FIRE Vacuum Vessel Disruption effects

With input from B. Nelson, H.M. Fan, C. Kessel, M. Ulrickson, J. Wesley

FIRE engineering meeting

PPPL May 31, 2000

Disruption Effects

Disruptions will cause high loads on theVV due to induced current and conducting (halo) currents flowing in structures (No thermal effects are expected for VV)

- Direct loads on vessel shell and ribs
- Direct loads on passive plates
- Reaction loads at supports for internal components Divertor assemblies and piping FW tiles Port plugs

Dynamic effects should be considered, including:

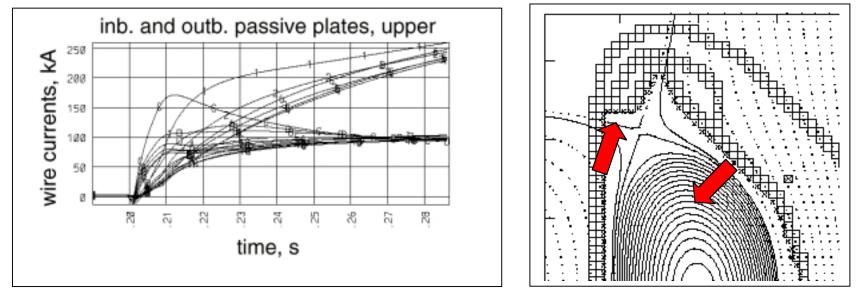
- Load reversal during the event
- Shock loads due to gaps in load paths

All loads should be considered in appropriate combinations

e.g. Gravity + coolant pressure + VDE + nuclear / PFC heating + Seismic + ...

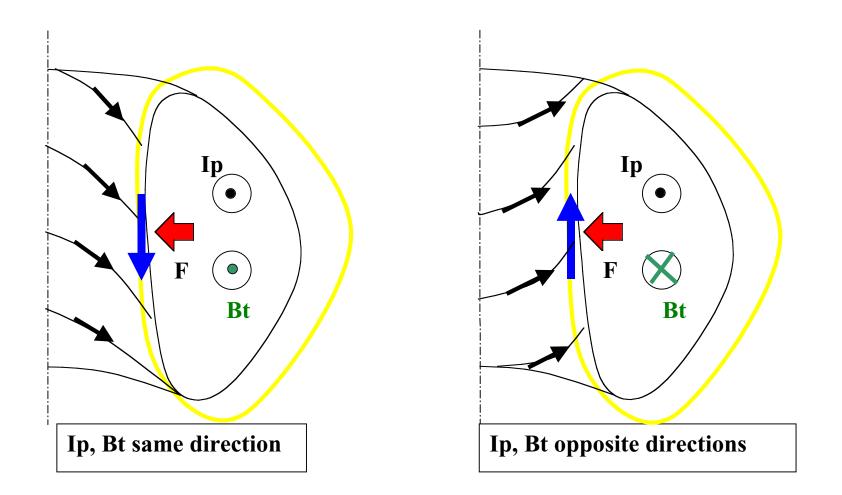
Vacuum Vessel Loading conditions

Load	Value,	Value,	Comment
	July 99	May 00	
Gravity load	~3 MN	~3.5 MN	VV ~130 tons, FW,div. ~35 tons, port plugs ~ 185 tons
Vertical displacement event (VDE) load			
Vertical	20 MN	16 - 32 MN	Based on J. Wesley guidance
Lateral, net	7 MN	6 - 11 MN	[1]
Seismic load (assumed)			
Vertical acceleration	0.2 g	0.2 g	
Lateral acceleration	0.2 g	0.2 g	
Maximum total vertical load	~27 MN	~22-41 MN	Gravity + VDE * 1.2 (dyn load factor)
Maximum total lateral load	~9 MN	~ <mark>8-14</mark> MN	VDE * 1.2 (dyn load factor)
Maximum local EM load			
Local pressure on vacuum vessel from	~4 MPa	∼8 MPa	Rough estimate from halo
internal components			currents
EM load from TF ramp	~0.3 MPa	~0.75 MPa	Poloidal conductivity of vesse increased due to Cu stabilizers
Coolant pressure			
Normal operation	<10 atm	<10 atm	
Bakeout	<10 atm	<10 atm	

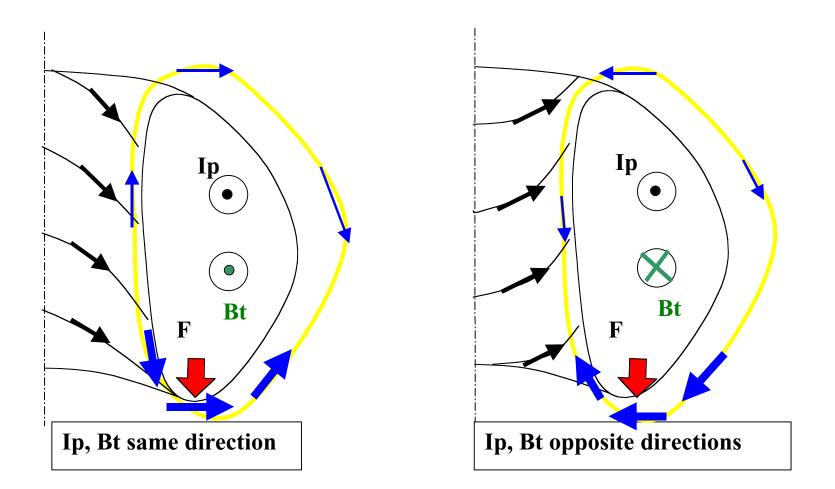

[1] Disruption loads per Wesley, based on 10T, 50% halo current or 12 T, 40% halo current

Disruption Load Status

- Disruption currents estimated by Kessel for centered disruption, and these can be used to estimate loads
- Maximum disruption loads estimated by Wesley for VDE
- Distribution of loading for VDE case is uncertain, but current is expected to flow in passive plate regions
- ITER studies are useful as a guide, but load distribution will be different due to lower elongation, less passive structure
- Divertor loads estimated by Ulrickson

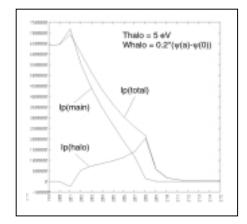

Loads from induced toroidal currents will appear primarily in passive stabilizing structure

• C. Kessel centered disruption simulation shows current and field direction



Parameter		IB passive plate	OB passive plate
Est. induced current	(kA)	1500	800
Bpoloidal (assumed)	(Tesla)	1	1
Pressure	(Mpa)	3	1.6
Direction		"shear"	"normal to surface"

Halo load direction should be predominantly toward VV *Radial disruption*



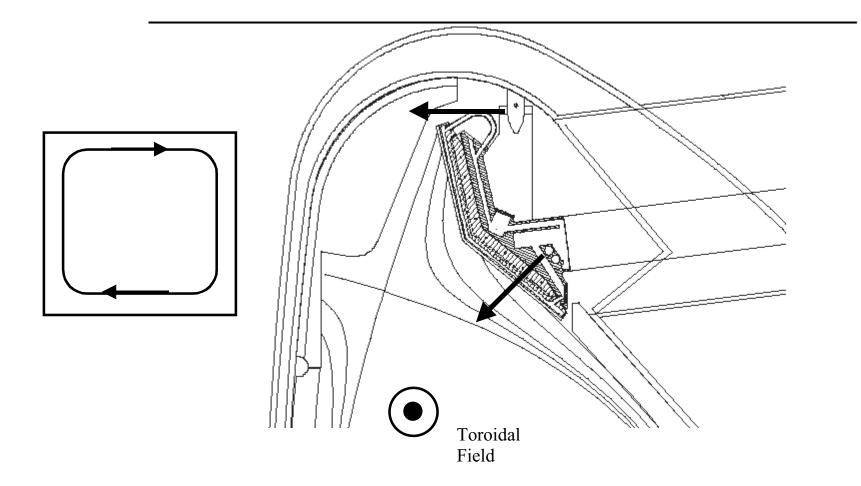
Halo load direction should be predominantly toward VV *Vertical disruption*

Halo current loads in vessel

- From C. Kessel, I halo = 2 MA
- From Wesley, I halo < 0.4 x Ip = 2.6 MA
- Toroidal peaking factor = 2

Parameter		Inboard	Outboard
Avg radius of wall	l (m)	1.3	2.6
Current density, J	= Ih/2*pi*R	0.25	0.125
w/o TPF	(MA/m^2)		
Jmax = 2 x Javg	(MA/m^2)	0.5	0.25
Btoroidal	(Tesla)	16	8
Pressure on wall	(Mpa)	8	2

Loads from internals


- Internals include divertors, baffles, FW tiles, and port plugs
- Loads on internals will include pressures from halo currents as well as torques from induced current loops
- Loads are strongly dependendent on configuration of electrical connections
- Forces can be estimated if current paths and field transients are known
- Divertor loads have been estimated by M. Ulrickson for

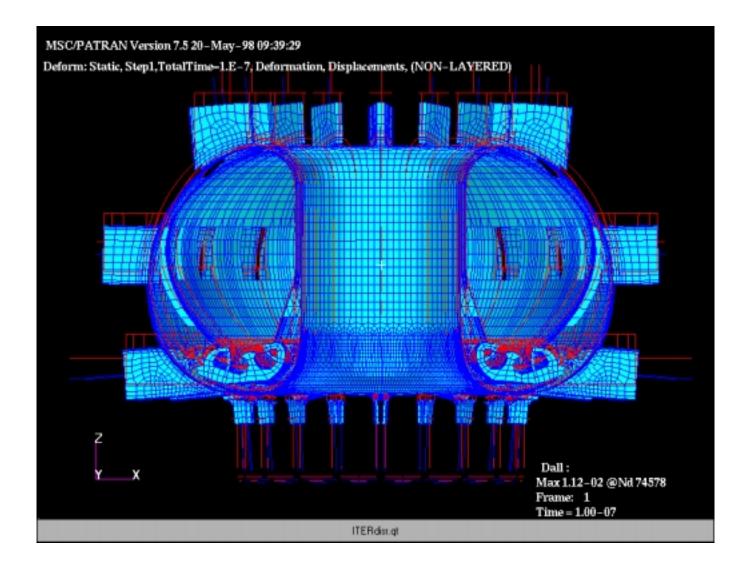
Current loops driven by changing radial field

Halo currents

Divertor loads due to current loop in divertor assembly

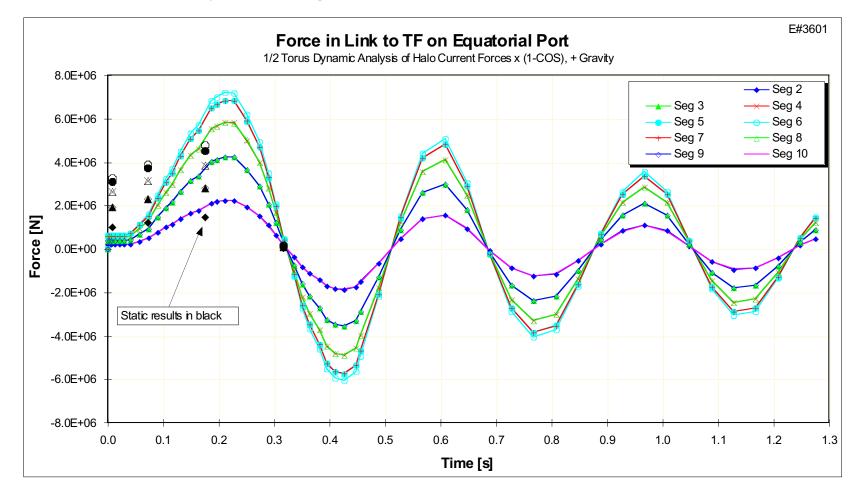
ref M.. Ulrickson FIRE physics workshop

Divertor reaction loads on VV brackets due to current loop in divertor assembly

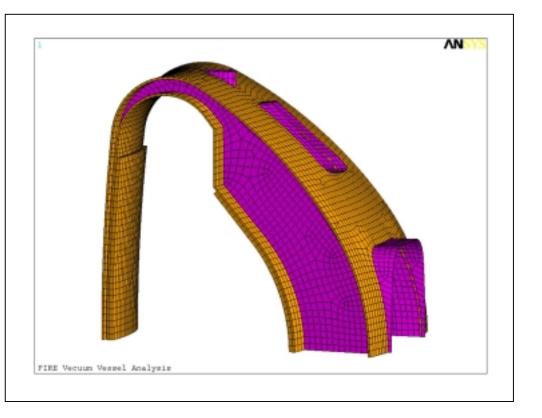


Divertor loads due to halo currents in divertor assembly

ref M.. Ulrickson FIRE physics workshop

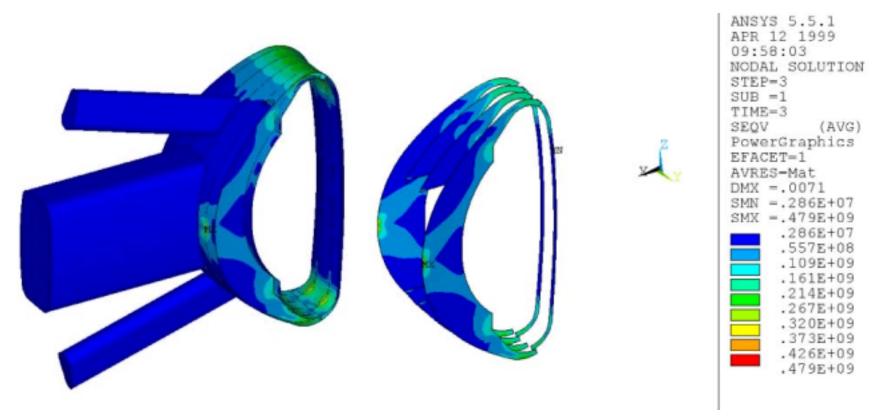

Force towards the VV on both sides, total force = 0.8 MN outboard = 0.3 MN inboard on baffle

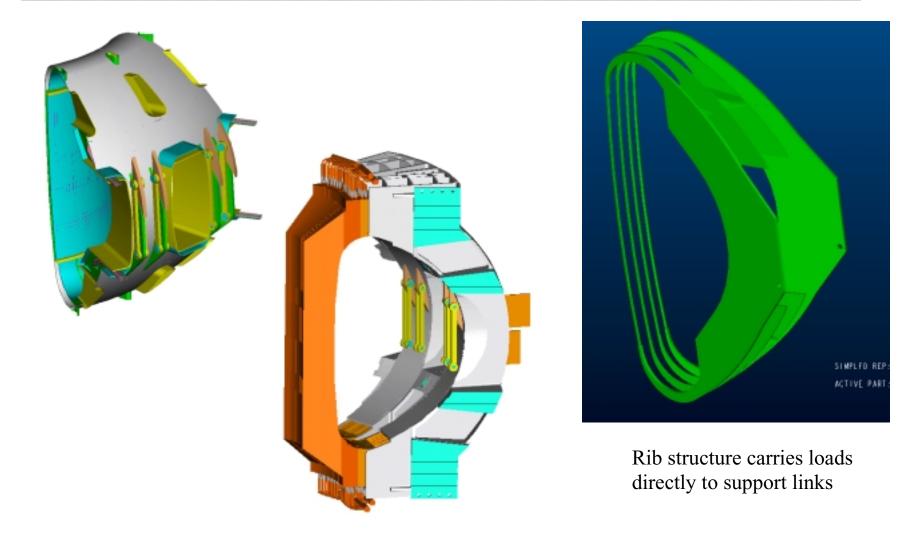
Dynamic analysis was performed for ITER


Dynamic effects were important for ITER

• Lateral links had dynamic magnification factor ~2 for some cases

Structural analysis – ANSYS FEA model status


- Model being prepared by HM Fan
- 64 poloidal ribs inboard, 64 poloidal ribs outboard
- thickness of elements assumed as:
- 15 mm for vessel facesheets,
- 30 mm for port at midplane,
- 15 mm for port above/below midplane,
- 15 mm for most poloidal ribs,
- 30 mm for OB ribs at supports
- 25 mm for copper stabilizers


Previous analysis: VDE loads, OB midplane supports only

• Vertical load = 20 MN, lateral load = 7 MN, peaking factor of two

New loads = 38MN vertical, 13 MN lateral with dyn amp factor of 1.2

FIRE VV vertical supports and structure

	Preliminary Von Mises stress estimates for vacuum vessel				
Load condition	Torus		Ports (unreinforced values)		
	General stress	Peak local stress	General stress	Peak local stress	
	(Allow. Stress =	(Allow. stress=	(Allowable stress	(Allow. Stress =	
	195 Mpa)	390 Mpa) [1]	= 195 Mpa)	260 Mpa) [1]	
Vacuum load	< 60	~ 170	< 100	~ 170	
Coolant pressure (1 Mpa) [note 2]	< 150	~500	< 250	~ 500	
VDE [note 3]	< 400	~ 480	< 50	~ 400	
Thermal stress from	(~350?) < 150	~ 340	< 150	~ 340	
nuclear htg [note 4]		(>400)	100	(>400)	
TF ramp-up [note 5]	< 15 (30)	TBD	TBD	TBD	
 Stress values t VDE loads ap Latest design Temperature g Allowable see 	harcation between general reduced from App. D calc plied in simplified manner has 50% thicker section at gradient of \sim 60 C based or condary stress = 390 MPa e based on hand calculation	ulations by ratio of appl as described in Append top / bottom, stress red 10 second full power p	lied pressure (1.0 / 2.7) dix D, supports on outside luction should be factor of pulse, preliminary geomet	f>2	

FIRE VV stress summary 99 engr report (w/ est.revision)

Issues and plan

- Self consistent loads from TSC simulations may not be available very soon
- Est. disruption and TF ramp loads are higher than what we used last year
- Need new est. of thermal stresses
- Load combinations have not been applied to model yet
- HM has constructed new FEA model
- Est. disruption loads, in combination with other loads, can be applied to model
- Reinforcement may be added based on est. loads
- Transient EM solver will be used eventually (EDDYCUFF, ANSYS, etc.)