Overview on unpolarized and polarized baryon fragmentation functions

Jacques Soffer

Centre de Physique Théorique, CNRS, Luminy Case 907,
F-13288 Marseille Cedex 09, France

Outline

- Definitions of FF
- What is known about the polarized baryon FF?
- Earlier attempts to understand some $\Lambda, \bar{\Lambda}$ data
- Basic procedure to construct the statistical unpolarized octet baryon FF
- Conclusions

Definitions of FF

$D_{f}^{h}\left(z, Q^{2}\right)$ is the probability to find, at scale Q, a hadron h with fraction z of the parton f momentum. Note that $Q^{2}>0$ and FF is the counterpart of the PDF $f_{h}\left(x, Q^{2}\right)$ defined for $Q^{2}<0$. QCD predicts their Q^{2} evolution and like the PDF, they should be universal, i.e. processes independent. If h has spin-1/2 can define similarly to Δf for PDF the polarized FF $\Delta D_{f}^{h}=D_{f(+)}^{h(+)}-D_{f(+)}^{h(-)}$
D_{f}^{h} is the sum

What is known on the polarized baryon FF?

Very little and only for Λ and $\bar{\Lambda}$

$P_{L}(\Lambda+\bar{\Lambda})$ at the Z pole in $e^{+} e^{-}$ collisions at LEP

Spin transfer for Λ and $\bar{\Lambda}$

Spin transfer for Λ from NOMAD

Transverse Λ polarization from Hermes

(+ some NOMAD results large <0 for $x_{F}<0$)
This is a transverse SSA hard to interpret

Definitions

For a longitudinally polarized charged lepton beam and an unpolarized target, the Λ polarization along its own momentum axis is given in the quark parton model by

$$
P_{\Lambda}(x, y, z)=P_{B} D(y) A^{\Lambda}(x, z)
$$

where P_{B} is the polarization of the charged lepton beam, which is of the order of 0.7 or so. $\nu=E-E^{\prime}, x=Q^{2} / 2 M \nu, y=\nu / E, z=E_{\Lambda} / \nu$
$D(y)$, whose explicit expression is

$$
D(y)=\frac{1-(1-y)^{2}}{1+(1-y)^{2}}
$$

is the longitudinal depolarization factor of the virtual photon with respect to the parent lepton, and

$$
A^{\Lambda}(x, z)=\frac{\sum_{q} e_{q}^{2}\left[q^{N}\left(x, Q^{2}\right) \Delta D_{q}^{\Lambda}\left(z, Q^{2}\right)+(q \rightarrow \bar{q})\right]}{\sum_{q} e_{q}^{2}\left[q^{N}\left(x, Q^{2}\right) D_{q}^{\Lambda}\left(z, Q^{2}\right)+(q \rightarrow \bar{q})\right]},
$$

is the longitudinal spin transfer to Λ.

Earlier attempts to understand some $\Lambda, \bar{\Lambda}$ data

D. De Florian et al., Phys. Rev. D57 (1998) 5811 C. Boros et al., Phys. Rev. D62 (2000) 014021 Use only data from $e^{+} e^{-}$collisions

$$
D_{q}^{\Lambda+\bar{\Lambda}}(z)=N z^{\alpha}(1-z)^{\beta}
$$

which implies no flavor separation and no q, \bar{q} separation. Use simple scenarios to construct $\Delta D_{q}(z)=N_{q} z^{\delta} D_{q}(z)$ with $N_{s}=1$ and $N_{u}=N_{d}=1,-0.2,0$.

Earlier attempts..(cont.)

Another approach based on the use of our knowledge of the PDF and the use of the reciprocity relation (Gribov-Lipatov)(see next slide).
B.-Q. Ma, I. Schmidt, J.S. and J.J. Yang, EPJ C16, 657 (2000)
B.-Q. Ma, I. Schmidt, J.S. and J.J. Yang, Phys. Rev. D62, 114009 (2000)
It works reasonably well but E665 remains puzzling. We generalize to all baryons with a SU(6) spectator quark-diquark model

Gribov and Lipatov have pointed out that the FF $D_{q}^{h}(z)$, for a quark q splitting into a hadron h with longitudinal momentum fraction z, can be related to the quark distribution $q_{h}(x)$, for finding the quark q inside the hadron h carrying a momentum fraction x, by the reciprocity relation

$$
D_{q}^{h}(z) \sim q_{h}(x)
$$

This relation holds, in principle, in a certain Q^{2} range and in leading order approximation. It is only valid at $x \rightarrow 1$ and $z \rightarrow 1$, but it provides a reasonable guidance for a phenomenological parametrization of the various FF.

For the Λ, we have explicit spin distributions for each valence quark,

$$
\begin{gathered}
u_{v}^{\uparrow}(x)=d_{v}^{\dagger}(x)=\frac{1}{x^{\alpha_{v}}}\left[A_{u_{v}}(1-x)^{3}+B_{u_{v}}(1-x)^{4}\right], \\
u_{v}^{\downarrow}(x)=d_{v}^{\downarrow}(x)=\frac{1}{x^{\alpha_{v}}}\left[C_{u_{v}}(1-x)^{5}+D_{u_{v}}(1-x)^{6}\right], \\
s_{v}^{\dagger}(x)=\frac{1}{x^{\alpha_{v}}}\left[A_{s_{v}}(1-x)^{3}+B_{s_{v}}(1-x)^{4}\right], \\
s_{v}^{\downarrow}(x)=\frac{1}{x^{\alpha_{v}}}\left[C_{s_{v}}(1-x)^{5}+D_{s_{v}}(1-x)^{6}\right] .
\end{gathered}
$$

Spin transfer for Λ (right) and $\bar{\Lambda}$ (left)

dotted line (pure valence), solid line (asymmetric sea), dashed line (symmetric sea)

Importance of neutrino DIS

ν and $\bar{\nu}$ DIS allow a quark flavor separation B.-Q. Ma and J.S., Phys. Rev. Lett. 82,2250 (1999)

With four reactions $\nu p \rightarrow \mu \Lambda X, \bar{\nu} p \rightarrow \mu \Lambda X$, $\nu p \rightarrow \mu \bar{\Lambda} X$ and $\bar{\nu} p \rightarrow \mu \bar{\Lambda} X$ can extract four independent FF, $D_{u}^{\Lambda}, D_{\bar{u}}^{\Lambda}, \Delta D_{u}^{\Lambda}$ and $\Delta D_{\bar{u}}^{\Lambda}$. A very powerful tool!

Spin transfer for B (right) and B (left)

The PDF statistical model of C. Bourrely, F. Buccella and J.S.

- A Statistical Approach for Polarized Parton Distributions
Euro. Phys. J. C23, 487 (2002)
- Recent Tests for the Statistical Parton Distributions Mod. Phys. Letters A 18, 771 (2003)
- The Statistical Parton Distributions: status and prospects
Euro. Phys. J. C41, 327, (2005)

Basic procedure for the PDF

Use a simple description of the PDF, at input scale Q_{0}^{2}, proportional to $\left[\exp \left[\left(x-X_{0 p}\right) / \bar{x}\right] \pm 1\right]^{-1}$, plus sign for quarks and antiquarks, corresponds to a Fermi-Dirac distribution and minus sign for gluons, corresponds to a Bose-Einstein distribution. $X_{0 p}$ is a constant which plays the role of the thermodynamical potential of the parton p and \bar{x} is the universal temperature, which is the same for all partons.

Explicit construction

(C.Bourrely and J. S., Phys. Rev. D 68, 014003 (2003))

For the quarks $q=u, s, d$ the FF $D_{q}^{B}\left(x, Q_{0}^{2}\right)$ are expressed as

$$
D_{q}^{B}\left(x, Q_{0}^{2}\right)=\frac{A_{q}^{B} X_{q}^{B} x^{b}}{\exp \left[\left(x-X_{q}^{B}\right) / \bar{x}\right]+1}
$$

where X_{q}^{B} is the potential corresponding to the fragmentation $q \rightarrow B$ and Q_{0}^{2} is an initial scale.

The heavy quark FF $D_{Q}^{B}\left(x, Q_{0}^{2}\right)$ for $Q=c, b, t$, which are expected to be large only in the small x region ($x \leq 0.1$ or so), are parametrized by a diffractive term with a vanishing potential

$$
D_{Q}^{B}\left(x, Q_{0}^{2}\right)=\frac{\tilde{A}_{Q}^{B} x^{\tilde{b}}}{\exp (x / \bar{x})+1}
$$

First we have the obvious constraints, namely, $D_{u}^{B}=D_{d}^{B}$ for $B=p, \Lambda$. Moreover we assume that we need only four potentials, two for the proton $X_{u}^{p}=X_{d}^{p}$ and X_{s}^{p} and two for the hyperons
$X_{u}^{Y}=X_{d}^{Y}$ and X_{s}^{Y} where $Y=\Lambda, \Sigma^{ \pm}, \Xi^{-}$.

Finally for the gluon to baryon FF $D_{g}^{B}\left(x, Q^{2}\right)$, which is hard to determine precisely, we take a Bose-Einstein expression with a vanishing potential

$$
D_{g}^{B}\left(x, Q_{0}^{2}\right)=\frac{A_{g}^{B} x^{\tilde{b}+1}}{\exp (x / \bar{x})-1}
$$

We assume it has the same small x behavior as the heavy quarks and it is the same for all baryons.

Table 1: Values of the normalization constants of the FF for the octet baryons

Baryon	q_{1}	q_{2}	$A_{q_{1}}^{B}$	$A_{q_{2}}^{B}$	\tilde{A}_{Q}^{B}
$p(u u d)$	$u=d$	s	0.264	1.168	2.943
$\Lambda(u d s)$	$u=d$	s	0.428	1.094	0.720
$\Sigma^{+}(u u s)$	u	s	0.033	0.462	0.180
$\Sigma^{-}(d d s)$	d	s	0.030	0.319	0.180
$\Xi^{-}(d s s)$	d	s	0.023	0.082	0.072

We took $\bar{x}=0.099$ as determined earlier for the nucleon PDF

The values of the free parameters obtained from the NLO fit are

$$
\begin{array}{cl}
X_{u}^{p}=0.648, & X_{s}^{p}=0.247, \quad X_{u}^{\Lambda}=0.296, \quad X_{s}^{\Lambda}=0.476 \\
b=0.200, & \tilde{b}=-0.472, \quad A_{g}^{B}=0.051
\end{array}
$$

Notice that in the nucleon PDF the u quark which is dominant has the larger potential and here we have analogously, $X_{u}^{p}>X_{s}^{p}$ and $X_{s}^{\Lambda}>X_{u}^{\Lambda}$, a situation which is natural to expect. So the intrinsic properties of the quarks when observed in DIS or in fragmentation processes seem to be preserved.

The FF for $u \rightarrow p$ and for $u \rightarrow \Lambda$ (versus x)

Cross sections for p and Λ production in $e^{+} e^{-}$annihilation

Cross sections for $\Sigma^{ \pm}$and Ξ^{-} production in $e^{+} e^{-}$annihilation

The quark to baryons FF $D_{q}^{B}\left(x, Q^{2}\right)$ and $D_{Q}^{B}\left(x, Q^{2}\right)$

Some comments

For all hyperons the strange quark FF dominates over the u, d quarks. For Λ, we agree with a model for $\mathrm{SU}(3)$ symmetry breaking (Indumathi et al.) which gives $D_{u}^{\Lambda} \sim 0.07 D_{s}^{\Lambda}$. In Boros et al. one also finds $D_{u}^{\Lambda} \ll D_{s}^{\Lambda}$ and $D_{\bar{q}}^{\Lambda}$ is strongly suppressed. This contrasts with De Florian et al. where u, d and s are assumed to be equal. However the heavy quarks have a pattern similar to De Florian et al., with a sizeable contribution only for $x \leq 0.1$ and a fast dropping off for large x.

Comments (cont.)

This is also at variance with J.J. Yang, where $D_{u}^{\Lambda} / D_{s}^{\Lambda}$ decreases from 1 to 0.2 when x goes from 0 to 1 . For the proton it is surprizing to see that the u-quark FF dominates only at large x, whereas the strange and heavy quarks contribute substantially for $x \leq 0.3$ or so.

Conclusions

- FF are very relevant for better understanding of baryon structure
- Importance of semi-inclusive DIS to improve quark flavor separation
- Present situation: Λ unpolarized FF is known but need more data. Polarized FF poorly known
- Future prospects from Hermes, HERA, Compass and RHIC-BNL.

