

U.S. EPR Mechanical Systems

Reactor Coolant System General Arrangement

- MCP Main coolant pump
- SG Steam Generator
- RPV Reactor pressure vessel
- PZR Pressurizer
- MCL Main coolant line

Reactor Coolant System – Key Parameters

Parameter	Typical 4-Loop (Uprated)	U.S. EPR
Design Life	40	60
Thermal Power, MW	3587	4590
Electrical Power (Net), MW	1220	1600
Plant Efficiency, Percent	34	35
Hot Leg Temperature, F	619	624
Cold Leg Temperature, F	559	563
Reactor Coolant Flow Per Loop, gpm	100,500	125,000
Primary System Operating Pressure, psia	2250	2250
Steam Pressure, psia	1000	1109
Steam Flow Per Loop, Mlb/hr	4.1	5.17
Total RCS Volume, cu.ft.	12,265	16,245
Pressurizer Volume, cu.ft.	1800	2649
SG Secondary Inventory at Full Power, Ibm	101,000	182,000

Reactor Pressure Vessel

Description	Technical Data
Design Life	60 years
Coolant volume	approx. 5300 ft ³
Vessel Outlet Pressure	2250 psia
Vessel Inlet Temperature	563 F
Vessel Outlet Temperature	624 F
Design pressure	2550 psia
Design temperature	664 F
Vessel Material	SA508 Gr3 Cl1
Cladding Material	308L/309L SS

- No Alloy 600 in RCS applications
- Minimum number of welds in RV beltline region

RPV Materials

MAIN PART Sub Assembly	PRODUCT FORM Semi-finished Parts	MATERIAL FOR EPR
RPV Shells, Flange, Cover/Bottom Dome	forgings	16MND5, equivalent to: SA-508 Grade 3 Class 1 20 MnMoNi 5 5
RPV Nozzles	forgings	16MND5, equivalent to: SA-508 Grade 3 Class 1 20 MnMoNi 5 5
RPV Studs	forged bars	40NCDV7-03, equivalent to: SA-540 Grade B 24 Class 2 26 NiCrMo 14 6
RPV Nuts	forged bars or rings	40NCDV7-03 or 40NCD7-03 equivalent to: SA-540 Grade B 24 Class 2 34 CrNiMo 6 S
RPV Washers	forged bars or rings	40NCD7-03, equivalent to: SA-540 Grade B 24 Class 2 26 NiCrMo14 6
RPV Adapters (CRDM)	Tubes/ flange	Z2CN19-10+N2, alloy 690 20Mn 5 / X6 CrNiNb 18 10
Other RPV Adapters and Flange Heads	forged bars	Z2CN19-10+N2, Type 347, 316L X6 CrNiNb 18 10 S

Reactor pressure vessel (nozzle shell)

RPV Closure Head

RPV Internals

- Requirements and functions:
 - Direct coolant flow in RPV
 - Shield RPV against excessive neutron irradiation
 - Maintain position and alignment of fuel assemblies
 - Align RCCAs, and absorb impact energy of RCCAs following shutdown
 - Support and guide instrumentation lances and RPV level measurement probes
 - Accommodate irradiation specimens for brittle fracture surveillance of RPV

EPR Heavy reflector

- Replacement of core baffle assembly by a heavy reflector
 - Reduces fuel cycle cost
 - Improves long-term mechanical behavior of lower internals :
 - No bolts or welds in the most irradiated areas
 - Temperature distribution in heavy reflector controlled via flow holes
 - No "baffle jetting"
 - Reduced LOCA hydraulic loads
 - Protects RPV shell against radiation embrittlement

EPR upper internals

AREVA **EPR RPV Upper Internals/Core Instrumentation**

90°

EPR Control Rod Drive Mechanisms

Description	Technical Data
Type of CRDM	Electromagnetic jack
Type of installation	Vertical, flanged
Quantity	89
Scram time max. allowed (preliminary)	3.5 s
Step increment	10 mm (0.394 inch)
Maximum stepping speed	75 s/min

CRDM functions:

- RCS pressure boundary
- Insert and withdraw RCCAs over entire height of core, and hold RCCAs in any selected step position.
- Trip RCCAs on demand by interrupting power to coil circuit.
- Provide RCCA position indication via digital and analog position indicating systems.

Steam generator: Layout

AREVA NP, INC.

Introduction to U.S. EPR Presented to US DOE October 20, 2006

Steam Generator Axial Economizer

EPR STEAM GENERATORS

Primary Side Parameters

- Thermal Power per SG
- Thermal Design Flowrate
- Temperature at SG Inlet
- Temperature at SG Outlet
- Average SG Temperature
- Reactor Coolant Pressure
- Primary Design Pressure

Secondary Side Parameters

- Outlet Steam Static Pressure
- Secondary Design Pressure
- Steam Flowrate
- Feedwater Temperature
- Overall Circulation Ratio
- Water Mass
- Steam Mass
- Total Mass

Selected Materials

- Tubing
- Shell & Channel Head
- Channel Head Cladding
- Tube Sheet Cladding
- Tube Support Plates
- Anti-Vibration Bars

1131.5 MWth 12250 lbm/s 625.6°F (329.8°C) 563.7°F (295.4°C) 594.7°F (312.6°C) 2250 psia (155 bar) 2550 psia

1118 psia (77.1 bar)

1450 psia 1407.4 lbm/s (638.4 kg/s) 446°F (230°C) 3.6 85.1 Tons (77.2 Metric Tons) 6.06 Tons (5.50 Metric Tons) **91.2 Tons (82.7 Metric Tons)**

Alloy-690 TT

SA508 Gr3 Cl2 308L / 309L SS Ni Cr Fe Alloy 410 SS

405 SS

EPR Reactor Coolant Pump

RCP UNIT		
- Design Pressure	2550 psia (17.6 MPa)	
- Design Temperature	664 ⁰ F (<i>351 ⁰C</i>)	
- Unit overall height	30.7 ft (9.362 m)	
- Number of Seal Stages	3	
- Seal water injection	7.9 gpm (<i>1.8 m³/h</i>)	
- Seal water return	2.99 gpm (<i>0.680 m³/h</i>)	
- Cooling water flow (thermal barrier)	39.63 gpm(<i>9 m³/h</i>)	
- Maximum continuous cooling water	113 ⁰ F (<i>40.5 ⁰C</i>)	
PUMP		
PU	MP	
PU - Best estimate flowrate	MP 125000 gpm(2 <i>8320 m³/h</i>)	
PU - Best estimate flowrate - Best estimate manometric head	MP 125000 gpm(28320 m ³ /h) 330 ft (100.6 m)	
PU - Best estimate flowrate - Best estimate manometric head - Thermalhydraulic flowrate	MP 125000 gpm(28320 m ³ /h) 330 ft (100.6 m) 120000 gpm(27185 m ³ /h)	
PU - Best estimate flowrate - Best estimate manometric head - Thermalhydraulic flowrate - Mechanical flowrate	MP 125000 gpm (28320 m ³ /h) 330 ft (100.6 m) 120000 gpm (27185 m ³ /h) 135000 gpm (30585 m ³ /h)	
PU - Best estimate flowrate - Best estimate manometric head - Thermalhydraulic flowrate - Mechanical flowrate - Suction temperature	MP 125000 gpm (28320 m ³ /h) 330 ft (100.6 m) 120000 gpm (27185 m ³ /h) 135000 gpm (30585 m ³ /h) 564.6 ^o F (295.7 ^o C)	
PU - Best estimate flowrate - Best estimate manometric head - Thermalhydraulic flowrate - Mechanical flowrate - Suction temperature - Pump discharge nozzle, inside	MP 125000 gpm (28320 m ³ /h) 330 ft (100.6 m) 120000 gpm (27185 m ³ /h) 135000 gpm (30585 m ³ /h) 564.6 ⁰ F (295.7 ⁰ C) 2.56 ft (0.78 m)	
PU - Best estimate flowrate - Best estimate manometric head - Thermalhydraulic flowrate - Mechanical flowrate - Suction temperature - Pump discharge nozzle, inside - Pump suction nozzle, inside	MP 125000 gpm (28320 m ³ /h) 330 ft (100.6 m) 120000 gpm (27185 m ³ /h) 135000 gpm (30585 m ³ /h) 564.6 ^o F (295.7 ^o C) 2.56 ft (0.78 m) 2.56 ft (0.78 m)	

Shaft sealing system

- Standstill seal (4th seal) provided to ensure RCP shaft sealing during SBO conditions.
- Standstill seal is manually actuated when RCPs have stopped and RCP seal return is isolated.
- Ring seal moves upwards against landing on rotor via nitrogen pressure. This provides metal-to-metal contact, and seals shaft.

Pressurizer - Technical Data

DESCRIPTION	TECHNICAL DATA
Quantity	1
Design Life	60 Years
Design Pressure	2550 psia (17.6 MPa)
Design Temperature	684°F (362°C)
Total Free Volume	2650 ft ³ (75 m ³)
Water Volume at Full Load	1410 ft ³ (40 m ³)
Steam Volume at Full Load	1240 ft ³ (35 m ³)
Operating Temperature	653°F (345°C)
Operating Pressure	2250 psia (15.4 MPa)
Number of Operational Spray Lines	2 from RCPs
Number of Auxiliary Spray Lines	1 from CVCS
Number of Safety Valves	3
Number of Severe Accident Valves	4 (2 pathways)
Installed Heater Power (approx.)	2600 kW
Number of Heater Rods	108 + 8 Spare
Dry Weight (approx.)	165 t (15x10 ⁴ kg)
Vessel Material (Ferritic Steel)	SA 508 grade 3 class 2
Heater Sleeves (Austenitic Stainless Steel)	Type 316 LN
Cladding	308L / 309L SS

Pressurizer Discharge Valves Arrangement

Safety Relief & Severe Accident Valves

Description	Technical Data
Pressurizer Safety Valve Stations	
 System Design Data under Normal Conditions Number Design Pressure Design Temperature Relieving Capacity at 2550 psi (176 bar), each 	3 2550 psia (176 bar) 684⁰F (362⁰C) 330 Tons/hr (300 Metric Tons/hr)
Functions • RCS overpressure protection • LTOP during shutdown modes • Feed & Bleed cooling with MHSI	
 <u>System Design Data</u> <u>Number</u> Design Pressure Design Temperature Relieving Capacity at 2550 psia, each 	4 (arranged in 2 paths) 2550 psia (176 bar) 684ºF (362ºC) 992 Tons/hr (900 Metric Tons/hr)
RCS depressurization during severe accident	

Pressurizer Safety Valves

Design Parameters	Technical Data
Number	3
Relieving capacity at 2550 psia (176 bar), each	66x10⁴ lbm/hr
Design Pressure	2535 psia (176 bar)
Design Temperature	684ºF (362ºC)
Operating Characteristics •Dead Time •Opening Time	0.5 s 1.5 s
Fluid	Saturated Steam
Back Pressure •Minimum •Maximum during discharge	17.4 psia (1.2 bar) 740 psia (51 bar)

JEC/JEF - Main Coolant Lines and Surge Line

NOT BINDING FOR EXECUTION

U3

U1

U2

H1

C1

Main Coolant Lines

C1

- Reactor coolant piping is manufactured from forgings with nozzles incorporated into forgings (eliminates need for thermal sleeves).
- Other nozzles are welded on a base plate (butt weld) to simplify welding and inspections.
- Fabricated of 304LN stainless steel.

U2 🧋

U3

MAIN FLUID SYSTEMS

AREVA NP, INC.

Introduction to U.S. EPR Presented to US DOE October 20, 2006

Installation in the Safeguard Buildings

division 2

division 3

Intentionally Left Blank

Main Steam/Main Feed Water Systems

Main Steam System Overpressure Protection

Overview – EPR Mechanical Systems

