How the Common Component Architecture (CCA) Advances Computational Science

Presented by The CCA Forum and the Center for Technology for Advanced Scientific Component Software (TASCS)

See companion presentation: An Overview of the Common Component Architecture (CCA)

CCA's impact is as diverse as the applications in HPC

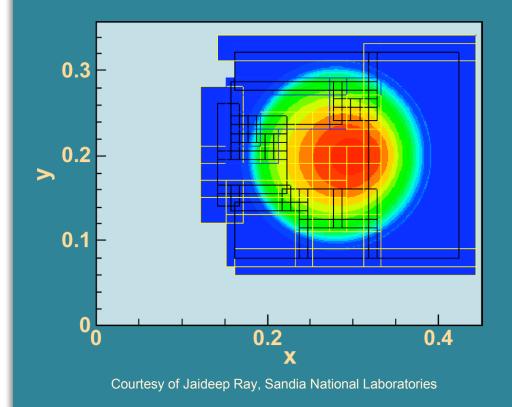
A recent survey found 25 applications using CCA in a variety of ways.

- CCA in single codes for extra flexibility
- CCA to combine incompatible codes
- CCA to develop community standards (and deliver interchangeable codes)
- CCA a la carte: using parts of CCA technology
- CCA to bridge frameworks
- CCA's conceptual impact

"There are a b'jillion references to CCA at this HPDC/Compframe workshop... These are all Europeans we haven't met before."

-- Rob Armstrong, Paris

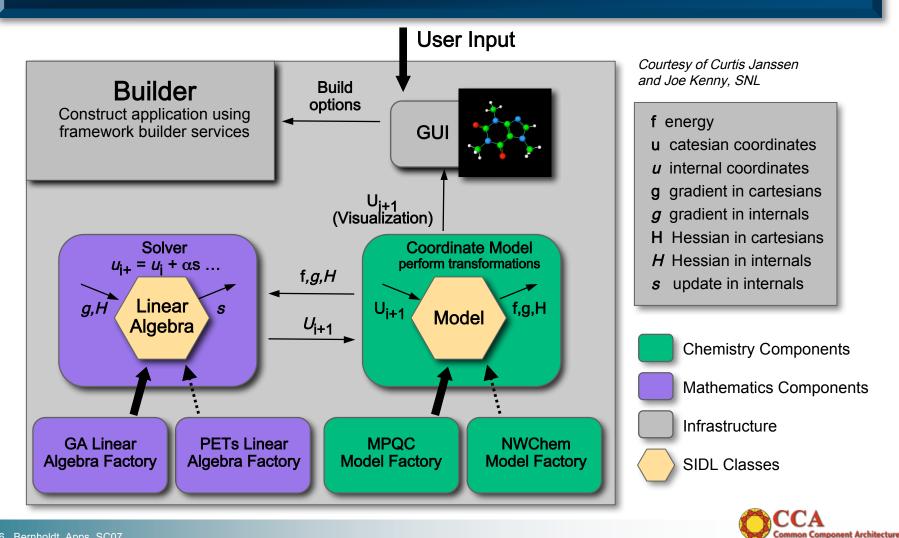
Ask a CCA team member for more information about the projects mentioned in the following slides


Application	Project	Contact
Combustion	CFRFS	Jaideep Ray, Sandia
Chemistry	NWChem and global arrays	Theresa Windus, Iowa State U.
Subsurface transport	PSE compiler	Jan Prins, UNC Chapel Hill
Geomagnetics	-	Shujia Zhou, NASA Goddard
Performance monitoring	TAU	Sameer Shende, U. Oregon
Sparse linear algebra	Sparskit-CCA	Masha Sosonkina, Ames Lab

Example: CCA in combustion

- Toolkit of 60+ components for flexible simulation of chemically reacting flow problems
- Novel high order (4th and 6th) discretization for SAMR
- Extended stability R-K-C integrator developed for ADR on SAMR
- Five refereed science papers
- Eight refereed software papers
- Quantitative study of how components affected their code

OH concentration in advective-diffusive-reactive simulation using 4th order Runge-Kutta-Chebyshev integrator on 4 levels of AMR



Application	Project	Contact
Quantum chemistry	GAMESS, MPQC, and NWChem Interoperability	Curtis Janssen, Sandia Mark Gordon or Theresa Windus, Iowa State U.
Nuclear power plant training simulation	-	M. Diaz, U. Malaga, Spain
Fusion	DistComp	Nanbor Wang, Tech-X Corp.
Radio astronomy	eMiriad	Athol Kemball, UIUC

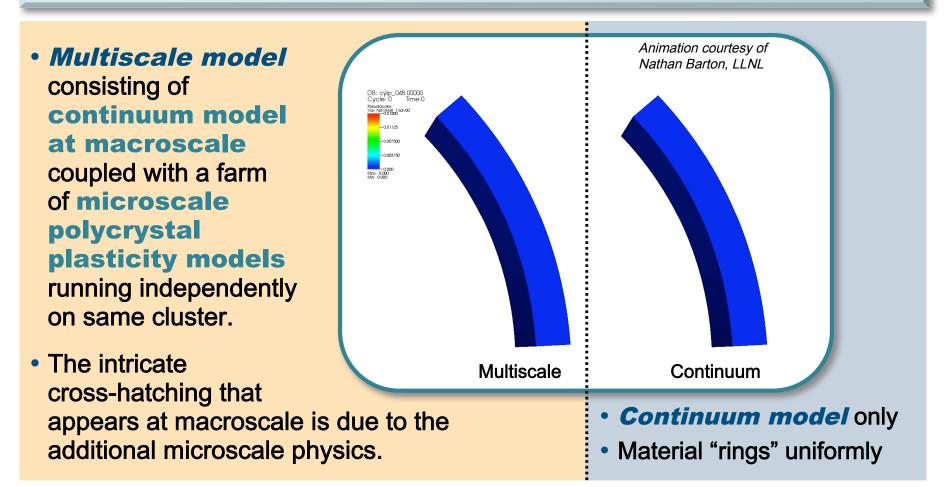
Example: Quantum chemistry

Building better instruments for scientific inquiry by integrating best-in-class software packages

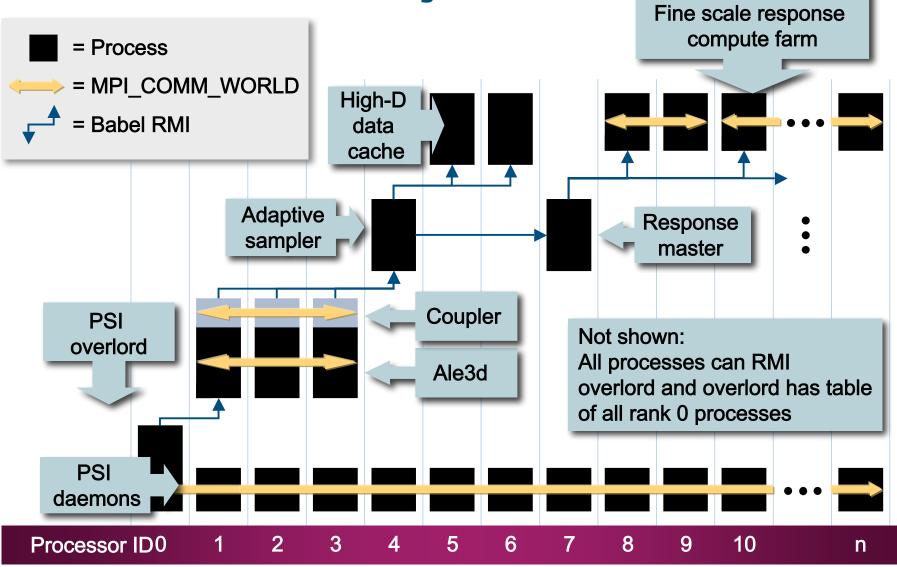
CCA to develop community standards

Application	Project	Contact
Meshing	TSTT	Lori Diachin, LLNL
Solvers	TOPS	Barry Smith, Argonne

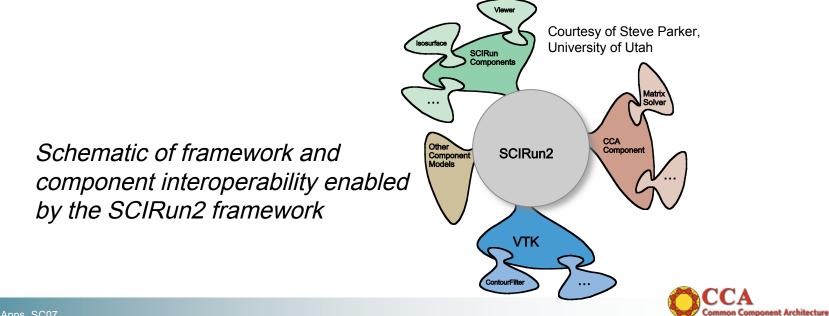
and applications using these interfaces		
Cell biology	VMCS (using TSTT) Harold Trease, PNNL	
Fusion	FACETS	Stefan Muszala, Tech-X Corp.
Chemistry	GAMESS-CCA (NWChem and MPQC)	Masha Sosonkina, Ames Lab



Application	Project	CCA Aspect	CCA Tools	Contact
Combustion	CFRFS	Parallel framework	Ccaffeine	Jaideep Ray, Sandia
Electron effects	CMEE	Language interoperability	Babel	Peter Stoltz, Tech-X Corp.
Material science	PSI	RMI framework	Babel	John May, LLNL
Computer-assisted source refactoring	CASC	Language interoperability	Babel	Dan Quinlan, LLNL
Fusion	FMCFM	Language interoperability	Babel	Johann Carlsson, Tech-X Corp.
Solvers	Hypre	Language interoperability	Babel	Jeff Painter, LLNL

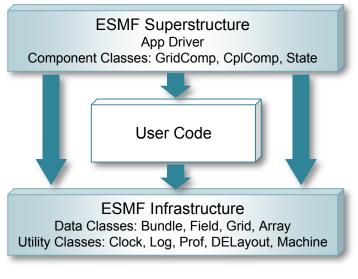

Example: Multiscale materials science using Babel RMI

Massively parallel simulation of strain localization on idealized shock-driven cylinders


Vision: Petascale computing as an ensemble of SPMD jobs

CCA to connect frameworks

Framework	Comment	Contact
SCIRun2	Meta-component bridging	Steve Parker, Utah
Legion-CCA	Extended Babel to generate Legion	Michael J. Lewis, Binghamton University
MOCCA	Personal grid environments (part of Harness)	Vaiday Sunderam, Emory University



5

CCA's conceptual impact

Application	Project	Contact
Climate	ESMF	Nancy Collins, NCAR
Astrophysics	TSI	Doug Swesty, SUNY Stony Brook

ESMF high-level architecture http://www.esmf.ucar.edu

"I have become a complete convert to the idea of component-oriented design and it is now foremost in my mind when it comes to software architecture planning."

-- Doug Swesty, SUNY Stony Brook

Conclusions

- Components are serious technology for building large-scale codes.
- CCA accomplishments include these:
 - Delivered technology uniquely applicable for HPC.
 - Demonstrated broad, multidisciplinary application impact.
 - Provided technical leadership in new approaches to largescale software.
- Vision: build a component ecosystem.
 - Researchers spend more time in the 10% of their code that is of scientific interest.
 - Leverage the other 90% necessary for completeness from other researchers.

For more information

See companion presentation:
An Overview of the Common Component Architecture (CCA)

ORNL booth at SC2007

- David E. Bernholdt, Wael R. Elwasif, James A. Kohl (ORNL)
- Tom Epperly, Gary Kumfert (LLNL)
- Ben Allan, Rob Armstrong, Jaideep Ray (SNL)

Other booths at SC2007

- Ames Laboratory (Booth 181)
- Argonne National Laboratory (Booth 551)
- Indiana University (402)
- NNSA/ASC (1617)
- Pacific Northwest National Laboratory (581)
- Tech-X Corporation (190)
- University of Utah (287)

• On the internet

- http://www.cca-forum.org
- cca-forum@cca-forum.org

