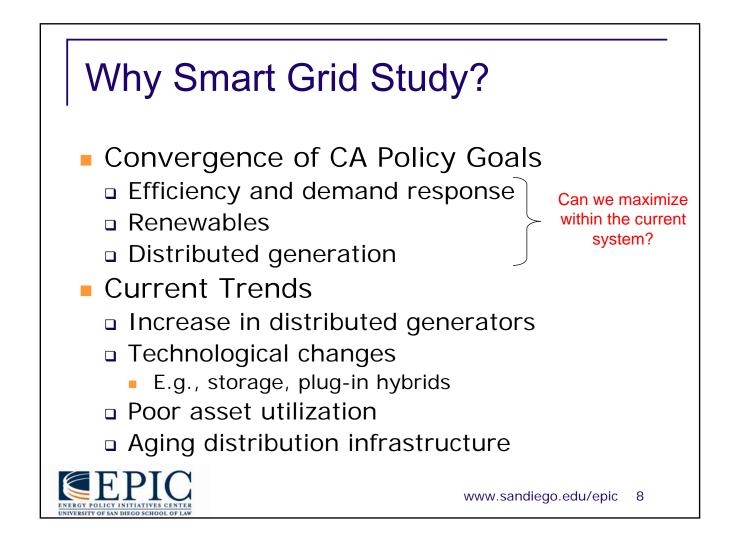
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text>

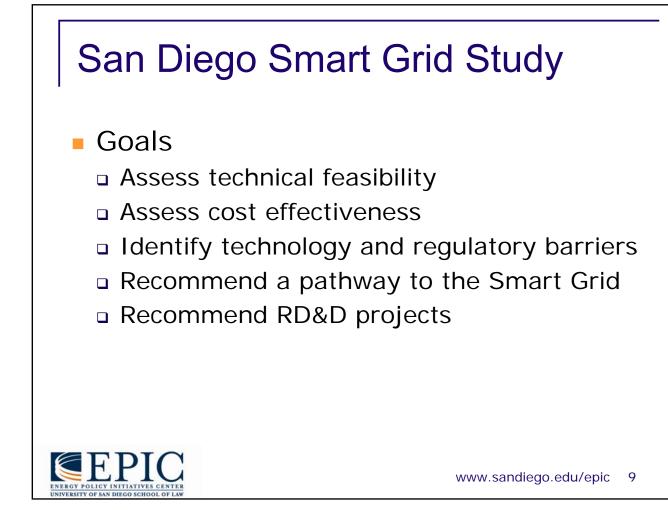
Presentation Overview

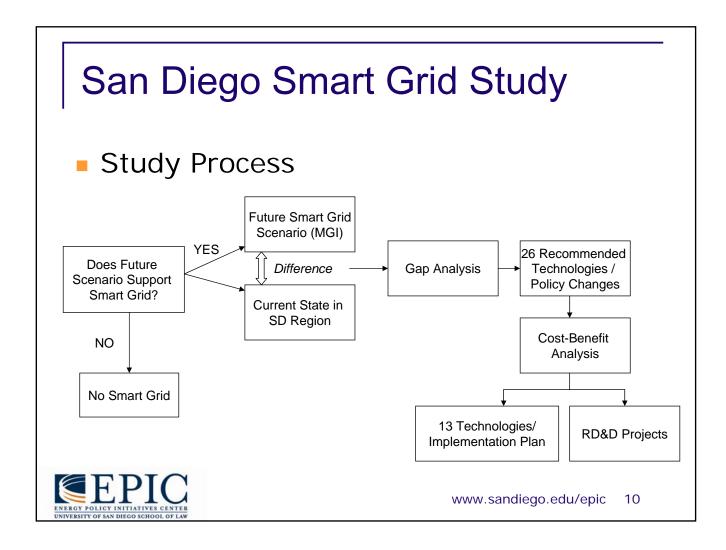
- About EPIC
- Smart Grid Study Key Findings
- Smart Grid Study Details
 - Current/future state in San Diego
 - Gap Analysis
 - Cost-Benefit Analysis
 - Recommended technologies
 - Recommended RD&E Projects

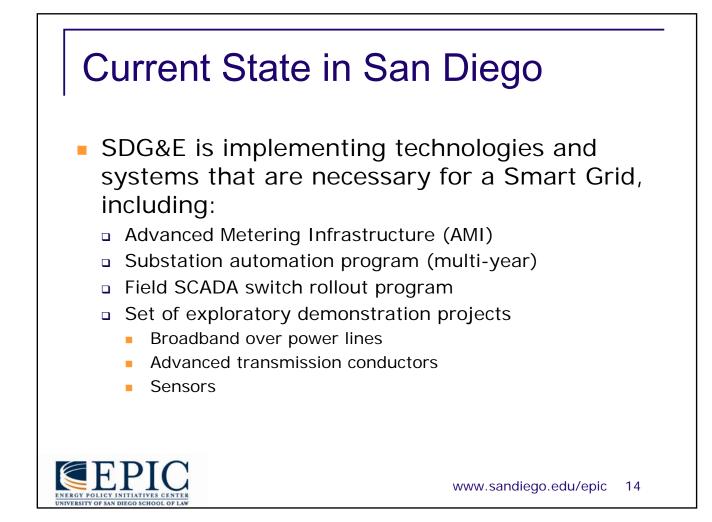
About EPIC

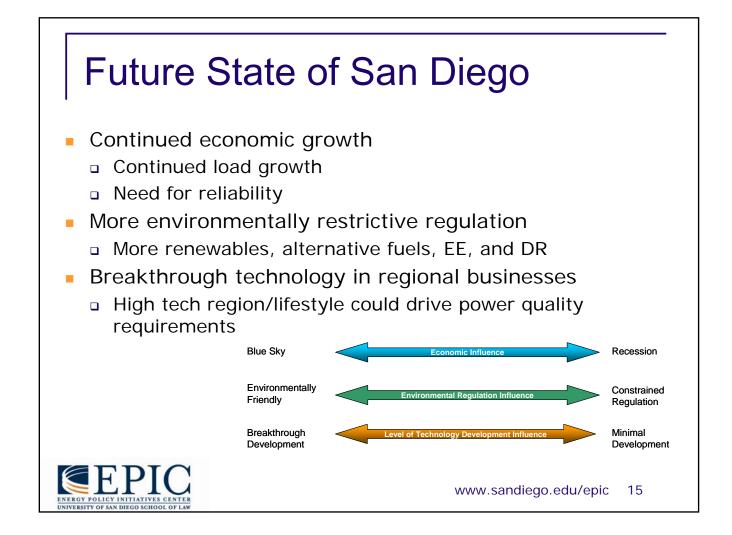
- EPIC's Mission
 - Educate the public and public officials concerning energy issues and policies;
 - Educate law school students about energy law and policy;
 - Conduct research and analysis on energy trends, policy options and their implications; and,
 - Encourage the use and development of less costly and more environmentally-friendly energy resources.

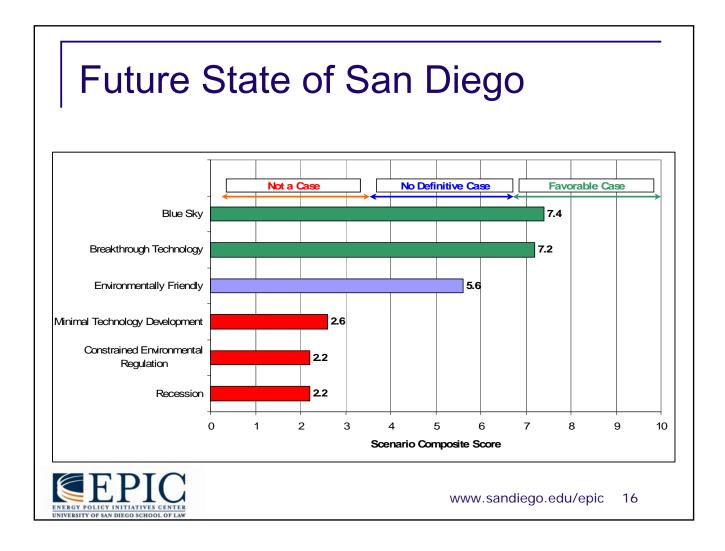

About EPIC

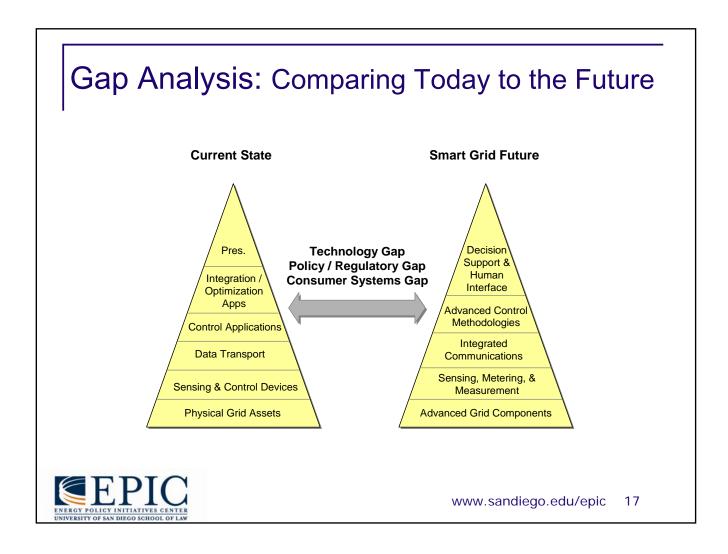

- Research and Analysis
 - Smart Grid Study
 - Public Goods Charge Fund
 - Renewable Energy Certificates (RECs)
 - Solar Laws
 - AB 1X Rate Caps
 - Solar Financing
 - Energy Legislation
 - Energy Regulation






- Future climate in San Diego region will be desirable for implementation of a Smart Grid
- Significant need for modernization
 - Host utility using some advanced technologies
 - Study identified 26 technologies to modernize grid
- Implementing selected Smart Grid technologies appears cost effective
 - Results of a preliminary cost-benefit analysis




В	ottom Line	
- F	Preliminary cost-benefit a	nalysis
	Total Annual Benefits	\$141M
	System Benefits (20-years)	\$1,433M
	Societal Benefits (20-years)	\$1,396M
	Total Capital Cost	\$490M
	Annual O&M Cost	

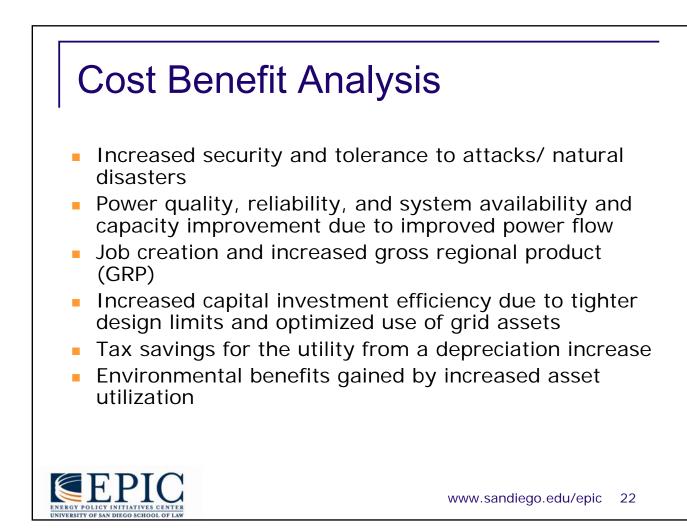
What is a Smart Grid?

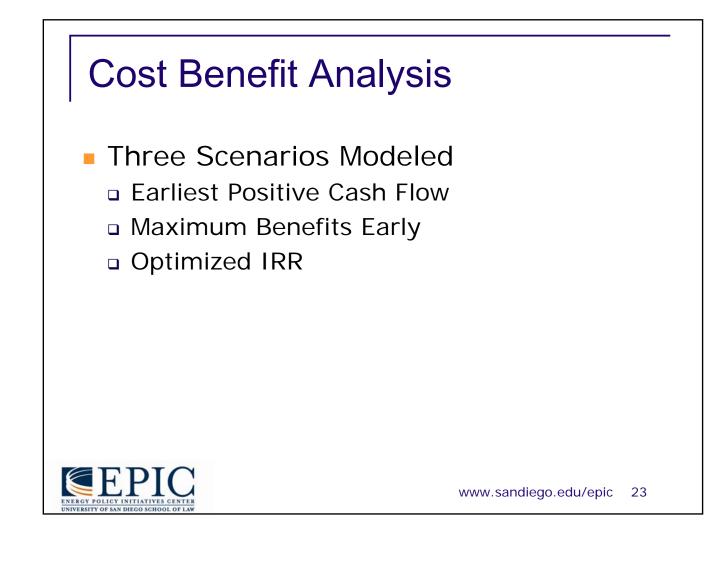
The Smart Grid is the integration of technologies that can...

- Detect and address emerging problems before they impact service
- Make protective relaying the last line of defense, not the only defense
- Respond to local and system-wide inputs; know more about broader problems
- Incorporate extensive measurements, rapid communications, centralized advanced diagnostics, and feedback control that quickly return the system to a stable state after interruptions or disturbances.

- Automatically adapt protective systems to accommodate changing conditions
- Re-route power flows, change load patterns, improve voltage profiles, and take other corrective steps within seconds of detecting a problem
- Enable loads and distributed resources to participate in operations
- Be inherently designed and operated with reliability and security as key
- Provide system operators with advanced visualization tools to enable essential human oversight

Improvement Initiatives


Improvement Initiative No.	Improvement Name	
1	GATECH IPIC Dynflo distributed series impedance sensors	
2	I-Grid Monitoring System (by Softswitching Technologies)	
5	Consumer Portal	
7	Ethernet over Fiber	
9	4G WiMAX Fixed - Private Wireless	
11	Zigbee / WiMedia / WiFi - Wireless	
12	Semi-autonomous Agents	
14	Advanced Visualization Methods (POM, ROSE, FFS, OPM, etc)	
17	DER-based Microgrids	
19	Advanced Energy Storage Systems	
21	Advanced Grid Control Devices	
23	Agent and Multi-Agent Systems	
25 Distribution (Feeder) Automation		



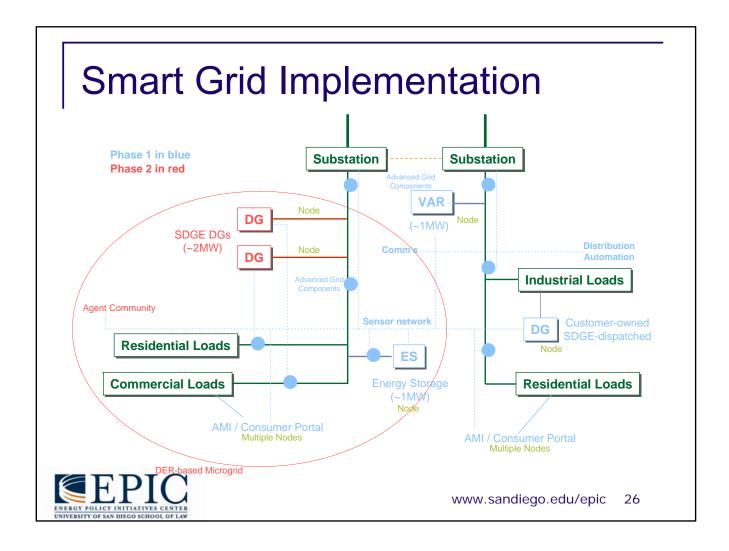
- Benefits Considered
 - Reduced congestion cost
 - Reduced blackout probability
 - Reduced forced outages/interruptions
 - Reduced restoration time and reduced operations and maintenance due to predictive analytics and self healing attribute of the grid
 - Reduced peak demand
 - Other benefits due to self diagnosing and self healing
 - Increased integration of distributed generation resources and higher capacity utilization

Cost Benefit Analysis Results

Scenario	Regional IRR* (%)	NPV (\$M)	Point of Positive Cash Flow** (Yrs)	First Year Annual Benefits Top \$50M
Earliest Positive Cash Flow	75%	403	3.5	2017
Maximum Benefits Early	26%	508	7.0	2012
Optimized IRR	44%	416	5.5	2014

* Internal Rate of Return normally refers to a single business entity, but here we have treated the San Diego region as a single entity to enable the calculation of a regional benefit, both systems and societal.

** Point of Positive Cash Flow is the collective cash flow analysis from all thirteen (13) improvement initiatives combined as a single overall program. Several improvement initiatives require continued investment for as much as 10 years, well beyond the point of positive cash flow, to achieve full implementation of the Smart Grid. The point of positive cash flow should not be used as a proxy for the simple payback of the scenario.



Implementation Plan Overview

Phase	1 (2007	- 2	201	6)

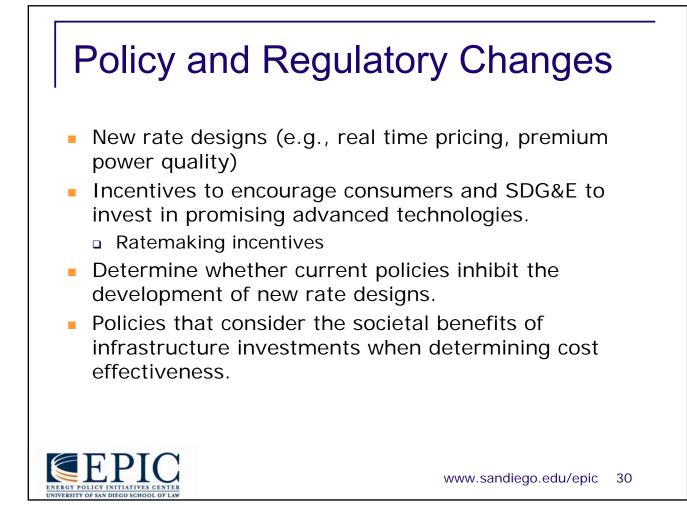
Improvement Initiatives	 7 – Ethernet over Fiber 9 – 4G WiMAX Fixed - Private Wireless* 25 – Distribution (Feeder) Automation 1 – GATECH IPIC Dynflo distributed series 	This grouping of improvement initiatives serves two purposes: (1) establishing the foundation for the
	 I – GATECHTETC Dynito distributed series impedance 2 – I-Grid Monitoring System 11 – Zigbee / WiMedia / WiFi - Wireless 21 – Advanced Grid Control Devices 14 – Advanced Visualization Methods 5 – Consumer Portal 19 – Advanced Energy Storage Systems 	complete Smart Grid, and (2) focuses on those initiatives most likely to improve reliability under a changing environment.
Phase 2 (2009	9 – 2013)	
Improvement Initiatives		This grouping of improvement initiatives serves two purposes: (1) expand the integration of consumer systems into the Smart Grid, and (2) provide additional options for improved reliability and economic electricity services.

Timeline for Implementation

Priority	ll No.	Improvement Name	Timing*
1	7	Ethernet over Fiber	2007 – 2009
2	9	4G WiMAX Fixed - Private Wireless	2007 – 2009
3	25	Distribution (Feeder) Automation	2007 – 2011
4	14	Advanced Visualization Methods (POM, ROSE, FFS, OPM, etc)	2007 – 2009
5	1	GATECH IPIC Dynflo distributed series impedance sensors	2009 – 2013
6	2	I-Grid Monitoring System (by Softswitching Technologies)	2012 – 2016
7	11	Zigbee / WiMedia / WiFi - Wireless	2007 – 2010
8	21	Advanced Grid Control Devices	2007 – 2011
9	5	Consumer Portal	2008 – 2012
10	19	Advanced Energy Storage Systems	2008 – 2014*
11	17	DER-based Microgrids	2009 – 2013*
12	12	Semi-autonomous Agents	2009 – 2011*
13	23	Agent and Multi-Agent Systems	2009 – 2013*

* Moved the improvement initiative out one or two years to accommodate probable resource limitations based on the number of project starts and the maturity of the technology.

Recommended RD&D Projects


RD&D Project	Timing	Leading Initiative
WiMAX Pilot	2007 – 2008	Midhaul Communications (II-9)
Adv. Energy Storage Pilot	2007 – 2008	AES Integration (II-19)
DER-based Microgrid	2008 - 2009	DER-based Microgrids (II-17)
Agents Pilot	2008 – 2009	Semi-Autonomous Agents (II-12)
-		Agent & Multi-agent Systems (II23)

Policy and Regulatory Changes

- A consistent, long-term policy to provide clear market signals (real-time pricing, critical peak pricing, etc.) through local distribution-level programs.
- Incentives for use of advanced technologies to increase capacity, improve efficiency or reliability of resources.
- CEC supported evaluation of economic benefits of commercially available voltage stabilizing technologies (SVC, D-VAR, DSTATCOM, STATCOM, SuperVAR, etc).
- Policies that encourage open data architecture / access, interoperability, reliability standards, and capability to operate micro-grids in intelligent islanding modes.

Thank You

Scott J. Anders Energy Policy Initiatives Center 5998 Alcalá Park San Diego, CA 92110-2492 (619) 260-4589 Fax (619)-260-4753 <u>scottanders@sandiego.edu</u>

www.sandiego.edu/epic

