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Abstract

The concept of a GPS receiver as a tracking facility and a gradiometer as a

separate instrument on a low orbiting platform offers a unique tool to map the

Earth's gravitational field with unprecedented accuracies. The former technique

allows determination of the spacecraft's ephemeris at any epoch to within 3 to 10

cm, the latter permits the measurement of the tensor of second order derivatives

of the gravity field to within 0.01 to 0.0001 EStv6s units depending on the type

of gradiometer. The first part of this report describes a variety of error sources in

gradiometry where emphasis is placed on the rotational problem pursuing as well

a static as a dynamic approach. In the second part, an analytical technique is de-

scribed and applied for an error analysis of gravity field parameters from gradiometer

and GPS observation types. Results are discussed for various configurations pro-

posed on Topex/Poseidon, Gravity Probe-B and Aristoteles, indicating that "GPS

only" solutions may be computed up to degree and order 35,55 and 85 respectively,

whereas a combined GPS/gradiometer experiment on Aristoteles may result in an

acceptable solution up to degree and order 240.

iii

PRECEDING PAGE BLANK NOT FILMED





Contents

Introduction

Gradiometry 3

2.1 Principles ................................. 3

2.2 Orbit selection .............................. 5

2.2.1 Orbital height ........................... 5

2.2.2 Orbital decay ........................... 5

2.2.3 Sun synchronous orbits ..................... 5

2.3 Error sources ............................... 7

2.3.1 Orbit errors ............................ 7

2.3.2 Rotational effects ......................... 9

2.3.3 Other effects ........................... 14

$ Gravity field error analysis 17

3.1 Introduction ................................ 17

3.1.1 Problem definition ........................ 17

3.2 Error analysis ............................... 18

3.2.1 Lumped coefficient approach .................. 18

3.2.2 Normal equations 21

3.2.3 Presentation ........................... 25

3.3 Results ................................... 25

3.3.1 Gradlometer on]y results ..................... 25

3.3.2 GPS only results ......................... 26

3.3.3 GPS only restdts, constrained least squares approach ..... 26

3.3.4 Gradiometer combined with GPS ................ 27

4 Conclusions and Recommendations 41

A Attitude error simulation. 49

B Expressions for gravity gradients 53

v

PRECEDING PAGE BLANK NOT FILMED





Chapter 1

Introduction

Before a gravity gradiometer was considered as an instrument on a spacecraft, Wolff"

(1969) suggested a mission where one satellite tracks another [satellite to satellite

tracking or SST] with the intention of measuring the Earth's gravitational field.

The low-low version of this idea has been demonstrated in the ATS 6/Apollo-Soyuz

mission cf (VonBun et al.,1980), whereas an actual dedicated low-low Gravity Re-

search Mission (GRM), as considered in a proposal of the National Aeronautics and

Space Administration (NASA) cf (Keating et al.,1986), was never realized. The

high-low version of SST was successfully demonstrated by ATS 6 tracking GEOS-3

cf (Hajela_1978). A similar technique is used for solving lunar and planetary gravity

models where velocity perturbations of orbiters are observed on Earth as a Doppler

shift in the returned radio signals.

Gradiometry can be considered as a variation of the low-low version of $ST

realized inside one satellite cf (Rummel,1986). Currently there e_sts a proposal

within the European Space Agency [ESA] to launch a gravity gradiometer satellite

called Aristoteles in the time frame of 1996 to 1998. The mission objectives are to

measure the Earth's gravity field to within 5 mgal for gravity anomalies and 10 cm for

geoid heights with a spacial resolution of 100 kin. Aristoteles will be placed in a near

circular sun-synchronous orbit [I = 96.33 °] at a height of 200 kin. The spacecraft

will carry a 0.01 E/v/-_ - 2-axis gradiometer [instrument frame perpendicular to

the satellite's velocity vector] and a GPS receiver which should allow instantaneous

estimates of the position to within the sub-decimeter noise level.

The concept of GPS as a tracking facility on an orbiting platform has also been

suggested for TOPEX/Poseidon [Ocean/Topography Experiment] and GP-B [Grav-

ity probe B, a relativistic experiment]. The advantage of GPS is that continuous

accurate tracking is made possible, allowing the estimation of positions and veloci-

ties of the spacecraft at each epoch along the orbit. Currently tracking is performed

mainly by means of laser and Doppler measurements from ground based stations to

satellites implying that the orbit is covered only up to a few percent with actual



measurements.
The technique for analyzing gravity field errors from GPS position estimates

and gradiometer observations reported here has been applied in preliminary studies

of Aristoteles, cf (ESA,1989) and (Koop et al.,1989). Initially we started with a

technique for treating the gradiometer problem developed in (Colombo,1988) and

included later the GPS part after ESA decided to consider GPS, instead of PRARE,

on Aristoteles. The GPS part in the error analysis is somehow similar to the problem

described by Smith et al. (1988) for GP-B. Unfortunately a complete error analysis

of Aristoteles was not directly possible with the available techniques since it requires

consideration of 1) a non-polar inclination, 2) a limited bandwidth of the gradiome-

ter possibly with a colored noise spectrum and 3) the treatment of the GPS and

gradiometer aspect simultaneously.

This was the reason to reformulate the original technique in a "frequency like

approach" in which the observation equations are considered for lumped coefficients

in the spectral domain. This has been done for both the gradiometer and GPS

observation equations thereby avoiding explicit analytical expressions of elements

in the normal matrix. Thus any frequency dependent behavior of an instrument

may be modeled by means of an a priori covariance function for the noise in the
observations.

The organization of Chapters and Appendices in this report is as follows. Chap-

ter 2 treats some principles of gradiometry in View of Aristoteles, the nominal orbit

definition, a variety of error sources such as orbital errors, rotational effects includ-

Ing scale, coupling and non-linearity of the gradiometer and the problem of self

gravitation. Chapter 3 describes briefly the mathematics behind the error analysis,

expressions for observation equations and the derivation of normal equations, fol-

lowed by a discussion of the results for various cases. Finally Chapter 4 contains

conclusions and recommendations for this technique and for gravity field improve-

ment in general. Two Appendices discuss some specific problems encountered, most

of them are not directly related to the actual problem.
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Chapter 2

Gradiometry

In this Chapter we will discuss the principles of gradiometry, the choice of orbits for

proposed missions and some error sources inherent to the concept of gradiometry.

2.1 Principles

On the surface of the Earth, the most straightforward method to detect gravitational

acceleration is to measure the time needed for a proof-mass [p.m.] to fall from a

certain height, or to observe the period of oscillation of a pendulum with a certain

length. Both experiments, in some way applied in gravity meters, have been carried

out for geodetic and geophysical purposes to investigate the gravity field in most

parts of the world, cf (Vani_ek and Krakiwsky,1984).

Unfortunately, in an orbiting spacecraft, both the pendulum and the drop test

fail since the satellite itself is continuously falling resulting in a gravity-free environ-

ment inside the spacecraft. In this case the only effect that can be observed is the

remaining non-conservative force primarily caused by atmospheric drag or radiation

pressure acting on the spacecraft. A successfully applied technique is to correct con-

tinuously the orbit of a spacecraft by means of small thrusters in such a way that

a p.m. remains in the center of mass [c.m.]. The resulting orbit is called drag-free

and obeys the equations of motion:

i= vv + 7 (2.1)

where _ represents the acceleration vector [in an inertial coordinate system], V the

gravitational potential function and 7 additional conservative forces.

What would happen if one deployed an accelerometer, consisting of the "p.m.

under suspension type", at some distance from the c.m. Clearly something would

be observed since the p.m. in the accehrometer would tend to behave as an individ-

ual orbiting satellite "falling" in another trajectory than the c.m. of the spacecraft.

However the suspension mechanism of the accelerometer would continously drive
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the p.m. back to some definedlocaloriginof the accelerometerand as a result

one would observe some forceactingon the p.m. Ifone ignoresrotationaleffects

ofthe entirespacecraftthen thisdrivingforceconsistsof the differencein gravita-

tionalaccelerationbetween the c.m. of the spacecraftand the localoriginof the

accelerorneter.Using the same technique,differencesinaccelerationsdue to gravity

couldbe observed at any positionin the spacecraftrelativeto the c.m. or differences

in accelerationcouldbe observedbetween two ormore arbitrarilyplaced accelerom-

etersin a spacecraft.When attached to some frame,e.g.fouraccelerometerson a

base plateor eightaccelerometerson the cornersof a cube,the instrument iscalled

a gradiometer.
The differencesin accelerationobserved between accelerometerscan be trans-

latedto second order derivativesofthe potentialV, ignoringeffectsdue torotation

which willbe discussedlateron in thisChapter. Essentiallythistranslationis a

directconsequence of the equationsof motion eq. (2.1).For two accelerometersat

the pointsP and Q we findthat:

P q

A Taylor expansiongives:

_2V P + o(a,])

where Azj = zjl q - Zjlp. As a result:

a+v i,l+ -
= a,+ +

In totalone could observea tensorof 9 elements of the second order derivativesof

V of which 5 components are independent due to symmetry of the tensorand the

Laplace conditionforthe gravitationalpotential,cf(Rummel,1986).

While the dimension of accelerationisgiven in m/s _,second order derivatives

are representedin units of 1/s2 since differencesin accelerationsare divided by

meters. It is customary to work with so-calledEStvSs units [E] which have the

dimension of 10-9/82. State-of-artgradiometerscan operate at room temperatures

with an accuracy of 0.01 E/v/-H'zcf (Benz et al.,1988). Gradiometers cooled at

super conducting temperatures of a few degreesKelvin operate with accuraciesof

0.0001E/v/'H-_as isdescribedin (Morgan and Paik,1988).
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2.2 Orbit selection

2.2.1 Orbital height

Although gradiometersof high accuraciescan be builtwith the present stateof

technology,thereisa need forcircularorbitsat very low altitudes[160to 200 km].

A sphericalharmonic expansiondescribingthegravityfieldshows a naturaldamping

behavior containinga term (ae/r)t+1forthe potentialfunctionwhere ae represents

the mean equatorialradiusand r the radialdistancebetween the instrument and

the centerof mass of the Earth and lthe sphericalharmonic degreecf (Heiskanen

and Moritz,1967).

Severalerroranalysisstudies,more or lesssimilarto the method appliedin this

report,indicatethat gravityfieldsup to degree and ordersaround 300 to 500 can

be estimatedfrom gradiometerswith accuraciesranging from 10-2 to 10-4 E/v/-Hz

inorbitsranging from 160 to 200 kin. [A summary ofthesestudiescan be found in

Appendix C of(Morgan & Paik,1988)].In most erroranalysisstudiesthe threshold

forrecoveryin terms of degreeand ordersisusuallydetermined by comparing the

estimatederror[herer.m.s.]per coefficientper degreetosome a prioriassumed signal

behaviorofthe Earth'sgravityfieldsuchas Kauia'sruleofthumb, cf(Kaula,1966b).

2.2.2 Orbital decay

At a height of 200 km an orbit decays about 7 km per day due to atmospheric

drag which depends on the intensityof solarradiationand the conditionof the

Earth'smagnetic field.This isshown infigure2.1where the heightofAristotelesis

displayedas a functionof time over a 1 day period.The underlyingsimulation,cf

(Ridgway,1990),involvedan integrationofthe equationsofmotion using the GEM-

T2 gravitationalmodel, cf(Marsh etal.,1986,1989),and the 3acchia71 model using

Cd=3.0, a crosssectionalarea of 2.3 m 2,mass--1240 kg, Kp=2.2 and F10.7=120

(average=137) 10-22 W/m2/Hz. These parameters are chosen according to the

specificationsofArlstotelesas givenin (ESA,1989).

The heightsshown in figure2.1are with respectto a mean equatorialradiusof

6378137 m and show oscillationsof the order of 10 km due to a small eccentricity

and C20 shortperiodiceffects.The dashed llnein thisfigureisthe resultoffitting

a firstdegreepolynomial through the height curve,indicatinga slopeof-6.8 km

per day. For the Aristotelesmissionitisforeseento correctthe orbitfrequentlyto

preventa mean heightbelow 190 km which, accordingto the simulationdescribed

above,could occur within2 days when startingat a mean heightof200 kin.

2.2.3 Sun synchronous orbits

Benz et al. (1988) explain the need of a sun synchronous orbit at 200 km height
for Aristoteles. This constrains the inclination of the orbit to 96.33 ° which can be



210

205

2OO

195

19o_

185

U"" U'''! i

i I

U

18% 5 10 15 25

time [houri

Figure 2.1:Height as a functionof time fora simulatedAristotelesarc overa 1 day

period.The dashed lineisthe resultoffittinga firstdegreepolynomial through the

heightcurve,indicatinga slopeof-6.8krn per day.

confirmed by computing the secularmotion of fl due to the flatteningterm C20

[=-0.00108263]of the gravityfield:

dfl 3nC2oa_
cos/ (2.2)

dT= 2(1- e2)2a2

where n = _ as is shown by Kaula (1966a). One finds that 2_'/fl equals to one

year,i.e. therate of _ is suchthatthe orbitalplane rotates about the ,.-_s of the
Earth as fast as the Earth revolves around the sun. Thus it appears for an observer

in the satellite that the sun is always in the same position with respect to the orbital

plane. Furthermore, in the case of Aristoteles, fl is chosen such that the sun line is

perpendicular to the orbital plane, resulting in a so-called dawn-dusk trajectory.

Despite this geometry, the observer will also notice some yearly variations in the

position of the sun due to obliqueness of the Earth's rotational axis with respect to

the ecliptic. Nevertheless sun synchronous orbits provide an efficient means of power

production by means of solar arrays and a minimal effect of thermal and mechanical

noise due to occultation. Figure 4.2 on page 67 in (Morgan & Palk, 1988) clarifies

the gravity gradiometer orbital lighting geometry in a sun synchronous orbit.
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A consequence of the sun synchronous orbit of Aristoteles is the loss of polar

coverage in an area with a diameter of 2 × 6.33 ° around both poles whereas, from a

geodetic point of view, 900 inclination is preferable. Most global gradiometer error

analysis studies, like those of (Coiombo,1988) and (Rapp,1988), assume a complete

coverage or I = 90 ° whereas this is not likely to be the case in an actual gradiometer

mission. It will be shown that a polar gap of 12.66 ° in diameter is resulting in a

poorly posed problem when one aims for a complete gravity field recovery up to say

degree and order 360.

2.3 Error sources

There are variouserrorsourcesplaying a rolein gradiometry. The followingsub-

sectionswilldiscussthe influenceof orbiterrors,rotationalaccelerations,non-

conservativeforces,misalignment and selfgravitationon the gradiometer.

2.3.1 Orbit errors

As the gradiometer is observing some or more components of the tensor of second

order derivatives, an error is introduced due to the fact that the orbit, and therefore

the position of the instrument at a given epoch, can be modeled only up to a certain

accuracy. One can only assume that the gradiometer performed its measurements

on some computed orbit whereas in reality tensor components are observed on the

actual orbit. Orbit errors are mostly caused by errors in force models [such as

the gravity field, atmospheric drag, radiation pressure and tidal models] which are

required for the computation of the trajectory of the satellite. In this section we

will discuss the relation between those forces and the corresponding perturbations of

the gradiometer satellite. We will not discuss orbit errors due to a limited tracking

coverage or problems inherent to certain ground based tracking systems as described

in (Marsh et al.,ibld) since they fall outside the scope of this study.

Perturbations in near circular orbits due to disturbing [or unmodeled] forces

acting on the spacecraft are approximated by the HIU equations which are derived

in e.g. (Schrama,1989a):

f_ = fi- 2noi_- 3n_u

fu = v + 2n0fl (2.3)

where u, v and w represent radial, along: and cross-track components of the orbit

error, n0 the mean motion of the spacecraft in a circular reference orbit and where

fu, fv and f_ symbolize disturbing accelerations acting on the satellite. There exist

exact solutions of these differential equations which are homogeneous, particular

non-resonant and resonant.
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The homogeneous solutionof the Hillequationsisfound by solvingeqns.(2.3)

forf, = f,,= fw = 0. This solutiondescribesthe effectofinitialstatevectorerrors

on the orbitcfKaplan (1976):

u( t ) = au cos nt + bu sin nt + c_,

v( t ) = a_ cos nt + bv sin nt + c_ + d_t

wit ) = awcosnt + b,,,sinnt

(2.4)

where the constantsat,through bw are definedby the initialpositionand velocity

errorsat a givenreferencetime.

The particularsolutionsdescribethe casewhere thereareforcingfunctions,here

chosen as Fourierseries,in the problem. The non-resonant particularsolutionis

found by solving:

P, cos0)t+ Qu sinwt

Pv coswt + Qv sin0)t

Pw cos0)t+ Qw sinwt

= fi- 2no/7- 3n_u

= _ + 2noti

= _+n_ow

(2.s)

where P. through Q_ symbolize time independent constants. The solution of this

system of equations becomes:

wP, - 2noQ,, 0)Q_ + 2noPv

u(t) = 0)(.o2_ _,2) cos0)t + ,,,(no_ _ 0)2) sin0)t

v(t) = (3n_ + w2)Pv + 2nowQ. (3no_ + w2)Q_ - 2nowP_
0)2(n0_- 0)2) cos,,,t+ 0)2(n0_- 0)2)

P., Q,,,
w(t) - (no_ _ 0)2) cos 0)t + (n_ - 0)2) sin wt

sin 0)t

(2.6)

showing that singularityoccurswhere the denominator becomes zero which isthe

case when 0) -- 0 or w = +no. These casesrequireseparate,so-calledresonant,

solutionswhich are describedin more detailin (Schrama,1989a).The non-resonant

particularsolutionoftheHillequationsbehavesas a so-calledlinearsystem meaning

that disturbingforcefunctions(the input of the linearsystem) and perturbations
0)

in the orbit (the correspondingoutput) occur at the same frequency of _ Hz.

Characteristicis the damping behavior with respectto 0)of the non-resonantsolu-

tionswhich iscaused by the denominators 0)(n2o- _2),0)2(n_ _ 0)2)and (n_ - _2)

in eqns.(2.6).Thereforeorbitalperturbationsoccur mostly in the lower frequency

band between approximately0 and 3 cyclesper revolutionas isconfirmedby various

studiessuch as an orbiterrorsimulationdescribedin (Schrama,1989a).

A similardamping behavior with respectto frequency can be expected in the

gradiometererrorsignalcausedby orbitalperturbations.This effectisapproximated



by linearizingsecond order derivativesof the potentialfunctionV = p/r whereby

r = (z2 ÷ y2 ÷ z2)I/a.The requiredthirdorder derivativestake the followingform:

03V {3zkdz_ zlzjzk 3 d z.z }OziOz_Ozk-P r s dzj 15 rz + _d-_k ( • j)

For el = z, z2 = y and za = z thisresultsin the followingTaylorexpansion:

Vy= Vy_ Vy, = V_. Vyy V_, 3p
v_= v,v v_ v_= vz_ v_z +-_ Az° AyAz -2AzA_ (2.7)

• S • Y J

(=+A-,_+_V,_+ A_) (=,_,_)

in which one replacesAz - w, AN = v and Az = u. At 200 km altitudethe

term 3p/r4 equalsapproximately 6.4x 10-13 m-Xs -2 indicatingthatorbiterrorsof

the order of 10 m are requiredto obtain the 0.01E levelwhereas errorsof 0.1 m

correspond to 10-4 E.

Figure 2.2shows the resultsofa simulationcfBettadpur (1990)in which tensor

components are computed asifthey occuron a referenceand a perturbed trajectory.

The amplitude densityspectrum ofthe differencesbetween T_,_,on both trajectories

demonstrates that most of the orbiterrorproblem in the gravitygradientsoccurs

below 4 cpr for a 0.01 E/v/H-z instrument and below 25 cpr for a 0.0001 E/vfH_-

instrument.A simple,but efficient,way ofavoidingthe orbiterrorproblem isthere-

foreto filterthe lower part of the frequencyspectrum in the erroranalysis.Other

techniquesto treatthe effectoforbiterrorson gravitygradientsare cf(Rummel &

Colombo, 1985)."

• to consider orbit error free combinations such as 2Vm= - Vzz and 2V_ - V_z,

s to introduce initial state vector components and possibly forcing terms (Pu

through Qu, in eq. (2.5)) as unknowns in an estimation problem. [The obser-

vation equations for this problem are obtained by substitution of (2.4) and

(2.6) in (2.7)].

In this study the former technique, elimination of the lower part of the spectrum, is

used to avoid any unnecessary complexity in the error analysis. Various references

on the orbit error problem in gradiometry can be found in (Rummel,1986), the

technique of filtering originates from (Colombo,1988).

2.3.2 Rotational effects

Any rotationofthe gradiometercausesdisturbingrotationalaccelerationswhich are

observed by the instrument.Thereforein the followingtwo subsectionswe willdis-

cussI)the effectofangularvelocities[w]and accelerations[&]on the accelerometers

[a static approach] and 2) the behavior of w and _ in time [a dynamic approach].
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turbations. On the horizontal axis the frequency is represented in terms of cycles

per revolution with a resolution of 0.7 cpr. On the y-axis the error is presented in
terms of E.

Attitude problem, static approach

According to Rummel (1986) any accelerometer will measure the total acceleration

R which is:

_0 "--= + _xRo + _x_ + _x(_x_) (2.8)
,,, ,r

where R0 and R0 describe respectlvely the acceleration and the velocity of the in-

strument frame and where R equals to the displacement vector relative to the center

of mass of the spacecraft. Equation (2.8) can be evaluated for differences in acceler-

ations which axe actually observed in the instrument frame whose origin is located

at the center of mass of the spacecraft. This results in:

AR2
A_s JAR1 ]

= (r + 1_1+ 1__) AR_ (2.9)

AR3

10



where A_ symbolizesthe differenceofthe displacementvectoroftwo accelerometers

while r symbolizesthe tensorof second order derivativesof V:

r

Furthermore

and

0 -_b3 d_2 ]
d_3 0 -_1

-&_ ¢bl 0

[,2 ]
--_2 -- _3 _I_2 WIW3

2 2
_2 = _1_2 --_I -- _3 W2W3 •

2 2
_1_3 W2_3 --Wl -- _2

For A --r + ft+ ft2,the tensorwhich isactuallyobserved by the instrument,we

findthe followingrelations:

= _(h- A T ) (2.10)

i

z

and
1

r + a_ = 2(h + AT). (2.11)

In principle, for a 3-axis gradiometer, one could obtain f/ by an integration of

with respect to time, cf (Rummel,1986):

_0 t
N(t)= h dt + a0. (2.12)

This approach helps to estimate f12 in eq. (2.11) thereby separating rotational from

gravitational effects. Unfortunately this technique can not be applied for a 2-axls

gradiometer as is the case for Aristoteles. Assuming that axis number 1 is radial, 2

along track and 3 cross track, heading in the same direction as the angular momen-

tum vector of the orbit, we find that the following components can be observed:

A,, = r,_ - (_ + _])
A33 ---- r_ - (_ + _)

1
A_3 = _(A13 + A31) = r13 + O)10_3

(2.13)

Assuming that w3 [nominally the mean motion when the spacecraft is designed to

fly in an Earth pointing mode] is far larger than wl or w2 and ignoring all terms
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containingco2sincethey are estimableby means of eq. (2.10)and

linearizeeqns. (2.13)as:

AA11

AA33

AA_3

= Arll --2n0A_3

= Ars3 -- 2WlA_l

-- At13 -_-¢dlAW3_ n0At#J1

(2.12)one can

(2.14)

From eqns. (2.14) one can conclude for a 0.01E/_ instrument that AWl and Awa

[heresymbolizingthe yaw and pitchrate]must be known respectivelyto 10-s and

5 × 10-_ rad/s which poses a severeconstrainton the restitutionof attitudeofthe

instrument,cf(ESA,1989).

According to thisreport (ibid)modern gyroscopesobtain an accuracy of 10-z

rad/s insidethe measurement bandwidth of 5 x 10 -3 to 0.125 Hz which isunfor-

tunatelystilla factor10 to 20 too largefor an adequate attitudereconstruction.

Even the inclusionof a startracker[1arc second or 4.8 × 10-s radiansisfeasible

by currentspace qualifiedstartrackers]in thisconfigurationwouldn't help sincethe

required10-s rad/s couldn'tbe obtained in a 4 second integrationperiod which is

the sampling time proposed forAristoteles.

A possiblesolution,proposed by Matra Espace cf (ESA,1989), is to predict

with existinggravitymodels valuesof rls to within 0.5E in order to improve the

estimationof ¢dI and w3 thereby enablingto derivemore accuratelyr11 and rss.

This seems to be possiblesincethe differencesof T_,_computed by two existing

high degreeand order gravitymodels seem to be smallerthan the required0.5 E,

cf(Schrarna,1989b).However in thistechnicalmemorandum (ibid)we warned that

both models sharemostly the same observations[mostlygravityanomalies]so that

the statisticsaxe obscuringthe realaccuracy of r13. With thisin mind Matra's

proposalleadsto a viciouscirclewhere one buildsa gradiometerto measure a high

degreeand ordergravityfieldwhich happens tooperateonlywhen an a priorimodel
of such a fieldexists.

The above mentioned problems were a good reason to considerthe attitude

problem in a dynamic approach [consideringdifferentialequations]in an attempt

to describeAwi as functionsof the time caused by disturbingtorques.Such an ap-

proach explainsthe behaviorofthe rotationalvelocitycomponents in the frequency

domain as isshown in the followingsection.

Attitude problem, dynamical approach

The Newton-Euler equations take the following form:

"..2--

H =-_x H + T (2.15)

where 7/is equal to the angular momentum vector, _ is a polar vector containing

angular velocities and T is a torque vector. By definition, H = I_, where I is a

12



tensorcontaining the moments of inertia of the body under consideration. As a

result the Newton-Euler rotational equations take the following form:

I_=-_xI_ + (2.16)

These equations are considered in the case where I represents a diagonal matrix

containing the principle axes of inertia:

I1,,1 = (I2- I3)_20_z + T1

I20)2 : (/3- I1)oJiw3 + T2

Iz_3 : (/1 -- Z2)°)1_2 -]- T3

(2.17)

In our case we know that Aristoteles is in an Earth pointing mode and that the

torques are caused by a combination of gravitational torques, control torques needed

for attitude control [momentum wheels], and other torques which are mainly due

to the atmospheric drag acting on the satellite. Some insight can be gained by

linearizing the Newton-Euler equations [including the gravitational torques] for small

rotations assuming a nominal rotation about the w3 axis [cross-track axis] of the

spacecraft. This results in the following system of differential equations as is shown

in (Morgan and Paik,1988):

z1#1 : (/1 +/2 -/3)nob2 + (r2 - I3)n_01+ T1
I2#2 = (I3 - I2 - I1)no01 + 4(Zl - I3)n2o02 + T2 (2.18)

I3_Ja : 3(I1 - I2)n_Oa + Tz

Here the variables 01 symbolize small angles [01 = oJi], whereas Ti symbolizes torques

free of gravitational effects. The particular non-resonant solution of (2.18) is ob-

tained by assuming that:

T1
-- = Rlcos_n0t
/1

T2 = R2sin_not (2.19)
I2
T3
-- = Racos/_not
I3

frequency in terms of cycles per revolution. Thewhereby t9 is determining the
non-resonant solutions become:

o_(t) :

02(0 :

o_(t) _

_(_2 + Q2)R1+/3P1R2
n_((_ + Q1)(__+ Q2) + _P1p2)

n_((f 32 + Q1)(_ 2 + Q2) + _2PIP2)

-Ra

%_(f32+ Q3) cos_not

cos_not

sin_not (2.20)
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whereby
I1 +I2- I3 I2- 3

/1- , Q1--
I1 11

/3 --/2 --/1 Q2 - 4(I1 -/3)
12 12

Q3 - 3(z, - h)
h

These solutions describe the behavior of attitude errors as a result of disturbing

non-gravitational torques [divided by moments of inertia] which converted to rota-

tional velocities[Aw_ : 01 and A_ 3 : 03]and substitutedin eqns. (2.14)resultin

errorestimatesfor AAIj. Note that eqns.(2.20a-b)become singularwhen:

_2 :-2(PIP2+Q1-{-Q2)-{- _/(PIP2-.i-Ql%Q2)2-4Q1Q2 (2.21)

and that (2.20c)becomes singularwhen:

fj2 __ -Q3. (2.22)

This problem isnot consideredany further,itresultsin a resonant set of D.E.'s

which must be treatedseparately.

More important isthe resultthatattitudeerrors,and therebyangularvelocities

and gradiometer signalerrors,are decaying at a rateinverselyproportionalto the

frequencyof the disturbingtorquefunction,see alsoeq.(2.20).Thereforeone could

expect that attitudeerrorsare confinedto the lower frequencyband and that the

problem could be avoided by means ofa high pass filteringtechniquesimilarto the

way orbitalerrorsare treated.This isdiscussedin Appendix A where the results

of a simulationofattitudeerrorsfora 10-2 and a 10-4 E gradiometersatelliteare

shown. Unfortunatelythe resultsindicatethat the torquescaused by atmospheric

drag are probably too largefor even a 10-2 E instrument and that the attitude

must be reconstructedto higheraccuraciesthan presentlysuggestedforAristoteles.

Additional studiesare needed to determine whether thisisfeasiblewith modern

processingtechniquesand or technologyresultingin an acceptablesolutionwithin

the budgetary constraints.

2.3:3 Other effects

So farthe effectsoforbiterrorsand rotationshave been discussed.There are several

othereffectscausingerrorsin the gradiometersignalsuch as misalignment between

axes,scale-errors,couplingand non-linearityofthe accelerometers,includingeffects

due to serfgravitation[fuelsloshing].
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Scale, coupling and non-linearity

According to Toubou] et ai. (1990) the acceleration measured along the i-axis 71 may

be described by:

: (1+,,)r, + +
'J , kr,r (2.23)+ + Firj +

+ bias + noise

where:

• Fi, Fj and Fk are the sum of all external accelerations projected on the ixi and

k-axes,

• ei is a bias term for the i-axis, e.g. due to an electronic or mechanical bias in

the accelerometer,

k are the coupling terms between the i_] and k-axis, due to misalignment• _/" and Q
of the sensitive axis of the accelerometer and the actual frame axis of the

gradiometer and obliqueness of axes,

ii ij and _k are non-linearity terms which are mainly due to defects of sym-• _i , Ci

metry of the electrostatic suspension system around the accelerometer proof

mass.

A complete treatment of the "scale, coupling non-linearity" problem for Aristoteles

is described by Touboul et al. (ibid). They mention that in-orbit measurements by
means of a calibration device are needed to obtain _i at _ 10 -5 in a relative sense

at _ 10 -5 rad [which allows atmospheric drag accelerations up toand _ and e i

5 x 10 -r m/s_].

The principle danger of "scaling, coupling and non-linearity" errors in the gra-

diometer is that non-conservative external forces, in this case dominated by atmo-

spheric drag, enter directly in the observed signal. The magnitude and spectral

behavior of the drag fluctuations are derived from the results obtained from the

missions of Castor, Atmosphere Explorer-C and Dynamics Explorer 2 which are

also discussed in (Touboul et al.,ibid). They conclude that the velocity vector of the

spacecraft must be as perpendicular as possible to the gradiometer plane. This may

require a so-called yaw-steering mode of Aristoteles compensating for cross-track

winds near the poles, see also (ESA,1989).

Self gravitation

Figure 2.3 is taken from (Morgan & Paik,1988) and shows the expected measurement

signal in terms of E due to masses varying from 0.01 to 1000 kg in the range of 0.1

to 100 meter from the gradiometer. It explains that any gradiometer in a spacecraft
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Figure 2.3: Gradient sensitivitylevel,cf(Morgan and Paik,1988).

isbiasedto a certainamount by serf-gravitation.More seriousare masses vibrating

at frequenciesinsidethe measurement bandwidth ofthe gradiometer,implying that

caremust be takeninthe designofantennas and otherappendages so thatthe eigen-

frequenciesofvibrationare outsidethe measurement bandwidth or alternativelyto

insurethatthe magnitude ofvibrationistoo small tobe noticedby the instrument.

In thiscontextsloshingof fuelshouldbe avoidedin the proximityofthe instrument

requiringa specialdesignof the hydrazine tanks,see also(ESA,1989).



Chapter 3

Gravity field error analysis

3.1 Introduction

The objectivefor launching a satelliteequipped with a gradiometer and a GPS

receiveristo improve the Earth'sgravitymodel. The goal of an erroranalysisis

to quantifythe expected accuracy of recoveredpotentialcoefficientsgiven certain

characteristicsof the instruments,the orbit and a prioriinformation about the

gravitationalfield.

The next logicalstepafteran erroranalysiswould be tocarryout an actualslm-

ulation/recoveryexperiment.In the simulationpartof such an experiment,gravity

gradientsincludingnoiseand systematiceffectsare generatedby means of existing

models and known characteristicsofthe spacecraftand instruments;duringrecovery

one attempts to estimatethe potentialcoefficientsfrom the simulatedobservations.

Undoubtly the latterexperiment ismore convincingfor demonstrating the effi-

ciencyofa processingtechnique.However itisalsofarmore laboriousthan the error

analysistechniquedescribedhere and thereforean expensivemethod for studying

the effectof assumptions made in the generationpart. [The generationpart would

forinstancedepend on the availabilityofa super computer and a good dealof com-

puting time sinceitconsistsofevaluatingsphericalharmonic expressionsofgravity

gradientsup to l= 360 along a referenceorbit.]

3.1.1 Problem definition

The problem definition assumed here is shortly stunmarized as follows:

• A circular orbit is assumed, orbital decay, eccentricity effects and C20 short

periodic oscillations are not considered,

• The inclination of the orbital plane I is fixed during the mission, any choice

of I is allowed,
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In the nominal orbit the elements n,w and M are allowed to drift linearily as

a result of C20 secular gravitational effects,

It is assumed that the orbit repeat ratio allows the estimation of a gravity field

up to a given degree and order,

Gradiometer observations as well as position estimates from a GPS receiver

are used as observation types to model the gravity field,

Covariancefunctionsofthe above mentioned observationtypes are formulated

in the spectraldomain and are based upon the accuracy of the instrument,

sampling time and the missionduration.

3.2 Error analysis

3.2.1 Lumped coefficient approach

In the error analysis so-called lumped coefficient expressions of gravity gradients and

GPS position estimates are used as observation equations. Therefore we discuss the

subjects: spherical harmonics along a reference orbit, the requirements for a repeat

orbit and the gradiometer and GPS observation equations in the form of lumped

coefficient expressions.

Spherical harmonics along a circular orbit

The potential function, including gravity gradients as will be shown later on, ex-

pressed in spherical harmonics up to degree and order L projected on the nominal

orbit may be written as a Fourier series:

L L

T= _ _ A/_,.cos¢_ + B_,,,sin_k,n (3.1)
k=-L m=O

where Ak,n and Bk,n are so-called lumped coeffÉcients related to the original potential

coefficients as, cf (Schrama,1989a):

][]Ai_,_ = _ al,,_ /3t,,_ Hl,_k (3.2)
B_m Elm -arm Glmk

l=lmin,2

where

O_tm _--

--s*" l-.:_d ^ _ C_" t-,_:_d

/ae\ l+1 _

Hlrnk = ae
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and

lmin = max(Ikl, m) + a, = _ 0 when k - max(Ikl,m) : even

t 1 when k- max(Ikl,m): odd

_bkm = _b_m + (bkmt (3.3)

where it is assumed that _k,_ is determined by J_ secular effects as is discussed in

(Kaula,1966a):
(bkm = k(fo + 1(/1) + m(_ - O) = kd_o + mf_e (3.4)

Non-overlapping lumped coefficients

A block diagonal system of observation equations is obtained when lumped coef-

ficients for arbitrary values of k and ra occur at a unique frequency _km/21r Hz.

This convenient property will be used throughout this study and is described in this
section.

The actual frequency in cycles per revolution _k,_[= _k,_,/d_o] may be written as:

d,_ Nd
/_km = k + m__wo= k + rn_--_r (3.5)

where k E [-L, L], rn E [0, L] and {Nd, N,.} E .IV"due to the orbit repeat condition.

The variables Nd and Nr are respectively the number of nodal days [2a'/dJ, seconds]

and the number of revolutions in a repeat period. In order to prevent overlapping

of lumped coefficients one has to avoid:

Nd = N_ where INJI < INdt A IN_I< INrl and {N_,Nr*} e Af
N, N:

which results in the following conditions:

• Nd can be an arbitrary integer

• N_ must be a prime number.

Secondiy one has to avoid:

_klm, = //k2,_2 where kl _ ks A ml _ m_

which is possible for k, m combinations resulting in _l,_ terms which are 180 ° out

of phase so that _k,,_ = -/_1,_,_,2. According to eq.(3.5) this is the case when:

2Vd
C : kl -{- ml-_r

N,t
-e = kz + m2_--_-
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resulting in:
Nd kl + k2

N, ml + m2"

It follows directly that overlapping of/_km can be avoided by taking N, greater than

2L since max(m1 + ma) = 2L. However overlapping of zonal lumped coefficients can

not be prevented since it will always occur for/_k0 and/3-ko.

Both conditions are fulfilled when there are a sufficient number of revolutions

in a repeat period [N, > 2L] while Nr is chosen as a prime number. For an actual

gravity mission with the objective to solve for a gravity field up to L = 360 this

means that at least 44.3 days or 721 revolutions are needed in a repeat period.

Gradiometer observation equations

The conventional way of expressing gravity gradients at a point somewhere in the

r,_b,A space isdiscussedby Rummel (1986).In hislecturenotes gravitygradients

are expressedin terms of derivativesof the potentialfunctionwith respectto r,_b

and A assuming that tensorcomponents are evaluatedon a polarorbit.Here these

expressionscan not be used sincegravitygradientsare requiredalong an inclined

orbitalplane.

The expressionsused here to relategravitygradientsto partialderivativesof

orbitalparameters are discussedin Appendix B. By using eqns.(B.6),(B.7),(B.8)

and (B.9)one can derivethe followingH and G terms as they are used in equations

identicalto (3.2)forlumped coefficientsofgravitygradients:

H_k = (l + 1)(/+ 2) Hl,nk (3.6)
r 2

Gt,n kuv _ k(Ir2+ 2) H_mk (3.7)

k 2 + (l + 1)Ht,_h (3.8)

_u, k2 - (l + 1)2Htmk (3.9)Hl,nk -- r2

For the tensorcomponents Tuw and Tu,othere existdifferentexpressionsfor the

lumped coefficientsdue to a modulation of sinwo and coswo in eqns. (B.14) and

(B.15).In thiscasethe lumped coefficientsare relatedto arm and 131,,,as: [*= u,v
or w, see Appendix B]

[ ] L l[atrn /3/m] [ "''(_)/'/lmk-1+/'/t,nk+l"**(_)]A_" = _ _ _,-a,_ a'.(c) p..(c) +
B7'_ l=tmi_,2 ,,_k-,+ "_,mk+,

1[o,. [ ]__ U|rnk-I -- _/rnk+l (3.10)
H..(,) _°.(0)

2 /_lm OLlrn lrak- 1 _" link+ 1
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The G and H terms become

HtUW(,) (l ÷ 2) OHtmk (3.11)
mk = r 2 OI

GUWCc) (l + 2)(msln_ 1 1 cos/ _ (3.12)l_k -- r2 - ksi--_)Hzmk

Ht,jtv(c) k(m- cos/) 10Htrnk (3.13)
mk = r2 si_7 tItmk r2 OI

GU_(°) (k cos I - m) Hlmk ÷ k OHl,_k (3.14)
t,,k = r _ sin I r _ OI

GPS observation equations

The GPS observationequationsare derivedfrom the non-resonantparticularsc,lu-

tionof the Hillequationsgivenby eq. (2.6).In the next step_ in thisequation is

replacedby 19kmn0and allpartialderivativesare substituted[*= u,v or w]:

A. (t)=_ _: A_-cosCk.,+ B_',_sin¢_
k m

(3.15)

The observation equations for u and v become:

l=lmln,2

(3.16)

For w we find:

-- aim

(3.17)

Ahm Gt,_k-1 + Gtmk+l - H_mk_ 1 ÷ H_,_k+l
B_'_ = _ 2%_(I-_L)

l=Imin,2

with

G_mk = (k cos I - rn) Ht,,,,k
r sin I

10Ht,_k
H;,,,k = -----

r Ol

(3.19)

(3.20)

3.2.2 Normal equations

The system of observation equations:

_= A_+_ (3.21)
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is formed from a combination of gradlometer and the GPS observation equations

derived in the previous sections. [namely eq.(3.2) using H_,_h and Gtmk terms ac-

cording to eqns. (3.6) through (3.9) and eq.(3.10) through (3.14) for gradiometry

and (3.15) through (3.20) for GPS.] [The vector F contains the observations in the

form of lumped coemcients, the vector _ contains unknowns for Cim and S/,_.] The

A matrix, containing the partial derivatives of the lumped coemcients with respect

to the unknowns, is block diagonal [one block per order m] provided that the repeat
ratio of the reference orbit is chosen such that there is a non overlapping lumped co-

efficientconfiguration.In a leastsquaresapproach [minimizing_TQ_-lg] the normal

equationsbecome:

= (ATQ_A)-IATQ_I_ (3.22)

where N --- ATQ_IA is called the normal matrix and where Q)_ is a covariance
matrix of the observations which is considered to be diagonal. In this case N is also

block diagonal so that the algorithm for building up and inverting the entire normal

matrix is a sequential process in which each block is treated individually.

It is well known that the inverse of the normal matrix equals the covariance ma-

trix of the estimated parameters as is discussed in e.g. (Schrama,1989a). As a result,

the diagonal elements of N -1 are the estimated variances of potential coefficients

which are derived from the observation equations used to build the normal matrix.

In the error analysis described here these diagonal elements are used for computing

the r.m.s, values per degree of potential coefficients, gravity anomalies and geoid

heights as will be discussed later on.

A priori observation variance model

The diagonal Qy_ matrix mentioned in the previous section contains the a priori

variances of the observations [on the main diagonal] which are in our case the lumped

coefficients [for GPS position as well as gradiometer observation equations]. The

variance to assign per lumped coefficient depends on the instrument accuracy _I,

the sampling time At and the total length in time over which the samples are taken

T [also referred to as the mission duration]. Here it is assumed that _I represents a

r.m.s, value of all samples in the set of observations. By propagation of variances
one can show that:

O'o--- o'I (3.23)

where _o equalsto the individualr.m.s,per sample. IfOne assumes that thereexists

a uniform fiatnoisespectrum forthe observationsand that lumped coefficientsare

obtained from the FO_{riertransformationofthe observationsequence then _0 equals

to the r.m.s,per lumped coefficient[dueto Parceval'sidentity].

Unfortunately, the total noise spectrum for the gradiometer is not fiat; instead it is

band limited from 5 × 10 -3 to 0.125 Hz, cf (ESA,1989), meaning that (3.23) may
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beappliedonly inside this frequency band. In order to simulate the attitude error

problem a 1//3 behavior is assumed for the r.m.s, between 4 and 27 cpr, [/3mi,_ = 27

cpr corresponds to 5 × 10 -3 Hz.] Accordingly the r.m.s, below 27 cpr is modeled as

(�3rain��3) X O'0;below 4 cpr an infinite r.m.s, is assumed to avoid the "orbit problem"

in the error analysis [see Chapter 2].

In a so-called best case analysis the noise spectrum of GPS position observations is

considered to be fiat using eq.(3.23). In the worst case Smith et al. (1988) mention

that frequencies which are multiples of once per revolution modulated by multiples

of once per 12 hours again modulated by multiples of once per day, are omitted in the

observation noise spectrum. The rationale is that 1) frequencies which are multiples

of once per revolution are caused by failing to solve properly for the trajectory of

the low orbiter due to various error sources in the GPS system, 2) frequencies which

are multiples of once per 12 hours are caused by orbit errors of the GPS satellites

and 3) orbits for Arlstoteles are computed once per day. Therefore, in the worst

case, frequencies are omitted, or at least down weighted by a certain factor, at

k + m(w./OJo) cpr where Ihl _< 5 and m _< 5.

Some remarks

There are some characteristics of N -1 due to the choice of the Q_ matrix and the

structure of the observation equations. In the following it is assumed that the design

matrix A only consists of observation equations which are computed with the same

values for ae, r and # and that Quv is defined for only one observation type. If one

assumes white noise then or0 in (3.23) is a scaling factor for a unit matrix since

Q_ = cr0I. Accordingly:

N -1 -- (AT(o'oI)-IA) -1 = _o(A TA) -1 (3.24)

which shows that N -1 is simply scaled by parameters determining _0 [which are

the instrumental accuracy _I, the sampling time At and the mission duration T].

Secondly the problem of variation of r in the error analysis is predictable since all

columns in the A matrix are scaled by a factor (a_/r) 1+1. As a result any variation

of these parameters is nothing more than post multiplication of the orginal A matrix

by a diagonal matrix D containing on the main diagonal values scaling the columns.

A* -- AD

(A*)TQ_-_(A *) = DT(ATQ_IA)D ::_

(N*) -1 = ((A*)T_t_I(A*)) -1 = D-1N-1D -1

showing that N -1 is simply pre and post multiplied by D -1. A diagonal element at
row i and column i of the inverted normal matrix becomes:

= N 71D 
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indicatingthat a second inversionof N may be avoided.

The drag problem

The drag problem in relationto the instrument scalingismuch harder to simulate

in an a priorivariancespectrum. Atmospheric densitydata that isavailablecomes

from Cactus [ellipticorbit,perigeeat 270 kin],Dynamics Explorer 2 [ellipticorbit,

perigeeat 270 km] and Atmosphere Explorer-C [circularorbitat about 250 km], cf

Touboul et al(1990).They show thatthe atmosphericdensitystronglydepends on

1) the geomagnetic index Kp, 2) the latitude[sincefluctuationsare a factorof 2 to

3 largerat high latitudesthan at equatoriallatitudes]and 3) whether densitydata

istaken at nightor during the day. An important conclusionisthatfluctuationsare

significantlysmallerbetween 0.1 and 0.01 Hz [580...58cpr]than between 0.01and

0.005 Hz [58..27cpr]and below [< 27 cpr].

The easiestway to simulatea drag problem isto apply high pass filteringto the

gradiometer spectrum above 27 cpr. This ispursued in one of the simulationsat

the end of thisChapter. This simulationissupposed to representa worst casedrag

situationfor Aristotelesas itdeniesthe existenceof any lumped coefficientbelow

27 cpr whereas itismore likelythai a degraded gravitygradientsignalisobserved

in thisfrequencyband.

Constrained least squares solutions

Some of the results that will be discussed at the end of this Chapter depend on a

priori covariance information for the unknowns involved in the problem. Consider

the constrained least squares problem:

= A_ + _I (3.25)

: [_ + Z2 (3.26)

where eq.(3.26)are constraintsto directthe unknowns _ to some a priorivector

and where I equalsto a unitmatrix. The solutionforthisproblem is:

fc = (ATQ_IA + K-1)-I(ATQ_ + _) (3.27)

where K equals to the a priori covariance matrix of the constraints _ in the problem.

The K matrix describes the a priori covariances of the unknowns _ which are sup-

posed to be centered on the constraints _. Sometimes the constrained least squares

problem for _ = 0 is referred to as a hybrid norm minimization [or collocation]

problem since (3.27) is the minimum of:

=T -I- --T -1--
e Q_e+x K z (3.26)
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cf(Schrarna,1989a).Here a prioriinformationisused for the potentialcoefficients

where K isassumed to be diagonal.The diagonal containsfor the a priorir.m.s.

per coefficient:

cf (Kaula,1966b). In the algorithm, application of a priori information of the un-
-2

knowns is performed by adding %_ to the diagonal elements of the least squares
normal matrix.

3.2.3 Presentation

Afterinversionofthe normal matrix the so-calledvarianceper coefficientper degree

_ iscomputed as:

rlnt_0

where cr2 (Cl,_)and _ (St,,_)symbolizethe diagonalelementsof the invertednor-

realmatrix at the locationofClm and SIm. The followingconversionsof/_lexistin

order to obtainthe degreevariancespectraof geoidheights:

= ae#t( )ti (3.31)

and gravity anomalies:

= (t- (3.32)

where /gt(a) is a smoothing operator with a determining the block spacing on a

sphere for the degree variance expressions of gravity anomalies and geoid heights as

is described in (Katsambalos,1979).

3.3 Results

3.3.1 Gradiometer only results

Figure 3.1 shows #lforallgradiometercomponents up to degree and order 90 in a

so-canedidealcaseforAristoteles.This analysisshows that T_,_isconsistentlythe

most valuablecomponent followedby the off-diagonalterms Tu_,T_,,oand T_w, and

the remaining diagonalterms Tvv and Tww.

The effectof a limitedbandwidth of the gradiometer due to 1) orbiterrors,2)

attitudeproblems,and 3) thermal noiseeffectsisshown in figure3.2.This analysis

shows that limitedbandwidths of the gradiometer seriouslyaffectthe outcome of
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an error analysis. Especially the lower degrees and orders of the gravity solution

deteriorate rapidly when limiting the lower end of the noise spectrum.

It was recognized for the gradiometer and the GPS position observation equations

that the choice of the inclination of the orbital plane plays an important role. This

problem is illustrated in figure 3.3. It was found that these results strongly depend

on the value of L [here 120] in the error analysis which is also confirmed by error

analyses of the Aristoteles gradiometer done by (Koop et a1.,1989).

3.3.2 GPS only results

TypicaLly the mean r.m.s, per coefficient per degree [_t] derived from gradiometer

observation equations shows a weak improvement in the lower degree and orders

[especially in the case where bandwidths are restricted], an optimum sensitivity

[a minimum] near l _ 70 and an exponential deterioration beyond this point as is

shown in figure 3.2. The best case "GPS only" results appear to show that the lowest

degrees and orders are most sensitive followed by a steady exponential deterioration

toward higher degrees. Examples for GPS on Aristoteles, Gravity probe-B, and

Topex, are shown in figure 3.4.

These simulations indicate that gravity fields can be improved up to degree and

orders around 35, 55 and 85 from GPS derived position information on Topex, GP-

B and Aristoteles since 5L intersects Kaula's rule of thumb at these degrees. The

corresponding cumulative 1° r.m.s, values for geoid heights and gravity anomalies

are shown in figures 3.5 and 3.6. The accuracies in terms of geold heights and gravity

anomalies look very promising especially in the lower degrees and orders.

The best and worst cases for GPS on Aristoteles are shown in 3.7 indicating a

deterioration in the lower degrees and orders; in the worst case a priori standard

deviations for lumped coefficients at Ikl _< 5 and m _< 5 are upgraded by a factor
i000.

3.3.3 GPS only results, constrained least squares approach

Figure 3.8 shows/_l for Topex, using a least squares approach, assuming I : 65 °

[case 1] and I : 90 ° [case 2]. The results for I : 65 ° indicate that a gravity model

solved from Topex GPS data alone should not exceed I _ 15 where it intersects
Kaula's rule of thumb.

In contrast to this result a Topex type of satellite at I = 90 ° would allow to solve

for a gravity model up to I _ 35. Case 3, 4 and 5 in figure 3.8 show the I = 65 °

results now adding the matrix aK -1 [a is a regularization factor for weighting a

priori information on the coefficients] to the normal matrix for a : 1, a = 0.1 and
a : 0.01 respectively. We conclude that:

1. The results for I : 90 ° are in any case preferable to those at other inclinations.

This configuration allows one to solve for a gravity model entirely from one
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.

.

observationtype coming from one satellite.This isa unique situationsince

most satellitegravitymodels developed up to now are always "assembled"

from severalorbitersat variousinclinations,heightsand eccentricitiesas is

describedforthe GEM-T2 model in (Marsh et ai.,1989),

The results for I = 65 ° show that some a-priori information is needed to obtain

a gravity solution comparable to the I - 90° results since a cross-over occurs
with "Kaula's rule of thumb" at l = 35 between a - 0.1 and a : 0.01,

The a --i,I = 65° collocationsolutionshows the same characteristicsas the

solutionspresentedby (Pavliset al.,1989),_l can not intersectthe a priori

signalcurve [anaturalproperty of a Wiener/Kolmogorov type of estimator]

and itappears that the signalto noiseratioisgreaterthan or equal to 1,

As a directresultof the previoustwo statements one can conclude that the

signalto noiseratioabove degree25 isdominated by the choiceofa.

3.3.4 Gradiometer combined with GPS

Least squares solutions

The most promising results in terms of the mean r.m.s, per coefficient per degree

[6l] are obtained by combining the GPS and gradiometer observation equations as

is shown in figure 3.9 for l up to 300. In this figure case 1 is the gradiometer

only solution for Aristoteles, case 2 is the best case GPS solution and case 3 is the

combination of both solutions. It is estimated that the signal to noise ratio for such

solutions become equal at degree and order 240.

Figure 3.10 and 3.11 show the results of gradiometer only and gradlometer with

GPS solutions converted to point, 1° and 5 ° mean cumulative geoid and gravity

anomaly errors. We conclude that: 1) GPS and gradiometer derived solutions are

complementary, 2) errors in geoid heights are governed particulary by uncertainties

in the lower degree and orders of the gravity field, 3) the original Aristoteles mission

objectives [e(Ag) < 5 mgal and e(N) < 10 cm at A : 100 km] are hard to meet

{or maybe even impossible to meet] without the availability of GPS as a tracking

facility for Aristoteles and that 4) without the availability of GPS the objectives are

easier met for Ag than N.

Hybrid norm solutions

Figure 3.12 shows the results in terms of the mean r.m.s per coefficient per degree

obtained by combining the GPS and gradiometer observation equations for l up to

360 pursuing the hybrid norm approach where the full K -1 matrix is added to the

normal matrix.
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Curve 1 in figure3.12may be consideredas a worst caseAristotelessolutionat

I = 96.33° assuming that the atmospheric drag problem prohibitsthe gradiometer

tomeasure any lumped coefficientbelow 27 cpr.However thissolutionalsodepends

quiteheavilyon a GPS solutionto L=120. Similarsolutionsto lower L in the GPS

part revealedunsatisfactorylargediscontinuitiesin 6twhereas the degreeand order

120 caseseemed to be an optimum although stillsome smalljump can be seen.

Curve 2 in figure3.12 isa best case Aristotelessolutionassuming that below

27 cpr deterioratedgravitygradientsare observed.A simultaneoussolutionalready

gave satisfactoryresultswhen GPS observationequationsare added to L = 80 [a

smalljump isstillobserved at L = 80] and assuming a hybrid norm solution.In

generalone may concludethatthisprocedure resultsina somewhat strongergravity

fieldsolutionbetween I=15 and 120 than the previouscase.

However both solutionsshow that the inclinationproblem [aslightlynon-polar

orbit]and the bandwidth problem may be avoidedby adding GPS observationequa-

tionsup to sufficienthigh degreeand order and pursuing a hybrid norm approach.
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Figure3.1:Behavior ofthe gradiometercomponents T_u,Tvv and Tu,w and Tuv,Tuw

and T,,,,.[h = 200 kin,e = 0.001,I = 90°,no bandwidth restrictions,a sampling

time of4 s,a missiondurationof6 months, 0.01E instrumentprecision,leastsquares

solution].
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Figure 3.2: Effects of limited bandwidths of the 2-axis gradiometer on Aristoteles.

Case 1: lumped coefllcients are considered for 4 < /3 _ oo, below 27 cpr a 1//3

behavior is assumed in the observation noise spectrum. Case 2: assuming a fiat

noise spectrum for 4 < /3 <: oo. Case 3: no bandwidth limitations. Common

parameters used in all cases are: h = 200 kin, • = 0.001, I = 90 ° and a mission

duration of 6 months, 0.01 E instrumental noise, 4 s sarnpling time, for Tuu, Tww

and Tu,,,.
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Figure 3.3: The r.m.s per coefficient per degree derived from Tuu for I = 90 °, 93 °

and 96 ° at h = 200 kin. The mean r.m.s, per coefficient per degree is computed

using a least squares approach for Tu,, assuming 4 </9 < oo, a 1//3 behavior below

/3mi,, = 27 cpr, a sampling time of 4 s and mission duration of 6 months.
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Figure 3.4: The r.m.s, per coefficient per degree using GPS radial, cross - and

along track variations for h = 200, 600 and 1300 km at I = 90 ° assuming 3 cm

instrumental noise, a ssmpUng time of 1 s and a mission duration of 6 months for

Aristoteles and mission duration of 24 months for Topex and GP-B.
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Figure 3.5:Cumulative 1° mean r.m.s,valuesforgeoidheightsper degreeforGPS

on Aristoteles,GP-B and Topex derivedfrom the resultsshow in fig.3.4.
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Figure 3.6: Cumulative 1° mean r.m.s, values for gravity anomalies per degree for

GPS on Aristoteles, GP-B and Topex derived from the results show in fig. 3.4.

34



g
o

of}

10-8 I!!!!!!!!!!!!!!!!_!!!!!!!!!!!!!!!!!!_!!!!!!!!!!!!!!!!!!_!!!!!!!!!!!!!!!!!!!!iii!i!iii!i!i!!!_!!!!!!!!!!!!!!!!!_!!!!!!!!!!!!!!!!!_!!!ii!!!iiiiii!iii_iiiiiiiiiiii!!!!_

10-t2 ! _ i i ] i i i i

0 I0 20 30 40 50 60 70 80 90

Degl'ee !
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case on Aristoteles. In the best case all lumped coefficients are used, in the worst

case lumped coefficients are down weighted a factor 1000 at I/_1 < 5 and ]m I < 5.
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Figure 3.8: The r.m.s, values per coefficientper degree derived from Topex [GPS]

best case collocation solutlons. Here a is a regularization factor for welghthlg a

prioriinformation on the potential coefficients.Case I: I = 65°. Case 2: I = 90°.

Case 3: I : 65 ° , a = 0.01. Case 4: I : 65 ° , a = 0.1. Case 5: I = 65 ° , a = 1.

In all cases we assumed an instrumental precision of 3 cm, a sampling time of 1 s,

a mission duration of 24 months at an altitude of 1300 km for radial, cross - and

along track components.
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Figure 3.9: The r.m.s, values per coefficient per degree for various individual and

combined GPS and gradiometer solutions. All solutions assume a least squares

approach and I = 90 ° and a mission duration of 6 months. Case 1: Gradiometer

only solution: we assumed 4 </3 < oo,/gmirt m 27 cpr, 4 s sampling time and 0.01 E

instrumental noise for Tuu, T_,_ and T_,w. Case 2: GPS only solution: we assumed

0 </9 < oo, 1 s sampling time and 3 cm instrumental noise for radial, cross - and

along track components. Case 3: The combined solution of case 1 and 2.

37



45

40

35

30

4D

20
15

I0

5

0
0

i

P :

P

7

7"

/ 5

/

I -"""

°-

..-°
o.,'

. ......::::..:::::::_i:%.......... 5

50 I00 150 200 250 300

Dcgre_ I

Figure 3.10: The cumulative point, 1° and 5° mean 61(N) values for combined

GPS and gradiometer solutions. Dashed: with GPS, solid: without GPS. These

values are derived from cases 1 and 3 shown in figure 3.9.
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values are derived from cases I and 3 shown in figure 3.9.

39



10-6

10-7

lO.S

10.9

lO_tO

lO-tt

lOq2
0

_f;__;: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

!!!!!!!!i!!!i!!!!i_iiiiii]ii!i!i!!!!!!!!!!!!!!!!!!!!!!!!!!!!_!!!!!!!!!!!!!!i!ii!ji!!!!!!!!!!!i!!!!!!!_]!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! _ :::

]_]_]_]_]_]_222_;_2i2_2_2_2_2_i_]_2;];i;;_2i_2_;2i_i_2_]_i_i_i_2_222_i2]22222]2];_ii]2]_]_]_;2]_22_Z]_]_]]:]i]2_2]i_]_]_2:;_2]2_]L:Z

::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ! _ ! : =

?_ _ _ !!!!!i i! !!! ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

............. v.-,._ .................... _.................... g.................... _ " Z =7=:_:7;7S7: ::::::::::::::::::::: L .......

_2_i_S_S_i:i:2i_5_._2_2_;_2;_2_;_2_2_:;2_!222_2_;_2_2_;22;;22:!:2:ZZZZZiZSiSi_:2i22i_i_ii2:i:ii2[2i_i_i_i_i22_i2_i[_iii_i_i_i_2_Z

• . : : : ................................................... , .................
_!_!!!!!!!!!!!!!_!_!3!!_!_!_!!!!_!!!!!!!!!!!!!_!_!_!_!_!!!!!!!!!!_;_;_!;!!!!_:_::_:::::::_::::::::!::::::::::::_::::_::::::::::::::::::::::::::::::::::=

.................... _ .................... ; ............... =:r_o_ .............. i................... _..................... i..................... _...................

.!!!!!!!!!!!!!!!!!!_!!!!!!!!72!!!!!i_!!!!!![!!!!!_!!_?!!!!!i!!!!!!!!!!?!!i!i!!!i!!!!!!!_!!_!i!_!!!_!i!!!i!!!!!!!!!!!!!!!F!!!!!!!?i!!!!!!!!!!!i!!i!i_!!i!!!!!!:_-

................... T..................._.................... i...................._.................... _..................... '.................... _................
i i i i i

50 100 150 200 250 300 350 400

Degree 1

Figure 3.12:The mean r.m.s,per coefficientper degreeforthe combined GPS and

gradiometer solutionspursuing a hybrid norm approach. Curve 1: Gradiometer:

27 </9 < co,L=360; GPS: 0 </9 < co,L=120. Curve 2: Gradiometer: 4 </9 < co,

/9,,in= 27 (1//9below/9,,,i,,),L=300; GPS: 0 < /9< co, L=80. I_nboth caseswe

assumed a missiondurationof6 months, 4 s Sampling time and I).01E instrumental

noiseforthe &,radiometer,whilemeasuring Tu,_,T,_ and Two,.For the GPS receiver

we assumed a sampling time of I s and 3 cm noisein the positionestimates.
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Chapter 4

Conclusions and

Recommendations

The discussion in Chapter 2 has shown that a gradiometer mission at 200 km with

no drag compensation poses several constraints on the design of the instrument, the

satellite, the choice of the nominal orbit and the accuracy of attitude restitution.

In an ideal case, the orbit of a gradiometer satellite should be as low as possible,

e.g. 160-200 km, near circular and allowing a global coverage of the gravity field

demanding that I = 90 °. However in practice sun-synchronous orbits are chosen

[I = 96.33 ° at 200 kin] to provide an efficient means of power production using solar

arrays.
A 2-axis 0.01 E/v/-H-z, gradiometer has been proposed for launch near the end

of this decade [1996-1998] on a satellite called Aristoteles. The mission objectives

are to measure the global gravity field in order to obtain geoid heights and gravity

anomalies to within 10 cm and 5 mgal respectively.
A treatment of the error sources reveals that orbit errors of several meters appear

to be no real problem for a 0.01 E/v/-H-z gradiometer. The errors caused in the gravity

gradients are mostly in the low frequency band and can be eliminated by filtering

the signal below 4 cpr for a 10 -2 E instrument, whereas filtering below 25 cpr is
needed for a 10 -4 E instrument.

A static approach to the attitude problem for Arlstoteles shows that pitch and

yaw rotational velocities need to be knownto within 5 × i0 -9 and 10 -s rad/s respec-

tively which poses a severe constraint on the attitude restitution of the instrument,

cf (ESA,1989). According to this report modern gyroscopes obtain an accuracy of

10 -7 rad/s inside the measurement bandwidth which is unfortunately still a factor

10 to 20 too large for an adequate attitude reconstruction.

A dynamic approach of the attitude problem shows that rotational velocities,

and thereby gradiometer signal errors, are decaying at a rate inversely proportional

to the frequency of the disturbing torque function. A simulation of the dynamic
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attitudeproblem discussedin Appendix A shows that the atmospheric torqueson

the non-drag freesatelliteare probably too high fora 0.01E gradiometer.

This means that the staticapproach alreadyanswered the question:highlyac-

curate gyroscopes possiblycombined with startrackersare required for attitude

restitution.We conclude that additionalstudiesare requiredto determine whether

thisis feasibleby applicationof modern processingtechniquesand/or technology

resultingin an acceptablesolutionwithinthe budgetary constraints.

Additionallythe problem of scale,coupling and non-lJnearltyerrorsin the ac-

ce]erometersisdiscussedwhich allowsnon-conservativeforcessuch as atmospheric

drag to degrade the instrument performance cf Touboul et al. (1990). They con-

clude thatthe velocityvectorofthe spacecraftmust be as perpendicularas possible

to the gradlometerplane.This configurationmight requirea so-calledyaw-steering

mode of Aristoteleswhich compensates fora cross-trackwinds near the poles,see

also (ESA,1989).

In Chapter 3 the'resultsof an analyticalerroranalysisof gravityfieldparameters

are discussedassuming varnousscenariosproposed forAristoteles[gradiometerand

GPS receiver],Topex [GPS] and GP-B [GPS]. This analyticaltechnique requires

a nominal circularorbithaving a repeat ratiocompatible with the highestdegree

and order of the gravityfield.Observation equationsfor both the GPS and the

gradiometer part are derivedin terms of lumped coefficientequations. The error

analysisitseffisbased on variancesbeing the elements ofthe invertedleastsquares

[orhybrid norm] normal matrix which are convertedto cumulative mean errorsfor

gravityanomalies and geoid heights.

The error analysisshows that limitedbandwidths of the gradiometer of Aris-

totelesseriouslyaffectthe outcome ofan erroranalysis.Especiallythe lower degree

and ordersofthe gravitysolutiondeterioraterapidlywhen restrictingthe lower end

of the noisespectrum which isrelatedto thermal noisein the gradiometerand e.g.

atmospheric drag causing disturbingtorqueson the spacecraft.It was alsorecog-

nized for both gradioIneterand GPS observationequations that the choiceof the

inclinationof the orbitalplane plays an important rolesincethe formal errorsof

potentialcoefliclentstend to deteriorateWhen the inclinationisseveraldegreesoff

the polarinclination.

The most promising solutionsforAristoteleswere obtained by combining GPS

and gradiomeCer observations.It isshown that 1) GPS and gradiometer derived

solutionsare almost complementary, 2) that errorsin recoveredgeoid heightsare

particularydeterminedby uncertaintiesin the lowerdegreeand ordersofthe gravity

field,3) the originalAristotelesmissionobjectives[c(Ag)< 5 mgal and _(N) < I0

cm up to A = 100 km] are hard to meet without the availabilityof GPS as a

trackingfacilityand that4) without the availabilityofGPS the objectivesareeasier

met for gravityanomalies than geoid heights.A worst case drag simulationusing

gradiometerand GPS observationequationsshows that the inclinationproblem [a
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slightly non-polar orbit] and the bandwidth problem may be avoided by adding GPS

observation equations to sufficient high degree and order of the geopotential model

while pursuing a hybrid norm approach.

The resultspresentedin thisstudy should be interpretedin the senseof an error

analysisratherthan a finalsolutionfor the gradlometer/GPS problem. GPS data

may be processedby numerical techniques as was demonstrated by Pavliset al.

(1989)for Topex. Gradiometer data could be processedby using the GPS gravity

fieldsolutionsimultaneouslywith themeasured tensorcomponents ina leastsquares

collocationapproach cf (Moritz_1980)to predicta grid of valueson a sphere. An

actualpotentialcoefficientset,torepresentthe truenatureofthe shortwavelength

gravityinformation,could then be derived by numerical analysismethods using

orthogonalitypropertiesof Legendre functions. This isvery similarto the tech-

nique forderivinggravityfieldsolutionsfrom altimeterdata and terrestialgravity

anomalies cf(Rapp & Cruz,1986).
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Appendix A

Attitude error simulation.

In this Appendix the dynamic behavior of attitude errors is discussed. The equa-

tions used in this simulation are (2.20), the non-resonant particular solution of the

linearized Newton-Euler equations including gravitational torques, and eq. (2.14)

relating these rotational velocity errors to gravity gradient errors.

Moments of inertia

At the time of writing moments of inertia are not published for Aristoteles. In order

to avoid the laborious task of computing precise moments of inertia we assumed that

the principle axes of inertia could be derived from a homogenous cylinder represent-

ing the satellite's bus, a plate representing the solar arrays and a thin rod pointing

forward for the magnetometer boom. Additionally we assumed various dimensions

and weights of these elements; the total configuration is shown in figure A.1. The

values found for the moments of inertia are 11 = 284.3 [radial anti-Earth pointing],

/2 = 476.3 and 13 = 303.1 kg/m 2.

The algorithm

The algorithm assumes a so-called torque noise level variable [TNL] which defines

R; in eqns. (2.19) as R_ = TNL/Ii. This allows to evaluate the derivatives of 0i

with respect to time in eq. (2.20) for a given/9 symbolizing the frequency in cpr in
the torque noise spectrum. The resulting variables 01 and 03 are then substituted

in (2.14) resulting in sine-cosine expressions for At11 and At13 [namely a cos(/9n0t)+

bsin(/gnot)]. The amplitudes c = (a s + b2) _/_ are an indication of the errors in T_,,

and T_,_ showing the expected 1//9 behavior. Figure A.2 represents the values of
TNL on the y-axls and/9 on the x-axis for c = 0.01 and c = 0.0001 E.

This simulation shows that the lower end of the effective frequency bandwidth of

T_,u [solid line] and Tu_, [dashed llne] is determined by the noise level of the torques

acting on the satellite. The tensor component Tu_ shows a minimal frequency ap-
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Figure A.I: Elements dimensions and weightsused for the estimationof moments
of inertiaofAristoteles.
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Figure A.2: Maximal allowed torquesvs.
of inertia of Aristoteles.
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Figure A.3: Symmetry, torques, atmospheric drag

proximately twice as low as Tuu. Tww is not considered in the simulation since it is

the only tensor component in this configuration that is not modulated by no. [see

eq. (2.14)] Resonance problems are not plotted in figure A.2, the results are shown
above 2 cpr. All resonant frequencies occur at 1.08 and 0.29 cpr for 01 and 0s ,

/3 = 1.38 cpr for 83.

Maximal allowed torque noise level

In a non-drag free environment the noise level of the torques itself is mainly deter-

mined by non-conservative forces such as drag acting on the bus and appendages of

the spacecraft. It is also determined by symmetry of the projected area normal to

the velocity vector of the spacecraft and the spectral behavior of drag variations.

An example of symmetry of the projected area, torques and atmospheric drag

acting on the satellite is displayed in figure A.3. In this example the torque effect

due to drag equals to:

: 2PuSCd(llA1 - lsAs).

4

T (A.1)

For a maximal torque noise level of 3 × 10 -s Nm and a 0.01 E gradiometer the

results displayed in figure A.2 allow the lower end of the bandwidths of T,, and Tuu,

to start at respectively 29.58 and 14.80 cpr. At 200 km height p _ 3 × 10 -1° kg/m 3

and v _ 7784.3 m/s 2 whereas Cd = 3 for Aristoteles, so that in figure A.3:

3 x 10 -s : lpv2CdA(llA1 - lsA2)

requiring that

A(I1A1 - lsA2) _ 10 -8 (A.2)
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which isa very stringentrequirementfor symmetry ofprojectedsurfacesand their

distancesto the principalaxes,even ifa so-calledyaw steeringmode ispursued.

However Touboul et al. (1990)reportthat the expected drag fluctuations,having

wavelengths shorterthan 200 s, may contain only 5% of the power of the total

drag force.Even thisassumption might be too stringentforcondition(A.2) since

itwould mean that the uncertaintiesin 11and 12have to remain below 1 to 10 pm

which isunlikelytakingintoaccount phenomena such as thermal expansion due to

heatingand coolingofthe spacecraft.We concludethatattituderestitutionmust be

provided by measurements from gyroscopesand startrackersonce the gradiometer

is subjectto atmospheric drag. In case a drag freeor a shieldedgradiometer is

considered the torque noise levelis reduced substantiallythereby increasingthe

bandwidth of the gradiometer and relaxingthe need fora highlyaccurateattitude

reconstruction.
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Appendix B

Expressions for gravity

gradients

In this Appendix the following coordinate systems and indices are used:

• ui = {u, v, w}: the gradiometer instrument system (u: radial, v: along track

and w: cross track),

• r, = {r, Wo,COe}and ra = {r, wo, I}: subsets of the total set of orbital parame-

ters {r,_ao, w_,I},

• zv = {z, y, z}: the geocentric system.

The following relation exists:

I°]_= R3(-we)R,(-I)R3(-_Oo)

7

(B.1)

where a, _ and 7 are linearized as a = r + u, fl = v and 7 = w. Here the poten-

tial function T is defined in the r, system, see eqns. (3.1) through (3.4), whereas

derivatives of T are needed in the gradiometer instrument frame ui:

OT OT Or.
- (B.2)

Olt i Or. OU i

The tensor of second order derivatives in the ui system is obtained by differentiating

once again with respect to uj:

02T 02T Ora Orb OT O_r,

OuiOu j OraOrb Oui Ouj + Ora OuiOuj" (B.3)
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To evaluate(B.3) the firstand second order derivativesof the ra to the u_ system

are needed. These expressionsare derivedin the followingway:

Ou_ LOr_J Oui

02ra _ [0zp]-l{ 02_p 0'Zp DraOrb} (B.5)
CgUiOUj L Ora j Oui@uj OraOrb Oui Ouj

where the derivativesof zp to ra and of zp to ui are computed from eq.(B.l).

The formula manipulation program REDUCE, developed by Hearn et al.(1985),is

used to develop the fulltensorofsecond order derivativesof the form of (B.3).[the

evaluationsof(B.3),(B.4)and (B.5)areratherlengthy]The expressionsfound which

are independent of the choiceof ra are: [notation:OT _ T_, OT _ To, OT __Te,_-_- _b-2_.-
etc.]

T,,,, = T,, (B.e)

Tvv = r-_Too + 1T'r (B.7)

Tw_ = -T,, - _Too- 1T, (B.8)
r

Tu_ = _-T,o- _To (B.9)
r

The terms T,_,,and Tw depend on the choiceofra:

Tuw - 1 [T_I- 1TI} (B.10)
r sin wo r

T._ = 1 1rcoswosinI {( Te - T'e) + c°sI(-1T° + T'°)}r (B.11)

and

T_w- 1--{Tol c°sa_°TI} (B.12)
r _ sin wo sin Wo

1
Tvw = X

r2cos2_o sinI

{cos Wo(-To_ + Too cos/) + sinwo(-Te + To cos/)) (B.13)

Multiplication of (B.10) times sin 2 Wo and adding (B.11) times cos 2 C#oresults in:

c°sI'1Tro r-_To}}cOS_o +

(B.14)
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In a similarway (B.12)times sin_wo added to (B.13)times cos2Wo resultsin:

cosl

r-_Tl} coswo +T_. = {_T,o- + r_-_niTOo--

cos.____I
-_To,} sin_o (B.15)( _T_- + r2 sinlTO +

While using expressions similar to (B.10) through (B.13) Betti and Sans5 (1988) in-

troduced so-called F--_l,npfunctions which are modifications of the original inclination

functions. These modified functions are needed to avoid singularities at wo = k_ in

eqns.(B.10)to (B.13).Moreover itisdesirableto obtainexpressionswhere alltime

dependent effectsare containedin the derivativesof T in the ra system [orT* in

Bettiand Sanso'sapproach].

Here we use expressions(B.14) and (B.15)which merely requireto multiply a

Fourierseriesby sineand cosineterms therebyavoidingtointroducemodified incli-

nation functionswhich would requireto change the existingalgorithmto compute

inclinationfunctionsand theirderivatives,cf(Schrama,1989a).A multiplicationof

a Fourierseriesonce by a sineand once by a cosineterm similarto the structureof

eqns. (B.14)and (B.15)isnot very complicated,one can show that:

L L

k=-L m=O

(A_m cos_km + B_m sin_bkm)cos_k_ %

(A_,ncos_s_,_+ B_ sin_k,n)sinck,,_ (B.16)

equalsto

where

L+I L

_ Ak,n cos O.'o+ B_-m sin Wo
k= - L- I m=O

1 c A c I. B"
": _(-[-Ak-l,m -_- k+l,m) _- -2(-- £-1,m "1- B_+l,m)

1 • 1 c
: _(+Ak_i, m - A_+l,m) + _(+Bk-l,m + B_+l,m)

(B.17)

(B.18)

(B.19)

and
ejld_ = B_;_= o for Ikl> i. (B.20)
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