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Outline

• Definitions of FF
• What is known about the polarized baryon

FF?
• Earlier attempts to understand some Λ, Λ̄

data
• Basic procedure to construct the statistical

unpolarized octet baryon FF
• Conclusions
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Definitions of FF
Dh

f (z,Q2) is the probability to find, at scale Q, a
hadron h with fraction z of the parton f
momentum. Note that Q2 > 0 and FF is the
counterpart of the PDF fh(x,Q2) defined for
Q2 < 0. QCD predicts their Q2 evolution and like
the PDF, they should be universal, i.e. processes
independent. If h has spin-1/2 can define
similarly to ∆f for PDF the polarized FF

∆Dh
f = D

h(+)
f(+) − D

h(−)
f(+)

Dh
f is the sum
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What is known on the polarized
baryon FF?

Very little and only for Λ and Λ̄
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PL(Λ + Λ̄) at theZ pole ine+e−

collisions at LEP
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Spin transfer forΛ andΛ̄
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Spin transfer forΛ from NOMAD

NOMAD
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TransverseΛ polarization from
Hermes
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This is a transverse SSA hard to interpret
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Definitions
For a longitudinally polarized charged lepton
beam and an unpolarized target, the Λ
polarization along its own momentum axis is
given in the quark parton model by

PΛ(x, y, z) = PBD(y)AΛ(x, z) ,

where PB is the polarization of the charged
lepton beam, which is of the order of 0.7 or so.
ν = E − E

′

, x = Q2/2Mν, y = ν/E, z = EΛ/ν
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D(y), whose explicit expression is

D(y) =
1 − (1 − y)2

1 + (1 − y)2
,

is the longitudinal depolarization factor of the
virtual photon with respect to the parent lepton,
and

AΛ(x, z) =

∑

q

e2
q[q

N(x,Q2)∆DΛ
q (z,Q2) + (q → q̄)]

∑

q

e2
q[q

N(x,Q2)DΛ
q (z,Q2) + (q → q̄)]

,

is the longitudinal spin transfer to Λ.
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Earlier attempts to understand
someΛ, Λ̄ data

D. De Florian et al., Phys. Rev. D57 (1998) 5811
C. Boros et al., Phys. Rev. D62 (2000) 014021
Use only data from e+e− collisions

DΛ+Λ̄
q (z) = Nzα(1 − z)β

which implies no flavor separation and no q, q̄
separation. Use simple scenarios to construct
∆Dq(z) = Nqz

δDq(z) with Ns = 1 and
Nu = Nd = 1,−0.2, 0.
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Earlier attempts..(cont.)
Another approach based on the use of our
knowledge of the PDF and the use of the
reciprocity relation (Gribov-Lipatov)(see next
slide).
B.-Q. Ma, I. Schmidt, J.S. and J.J. Yang, EPJ
C16, 657 (2000)
B.-Q. Ma, I. Schmidt, J.S. and J.J. Yang, Phys.
Rev. D62, 114009 (2000)
It works reasonably well but E665 remains
puzzling. We generalize to all baryons with a
SU(6) spectator quark-diquark model
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Gribov and Lipatov have pointed out that the FF
Dh

q (z), for a quark q splitting into a hadron h with
longitudinal momentum fraction z, can be related
to the quark distribution qh(x), for finding the
quark q inside the hadron h carrying a
momentum fraction x, by the reciprocity relation

Dh
q (z) ∼ qh(x) .

This relation holds, in principle, in a certain Q2

range and in leading order approximation. It is
only valid at x → 1 and z → 1, but it provides a
reasonable guidance for a phenomenological
parametrization of the various FF.
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For the Λ, we have explicit spin distributions for
each valence quark,

u↑
v(x) = d↑v(x) =

1

xαv

[Auv
(1 − x)3 + Buv

(1 − x)4],

u↓
v(x) = d↓v(x) =

1

xαv

[Cuv
(1 − x)5 + Duv

(1 − x)6],

s↑v(x) =
1

xαv

[Asv
(1 − x)3 + Bsv

(1 − x)4],

s↓v(x) =
1

xαv

[Csv
(1 − x)5 + Dsv

(1 − x)6].
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Spin transfer forΛ (right) andΛ̄
(left)

HERMES

E665
E665

dotted line (pure valence), solid line (asymmetric
sea), dashed line (symmetric sea)
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Importance of neutrino DIS

ν and ν̄ DIS allow a quark flavor separation
B.-Q. Ma and J.S., Phys. Rev. Lett. 82,2250
(1999)
With four reactions νp → µΛX, ν̄p → µΛX,
νp → µΛ̄X and ν̄p → µΛ̄X can extract four
independent FF, DΛ

u , DΛ
ū , ∆DΛ

u and ∆DΛ
ū .

A very powerful tool!
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Spin transfer forB(right) and
B̄(left)
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The PDF statistical model of
C. Bourrely, F. Buccella and J.S.

• A Statistical Approach for Polarized Parton
Distributions
Euro. Phys. J. C23, 487 (2002)

• Recent Tests for the Statistical Parton
Distributions
Mod. Phys. Letters A 18, 771 (2003)

• The Statistical Parton Distributions: status
and prospects
Euro. Phys. J. C41, 327, (2005)
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Basic procedure for the PDF

Use a simple description of the PDF, at input
scale Q2

0, proportional to [exp[(x − X0p)/x̄] ± 1]−1,
plus sign for quarks and antiquarks, corresponds
to a Fermi-Dirac distribution and minus sign for
gluons, corresponds to a Bose-Einstein
distribution. X0p is a constant which plays the
role of the thermodynamical potential of the parton p
and x̄ is the universal temperature, which is the
same for all partons.
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Explicit construction

(C.Bourrely and J. S., Phys. Rev. D 68, 014003
(2003))
For the quarks q = u, s, d the FF DB

q (x,Q2
0) are

expressed as

DB
q (x,Q2

0) =
AB

q XB
q xb

exp[(x − XB
q )/x̄] + 1

,

where XB
q is the potential corresponding to the

fragmentation q → B and Q2
0 is an initial scale.
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The heavy quark FF DB
Q(x,Q2

0) for Q = c, b, t,
which are expected to be large only in the small
x region (x ≤ 0.1 or so), are parametrized by a
diffractive term with a vanishing potential

DB
Q(x,Q2

0) =
ÃB

Qxb̃

exp(x/x̄) + 1
.
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First we have the obvious constraints, namely,
DB

u = DB
d for B = p,Λ. Moreover we assume that

we need only four potentials, two for the proton
Xp

u = Xp
d and Xp

s and two for the hyperons
XY

u = XY
d and XY

s where Y = Λ,Σ±,Ξ−.
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Finally for the gluon to baryon FF DB
g (x,Q2),

which is hard to determine precisely, we take a
Bose-Einstein expression with a vanishing
potential

DB
g (x,Q2

0) =
AB

g xb̃+1

exp(x/x̄) − 1
.

We assume it has the same small x behavior as
the heavy quarks and it is the same for all
baryons.
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Table 1: Values of the normalization constants of

the FF for the octet baryons

Baryon q1 q2 AB
q1

AB
q2

ÃB
Q

p(uud) u = d s 0.264 1.168 2.943
Λ(uds) u = d s 0.428 1.094 0.720
Σ+(uus) u s 0.033 0.462 0.180
Σ−(dds) d s 0.030 0.319 0.180
Ξ−(dss) d s 0.023 0.082 0.072

We took x̄ = 0.099 as determined earlier for the
nucleon PDF
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The values of the free parameters obtained from
the NLO fit are

Xp
u = 0.648, Xp

s = 0.247, XΛ
u = 0.296, XΛ

s = 0.476

b = 0.200, b̃ = −0.472, AB
g = 0.051.

Notice that in the nucleon PDF the u quark which
is dominant has the larger potential and here we
have analogously, Xp

u > Xp
s and XΛ

s > XΛ
u , a

situation which is natural to expect. So the
intrinsic properties of the quarks when observed
in DIS or in fragmentation processes seem to be
preserved.
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The FF foru → p and foru → Λ
(versus x)
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Cross sections forp andΛ
production ine+e− annihilation
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Cross sections forΣ± andΞ−

production ine+e− annihilation
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The quark to baryons FF
DB

q (x, Q2) andDB
Q(x, Q2)
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Some comments

For all hyperons the strange quark FF dominates
over the u, d quarks. For Λ, we agree with a
model for SU(3) symmetry breaking (Indumathi
et al.) which gives DΛ

u ∼ 0.07DΛ
s . In Boros et al.

one also finds DΛ
u << DΛ

s and DΛ
q̄ is strongly

suppressed. This contrasts with De Florian et al.
where u, d and s are assumed to be equal.
However the heavy quarks have a pattern similar
to De Florian et al., with a sizeable contribution
only for x ≤ 0.1 and a fast dropping off for large x.
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Comments ( cont.)

This is also at variance with J.J. Yang, where
DΛ

u /DΛ
s decreases from 1 to 0.2 when x goes

from 0 to 1. For the proton it is surprizing to see
that the u-quark FF dominates only at large x,
whereas the strange and heavy quarks
contribute substantially for x ≤ 0.3 or so.
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Conclusions

• FF are very relevant for better understanding
of baryon structure

• Importance of semi-inclusive DIS to improve
quark flavor separation

• Present situation: Λ unpolarized FF is known
but need more data. Polarized FF poorly
known

• Future prospects from Hermes, HERA,
Compass and RHIC-BNL.
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