ψ)

Phase (retardance) between H and V determines ellipticity (χ) 

Important definition

Phase: ∆φ = π/2∆φ



Describing polarized light: Jones vectors
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Ax = Amplitude of horizontal component of electric field

Αy = Amplitude of vertical component of electric field

φx = Phase of horizontal component of electric field

φy = Phase of vertical component of electric field

Jones vectors describe state of polarization using ELECTRIC FIELD:

• Less intuitive to measure

• Simpler math but complex (real and imaginary parts)

• Includes absolute phase of light (only use Jones for interferometry)

• Ignores unpolarized light



Describing polarized light: Jones vectors
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QUIZ:

Which state is linear and 
which vertical?



How do you make polarized light?

Trick question: It’s already polarized, you USE A POLARIZER to 
select the state you want.

QUIZ: In an optical polarizer, what do the slats of the fence represent?

• Absorption of polarized light

• Different paths for polarized light



Choosing a polarizer

Important parameters:
• Operating wavelength (polarizer range and optical coating)
• Extinction ratio (min/max intensity transmission in dB) 

Optical polarizers:
• Crystals (calcite) range: 350-2300 nm

Glan-Thompson
Extinction ratios 50-70 dB (10,000,000:1)

Wollaston beam separating polarizer
50 dB extinction (both arms)

•Polarizing beam splitter (cube)
27-30 dB on transmission (1000:1)
~ 15 dB reflection
~ 85 nm range

• Fiber optic inline polarizers

• Brewster mirrors 



Modifying the polarization state: Polarizer

Some components require light of a certain polarization state. If you 
have the wrong state, how do you change it?

A polarizer extracts the desired state, but…
• The output power can be low
• Only linear states can be produced



Modifying polarization state: Retarder

Retarders (waveplates): Materials that delay the light polarized along 
one axis more than that polarized along the orthogonal axis.



Choosing a retarder

Retardance: ∆φ (tells you how the polarization state will be modified)
Birefringence: ∆n = (∆φ/L)(λ/2π) is a material property (retardance per length).

Zero order: (retardance = ∆φ)
Best wavelength, entrance angle and temperature dependence

Multiple order: (retardance = 2πm + ∆φ, m is a big number)
Inexpensive

Compound zero-order: (retardance = (2πm + ∆φ) − 2πm = ∆φ)
Poor entrance angle dependence

“Stability of Birefringent Linear Retarders (Waveplates)
P.D. Hale and G.W. Day, App. Opt., Vol. 27, 5146-5151, (1988)



Fiber polarization controller: “paddles”

Bending optical fiber induces a birefringence:

∆n ~ 1/r2

loops of fiber act like quarter-
or half-wave retarder

- Accepts any input state

- Generates any output state

- Requires low-bend-loss fiber

- Output state not predictable



Polarization state and optical fibers

Think of optical fiber as one loooonnnngggg waveplate:

Output polarization state:
• Independent of input state
• Changes when fiber moves
• Changes with room temperature

If you require a stable output state:
• Tape the fiber down
• Re-adjust every several days

If you require a particular output state:
• Polarizer following the fiber (power fluctuations)
• Use polarization-maintaining fiber.



Polarization-maintaining fiber

Polarization-maintaining fiber (PMF) = High birefringence fiber (Hi-Bi)

Large birefringence:
PMF: π/2 retardance in 2-3 mm
SMF *: π/2 retardance in 100 m

Maintains a LINEAR polarization state only when aligned with the axes of the PMF
• Input alignment accuracy determines the quality of the output state
• Be aware of alignment when splicing

*Single-mode fiber



Polarization-dependent loss (PDL)

max
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10log TPDL
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polarization state of the light
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Launch random 
(unknown) 
polarization states

“All-states”
technique
(Simple, slow)

• Launch 4 to 6 known polarization states
• Tmax and Tmin calculated from measured transmittances 
for each launch state

“Fixed-states”
(Fast, more complex)

Two general measurement techniques



Fiber Bandwidth

How fast does light go down this fiber ?

How fast can you send information down this fiber?

How close can you space the information bits?



Dispersion
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1 GHz => 1 ns => 100 ps pulse width

40 GHz => 25 ps => 2.5 ps pulse width

If the entire pulse doesn’t propagate at the same velocity...
…pulses can disperse and bits become indistinguishable.

Dispersion: Propagation velocity depends on…
(wavelength, polarization state, propagation mode …)



Polarization-mode dispersion (PMD)

Simple birefringence yields pulse splitting

∆τ=τslow − τfast

Polarized along 
“fast” axis

Polarized along 
“slow” axis

Arbitrarily-Polarized 



PMD in fibers, causes pulse broadening

Polarization-mode coupling splits 1 pulse into 2n

Multiple (n) birefringent axes
Single pulse in 2n pulses out (Gaussian envelope)

“Mode-coupling” is a statistical process, this means…

• Big standard deviations

(Longer measurement time, bigger uncertainty)

• Fiber PMD can’t be passively compensated



References

If you have any questions and want to discuss this with me…

Paul Williams
(303) 497-3805
pwilliam@boulder.nist.gov

Or someone else…

Edward Collett, “Polarized Light: Fundamentals and Applications”, 
Marcel Dekker, Inc., New York , 1993.
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