Status of the EPIC/MOS Calibration

P.Ferrando, A.F. Abbey, M. Arnaud, P. Bennie, M. Dadina,M. Denby, S. Ghizzardi, G. Griffiths, N. La Palombara,D. Lumb, S. Molendi, D. Neumann, J.L. Sauvageot, R. Saxton,S. Sembay, A. Tiengo, M. Turner

EPIC + SSC + ESA team

Instrument overview

Hardware and calibration items

- On axis effective area
- PSF
- Vignetting

Grating Stack

- Transmission
- Azimuthal modulation

MOS Cameras

Filters : 2 thin, 1 medium, 1 thick

- Transmission
- Homogeneity

CCDs : 7 with 600×600 pixels of size 1.1 arcsec²

- Quantum efficiency
- Charge transfer inefficiency
- Redistribution matrix
- Energy scale
- Pile-up

- Background
- Metrology
- Homogeneity
- Timing

Instrument overview

Full Frame

Frame time : 2.6 s

Large Window Frame time (sync) 0.9 s central CCD 2.7 s outer CCDs

Small Window Frame time (sync) 0.3 s central CCD 2.7 s outer CCDs

Basic EPIC/MOS modes

Timing

Time resolution : 1.8 ms central CCD

Frame time 2.6 s outer CCDs

Main input for calibration values

	Item	Ground	Flight	Wo	rkshop
Telescope	Effective area	Х			Ρ
	PSF		Х	Р	
	Vignetting		Х		
Gratings	Transmission	Х			P
	Azimuthal modulation	Х			
Filters	Transmission	Х			Р
	Homogeneity	Х			
CCDs	Quantum efficiency	Х	Х		Р
	Charge Transf. Ineffic.		Х	Р	
	Redistribution matrix	Х	Х	Р	Р
	Homogeneity	Х			
	Background		Х	Ρ	
	Metrology, astrometry		Х	Ρ	
	Timing		Х		

Metrology

W051 Deep Observation of the OWC

SAS Wax likelihood detectione

Metrology

(Mike Denby et al.)

- Done with Lockman Hole, NGC 2516, and Orion Molecular Cloud fields
- Compare X-ray source positions derived with SAS source detection chain with positions from USNO catalogue
- Remove gross offsets of central chip and then optimise outer CCDs displacement
- Accuracy achieved (MOS1 and MOS2)

RMS error of 0.5 arcsec

Implemented in latest CCF file

Absolute Astrometry (J. Tedds & M. Watson, SSC, poster WB1-7)

- Systematic correlation of source positions with USNO catalogue, based on the *eposcorr* SAS task, and a sample of about 150 source lists per camera
- Frequency distributions FWHM are : 4" in RA, Dec, 0.3° in roll angle

Point Spread Function

(S. Ghizzardi & S. Molendi, poster WA2-4)

Have searched for an analytical representation of the PSF in azimuthal symmetry, with a large data set, up to 12 arcmin off-axis

King model found adequate for radial profile, with parameters : Rc and α

EPIC/MOS Cal. Status

Fit takes into account a background component and rejects piled-up regions

PSF - Results

Core radius and slope are linear in energy and off-axis angle :

 $\begin{aligned} & \text{Rc}(\text{E},\,\theta) = a + b.\text{E} + c.\theta + d.\text{E}.\theta \\ & \alpha(\text{E},\,\theta) = x + y.\text{E} + z.\theta + w.\text{E}.\theta \end{aligned}$

	Table 1. T_{ϵ} and α best it according to equil. (1) an						
	MOS 1						
r_{c}	$a=5.074\pm0.001$	$b = -0.236 \pm 0.001$	$c=0.002\pm0.001$				
α	$x=1.472\pm0.003$	$y = -0.010 \pm 0.001$	$z = -0.001 \pm 0.002$				
	MOS 2						
τ_{c}	$a=4.759\pm0.018$	$b = -0.203 \pm 0.010$	$c=0.014\pm0.017$				
α	$x=1.411\pm0.001$	$y = -0.005 \pm 0.001$	$z = -0.001 \pm 0.002$				

Table 1: τ_e and α best fit according to eqns. (7) an

Validity range of model identified :

PSF - Results relative to piled-up sources

Slight difference in encircled energy between MOS1 and MOS2 (e.g. here, $\Delta\gamma \sim 0.03$ for power laws and cut at 5 arcsec)

Charge Transfer Inefficiency

(P. Bennie et al., poster WA2-18)

- CTI results in an apparent shift of lines and broadening
- CTI has been very regularly monitored via the Al-K α and Mn-K α (1.5, 5.9 keV) lines from the onboard calibration source

CTI time and energy dependence

Note : not well reproduced by SAS v5.2, which underestimates the CTI (25 eV shift at Mn). New version in test for v5.3

CTI future

- Column to column variation of line centroid have been evidenced
- EPIC looks into ways of including that in data treatment (CTI per column, deviation maps)
- In any case, slight degradation of line resolution remains

Redistribution

(S. Sembay et al., poster WA2-5)

- Gaussian at high energy, with a strong shoulder at low energy (< 1 keV)
- Very well measured on ground, but definitely not good for flight

- New version for E < 0.7 keV in prep.
- Will be time dependent
- Same function for all imaging modes

On axis effective area

(S. Sembay et al., poster WA2-5)

Telescope + RGA + filter + CCD

Residuals within 5 % from 0.2 to 10 keV

Background

(2 posters WA2 : D. Lumb, and A. De Luca & S.Molendi, and an all EPIC work)

Background components :

- 1. Low energy electronic noise
- 2. Soft proton "flares"
- 3. Quiet time high energy proton induced
- 4. Astrophysical background

Background - Soft protons

- Energy spectrum shape varying from flare to flare
- For weak or diffuse sources only solution is to select quiet time periods

Background - quiet time

- Induced by high energy particles :
 - directly in the CCD
 - indirectly via fluorescent lines

- Weakly variable with time
- Hard spectrum with lines

Background - quiet time - spatial variation

Spatial variability of : ~ 15 % for Al and Si K α \leq 10 % for E > 2 keV

XMM-Newton Instrument Calibration Workshop

EPIC/MOS Cal. Status

Background - new template files

- Selection of THIN filter, high galactic latitude, low proton background, low N_H
- Removal of bright sources
- Duration now > 400 ks

Overall "first order" statements and to be done (I)

- Astrometry : "finished"
- PSF : "Very good", high energy at large off-axis angles missing
- Vignetting : "Good" up to 10 arcmin, to be checked at larger angles
- CTI degradation : "Within predictions", SAS to be updated
- On axis effective area and redistribution good to 5 % 0.2-10 keV
- Gain : good to 5 eV (relation with CTI ?)
- Background : "Characterized" and template files built
- Pile-up : "core exclusion" working explore other alternatives

Overall "first order" statements and to be done (II)

• Lowest energies < 200 eV : variations not understood

- Off-axis :
 - CCD QE from ground implemented above > 1 keV
 - known inhomogeneities below 300 eV not implemented yet
 - redistribution difficult to check
 - implement known thick filter inhomogeneities below C edge
 - analysis of extended sources has however not revealed any strong deviation from on axis response
- Timing mode : timing aspect checked redistribution function to be worked out

More to come and to read !

- Next talks on cross-calibration will show quality of fits and level of consistency within EPIC and between EPIC and RGS.
- Posters with all details are on display.