Ex Post Analysis of the Co-Control of SO₂ and CO₂ in China: The Case of Taiyuan

Presentation by: Dr. Michael Shelby, U.S. EPA

China-Korea-U.S. Economic and Environmental Modeling Workshop November 7-8th, 2002

Overview

- Background on Study
- Research Question
- SO₂ Control Policy in China and Taiyuan
- The Small Boilers Survey in Taiyuan
- The Survey Results
- Implications
- Climate Policy Conclusions

Background on Study

- This study was conducted by Resources for the Future, a Washington, D.C. research organization
 - Study was "ancillary" to SO₂ emissions trading demonstration underway in Taiyuan, capital of Shanxi Province
 - Taiyuan is a heavy industrial city, located in northern China; surrounded by mountains on three sides
 - Average annual SO₂ levels 200 ppm

Taiyuan, China

Reversing the Policy Logic: Climate Benefits from Air Pollution Reductions

- Extensive literature has developed on the ancillary benefits (i.e., conventional air pollution) of greenhouse gas mitigation
- Less attention has focused on the climate benefits of local air pollution strategies
 - while direct climate benefits are important, perhaps more immediate issue in developing countries is local air pollution

Research Question

- This study looks at whether local Chinese air pollution policies may also generate (ancillary) carbon benefits?
- If so...
 - How large?
 - How cost effective?
 - How cost beneficial?
 - What is the potential for expanding such efforts?

SO₂ Control Policy in China

- China has identified S0₂ and particulates as contributing significant air pollution problems
- In response in 1996, China instituted a National "One Control and Two Compliances" policy
 - standards set in mass rather than concentration terms and requires cities to implement Total Emissions Control (TCE)

Small Boiler Policy in Taiyuan

- In June, 1999, Taiyuan issued SO₂ reduction requirements which call for the shutting down of small coal-fired boilers in densely populated areas in six districts
 - small boilers: rated capacity of 2 tons or less of steam per hour
 - all heating boilers required to hook up to district heat
 - restaurants, entertainment centers and public bathhouses required to switch to less polluting fuels (e.g., coal gas, LPG, etc.)

The Small Boilers Survey in Taiyuan

- Survey Implementation
 - RFF worked in cooperation with Taiyuan
 Environmental Protection Bureau (EPB) and its six district EPBs
 - "Street" environmental personnel of each district EPB carried out the actual survey
- Survey Form
 - Including types, sizes, efficiency, operation time, fuel consumption & cost, investment, etc.

Survey Results

• Carbon and SO₂ emissions before and after policy implementation, 2000 and 2001

		Emissio	ns before					
	Number	shut down (tons)		Emissions after shut down (tons)				
	of			Case A		Case B		
	Boilers	SO2	Carbon	SO2	Carbon	SO2	Carbon	
All Boilers	268	1917	112336	651	55766	26	5198	
Boilers continuing								
to operate	99	532	21435	26	5198	26	5198	
Boilers stopped								
operation	98	515	20637	0	0	0	0	
Centralized heating								
boile rs	71	869	70265	625	50569	0	0	
Notes:								
1. Case A counts S	SO2 and ca	arbon emi	ssions of ce	ntralize d	heating as 7	2% of		
emissions befor	e shut dow	/ n.						
2. Case B counts S	SO2 and ca	arbon emi	ssions of ce	ntralize d	heating as z	æro.		

Survey Results (Continued)

• SO₂ Marginal Abatement Costs by Fuels

		Emissions		Emissions						
		before shut		aftershut				Energy Cost (\$)		
										Average
		Total	Total	Total	Total					Marginal
	Number	SO2	carbon	SO2	carbon	%of SO2	Investment			Abatement
	of boilers	(tons)	(tons)	(tons)	(tons)	reduction	after (\$)	before	after	Cost (\$/ton)
Coal gas	13	115	4287	4	710	96	212875	60963	265500	3013
(Diesel)										
Ci l	27	138	6036	7	1412	95	336250	83388	515300	4007
LPG	4	15	736	1	178	95	53250	5813	41625	3295
Total	44	269	11059	12	2301	95	602375	150163	822425	3648

Implications

- SO₂ marginal abatement costs (\$3,600/ton) of shutting down small coal-fired boilers are high compared to other options
 - \$60/ton: Taiyuan District Heating
 - \$1,600/ton: coal washing
 - cost studies from other parts of China: \$75-\$250/ton
- However, positive net benefits still found
 - benefits of reducing SO₂: 4,700-21,800/ton

Implications (cont.)

- True net benefits may even be higher since SO₂ reductions are "effective tons"
 - avoid potential for "indoor air" pollution with short stack venting
- If no SO₂ benefits, the breakeven value of carbon reductions is \$84/ton carbon

Climate Policy Conclusions

- Carbon reductions from SO₂ policy are significant: greater than 50% removal for covered units
- Extrapolating to other small boilers in Taiyuan, represents 7-15% of carbon emissions in the city
- Opportunities in other provinces are probably large
- Further data needed to construct carbon supply curve
- Clean Development Mechanism possibilities, especially for small scale projects?