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GLOSSARY 
 
Birefringence  

The property of optically anisotropic materials, such as crystals, of having the phase velocity of 
propagation dependent on the direction of propagation and polarization.  Numerically, birefringence is 
the refractive index difference between eigenpolarizations. 

Diattenuation  
The property of having optical transmittance depend on the incident polarization state.  In 
diattenuators, the eigenpolarizations will have principal transmittances Tmax and Tmin, and diattenuation 
is quantified as (Tmax - Tmin/(Tmax + Tmin).  Diattenuation may occur during propagation when 
absorption coefficients depend on polarization (also called dichroism) or at interfaces. 

Eigenpolarization  
A polarization state that propagates unchanged through optically anisotropic materials.  
Eigenpolarizations are orthogonal in homogeneous polarization elements. 

Jones calculus  
A mathematical treatment for describing fully polarized light.  Light is represented by 2 x 1 complex 
Jones vectors and polarization components as 2 x 2 complex Jones matrices. 

Mueller calculus  
A mathematical treatment for describing completely, partially, or unpolarized light.  Light is 
represented by the 4 x 1 real Stokes vector and polarization components as 4 x 4 real Mueller matrices. 

Polarimetry  
The measurement of the polarization state of light or the polarization properties (retardance, diat-
tenuation, and depolarization) of materials. 

Polarized light  
A light wave whose electric field vector traces a generally elliptical path.  Linear and circular 
polarizations are special cases of elliptical polarization.  In general, light is partially polarized, and is a 
mixture of polarized light and unpolarized light. 

Polarizer  
A device with diattenuation approaching 1 that transmits one unique polarization state regardless of 
incident polarization. 

Retardance  
The optical phase shift between two eigenpolarizations. 

Unpolarized light  
Light of finite spectral width whose instantaneous polarization randomly varies over all states during 
the detection time. Not strictly a polarization state of light. 
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The Polarization state is one of the fundamental characteristics (along with intensity, wavelength, 
and coherence) required to describe light.  The earliest recorded observation of polarization effects was 
reported by Bartholinus, who observed double refraction in calcite in 1669.  Huygens demonstrated the 
concept of polarization by passing light through two calcite crystals in 1690.  Today, the measurement, 
manipulation, and control of polarization plays an important role in optical sciences. 
 
 
I. POLARIZATION STATES 
 
Light can be represented as an electromagnetic wave that satisfies Maxwell's equations.  A transverse 
electromagnetic wave has electric and magnetic field components that are orthogonal to the direction of 
propagation.  As the wave propagates, the strengths of these transverse fields oscillate in space and time, 
and the polarization state is defined by the direction of the electric field vector E. 
 
For our discussion, we will use a right-handed Cartesian coordinate system with orthogonal unit vectors , 

, and .  A monochromatic plane wave E(z, t) traveling in vacuum along the direction with time t can 
be written as 
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where ω is the angular optical frequency and Ex and Ey are the electric field amplitudes along the  and  
axes, respectively.  The free-space wavenumber is k

x̂ ŷ
o = 2πr / λ for wavelength λ, and φx, and φy are 

absolute phases.  The difference in phase between the two component fields is then ∆φ = φy - φx.  The 
direction of E and the polarization of the wave depend on the field amplitudes Ex and Ey and 
the phases φx and φy. 
 
A.  Linear Polarization 
 
A wave is linearly polarized if an observer looking along 
the propagation axis sees the tip of the oscillating 
electric field vector confined to a straight line.  Figure 1 
depicts the wave propagation for two different linear 
polarizations when Eq.(1b) is plotted for φx  = φy = 0.  In 
Fig. 1, Ey = 0 and light is linearly polarized along the x 
axis; in the other example, light is polarized along the y 
axis when Ex = 0. 
 
For a field represented by Eqs. (l a) and (1b), light will 
be linearly polarized whenever ∆φ = mπ, where m is an 
integer; the direction of linear polarization depends on 
the magnitudes of Ex and Ey.  For example, if Ex = Ey, 

Figure 1 Two linear polarized waves.  The electric field 
vector of x-polarized light oscillates in the xz plane.  The 
shaded wave is y-polarized light in the yz plane. 

Encyclopedia of Physical Science and Technology, Third Edition, Volume 12 



the vector sum of these orthogonal fields yields a 
wave polarized at 45° from the x axis.  If Ex = -Ey (or 
if Ex = Ey and ∆φ = π), the light is linearly polarized at 
-45°.  For in-phase component fields (∆φ = 0), the 
linear polarization is oriented at an angle α = tan-1 (Ey 
/ Ex) with respect to the x axis. 
 
In general, linear polarization states are often defined 
by an orientation angle, though descriptive terms such 
as x- or y-polarized, or vertical or horizontal, may be 
used.  However, when a wave is incident upon a 
boundary two specific linearly polarized states are 
defined.  The plane of incidence (Fig. 2) is the plane 
containing the incident ray and the boundary normal.  
The linear polarization in the plane of incidence is 
called p-polarization and the field component 
perpendicular to the plane is s-polarized.  This 
convention is used with the Fresnel equations (Sec-
tion II.A) to determine the transmittance, reflectance, 
and phase shift when light encounters a boundary. 
 
B. Circular Polarization 
 
Another special case occurs when Ex = Ey = Eo and the f
difference [∆φ = (m + ½ )π ].  If ∆φ = π /2, Eq.(1b) beco
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As the wave advances through space the magnitude of E
vector traces a circular path about the propagation axis a
to be right-circularly polarized. 
 

F
E
v
a

Figure 3 shows the electric field vector for right-
circular polarization when viewed at a fixed time (t 
= 0); here the field will trace a right-handed spiral 
in space.  An observer looking toward the origin 
from a distant point (z > 0) would see the vector tip 
rotating counterclockwise as the field travels along 
z.  In contrast, the same observer looking at a right-
circularly polarized field at a fixed position (for 
example, z = 0) would see the vector rotation trace 
out a clockwise circle in the xy plane as time 
advances.  This difference in the sense of rotation 
between space and time is often a source of 
confusion, and depends on notation (see Section 
I.F). 
 
When light is left-circularly polarized the field traces ou
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Figure 2 Light waves at a boundary.  The plane of incidence co-
incides with the plane of the page.  Incident, reflected, and 
transmitted p-polarized waves are in the plane of incidence.  The 
corresponding s-polarizations (not shown) would be perpendicular 
to the plane of incidence. 
ield components have a 90° relative phase 
mes 

(2) 

rcp is constant but the tip of this electric field 
t a frequency ω.  A wave with this behavior is said 

igure 3 The electric field propagation for right-circular polarization, 
q. (2), when t = 0.  At a fixed time, the tip of the electric field 
ector traces a right-handed corkscrew as the wave propagates 
long the +z direction. 

t a left-handed spiral in space at a fixed time and a 
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counterclockwise circle in time at a fixed position.  Equation (1b) describes left-circular polarization when 
Ex = Ey = Eo and ∆φ = -π/2: 
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Right- and left-circular polarizations are orthogonal states and can be used as a basis pair for representing 
other polarization states, much as orthogonal linear states are combined to create circular polarization. 
Adding equal amounts of right- and left-circularly polarized light will yield a linearly polarized state.  For 
example, 
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In contrast, adding equal quantities of left- and right-circular polarization that are out of phase [by adding 
an additional π phase to both component fields in Eq. (2)] yields 
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In general, equal amounts of left- and right-circular polarization combine to produce a linear polarization 
with an azimuthal angle equal to half the phase difference. 
 
C. Elliptical Polarization 
 
For elliptically polarized light the electric field vector rotates at ω but varies in amplitude so that the tip 
traces out an ellipse in time at a fixed position z.  Elliptical polarization is the most general state and linear 
and circular polarizations are simply special degenerate forms of elliptically polarized light.  Because of 
this generality, attributes of this state can be applied to all polarization states. 
 
The polarization ellipse (Fig. 4) can provide useful quantities 
for describing the polarization state. The azimuthal angle a of 
the semi-major ellipse axis from the x axis is given by 
 
 
 

 

 
 
 
 
 
 
 

tan(2α) = tan(β) cos
 
where tan(β) = Ey / Ex a
major axes, is calculated
 

tan(ε) = tan[sin-1(sin
 
Polarization is right-elli
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Figure 4 The polarization ellipse showing 
fields Ex and Ey, ellipticity tan |ε| = b/a, and 
azimuthal angle α.  The tip of the electric field 
E traces this elliptical path in the transverse 
plane as the field propagates down the z axis.
(∆φ), (6) 

nd 0 ≤  β ≤ π/2 .  The ellipticity tan |ε| = b/a, the ratio of the semi-minor and semi-
 from the amplitudes and phases of Eq. (1) as 

2β sin∆φ)/2]. (7) 

ptical when 0° < ∆φ < 180° and tan(ε) > 0° and left-elliptical when -180° < ∆φ< 0° 
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and tan(ε) < 0°. 
 
D. Unpolarized Light 
 
Monochromatic, or single-frequency, light must necessarily be in some polarization state. Light that 
contains a band of wavelengths does not share this requirement. 
 
Quasi-monochromatic light can be represented by modifying Eq.(1b) as 
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where ωm is the mean frequency of an electric field with bandwidth ∆ω < ωm.  Taking the real part of this 
complex analytic representation yields the true field.  Whereas the field amplitudes Ei(t) and phases φi(t) 
are constants for strictly monochromatic light, these quantities fluctuate irregularly when the light has 
finite bandwidth.  The pairs of functions Ei(t) and φi(t) have statistical correlations that depend on the 
spectral bandwidth of the light source.  The coherence time τ ~ 2π/∆ω describes the time scale during 
which the pairs of functions show similar time response.  For some brief time t « τ , Ei(t) and φi(t) are 
essentially constant, and E(t) possesses some elliptical polarization state, but a later field E(t + τ) will have 
a different elliptical polarization.  Light is described as unpolarized, or natural, if the time evolutions of the 
pairs of functions are totally uncorrelated within the detection time, and any polarization state is equally 
likely during these successive time intervals. 
 
While strictly monochromatic light cannot be unpolarized, natural light can be polarized into any desired 
elliptical state by passing it through the appropriate polarizer.  Indeed, when unpolarized light is incident 
on a polarizer, the detected output intensity is independent of the polarization state transmitted by the 
polarizer.  This occurs because a unique polarization exists for an infinitesimal time t « τ and the average 
projection of these arbitrary states on a given polarizer is ½ over the relatively long integration time of the 
detector.  In the absence of dispersive effects, unpolarized light, when totally polarized by an ideal 
polarizer, will behave much like monochromatic polarized light. 
 
It is often desirable to have unpolarized light, especially when the undesired polarization dependence of 
components degrades optical system performance.  For example, the responsivity of photodetectors can 
exhibit polarization dependence and cause measurements of optical power to vary with the polarization 
even when intensity is constant.  In some cases, pseudo-depolarizers are useful for modifying polarization 
to produce light that approximates unpolarized light (Section III.F).  For quasi-monochromatic light, the 
orthogonal field components can be differentially delayed, or retarded, longer than τ, so that the fields be-
come uncorrelated.  Alternatively, repeatedly varying the polarization state over a time shorter than the 
detector response causes the measurement to include the influence of many polarization states.  This 
method, known as polarization scrambling, can reduce some undesirable polarization effects by averaging 
polarizations. 
 
The previous discussion implicitly assumes that the light has uniform properties over the wavefront.  
However, the polarization can be varied over the spatial extent of the beam using a spatially varying 
retardance.  Further description of these methods and their limitations is found in the discussion on optical 
retarders. 
 
E. Degree of Polarization 
 
Light that is neither polarized nor unpolarized is partially polarized.  The fraction of the intensity that is 
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polarized for a time much longer than the optical period is called the degree of polarization P and ranges 
from P = 0 for unpolarized light to P = 1 when a light beam is completely polarized in any elliptical state.  
Light is partially polarized when 0 < P < 1.  Partially polarized light occurs when Ei(t) and φi(t) are not 
completely uncorrelated, and the instantaneous polarization states are limited to a subset of possible states.  
Partially polarized light may also be represented as a sum of completely polarized and unpolarized 
components. 
 
We can also define a degree of linear polarization (the fraction of light intensity that is linearly polarized) 
or a degree of circular polarization (the fraction that is circularly polarized).  Degrees of polarization can 
be described formally using the coherency matrix or Stokes vector formalism described in Section IV. 
 
F. Notation 
 
The choice of coordinate system and the form of the field in Eqs. (1a) and (1b) is not unique.  We have 
chosen a right-handed coordinate system such that the crossproduct is zyx ˆˆˆ =+  and used fields with a 
time dependence exp[i (ωt - kz)] rather than the complex conjugate exp[-i (ωt - kz)].  Both choices are 
equally valid, but may result in different descriptions of the same polarization states.  Descriptions of 
circular polarization in particular are often contradictory because of the confusion arising from the use of 
varied conventions.  In this article we follow the "Nebraska Convention" adopted in 1968 by the 
participants of the Conference on Ellipsometry at the University of Nebraska. 
 
Also, the choice of the Cartesian basis set for describing the electric field is common but not obligatory.  
Any polarization state can be decomposed into a combination of any pair of orthogonal polarizations.  
Thus Eqs. (1a) and (1b) could be written in terms of right- and left-circular states or orthogonal elliptical 
states. 
 
 
II. POLARIZERS 
 
An ideal polarizer transmits only one unique state of polarization regardless of the state of the incident 
light.  Polarizers may be delineated as linear, circular, or elliptical, depending on the state that is produced.  
Linear polarizers that transmit a linear state are the most common and are often simply called "polarizers."  
The transmission axis of a linear polarizer corresponds to the direction of the output light's electric field 
oscillation.  This axis is fixed by the device, though polarizers can be oriented (rotated normal to the 
incident light) to select the azimuthal orientation of the output state.  When linearly polarized light is 
incident on a linear polarizer, the transmittance T from the polarizer follows Malus's law, 
 

T = cos2θ, (9) 
 
where θ is the angle between the input polarization's azimuth and the polarizer's transmission axis.  When 
the incident light is formed by a linear polarizer, Eq.(9) describes the transmission through two polarizers 
with angle θ between transmission axes.  In this configuration the second polarizer is often called an 
analyzer, and the polarizer and analyzer are said to be crossed when the transmittance is minimized (θ = 
90°). 
 
Since an ideal polarizer transmits only one polarization state it must block all others.  In practice polarizers 
are not ideal, and imperfect polarizers do not exclude all other states.  For an imperfect polarizer Malus's 
law becomes 
 

T = (Tmax – Tmin)cos2θ + Tmin, (10) 
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where Tmax and Tmin are called the principal transmittances, and transmittance T varies between these 
values.  The extinction ratio Tmin / Tmax provides a useful measure of polarizer performance.  Diattenuation 
is the dependence of transmittance on incident polarization, and can be quantified as (Tmax - Tmin)/( Tmax + 
Tmin), where the maximum and minimum transmittances occur for orthogonal polarizations in 
homogeneous elements.  (Homogeneous polarization elements have eigenpolarizations that are orthogonal 
and we consider such elements exclusively in this article.)  Polarizers are optical elements that have a diat-
tenuation approaching 1. 
 
Most interfaces with nonnormal optical incidence will exhibit some linear diattenuation since the Fresnel 
reflection and transmission coefficients depend on the polarization.  High-performance polarizers exploit 
these effects to achieve very high diattenuations by differentially reflecting and transmitting orthogonal 
polarizations.  In contrast, dichroism is a material property in which diattenuation occurs as light travels 
through the medium.  Most commercial polarizers exploit dichroism, polarizationdependent reflection or 
refraction in birefringent crystals, or polarization-dependent reflectance and transmittance in dielectric 
thin-film structures. 
 
A. Fresnel Equations 
 
Maxwell's equations applied to a plane wave at an interface between two dielectric media provide the 
relationship among incident, transmitted, and reflected wave amplitudes and phases.  Figure 2 shows the 
electric fields and wavevectors for a wave incident upon the interface between two lossless, isotropic 
dielectric media.  The plane of incidence contains all three wavevectors and is used to define two specific 
linear polarization states; p-polarized light has its electric field vector within the plane of incidence, and s-
polarized light is perpendicular to this plane.  The law of reflection θi = θr provides the direction of the 
reflected wave.  The refraction angle is given by Snell's law, 
 

ni sinθi = nt sinθt. (11) 
 
Fresnel's equations yield the amplitudes of the transmitted field Et and reflected field Er as fractions of the 
incident field Ei.  For p-polarized light in isotropic, homogeneous, dielectric media, the amplitude 
reflectance rp is 
 

itti

tiit

pi

r
p nn

nn
E
E

r
θϑ
θϑ

coscos
coscos

+
−

=







=  (12) 

 
and amplitude transmittance tp is 
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For s-polarized light, the corresponding Fresnel equations are 
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and 
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The Fresnel reflectance for cases ni/nt = 1.5 and nt/ni = 
1.5 is shown in Fig. 5.  At an incidence angle θB = tan-

1(nt/ni )(for ni > nt), known as the Brewster angle, rp = 0 
and p-polarized light is totally transmitted.  In a pile-
of-plates polarizer, plates of glass are oriented at the 
Brewster angle so that only s-polarized light is 
reflected from each plate, and the successive 
diattenuations from each plate increase the degree of 
polarization of transmitted light. 
 
 
 

 
 
 
 
 
 
When ni > nt, both polarizations may be completely 
critical angle θc, 
 

.sin 1

i

t
c n

n−=θ  

  
When θi ≥ θc, the light undergoes total internal refle
is transmitted beyond the interface and an evanescen
reflectance can be reduced from 1 if the medium bey
and followed by a higher refractive index material.  
energy to flow across the interface, leading to nonze
glass-air interfaces must be kept free of contaminant
larizers obtain very high extinction ratios by transmi
orthogonal polarization to undergo TIR. 
 
B. Birefringent Crystal Polarizers 
 
Birefringent polarizers spatially separate an incident
conventional polarizer, the undesired polarization is 
absorber so that a single polarization is transmitted. 
distinct orthogonally polarized beams that are angula
 
In birefringent materials, the incident polarization is
principal polarizations or eigenpolarizations.  When 
see the same refractive index), the direction of propa
When light does not travel along an optic axis, the ei
thus propagate at different velocities through the ma
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Figure 5 Fresnel reflectances for p-polarized (solid curve) and s-
polarized (dashed) light for cases ni/nt = 1.5 and nt/ni = 1.5  The 
amplitude reflectance is 0 for p-polarized light at the Brewster angle θB 
and is one for all polarizations when the incidence angle is θ ≥ θC. 
reflected if the incidence angle is larger than the 

(16) 

ction (TIR).  For these incidence angles no net energy 
t field propagates along the direction θt.  The 
ond the interface is thinner than a few wavelengths 

The resulting frustrated total internal reflection allows 
ro transmittance.  For this reason, TIR devices using 
s that may frustrate the TIR.  Birefringent crystal po-
tting one linear polarization while forcing the 

 beam into two orthogonally polarized beams.  In a 
eliminated by directing one beam into an optical 
 Alternatively, a polarizing beamsplitter transmits two 
rly separated or displaced.  

 decomposed into two orthogonal states called 
the eigenpolarizations travel at the same velocity (and 
gation is called an optic axis (see Section III.A).  
genpolarizations see different refractive indices and 
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When light enters or exits a birefringent material at a nonnormal angle θ that is not along an optic axis, the 
eigenpolarizations refract at different angles, undergoing what is termed double refraction.  Also, each 
eigenpolarization may encounter different reflectance or transmittance at interfaces (since Fresnel 
coefficients depend on the refractive indices), and diattenuation results.  Complete diattenuation occurs if 
one eigenpolarization undergoes total internal reflection while the other eigenpolarization is transmitted.  
 
Most birefringent polarizers are made from calcite, a naturally occurring mineral.  Calcite is abundant in its 
polycrystalline form, but optical-grade calcite required for polarizers is rare, which makes birefringent 
polarizers more costly than most other types.  Calcite transmits from below 250 nm to above 2 µm and is 
used for visible and nearinfrared applications.  Other birefringent crystals, such as magnesium fluoride 
(with transmittance from 140 nm to 7 µm), can be used at some wavelengths for which calcite is opaque.  
 
Prism polarizers are composed of two birefringent 
prisms cut at an internal incidence angle that transmits 
only one eigenpolarization while totally internally 
reflecting the other (Fig. 6).  The prisms are held 
together by a thin cement layer or may be separated by 
an air gap and externally held in place for use with 
higher power laser beams.  The transmitted beam 
contains only one eigenpolarization since the orthogonal 
polarization is completely reflected.  The prisms are 
aligned with parallel optic axes, so that this transmitted 
beam undergoes very small deviations, usually less than 
5 min of arc. Often the reflected beam also contains a 
small amount of the transmitted eigenpolarization since nonzero reflectance results if the refractive indices 
of the cement and transmitted eigenpolarization are not exactly equal.  Because the reflected beam has 
poorer extinction, it is usually eliminated by placing an indexmatched absorbing layer on the side face 
toward which light is reflected. 

Figure 6 Glan-Thompson prism polarizer.  At the interface, p-
polarized light reflects (and is typically absorbed by a coating at 
the side of the prism) and s-polarized light is transmitted.  The 
optic axes (shown as dots) are perpendicular to the page.   

 
Glan prism polarizers are the most common birefringent crystal polarizer.  They exhibit superior 
extinction; extinction ratios of 10-5-10-6 are typical, and extinctions below 10-7 are possible.  The small 
residual transmittance can arise from material imperfection, scattering at the prism faces, or misalignment 
of the optic axes in each prism of the polarizer. 
 
Because total internal reflection requires incidence angles larger than θc, the polarizer operates over a 
limited range of input angles that is often asymmetric about normal incidence.  The semi-field angle is the 
maximum angle for which output light is completely polarized regardless of the rotational orientation of 
the polarizer (that is, for any azimuthal angle of output polarization).  The field angle is twice the semi-
field angle.  The field angle depends on the refractive index of the intermediate layer (cement or air) and 
the internal angle of the contacted prisms.  Since the 
incidence angle at the contacting interface depends in part 
on the refractive index when light is nonnormally incident 
on the polarizer, the field angle is wavelength dependent. 
 
Birefringent crystal polarizing beamsplitters transmit two 
orthogonal polarizations.  Glan prism polarizers can act as 
beamsplitters if the reflected beam exits through a polished 
surface, though extinction is degraded.  Polarizing 
beamsplitters with better extinction separate the beams 
through refraction at the interface.  In Rochon prisms, 
light linearly polarized in the plane normal to the prism 
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Figure 7  (a) Rochon and (b) Wollaston polarizers.  The directions 
of the optic axes are shown in each prism (as dots for axes 
perpendicular to the page and as a two-arrow line for the axes in 
the plane of the page). 



is transmitted undeviated, while the orthogonal polarization is deviated by an angle dependent on the prism 
wedge angle and birefringence (Fig. 7a).  Sénarmont polarizing beam splitters are similar, but the 
polarizations of the deviated and undeviated beams are interchanged.  Wollaston polarizers (Fig. 7b) 
deviate both output eigenpolarizations with nearly equal but opposite angles when the input beam is 
normally incident.  For all these polarizers, the deviation angle depends on the wedge angle and varies 
with wavelength. 
 
C. Interference Polarizers 
 
The Fresnel equations show that the transmittance and reflectance of obliquely incident light will depend 
on the polarization. Dielectric stacks made of alternating high and low-refractive index layers with quarter-
wave optical thickness can be tailored to provide reflectances and transmittances with large diattenuation.  
Optical thickness depends on incidence angle, and polarizers based on quarter-wave layers are sensitive to 
incidence angle and wavelength.  Designs that increase the wavelength range do so at the expense of input 
angle range, and vice versa.  Polarizing beamsplitter cubes are made by depositing the stack on the 
hypotenuse of a right-angle prism and cementing the coated side to the hypotenuse of a second prism.  
 
The extinction of these devices is limited by the defects in the coating layers or the optical quality of the 
optical substrate material through which light must pass.  The state of polarization may also be altered by 
the birefringence in the substrate.  Commercial thin-film polarizers are available with an extinction of 
about 10-5. 
 
D. Dichroic Polarizers 
 
Some molecules are optically anisotropic, and light polarized along one molecular direction may undergo 
greater absorption than perpendicularly polarized light.  When these molecules are randomly oriented, this 
molecular-level diattenuation will average out as the light propagates through the thickness, and bulk 
diattenuation may not be observed.  However, linear polarizers can be made by orienting dichroic 
molecules or crystals in a plastic or glass matrix that maintains a desired alignment of the transmission 
axes.  Extinction ratios between 10-2 and 10-5 are possible in oriented dichroics in the visible and near-
infrared regions. 
 
Dichroic sheet polarizers are available with larger areas and at lower cost than other polarizer types.  Also, 
the acceptance angle, or maximum input angle from normal incidence that does not result in degraded 
extinction, is typically large in dichroics because diattenuation occurs during bulk propagation rather than 
at interfaces.  However, the maximum transmittance of these polarizers may be significantly less than 
unity since the transmission axis may also absorb light.  Because absorbed light will heat the material and 
may cause damage at high power, incident powers are limited. 
 
 
III. RETARDERS 
 
Retarders are devices that induce a phase difference, or retardation, between orthogonally polarized 
components of a light wave.  Linear retarders are the most common and produce a retardance ∆φ = φy - φx 
[using the notation of Eqs. (1a) and (1b)] between orthogonal linear polarizations.  Circular retarders cause 
a phase shift between rightand left-circular polarizations and are often called rotators because circular 
retardance changes the azimuthal angle of linearly polarized light.  Because the polarization state of light is 
determined by the relative amplitudes and phase shifts between orthogonal components, retarders are use-
ful for altering and controlling a wave's polarization.  In fact, an arbitrary polarization state can be 
converted to any other state using an appropriate retarder. 
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A. Linear Birefringence 
 
In optically anisotropic materials, such as crystals, the phase velocity of propagation generally depends on 
the direction of propagation and polarization.  The optic axes are propagation directions for which the 
phase velocity is independent of the azimuth of linear polarization.  For other propagation directions, two 
orthogonal eigenaxes perpendicular to the propagation define the linear polarizations of waves that 
propagate through the crystal with constant phase velocity.  These eigenpolarizations are linear states 
whose refractive indices are determined by the crystal's dielectric tensor and propagation direction.  Light 
polarized in an eigenpolarization will propagate through an optically anisotropic material with unchanging 
polarization, while light in other polarization states will change with distance as the beam propagates.  
Uniaxial crystals and materials that behave uniaxially are commonly used in birefringent retarders and 
polarizers.  These crystals have a single optic axis, two principal refractive indices no and ne, and a linear 
birefringence ∆n = ne - no.  When light travels parallel to the optic axis, the eigenpolarizations are 
degenerate, and all polarizations propagate with index no.  For light traveling in other directions, one 
eigenpolarization has refractive index no and the other's varies with direction between no and ne (and equals 
ne when the propagation is perpendicular to the optic axis). 
 
B. Waveplates 
 
Waveplates are linear retarders made from birefringent materials. Rewriting Eq. (1a) for propagation 
through a birefringent medium of length L yields 
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where the x and y directions coincide with eigenpolarizations and the absolute phases are initially equal (at 
z = 0, φx = φy = 0).  The retardance ∆φ = ko(nx - ny)L is the relative phase shift between eigenpolarizations 
and depends on the wavelength, the propagation distance, and the difference between the refractive indices 
of the eigenpolarizations.  If the z axis is an optic axis, then nx = ny = no, and there is no retardance; if  is 

perpendicular to an optic axis, the retardance is ∆φ = ±kẑ o(no – ne)L.  In general, the retardance over a 
path of length L in a material with birefringence ∆n is given by 
 

∆φ =  2π∆nL / λ . (18) 
 
Retardance may be specified in radians, degrees [∆φ = 360° · (no – ne)L/λ0], or length [∆φ = no – ne)L]. 
 
A waveplate that introduces a π-radian or 180° phase shift between the eigenpolarizations is called a half-
wave plate.  Upon exiting the plate, the two eigenpolarizations have a λ /2 relative delay and are exactly 
out of phase.  A half-wave plate requires a birefringent material with thickness given by 
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where the waveplate order m is a positive integer that need not equal 0 since additional retardances of 360° 
do not affect the phase relationship.  Quarter-wave plates are another common component and provide 
phase shifts of 90° or π / 2. 
 
The eigenaxis with the lower refractive index (no in positive uniaxial crystals such as quartz, and ne in 
negative uniaxial crystals such as calcite) is called the fast axis of the retarder due to the faster phase 
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velocity and is often marked by the manufacturer.  The eigenaxes can be identified by rotating the retarder 
between crossed polarizers until the transmittance is minimized.  When the polarizer transmission axis 
coincides with the retarder eigenaxis, the input polarization matches the eigenpolarization, and the light 
travels through the crystal unchanged until blocked by the analyzer.  An input different from the 
eigenpolarization will exit the crystal in a different polarization state and will not be completely blocked 
by the analyzer.   
 
Waveplates are commonly made using quartz, mica, or plastic sheets that are stretched to produce an 
anisotropy that gives rise to birefringence.  At visible wavelengths, ne - no ~0.009 for quartz, and the 
corresponding zeroth-order (m = 0) quarter-wave plate thickness of ~40 µm poses a severe manufacturing 
challenge.  Mica can be cleaved into thin sections to obtain zeroth-order retardance, but the resulting 
waveplate usually has poorer spatial uniformity.  Polymeric materials often have lower birefringence and 
can be most easily fabricated into zeroth-order waveplates. 
 
In many applications, retardance of integral multiples of 2π is unimportant, and multiple-order (m ≥ 0) 
waveplates are often lower in cost because the increased thickness eases fabrication.  However, this 
approach can result in increased retardance errors.  For example, retardance depends on the wavelength 
[explicitly in Eq. (18) or through dispersion].  Also, retardance can change with temperature or with 
nonnormal incidence angles- that vary the optical thickness and propagation direction.  Retardance errors 
arising from changes in wavelength, temperature, or incidence angle linearly increase with thickness and 
make multiple-order waveplates unadvisable in applications that demand accurate retardance. 
 
Compound zeroth-order waveplates represent a compromise between manufacturability and performance 
when true zeroth-order waveplates are not easily obtained.  When two similar waveplates are aligned with 
orthogonal optic axes, the phase shifts in each waveplate have opposite sign and the combined retardance 
will be the difference between the two retardances.  Compound zeroth-order retarders are made by 
combining two multipleorder waveplates in this way so that the net retardance is less than 2π.  For 
example, two multiple-order waveplates with retardance ∆φ1 = 20π + π/2 and ∆φ2 = -20π can be combined 
to yield a compound zeroth-order quarterwave plate.  Compound zeroth-order waveplates exhibit the same 
wavelength and temperature dependence as zeroth-order waveplates since retardance errors are 
proportional to the difference of plate thicknesses.  However, input angle dependence is the same as in a 
multiple-order waveplate with equivalent total thickness. 
 
C. Compensators 
 
A compensator is a variable linear retarder that can be 
adjusted over a continuous range of values (Fig. 8).  In a 
Babinet compensator, two wedged plates of birefringent 
material are oriented with their optic axes perpendicular.  
In this arrangement, the individual wedges impart 
opposite signs of retardance, and the net retardance is the 
difference between the individual magnitudes.  The 
magnitudes depend on the thickness of each wedge tra-
versed by the optical beam.  Typically one wedge is fixed 
and the other translated by a micrometer drive so that this 
moving wedge presents a variable thickness in the beam 
path, and the net retardance depends on the micrometer 
adjustment.  The use of two wedges eliminates the beam 
deviation and the output beam is collinear to the input.  
 
The Babinet compensator has the disadvantage that the retard
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Figure 8 (a) Babinet and (b) Soleil-Babinet compensators.  
One wedge moves in the direction of the vertical arrow to 
adjust the retardance.  The direction of the optic axes are 
shown using notation from Fig. 7. 
ance varies across the optical beam because 
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the relative thicknesses of each wedge and corresponding net retardance vary over the beam in the 
direction of wedge travel.  This can be overcome using a Soleil (or BabinetSoleil) compensator.  In this 
device the two wedged pieces have coincident optic axes and translation of the moving wedge changes the 
total thickness and retardance of the combined retarder.  The total thickness of this two-wedge piece is 
now constant over the useful aperture.  A parallel plate of fixed retardance is placed after the wedge, in the 
same manner as a compound zeroth-order retarder, to improve performance. 
 
D. Rhombs 
 
Retarders can also be fabricated of materials that do not exhibit birefringence.  The phase shift between s- 
and p-polarized waves that occurs at a total internal reflection (Section II, Fresnel equations) can be 
exploited to obtain a linear retarder. When light is incident at angles larger than the critical angle, the 
retardance at the reflection is 
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and depends on the incidence angle and 
refractive indices.  A Fresnel rhomb is a solid 
parallelogram fabricated so that a beam at 
normal incidence at the entrance face totally 
reflects twice within the rhomb to provide a 
net retardance of π/2.  This retarder is, 
however, very sensitive to the incidence 
angle and laterally displaces the beam.  Concatenating two Fresnel rhombs (Fig. 9) provides collinear 
output and can greatly reduce the sensitivity of retardance to incident angle since retardance changes at the 
first pair of reflections are partially canceled by the second pair. 

Figure 9  Two Fresnel rhombs concatenated to form a Fresnel double rhomb.

 
Total-internal-reflection retarders are less sensitive to wavelength variation than waveplates whose 
retardance increases with L/λ since the rhomb retardance does not depend on the optical path length.  
Wavelength dependence is limited only by the material dispersion dn/dλ, which contributes small 
retardance changes.  Thus, rhomb devices are more nearly achromatic than waveplates and can be operated 
over ranges of 100 nm or more.  Rhomb devices are much larger than waveplates, and the clear aperture 
has practical limits since increasing cross section requires a proportional increase in length.  Performance 
can also be compromised by the presence of birefringence in the bulk glass.  Birefringence, arising from 
stresses in material production or optical fabrication, can lead to spatial variations and path-length 
dependence, and limit retardance stability to several degrees if not mitigated. 
 
E. Circular Retarders 
 
Some materials can exhibit circular birefringence, or optical activity, in which the eigenpolarizations are 
right- and left-circular and the retardance is a phase shift between these two circular states.  Circular 
retarders are often called rotators because incident linear polarization will generally exit at a different 
azimuthal angle that depends on the rotary power (circular retardance per unit length) and thickness.  A 
material that rotates linearly polarized light clockwise (as viewed by an observer facing the light source) is 
termed dextrorotary or right-handed, while counterclockwise rotation occurs in levorotary, or left-handed, 
materials.  The sense of rotation is fixed with respect to the propagation direction; if the beam exiting an 
optically active material is reflected back through the material, the polarization will be restored to the 
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initial azimuth.  Thus a double pass through an optically active material will cause no net rotation of linear 
polarization. 
 
Crystalline quartz exhibits optical activity that is most evident when propagation is along the optic axis and 
retardance is absent.  The property is not limited to crystalline materials, however; molecules that are 
chiral (that lack plane or centrosymmetry and are not superposable on their mirror image) can yield optical 
activity.  Enantiomers are chiral molecules that share common molecular formulas and ordering of atoms 
but differ in the three-dimensional arrangement of atoms; separate enantiomers have equal rotary powers 
but differ in the sense of rotation. Liquids and solutions of chiral molecules such as sugars may be 
optically active if an excess of one enantiomer is present. 
 
In solution, each enatiomeric form will rotate light, and the net rotation depends on the relative quantities 
of dextrorotary and levorotary enantiomers.  Mixtures with equal quantities of enantiomers present are 
called racemic and the net rotation is zero.  Most naturally synthesized organic chiral molecules, for 
example, sugars and carbohydrates, occur in only one enatiomeric form.  Saccharimetry, the measurement 
of the optical rotary power of sugar solutions, is used to determine the concentration of sugar in single-
enantiomer solutions. 
 
F. Electrooptic and Magnetooptic Effects 
 
In some materials, retardance can be induced by an electric or magnetic field.  These effects are exploited 
to create active devices that produce an electrically controllable retardance. 
 
Crystals that are not centrosymmetric may exhibit a linear birefringence proportional to an applied electric 
field called the linear electrooptic effect or Pockels effect.  In these materials, applied fields cause an 
otherwise isotropic crystal to behave uniaxially (and uniaxial crystals to become biaxial).  Crystal 
symmetry determines the direction of the optic axes and the form of the electrooptic tensor.  The 
magnitude of the induced birefringence thus depends on the polarization direction, the applied field 
strength and direction, and the material. 
 
The electrically induced birefringence can be appreciable in some materials, and the Pockels effect is 
widely used in retardance modulators, phase modulators, and amplitude modulators.  Modulators are often 
characterized by their half-wave voltage Vπ, or the voltage needed to cause a 180° phase shift or 
retardance.  Vπ  can vary from ~10 V in waveguide modulators to hundreds or thousands of volts in bulk 
modulators. 
 
The Kerr, or quadratic, electrooptic effect occurs in solids, liquids, or gases and has no symmetry require-
ments.  In this effect, the linear birefringence magnitude is proportional to the square of the applied electric 
field and the induced optic axis is parallel to the field direction.  The effect is typically smaller than the 
Pockels effect and is often negligible in Pockels materials. 
 
The Faraday effect is an induced circular birefringence that is proportional to an applied magnetic field.  It 
is often called Faraday rotation because the circular birefringence rotates linearly polarized light by an 
angle proportional to the field.  The Faraday effect can occur in all materials, though the magnitude is 
decreased by birefringence. 
 
In contrast to optical activity, the sense of Faraday rotation is determined by the direction of the magnetic 
field.  Thus, a double-pass configuration in which light exiting a Faraday rotator reflects and propagates 
back through the material will yield twice the rotation of a single pass.  This property is exploited in 
optical isolators, or components that transmit light in only one direction.  In the simplest isolators, a 45° 
Faraday rotator is placed between polarizers with transmission axes at 0° and 45°.  In the forward 
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direction, light linearly polarized at 0° is azimuthally rotated 45° to coincide with the analyzer axis and is 
fully transmitted; backward light input at 45° rotates to 90° and is completely blocked by the polarizer at 
0°.   
 
Faraday mirrors, made by combining a 45° Faraday rotator with a plane mirror, have the extraordinary 
property of "unwinding" polarization changes caused by propagation.  Polarized light that passes through 
an arbitrary retarder, reflects off a Faraday mirror, and retraces the input path will exit with a fixed 
polarization for all magnitudes or orientations of the retarder so long as the retardance is unchanged during 
the round-trip time.  When the input light is linearly polarized, the return light is always orthogonally 
polarized for all intervening retardances.  These devices find applications in fiber optic systems since 
bend-induced retardance is difficult to control in an ordinary optical fiber. 
 
G. Pseudo-Depolarizers 
 
Conversion of a polarized, collimated light beam into a beam that is truly unpolarized is difficult.  Methods 
for obtaining truly unpolarized light rely on diffuse scattering, such as passing light through ground glass 
plates or an integrating sphere.  These methods result in light propagating over a large range of solid 
angles and decrease the irradiance, or power per unit area, away from the depolarizer.  The loss is often 
unacceptable when a collimated beam is needed. 
 
Approximations to the unpolarized state can be created using pseudo-depolarizers that produce a large 
variety of states over time, wavelength, or the beam cross section.  As described in Section I, temporal 
decorrelation requires that the beam propagate through a retardance that is much larger than the light's 
coherence length Lc =cτ ≈ 2πc / ∆ω.  If nonmonochromatic, linearly polarized light bisects the axes of a 
waveplate with sufficiently large retardance, the two linear eigenpolarizations will emerge with a relative 
phase shift that rapidly and arbitrarily changes on the order of the coherence time.  At any moment the 
instantaneous output state will be restricted to a point on the Poincaré sphere (see Section IV) along the 
great circle connecting the ±45° and circular polarization states.  When the detector is slower than τ, the 
averaged response will include the influence of all these states. 
 
Lyot depolarizers are configurations of two retarders that perform this temporal decorrelation for any input 
polarization state.  These are commonly made by concatenating thick birefringent plates that act as high-
order waveplates or by connecting lengths of polarization-maintaining (PM) fiber.  PM fiber has about one 
wavelength of retardance every few millimeters, and can be obtained in lengths sufficient to decorrelate 
multimode laser light. 
 
A polarized light beam can also be converted to a beam with a spatial distribution of states to approximate 
unpolarized light, without the requirements on spectral bandwidth.  For example, the retardance across a 
wedged waveplate is not spatially uniform, and an incident beam will exit with a spatially varying 
polarization.  When detected by a single photodetector, the influence of all the states will be averaged in 
the output response.  These methods often satisfy needs for unpolarized light, but clearly depend on the 
details and requirements of the application. 
 
 
IV. MATHEMATICAL REPRESENTATIONS 
 
Several methods have been developed to facilitate the representation of polarization states, polarization 
elements, and the evolution of polarization states as light passes through components.  Using quasi-
monochromatic fields, the 2 x 2 coherency matrix can be used to represent polarizations and determine the 
degree of polarization of light.  The four-element stokes vector describes the state of light using readily 
measurable intensities and can be related to the coherency matrix.  Mueller calculus represents optical 

Encyclopedia of Physical Science and Technology, Third Edition, Volume 12 



components as real 4 x 4 matrices; when combined with Stokes vectors it provides a quantitative 
description of the interaction of light and optical components.  In contrast, Jones calculus represents light 
using two-element electric field vectors.  Jones calculus cannot describe partially polarized or unpolarized 
light, but retains phase information so that coherent beams can be properly combined.  Finally, the 
Poincaré Sphere is a pictorial representation that is useful for conceptually understanding the interaction 
between retarders and polarization states.  A brief discussion introduces each of these methods.   
 
A. Coherency Matrix 
 
Using Eq. (8), we can define orthogonal field components of a quasi-monochromatic plane wave Ex = Ex(t) 
exp[i(ωt - koz + φx (t))] and likewise for Ey.  The coherency matrix J is given by 
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where the angle brackets denote a time average and the asterisk denotes the complex conjugate.  The total 
irradiance I is given by the trace of the matrix, Tr(J) = Jxx + Jyy, and the degree of polarization is  
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where |J| is the determinant of the matrix. Recalling the notation for elliptical light, one can find the 
azimuthal angle α of the semi-major ellipse axis from the x axis and the ellipticity angle ε of the polarized 
component as 
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Partially polarized light can be decomposed into polarized and unpolarized components and expressed 
using coherency matrices as J = Jp + Ju.  Thus the state of the polarized portion of light can be extracted 
from the coherency matrix even when light is partially polarized.  The coherency matrix representation of 
several states is provided in Table I. 
 
B. Mueller Calculus 
 
In Mueller calculus the polarization state of light is represented by a four-element Stokes vector S.  The 
Stokes parameters s0 s1 s2 and s3 are related to the coherency matrix elements or the quasi-monochromatic 
field representation through 
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where the angle brackets denote a time averaging required for nonmonochromatic light.  Each Stokes 
parameter is related to the difference between light intensities of specified orthogonal pairs of polarization 
states.  Thus, the Stokes vector is easily found by measuring the power Pt transmitted through six different 
polarizers.  Specifically, 
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so that s0 is the total power or irradiance of the light beam, s1 is the difference of the powers that pass 
through horizontal (along ) and vertical (along ) linear polarizers, sx̂ ŷ 2 is the difference between +45° 
and -45° linearly polarized powers, and s3 is the difference between right- and left-circularly polarized 
powers.  The values of the Stokes parameters are limited to and are often normalized so 
that s
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0 = 1 and -1 ≤ s1, s2, s3 ≤ 1.  Table 1 lists normalized Stokes vectors for several polarization states.  
The degree of polarization [Eq. (22)] can be written in terms of Stokes parameters as  
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Additionally, we can define the degree of linear polarization (the fraction of light in a linearly polarized 
state) by replacing the numerator of Eq. (26) with 2

2
2
1 ss + , or the degree of circular polarization by 

replacing the numerator with s3. 
 
An optical component that changes the incident polarization state from S to some output state S' (through 
reflection, transmission, or scattering) can be described by a 4 x 4 Mueller matrix M. This transformation 
is given by 
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where M can be a product of n cascaded components Mi using 
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Matrix multiplication is not commutative and the product must be formed in the order that light reaches 
each component.  For a system of three components in which the light is first incident on component 1 and 
ultimately exits component 3, S' = M3M2M1S, for example. 
 
Examples of Mueller matrices for several homogeneous polarization components are given in Table II.  
The Mueller matrix for a component can be experimentally obtained by measuring S' for at least 16 
judiciously selected S inputs, and procedures for measurement and data reduction are well developed. 
 
Table I   Matrix Representations of Selected Polarization Statesa 
 

State Coherency matrix Stokes Vector Jones Vector 
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Right circular 
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a The parameters of  α, β, ε, and ∆φ are defined corresponding to elliptical light as discussed in Section I.  Extensive lists of Stokes 
and Jones vectors are available in several texts.
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Table II    Matrix Representation of Optical Components 

Component Mueller matrix Jones matrix 
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C. Jones Calculus 
 
In Jones calculus a two-element vector represents the amplitude and phase of the orthogonal electric field 
components and the phase information is preserved during calculation.  This allows the coherent 
superposition of waves and is useful for describing the polarization state in systems such as interferometers 
that combine beams.  Since this method is based on coherent waves, however, the Jones vector describes 
only fully polarized states, and partially or unpolarized states and depolarizing components cannot be 
represented.  
 
Recalling Eqs. (1a) and (1b), one can write a vector formulation of complex representation for a fully 
coherent field 
 

,
y

x

i
y

i
xti

eE

eE
eE φ

φ
ω=  (29) 

 
where the space-dependent term kz has been omitted.  When the time dependence is also omitted, this 
vector is known as the full Jones vector.  For generality, the Jones vector J is often written in a normalized 
form 
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φ β
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==
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i

i e

e
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J  (30) 

 
where ∆φ = φy - φx and tan(β) = Ey / Ex.  The Jones vector can also be found from the polarization 
azimuthal angle α and ellipticity tan(ε) of the polarization ellipse using 
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1

1

αεβ
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−

−

=
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


=∆

 (31) 

 
The polarization properties of optical components can be represented as 2 x 2 Jones matrices (Table II). 
The output polarization state is J' = MJ, where the Jones matrix M may be constructed from a cascade of 
components Mi using Eq. (28).  In general the matrices are not commutative and require the same ordering 
as in Mueller calculus, with the rightmost matrix representing the first element the light is incident upon, 
and so on. 
 
Jones used this calculus to establish three theorems that describe the minimum number of optical elements 
needed to describe a cascade of many elements at a given wavelength: 
 

1. A system of any number of linear retarders and rotators (circular retarders) can be reduced to a 
system composed of only one retarder and one rotator. 

2. A system of any number of partial polarizers and rotators can be reduced to a system composed of 
only one partial polarizer and one rotator. 

3. A system of any number of retarders, partial polarizers, and rotators can be reduced to a system 
composed of only two retarders, one partial polarizer, and, at most, one rotator. 

 
The Jones matrices in Table II assume forward propagation.  In some cases, for example, with 

Encyclopedia of Physical Science and Technology, Third Edition, Volume 12 



nonreciprocal components such as Faraday rotators, backward propagation must be explicitly described.  
Furthermore, since fields are used to represent polarization states, the phase shift arising from normal-
incidence reflection may be important. For propagation in reciprocal media, the transformation from the 
forward Jones matrix to the backward case is given by 
 

backwardforward d
c

b
a

d
b

c
a




−




−

→







 (32) 

 
For nonreciprocal behavior, such as the Faraday effect, the transformation is instead 
 

backwardforward d
b

c
a

d
b

c
a




−




−

→







 (33) 

 
When M is composed of a cascade of Mi that include both reciprocal and nonreciprocal polarization 
elements, each matrix must be transformed and a new combined matrix calculated.  Upon reflection, the 
light is now backward propagating and the Jones matrix can be transformed to the forward-propagating 
form (for direct comparison with the input vector, for example) by changing the sign of the second 
element; in other words, 
 

backwardforward JJ 



−




=

1
0

0
1

 (34) 

 
 
The calculi discussed above are applicable to problems when the polarization properties are lumped, that 
is, the system consists of simple components such as ideal waveplates, rotators, and polarizers, etc.  
Because the Jones (or Mueller) matrix from a cascade of matrices depends on the order of multiplication, 
an optical component with intermixed polarization properties cannot generally be represented by the 
simple multiplication matrices representing each individual property.  For example, a component in 
which both linear retardance (represented by Jones matrix ML) and circular retardance (MC) are both 
distributed throughout the element is not properly represented by either ML MC or MC ML. 
 
A method known as the Jones N-matrix formulation can be used to find a single Jones matrix that properly 
describes the distribution of multiple polarization properties.  The N-matrix represents the desired property 
over a vanishingly small optical path.  The differential N-matrices for each desired property can be 
summed and the combined properties found by an integration along the optical path. Tables of N-matrices 
and algorithms for calculating corresponding Jones matrices can be found in several references. 
 
Jones and Mueller matrices can be related to each other under certain conditions.  Jones matrices differing 
only in absolute phase (in other words, a phase common to both orthogonal eigenpolarizations) can be 
transformed into a unique Mueller matrix that will have up to seven independent elements, though the 
phase information will be lost.  Thus Mueller matrices for distributed polarization properties can be 
derived from Jones matrices calculated using N-matrices. Conversely, nondepolarizing Mueller matrices 
[which satisfy the condition Tr(MMT) = 4m00, where MT is the transpose of M] can be transformed into a 
Jones matrix. 
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D. Poincaré Sphere 
 
The Poincaré sphere provides a visual method for repre-
senting polarization states and calculating the effects of 
polarizing components.  Each state of polarization is rep-
resented by a unique point on the sphere defined by its 
azimuthal angle α, the ellipticity tan |ε|, and the handed-
ness.  Orthogonal polarizations occupy points at opposite 
ends of a sphere diameter.  Propagation through retarders 
is represented by a sphere rotation that translates the po-
larization state from an initial point to a final 
polarization. 
 
Figure 10 shows a Poincaré sphere with several po-
larizations labeled.  Point x represents linear polarization 
along the x axis and point y represents y-polarized light.  
Right-circular polarization (tan ε = 1) lies at the north 
pole, and all polarizations above the equator are right-
elliptical.  Similarly, the south pole represents left-
circular polarization (tan ε = -1), and states below the 
equator are left-elliptically polarized.  (In many texts the 
locations of the circular states are reversed; while a 
source of confusion, this change is valid so long as other 
conventions are observed.) 
 
In Fig. 10, a general polarization state with azimuthal angle 
point p with longitude 2α and latitude 2ε.  Linear polarizatio
located along the equator.  A linear polarization with azimu
longitudinal angle 2α along the equator from point x.  Polari
the equator have the same ellipticity but different orientation
the same ellipticity, perpendicular azimuthal angles, and opp
 
The Poincaré sphere can also be used to show the effect of a
retarder oriented with a fast axis at α and an ellipticity and h
by a point R on the sphere located at angles 2α and 2ε.  For 
p, a circle centered at point R that includes point p is the loc
all retardance magnitudes.  A specific retardance magnitude
along the circle from the point p. The endpoint of this arc re
retarder. 
 
Consider x-polarized light incident on a quarter-wave linear
from horizontal; using Jones calculus, we find that right circ
To show this graphically using the Poincaré sphere, we loca
orientation.  The initial polarization is at point x; for a retard
centered at the point +45° that subtends 90° from point x.  T
output is right-circular polarization.  If the retardance was δ
output light would be y-polarized.  Similarly, left-circular po
the fast axis is oriented at -45°).  The evolution of the polari
traced by locating each retarder's representation on the sphe
the polarization output from the previous retarder, and tracin
retardance. 
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Figure 10  The Poincaré sphere.  The polarization 
represented by point p is located using the azimuthal angle α 
(in the equatorial plane measured from point x) and the 
ellipticity angle ε (a meridional angle measured from the 
equator toward the north pole).  Linear polarization along the x 
axis is located at point x, linear polarization along the y axis is 
represented by point y, and rcp and lcp denote right- and left-
circularly polarized states, repesctively.  The origin represents 
unpolarized light.   
α and ellipticity angle ε is represented by the 
ns have zero ellipticity (tan |ε| = 0) and are 

thal angle α from the x axis is located at a 
zation states that lie upon a circle parallel to 
s.  Polarizations at opposite diameters have 
osite handedness. 

 retarder on an incident polarization state.  A 
andedness given by tan ε can be represented 
a given input polarization represented by point 
us of the output polarization states possible for 
 δ is represented by a clockwise arc of angle δ 
presents the polarization state output from the 

 retarder oriented with its fast axis at +45° 
ular polarization should exit the waveplate.  
te the point +45°, which represents the retarder 
ance δ = 90°, we trace a clockwise arc 
his arc ends at the north pole, so the resulting 
 = 180°, the arc would subtend 180°, and the 
larization results if δ = 270° (or if δ = 90° and 

zation through additional components can be 
re, defining a circle centered by this point and 
g a new arc through an angle equal to the 

e 12 



 
Comparing the Poincaré sphere definitions to Eq. (25) shows that for normalized Stokes vectors (s0 = 1), 
each vector element corresponds to a point along Cartesian axes centered at the sphere's origin.  Stokes 
element s1 (= cos2ε cos2α) falls along the axis between x- and y-polarized; s1 = 1 corresponds to point x 
and s1 = -1 corresponds to point y.  Values of s2 (= cos2ε cos2α) correspond to points along the diameter 
connecting the ±45° linear polarization points; s2 =  -1 corresponds to the -45° point. Element s3 (= sin2ε) 
is along the axis between the north and south poles.  These projections on the Poincaré sphere can be 
equivalently represented by rewriting Eq. (25) and normalizing to obtain 
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 (35) 

 
Any fully polarized state on the surface of the sphere can be found using these Cartesian coordinates.  
Partially polarized states will map to a point within the sphere, and unpolarized light is represented by the 
origin. 
 
 
V. POLARIMETRY 
 
Polarimetry is the measurement of a light wave's polarization state, or the characterization of an optical 
component's or material's polarization properties.  Complete polarimeters measure the full Stokes vector of 
an optical beam or measure the full Mueller matrix of a sample.  In many cases, however, some 
characteristics can be neglected and the measurement of all Stokes or Mueller elements is not necessary.  
Incomplete polarimeters measure a subset of characteristics and may be used when simplifying 
assumptions about the light wave (for example, that the degree of polarization is 1) or sample (for 
example, a retarder exhibits negligible diattenuation or depolarization) are appropriate. In this section, a 
few techniques are briefly described for illustration. 
 
A. Light Measurement 
 
A polarization analyzer, or light-measuring polarimeter, characterizes the polarization properties of an 
optical beam.  An optical beam's Stokes vector can be completely characterized by measuring the six 
optical powers listed in Eq. (25) using ideal polarizers.  When the optical beam's properties are time 
invariant, the measurements can be performed sequentially by measuring the power transmitted through 
four orientations of a linear polarizer and two additional measurements with a quarter-wave retarder (ori-
ented ±45° with respect to the polarizers axis) placed before the polarizer.  In practice, as few as four 
measurements are required since s2 = 2P+45º  - s0 and s3 = 2Prcp - s0. 
 
The Stokes vector can alternatively be measured with a single circular polarizer made by combining a 
quarterwave plate (with the fast axis at 45°) with a linear polarizer.  Prcp is measured when the retarder side 
faces the-source.  Flipping so that the retarder faces the detector allows measurement of P0º, P90º, and P±45º. 
 
The Stokes vector elements can be measured simultaneously with multiple detector configurations.  
Division of amplitude polarimeters use beamsplitters to direct fractions of the power to appropriate 
polarization analyzers.  Using division of wavefront polarization analyzers, we assume that the polarization 
is uniform over the optical beam and subdivisions of the beam's cross section are directed to appropriate 
analyzers. 
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Incomplete light-measuring polarimeters are useful when the light is fully polarized (degree of polarization 
approaches 1).  For example, the ellipticity magnitude and azimuth can be found by analyzing the light 
with a rotating linear polarizer and measuring the minimum and maximum transmitted powers.  Linear 
polarization yields a detected signal with maximum modulation, while minimum modulation occurs for 
circular polarization.  The handedness of the ellipticity can be found using a right(or left-) circular 
polarizer. 
 
These methods are photometric, and accurate optical power measurements are required to determine the 
light characteristics.  Before the availability of photodetectors, null methods that rely on adjusting system 
settings until light transmission is minimized were developed, and these are still useful today.  For 
example, an incomplete polarimetric null system for analyzing polarized light uses a calibrated Babinet-
Soleil compensator followed by a linear polarizer.  Adjusting both the retardance δ and angle θ between 
the fast axis and polarizes axis until the transmitted power is zero yields the ellipticity angle ω (using sin 
2ω = sin2θ sinδ) and azimuthal angle α (using tan α = tan 2θ cosδ).  When unpolarized light is present, the 
minimum transmission is not zero, and photometric measurement of this power can be used to obtain the 
degree of polarization. 
 
B. Sample Measurement 
 
A polarization generator is used to illuminate the sample with known states of polarization to measure the 
sample's polarization properties.  The reflected or transmitted light is then characterized by a polarization 
analyzer, and the properties of the sample are inferred from changes between the input and output states. 
 
A common configuration for determining the Mueller matrix combines a fixed linear polarizer and a 
rotating quarter-wave retarder for polarization generation with a rotating quarter-wave retarder followed by 
a fixed linear polarizer for analysis.  Power is measured as the two retarders are rotated at different rates 
(one rotates five times faster than the other) and the Mueller matrix elements are found from Fourier 
analysis of the resulting time series.  Alternatively, measurements can be taken at 16 (or more) specific 
combinations of generator and analyzer states, typically with the polarizers fixed and at specified retarder 
orientations.  Data reduction techniques have been developed for efficiently determining the Mueller 
matrix from such measurements.  Several methods include measurements at additional generator/analyzer 
combinations to overdetermine the matrix; least-squares techniques are then applied to reduce the 
influence of nonideal system components and decrease measurement error. 
 
Because of the simplicity and reduction of variables, incomplete polarizers can often provide a more 
accurate measurement of a single polarization property when other characteristics are negligible.  For 
example, there are many methods for measuring linear retardance in samples with negligible circular 
retardance, diattenuation, and depolarization, and these are often applicable to measurements of high-
quality waveplates. 
 
In a rotating analyzer system, the retarder is placed between two linear polarizers so that the input polar-
ization bisects the retarder's birefringence axes.  Linear retardance is calculated from measurements of the 
transmitted power when the analyzer is parallel (P0º) and perpendicular (P90º) to the input polarizer using  
|δ| = cos-1 [(P0º  - P90º)/( P0º + P90º)].  In this measurement, retardance is limited to two quadrants (for ex-
ample, measurements of 90° and 270° = -90° retarders will both yield δ = 90°).  If a biasing quarter-wave 
retarder is placed between the input polarizer and retarder and both retarders are aligned with the fast axis 
at 45°, retardance in quadrants 1 and 4 (|δ| ≤ 90°) can be measured from δ = sin-1[(P90º. - P0º)/( P90º + P0º)].  
There are several null methods, including those that use a variable compensator aligned with the retarder at 
45° between crossed polarizers (retardance is measured by adjusting a calibrated compensator until no 
light is detected) or that use a fixed quarter-wave-biasing retarder and rotate the polarizer and/or analyzer 
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until a null is obtained. 
 
Ellipsometry is a related technique that allows the measurement of isotropic optical properties of surfaces 
and thin films from the polarization change induced upon reflection.  Linearly polarized light is directed 
toward the sample at known incidence angles, and the reflected light is analyzed to determine its 
polarization ellipse. 
 
Application of electromagnetic models to the configuration (for example, via Fresnel equations) allows 
one to calculate the refractive index, extinction coefficient, and film thickness from the measured 
ellipticities.  Ellipsometry can be extended to other configurations using various incident polarizations and 
polarization analyzers to measure polarimetric quantities, blurring any distinction between ellipsometry 
and polarimetry. 
 
 
SEE ALSO THE FOLLOWING ARTICLES 
 
ELECTROMAGNETICS • LIGHT SOURCES • OPTICAL DIF'F'RACTION • WAVE PHENOMENA 
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