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MUWORD. This contribution is intended ES an introductory survey of the 

topological concept8 that underlie the DENDRAL system for chemical structure 

notation. The main purpose of the system is to provide a language in which a 

computer progrsm can frsme hypotheses of organic chemistry. For example, a 

program to generate all the learners of a given formula has already been imple- 

mented. 

This introduction is especially intended for users who wish only 

a general outline of DEDDRAL rather than its full detail8 of syntax. Some 

notation is necessarily used. This resembles the definitive DENDFIAL forms, 

but the complete manual should be used as a definitive statement of the Ian- 

wage g 
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I. 
..I SYSTPIATICS OF ORGANIC MOLECULES, GRAPR T0m-Y ' 

,, . AND HA24ILTON CIRCUITS 

, Joshua Lederberg 
. Genetics Department 

. ,-2. Stanford University School of Medicine 
'. Palo Alto, California 

The Stz'UCtUral formula for an organic molecule is a paragon of a topological 

graph, that is, the connectivity relations of a set of atoms. True, we 

recognize more than one type of connectLion, doaMe, triple, and non-covalent . 

. bonds, as Well as single bonds. However, from an electronic standpoint the special 

bonds could just a8 well be denoted as special atoms. The structural graph I 

does not specify the geometry, that is, the bond distances and bond angles of 

the molecule. In fact, this is known for only a small. proportion of the 

enormous number of organic molecules whose structure is very well known from 

a topological standpoint. Most of the syll.abus of elementary organic chemistry 

thus comprises a survey of the topological possibilities for the distinct ways 
“4 

in which sets of atoms may be connected, sub,ject to the rules of valence. The 

student then also learns rules which prohibit some configurations as unstable 

or unrealizable (and may later earn his scientific reputation by Justifying 
-_ 

or overturning one of these rules). The field of organic chemistry has, 

however, reached its present stature without many benefits from any gendral 

analysis of molecular topology. .These benefit8 might arise in applications : 

at two extreme8 of sophistication: the teaching of chemical principles to 
. . 

college undergraduate8 , and to electronic computers. They may also apply to 

the VeXatiOUS problem8 of nomenclature and systematic methods of infokmation 

retrieval. '*'I 

Although the topological character of chspsiml graphs YIU r&ogtnisad by 
*., ._' : ., , '. 
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the first topologists, very little worK ha8 been done on the urplicit CtiSSifi- 

Cation of the graph8 having the most chemical interest. Some difficult 

problems, e.g., the enumeration of polyhedra, remain unsolved. However, th6 

main obstacle msy be the seeming triviality of the problems; many topologist8 
-a. 

being quite iineatiefied with systems restricted to.20 or 3dimensional spacer , 

This article till review some'elementary features of graphs that may be 

used for a systematic outline of organic chemistry. The same theory ha8 the 

broader significance of classifying the possible nets of relationships among 

the member8 of a set of ObJects. For present purposes, our graphs will be 

undirected, that is, any connections we reciprocal and unpolarized. lkrther- 

more, our atoms have a maximum valence of 4. Uhen we come to cyclic structures 

we shall have occasion to study an even more restricted set of graphs, those 

in which every node has a valence of 3. 

A problem statement might'be: enumerate al.1 the distinct structural 

isomers'of a given elementary composition, say C H NO . 
3 7 .? 

ThiS iS tantamount to '-7 

producing all the connected graphs that can be constructed fron; the atoms of 

the formula, linked to one another in an distinct ways, compatible tith *he 

valence established for each element (4, 3, and 2 for C, N, 0, respectively). 

For compactness, H can be left implicit, being later restored at every unused 

valence. 
, 

Our main approach throughout this article is mapping, a rule of correspon- 

dence between a part of the chemical structure and a part of some abstrakt 

graph. Thus, each atom may be mapped on to a node: each b&d. to an edge or 

link of the graph. For further an8.lysis, however, it will be important to map 

from complexes*pf the structure to (elements, of a graph. The abstract graph8 

lend themselves t0 .CaLIoniCti'forms; i.4 l s a choice among equivalent ' .., ,,, '. ,: .: ,,. 
:. 1. ,. i " . : 1 * . ,: ., ,I ' ,. 1 ,' .*1..,,'..,.* .,: ,. .: . . 

. . . ::., ;* I., '. t. ,". I. . . ', , ,'( ,/ . 
. :. .: ,.. .' 
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according to precise rule. Since the root problem is generally not that of 

producing all possible combinations of atoms, but recognizing which forms are 

Unique, this is Of Utmost importance. Chemistry will reemerge after a few 

levels of abstraction. 
,-.. ,, 

These p?inciples have been elaborated in a computer-oriented language 

"Dendral-64" which is described mOre fully elsewhere for the purpose of 

(I possible implementation in programming systems (Lederberg, 1964). 

Trees are l-connected graphs, i.e., can be separated into two parts by 

cutting any link, They correspond to the acyclic structures of Organic 

chemistry. How may we establish a canonical form for a tree, after first ' 
. noting its order (number of nodes). 
-. ..m 
' The first step might be to find some unique place to begin the description. 

“ ., 

: + 

. . . 

A tree must have at least two terminals, and may have many more if highly 

branched; these are therefore not very suitable. However, each tree has a 

unique center. In fact Jordan (1869) showed that any tree has 
. 

Center, a mass-center.and a radius-Center, Each center has a unique'Dlace in 

any tree; the two may or may not coincide. ( 

To find the radius-center, the tree is prUned one level at a time, being 

cut back one link from every terminal at each level. This will leave, finally 

an ultimate node or node-pair (in effect, edge) as the center; the radius of 

the graph is the number of levels of pruning needed to reach the center. 

To identify the mass-center of a tree, we must consider the two or more 

branches that Join to each non-terminal node. The center is the node whose 

branches have the most evenly balanced allocation of the remaining mass (node-' 

count) of the tree. This is the sszne as to say that none of the pendant 

branches exceed half the total maas~ A mass of eYen number allow8 the possi- 

bility of the ccntsr being a nod4 pair or edge which joins equal halves, I ., . i .- 



Either of the centers (Fig. 1) is unique, and so could solve our problem 

sf defining a canonical. starting point of a description. The center of ma88 

is mOre pertinent to finding a list of isomers, which of course enjoy the 

88MBmUS. The radius-canter is ill-adapted for thi8, but matches con- 
. . 

vtjztisnab nomenclature, which is based, on finding the longest linear path, 

:i,ie;i a a dismeter. The diameter is not necessarily unique. For example, urea 

kk% three diameters, N - g - N and N - t! = 0 (twice) ) but Just one radiue- 

@enter, the C .atom. The problem of generating isomers is the main JUStifiCa- 

%&on for adopting the mass-centerover the radius-center to work out canonical 

Zn chemical term8, the center divides the graph into two or more radicals. 

These radicals can be ordered by ObViOUS compositional principles, giving rise 

to a canonical description of the whole graph.in a linear code. Thus arginine 

becomes (C-C-N-C(N)-N C-c(mr)-c(o)-Oj or, in a parenthesis-free notation 

with some abbreviation8 .$,N.C.:NIV 2..NC.:OC . Any linear code ’ .‘-A 
.*- 

has an implicit number system: each atom is numbered according to when it is 

Benoted in the string. 

Some thirty years ago, Henze and Blair (1931) showed how Jordan18 principle 

cold be used for the enumeration of isomers of saturated hydrocarbons and - 

some simple derivatives of them. Here, the nodes are all the same (carbon 

atoms) and the enumeration can proceed by recursion from smaller to larger 

complexes. For example, for the isomers of undecane, CllH24, one atom is desig- 

Da-bed as center, leaving 10 to be &iocated among 2, 3 or 4 branches. Only the 

following partition8 .satie@ the rules (leaving dissymmetry out of account): 



BRAXCHES 
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3 

4 * 

. 

1,4,5 
2,3,5 
2,4,4 
3,3,4 

1,1,3,5 
1,2,2,5 
LL4.4 
L&3,4 
2,2,2,4 

. 

2,223 

To complete the solution, one must have calculated the number of alkyl radicals 

42 5w G4, etc. To illustrate with C5: 

The radical must have an apical atom, leaving the rest to be partitioned 
_. -7 

in all distinct ways amongl, 2 or 3 pendant branch6, the radicals of the next 

level. Thus we have: 

-CV il 

48 , . 

/ 
q  

�\a  

4 

or 

1,1,2 
. * 

The count of -Cn radicals is thus derived from the table for -Ci, taking i from 
\ 
i 

1 to n i 1, and the process may be iterated as far as needed, leer, until 

partitions into units, C l. ! prevail@ , fQo deep mathematical insight is needed to . . +. 



verify that the first steps of the alkyl series Cl, C2, C3, C4 have 

1,1,2,4 forms respectively. 

No closed algebraic expression has been found for this enumeration. 

4.u.iwer ,,$he recursive expansion was done by hand (Hence and Blair, 1931) with a 

k'ev trivial errors found by a computer .check; no organic chemist will be 

fiIl+Tprised by the enormous scope of his field. (Table 1). 

The total range of acyclic compounds is of course very much larger than 

these subsets. 'At each step, instead of partitioning a mere number of nodes, an 

Pnlioca%ion to constituent radicals takes account of the kind as well as number 

rsf unused atoms, However, the specification of a hierarchy of ordering, which 

may be done almost arbitrarily to suit computational convenience, permits the . . 

Game 

of a 

principles to be applied to a complete enumeration of structura& isomers 

given composition, for example of alanine, C3H7N02* @able 2.) 

Cyclic Structures 

Cyclic graphs are much less tractable, since every path will return back 
/-- .- 

to the complex, and a center is less easily defined. Sufficient reminder of 

k.l~e taxonomic difficulties posed by rings is the popularity of the Ring Index 

(J.964) wherein the "11524 rings known to chemistryW are laid out, together with a 

prof~sisn of synomyous and alternative numbering systems to map them as nodes.'-‘ 

For example, naphthoyl pyridine would ultimately form a tree, R1 - C - R2 
. b 

, 
5 lad “‘; : 
' We now consider the domain of strictly cyclic structures. These are 2- 

connected graphs, since at least 2 (sometimes more) links must be cut in order 

to separate the graph. 

For further analysis, we distinguish the trivalent 

ato- that join 3'paths, or branch pints. We can then ,, 
,- 

vertices of the structure 
', 

construct the full set of 



abstract, trivalent graphs. Define a path asa link or an unbranched chain of 

links and atoms. The paths between vertices of the structure can then be 

mapped onto the edges of an abstract graph which is regularly trivalent Or 

trihedral. To illustrate, observe how pyrene is mapped onto an abstract graph ,-... 
of 6 vertices, Indeed, the abstract prism. . . 

Some vertices 

0 Pyrene 
(a) 

are 4-valent, in 

lxl 

b) 
so-call .ed Spiro forms s 

(d) 
but these 

. . 

graphs 

’ can be mappedoonto 3-valent graphs by expanding each 4.valent node into a pair 

of 3-valent nodes. That is, >*< \ becomes l - -( . / 
There is an obvious 

relationship between the number of vertices and the number of rings conventionally 

ascribed to a structure. We start with, say, benzene, 0 vertices, and- 1 ring. 

Then naphthalene, 2 vertices and 2 rings. Each additional ring entails 2 

more vertices. Hence, for r rings and n vertices - 
’ 

r - 1 + n/2 , 

and for these trivalent graphs, n must be an even integer, Recalling that a 40 

velent vertex maps into 2 3-valent nodes, we can write 

r=l+n/2+q 

for q 4-valent Vertices. This calculation agrees with the Ring Index rule which 

*counts rings as the number of cuts needed t6 convert a ring structure into 8 

. 

As each edge joins 2 nodes, a trivalent graph of order n will have 

3n/? edges. 

. Enumeratina the trivalent graphs. A trivalent graph msy have several 
, 
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reprtsentations, and some effort may b? required to relate them to one another, 

aPld to decide which fom is to be rezacded as a canonical reference for mapping : 

purposes. Thus, the graphs of Figure 2 are all topologically equivalent 01: 

isomorphic, This is to say, they all represent the ssme connections of node ' 's.., 
to (three) no'des. A meaningful enumeration nust uni@ these isomorphisms. Fur- 

the.zziore, it should relate to a convenient code by which to sefer to each 

graph, better still, to embody a reconstruction, FinalJy, it should generate 

an obvious numbering of the nodes and edges. 

%milton circuits. A practical key to the solution of this problem, as 

to many other network problems, takes advantage of the Hamilton circuits found 

in most of the abstract graphs having chr?mical interest. 0 A Hamilton circuit 
. . 

(HC) is a round trip through the graph that traverses each node Just once. 

It therefore uses n edges, leaving out n/2 edges. Figure 3 is Hamilton's 

own example, the dodecahedron, proposed by him as J$ parlor game, .each node 

represexiting a city that the round-the-world traveller would not wish to _. 
. . ..- 

revisit. The utility of HC representations will become evident. 

Finding all HC's of a graph may be a challenging game, but it is reduced 

to a merely tedious algorithm on the computer. Start from an arbitrary node. 

Tract a path as through a maze, each node presenting a binary choice of *-- 

different edges. If the chosen path reverts to a node already visited, back- 

track one step. A successful path has n correct choices. Thus, at most I 

2'n'search steps will exhaust all possible paths; in practice, closer.to.l/n 

times this number will be needed to *identify all &he HC’s. Even for n 'up 

' to 20 this is a modest task. And if the work has been done once, finding any 

MC, at perhaps,n-fold less effort, will enable a g$ven graph to be related to the - , ,. , 
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previously established set. 

A typical problem in graph manipulation is to establish whether two 

complicated graphs are isomorphic. In the long run, this might require 

testing all possible permutations of nodes, with a scope of Factorial (n). 
. .-- 

At n = 20, this number is an utterly uncomputable 2.4 x 10 18 steps. On the 

other hand, if two graphs are isomorphic, they must have the ssme K's, found 

with at most 2 20 - lo6 steps.' \il. 

A convenient representation of a HC maps the nodes and edges of the circuit 

as vertices and bounding edges of a regular polygon. The remaining n/2 edges 

then form _chords, each node being one of the two termini of one chord. A 

description of the graph then needs only some notation for the n/2 chords. 

First, we should canonicate the,orientation of the polygon, having chosen 

to initialize the HC arbitrarily among n nodes and 2 directions (the rotational 

and reflectional. symmetries of the polygon). Each node is Joined by some 

chord having a certain span* The span list can be put in.cyclic order, where 

it is invariant under rotation; i.e., immaterial which node is selected as 

starting point. The effect of reflection is also easily computed. If the' 

span list is regarded as a number, its minimum value under rotation/reflection 

becomes the canonical. form. For example, an 8-node graph might be represented (Figure 4 

by any one of the span lists 17522663, 31752266, etc., or.the reflections 

75226631, etc. Of these, one quickly finds that 17522663 is the lowest-valued, 

hence the csnonical form. Similarly, when other KC's are found for the ssme 

graph, they can be compared,'and the .lowest-valued.of them chosen as the* 

reference graph. 

The sane procedure establishes a canonical ordering of the nodes and 
I' ., ,' 
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edges a For the latter, we take tbe HC sequence (the polygon) first, then 

r!~c% chord in order of first reference. 

The span list has n terms. Only n/2 are necessary, since each chord l 

lu ;i;i'c~;eG Lo twice in the span list. For an abbreviated code, simply omit 
,T-.. 

the second referende. 17522663 becomes 1522. Indeed, one less character still 

suffices, the last chord being completely determined by the ones previously 

built * The chord list (152). or an alphabetic equivalent (8AEB) whose leading 

nusae~-al. merely reminds us of the order of the graph, then encodes the graph in 

a canonical form (Figure 4). Furthermore, the maph can be reconstructed from ’ 

%he code by retracing the steps Just'recited. Caution: Unlike span lists, 

the abbreviated chord lists cannot be eeely rotated. 

Chord lists can be computed by an obvious combinatorial procedure, with 

the help of a few tricks to save some fruitless effort. Most arbitrary lists 

become internally Inconsistent after a limited number of initial characters; the 

number of combinations that must be tested is therefore considerably less than 

nLt,:r f.?~~psr 6. Additional restrictions can also be p&on prospectively. In 

This w&y, exhaustive lists of trivalent graphs have been computed - Table 3 

:%&en from the DENDRAL report) shows their scope, To unify isomorphisms, 

%he tmqylete List of HC's is computed for each chord list. 

Apart from the rotation of the polygon, two or more’incongruent HC's may 

be present in a graph. No general principle is known, except that graphs with 

laigh symmetry tend to have the fewest incongruent HC's. Tutte (1946) proved 

that any edge of a polyhedron must be involved in an 'even number (not excluding 0) 

of Z's, and that if a polyhedron admits one HC, it must admit at least three. 

Qssification of trivalent graphs, Two Important, independent criteria 
, 

' , <_' ,. / I., i, I, ;.;. 
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of abstract graphs are (1) planarity, and (2) level of connectedness. 

A planar graph is one that can be represented on the plane without edges 

crossing over one another. The graph need not be drawn as an HC-polygon, which 

rarely lacks crossing chords: pime 3: 1s certainly planare Kuratowski has 
a 0' 

shown that any trivalent non-planar graph must contain ~CC (Figure 5b). 

Fortunately, this condition is easily recognized in the building of span lists. 

As the surface of a polyhedron can be mapped onto the plane, planarity is a 

necessary condition for an abstract polyhedron. 

In practice, nonplanar graphs are so far unknown in organic chemistry 

(barring coordination complexes); however, they might in principle be realized, 

e.g., by the hypothetical Figure 5d. * -- ' . . . . . 

Connectedness is the least number of cuts that will anywhere separate.the 
* -* 

graph. The 3-connected planar graphs sre the abstract 

convex polyhedra. Intuitively, it is obvious that a region bounded only by 

2 edges would be unable to enclose a volume. Steinitz (see Lyusternik, 1963) 

showed that every 3-connected planar trivalent graph could be realized as a .- 

polyhedron. These graphs have , naturally, attracted some interest as a 

meeting point of topology and classic Greek geometry. Nevertheless, a complete 

enumeration is still unknown. fn 1901, Brilckner published figures of the 

trivalent polyhedra for n 5 16; in an abstract and unpublished manuscript (1928) 

h'e also showed 1250 for n = 18. This work, done by hand over several decades, 

was repeated on the computer by Grace (1965) who found some errors in Brkkner's 
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listings, and found 1249. However, even this census admits s6me possibility 

ar being incomplete, though this is remote. Grace generated the polyhedra 

by induction as all possible slicings of the faces of smaller polyhedra. This 

produces many isomorphisms which must be unified; for this, Grace used a ., ?.a, 
criterion, "equisurroundedness", which.16 already known to be too weak, albeit 

for much larger graphs, Therefore, it cannot be rigorously shown that the list 

of 3.249 has not excluded additional form* Q, equisurrounded, but not isomorphic 

with the stated set. The analysis of HC's could afford an independent avenue 

of corroboration at relatively low cost. 

The polyhedra play an important role in the classification of cyclic graphs 

but have no remarkable chemical significance except that they represent the 

most tightly caged polycyclic structures!\2 / Note that many unfamiliar iso- 

morphisms are generated by portraying a polyhedron as a planar mesh, i.e., as 

projected within an arbitrarily chosen face, called the base. The .proJection 

can be visualized as the view of the polyhedron from a point Just outside the 
.- .- 

place of the face chosen as base (tiigure 2). 

W-free ,qraphs. These are proqtly encountered in the 2-connected series, 

utarting with n8 (8(AC:8,1:A) Figure 6). An analysis of the conditions for no-HC 

illuminates some of the combinatorial processes involved in building graphs. C- 

Since all the graphs f& n zil 6 have KC's, an XC-free graph is generated by a 

p,lirticular mode of union of HC's of lower order. The simplest mode is 

bilineal, one edge is cut on each of two smaller graphs and reunited. If w,- 

either of the'edges involved is barred from any HC of its graph, the bilineal 

union will be K-free. This folilows, since the union introduced nodes which 

mus,L be traversed by a path known to be forbidden. 
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In general, an HC-free graph can be canonicated by dissecting it into the 

largest cirbuits it contains. The dissertions are first completed across the 

bilineal (20connecting) unions. If any resulting subgraphs are still H&free, we 

must consider H&free polyhedra as a mathematical, if not a pragmatic chemical 
. ’ ,*-., * 

possibility. 11 

HC-free wlyhedra. .Tait believed that all convex trihedral polyhedra 

contained IX’s and his con,jecture was indeed unchallenged for over 6O.years. 

Hovever, Tutte (1946).retited the conjecture with an example ingeniously proven 

to be HC-free, though with 46 vertices it would defy exhaustive search. 3 

Chemical graphs of this order (24 rings) are out of range of systematic prediction, 

but the argument gives further insight into the combinatoric of abstract graphs. 

We deal here with the.process'of trilineal union. This can be done in 

all possible ways by extracting one node from any source Dolyhedron, leaving 

3 cut edges. This S-cut graph can then replace one node of another graph. 

However, to influence the possibility of forming an HC, the edges must be 
. . . 

subject to some restxictions distinguishing the 3-cut'~omplex fkom a single 

node. The node poses no restrictions. That is, its 3 edges are available in 

any pairwise combination, thus any one of 3 ways. If the corresponding edges 

of the source graph have the same property, i.e., none of the 3 edges is either- 

coqulsory or forbidden, then the 3-cut graph will not influence the occurrence 

of an HC. By induction, the lower order polyhedra that already contain some 

3-connected regions can be passed over in looking for special graphs. A 

systematic survey of the few 4-connected, - i.e., b-connected except for the ,’ 

isorated nodes which are, of course, 3-connected, - graphs (Tab+e 4) shows 
. 

the polyhedron (16CGDIGDF), the smallest with a special edge, nsmely that the 
" 



ones marked are obligatory in any EC of the polyhedron (Figure 7). Tutte 

then replaced'3 nodes of a tetrahedron with a 3-cut graph from (16CGDIGDF) 

leading to the contradiction that all three edges from one node must be 

includ,$ in any HC; hence there can be no HC! in this graph of 46 - 4 + 3114) 

nodes. The cut graph can also be planted at two mutually-exclusive edges of 

the pentagonal prism to give an IX-free polyhedron of 38 - 10 + 2(14) edges. v 4 . 

This is clearly the smallest W-free polyhedron with two 3-connected regiona. 

A smaller K-free polyhedtion may yet be found by analogous studies 'of 

4=lined'?md S-lineal unions, and if so, is Just within the bounds of 

reasonable computational effort. 

ff Grace's list of polyhedra is correct, every one through n18 has an HC. 

This conclusion is corroborated by a detailed consideration of the.properties 

of the graphs nl6 of table 3. By the inductive argument, forms with any 

triangular face -- indeed, any 3-connected region - could be.passed over, 

greatly reducing the computational effort. Of course, from the smallest HC- 
. 

free polyhedron, larger ones can be generated by replacing a node with 6 triangle 

' or larger 3-connected region. 

The HC-free’polyhedra can be classified by the same principles used for 

bilineal unions, as complexes of the largest circuits united over the least -- 

levels of connectedness. , 1 
. ,. , 



While distant from chemical graphs of any reasonable size, these studies 

L do furnish a clearer indication of the sufficiency of HC representations, and 

I of the sources'of exceptions. 

I . 
Recapitulation: the scope of anticipation and recognition, There is no 
.,-a. 

, perceptible rimit except the computation of I-X's and of alternative diSSeCtiOn t0 

restrict the encoding of abstract graph6 either as EC's or as canonicated 

unions of W's, These assignments also facilitate the recognition of isomor- 

phisms between given saphs. 
. 

The anticipation of all pO66ibilitieS pose6 a greater burden. Iiowever, 

.' all the graphs up to n12 (7 rings) have been tabulated together with their 

isomorphisms and symmetries. The series expand6 60 rapidly that firther 

extension would tax the output-printer, and before long the computer itself. 

MaPping and symmetry. Raving explored the tr1hedk.l graphs, we now return 

to mapping chemical atoms on their nodes and bonds or linear chains on their 

edges. Many graphs have substantial symmetry, and the Corresponding by redundant ".- 
. . . . . 

operations must be considered to decide on a canonical representation. Here 

aCain, the EC'S are helpful. If an KC is present , it can also be projected on 

the same graph after any symmetry operation:.!?' Therefore, the whole set of 

symmetry operations is included tjithin the list of the HC's, giving remarkable 

' economy of computational effort to the search for the symmetries, as well as 

a straightforward expression of the operators. To describe a molecular 

structure, it can be mapped on an arbitrary choice of form, and the result then 

subjected to the symmetry operators.,. The. canonical representation satisfies 

SOAR rule, say the highest order listing,.~of the mapped elenepts. Thus, for ‘ 



‘. ‘. 

the morphine nucleus, we would h&ye"& choo~r ww the t'rymmetriea Of'it6 

'd underlyin~grapht (Hgura8). 

'. 
' 

4 
. . 

1 , *-. 
** 

. 

16, 

Since this choice lo readily computable, the human user may be relieved of ' 

the burden to make these tedious calculations. ' 

Besides the linear paths of the cyclic structure, the mapping may also 
..:. .,. 

include specification6 for rUsed edges (L-hedral centers), heteroatom replaoements 

of vertices, and specifications of stereoasymmetry of vertices. The details 

are inevitably fussy and are given elsewhere. After the mapping, each atom is 

numbered in the order of its reference. 

Merrring cycles and trees. Each cyclic structure*Si6 now fully defined, with 

,rules for a canonical code'and numbering of every atom. The structure can then ' 
, 

be handled a6 a node in a tree, the numbering system alloting precise reference 

for the point(s) of connection. . . 

Applications 

This development was needed for a continuing effort to program the 
. , . . 

automatic computation of structural hypotheses to be matched against various 

1, sets of analytical data, especially mass spectra. The growing sophistication of 

instrumental methods has already begun to out$o the chemist!6 capacity to interpret 

the tesults. Since mass spectr&ters araI~ow commercially . I . ' . . . 



available that can generate 10,000 spectra per second, the need for computational 

assistance to make full use of such de-flees is eelf-evident. (Biemann f McMWraY 

1965; Lederberg 1964b) Such devices are also being considered for the automated 

~:explora$on of the planets, which >uts even heavier demands on the local 
1 
intelligence”available t0 the ByStem. 

These applications relate primarily to the possibility of anticipating 

hypothetical structures. The language also provides a format for expressing 

synthetic insights; i.e., the eiementary reactions by which fUnctional groups 

' can be altered or exchanged, We might then expect the ultimate development Of 

computer programs which have been taught a few thousand unit processes, and 

their limitations, and could be challenged to anticipate a Synthetic route 
-- 

from given precursors or to a given end product. Such programs might at 

least assist the chemist by.reminding of a few among myriad possibilities of 

: combining the unit processes learned from the same chemist, or better, from 

a diverse school, For the moment we leave out of consideration the empirical 
-. 

testing in its own laboratory of a few thousand robes chosen on the computer's 

own initiative. 

The nomenclatural applicatioris of any system of canonical forms are also 

self-evident. We ere very nearly at the point where linear notation may again 

be dispensable, since the computer should be able to interpret structural graphs 

as such. Howevtir, a mathematically complete system. of classification of . . . 
structures is still important, regardless of-the notation in which the 

structures are.expressed. . 

The simple graph-fheoret2cal~ideas of DENDRAL could be implemented with a 

; number of posoible notations, The one adopted for DEHDRAL - 64 aims to emulate 
i 
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traditional notation for all linear chains, only the most obvious abbreviations, 

like "3.II for "C.C.C.", and a "repeat" symbol, arbitrarily "/)o being laid on, 

The user must of course understand the principles and notation for the abstract 

cyclic graphs. However, it would be quite reasonable to produce sn abridged 
,..e.. 

version of the Ring Index which would list the carbocyclic equivalents of 

expected foms, and allow the most unskilled assistant to transcribe structurti 

'data in a form readily matched to DRRDRAJ,. 

Some examples of structural codes,,the isomers of alanine, Table 2 are 

appended a6 a challenge to puzzle-minded readers. Hopefully the tedious m6.nual 

of detailed specifications (Lederberg :L96Ga) is not required reading for 

pragmatic understanding of the system. 
'. . 

There are of course many alternat:lve approaches to nothtion reviewed by 

a National Academy of Sciences Coamittce (1964) and appearing fron time to time 

in the Journal of Chemical Documentation. As far as I know none of them ha6 

been addressed to the exhaustive prediction of cananical forms and most of 
c 

them are too complicated to be easily adaptable to -this end. 

Syntax and induction. One of the motives for this study was to uncover 

the kinds of problems that would be encountered in computer-emulation of the 

process of scientific induction from experimental data. A necessary step is a 

means of generating a set of relevant hypotheses. I have been impressed with 

both the difficulty and the utility of establishing a precise syntactical 

framework for the range of hypothe:ses,even in a field as wei'structured as 

organic chemistry. 

Sane years ago, Woodger (1937) attempted to axiomatize developmental and 

genetic biology. His efforts were perhaps too remote from,the experimental 
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” data now available. flowever s he may have pointed the way to a more feasible 

: ~entsrprise, to establish a precise syntax for hypothetical statements in ’ 
1 

bioloa. This is a more mode‘st aim, since it does not purport to deduce which 
! 
: statenients are correct. Bowever, there i8 cver)f good reason why computers . *--. 
j, should compet’e very ruccersfully in the rxerciser of model-btild$ag that 

, preoccupy mqf biOlOgi8t8 today, and with adv8atage to the rigor with which 
I 

they are put togethelr. . . . . . ' 
: : ., 

. I 

.' - 



SYSTENATICS OF ORGA?W MOLECULES. CRAPX TOpOIx)GY AND HAMLlQlV CIRCUITS 

Footnote p. 9. 

1 while this paper was being reviud , another algorithm requiring only about 
I. 

10 n2 steps was dircovered and programmed for routtne me* It depend8 on 

(1) growing a subgraph, adding one node at a time, (2) defining the lirt of 

possible circuits at each level by recursion from the list of prevlour level, an? 

(3) looking ahead 80~30 steps to choore node8 which clore facets of the graph 

80 aa to minimite the sire of the lirt that nnmt be maintained. 

Footnote to P. 12. , 

2 The epeculative “pOlybb~ne8” have 

Organic Chemietry. Polyhedranes and 

Footnote to P. l& 

3 This is no longer true. With a nm 

been diSCU88cd 

Rismaner. J. 

. 

‘I 

by 8Chult8, li.P, : Topological 

Org. memr & 1361 (19651, 

algorithm", Tutte's graph was exhauhed In 

29 seconds of 7090 time. The name algorithm irr al80 ray. apt for finding the 

largest circuits and for forbidden edges. :' 

Footnote to p. 14. 

4. This had already been found by other worker8 aa disclooed in private communicationsr 

D. Barnett , University of Washington and J. Borak, BratirbYa, 

Footnote to D. 14. 

5 Tutte (1960) quotes an example.witb 224 node81 If any PC-free polyhedron has 

fewer than 38 nodes it #Pobablgr bu one Econnected region. w own inYe8tigatlon8 
l 

leave no encourtagaaent for rucb an ex8mple at Iem tbui 56’ 



lQoTmTEs coNTIHcJED 2 
* . . I. 

Footnote to D* 1.5. 

6 ‘. 

f note the following conjecture, that the symmetries of any abrtreet convex 

trihedral polyhedron can be realized in a geometrical polyhedron in 3-apace 

with reflection, i.e. can be aerigned to a point group, However, thir 

condecture ie no% a premire of the method indicated for finding the ~ymmetrieb~ 

The conjecture is plainly inapplicable to &connected or to non-phmar graphrr 

I would be gratefbl for eny refutation, or a formal proof, IIW or otherwiee! 
” .’ I I 
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1 ,WlYH MAPPINO Of 
8f NZOPENYLENE 

. 

L) C 

(b) 

. . 

2. Fig. (a) Benzoperylene and its mapping on a polyhedron (b) which hae 

four isomorphic planar meshes, i.e. four kinde of faces, ae labelled. (c) ia 

the equivalent Bamiltoa circuit. Do not confuse the lethered labels of the 

nodes with abbreviated code for thir graph whibh is 10BCC. The reader may 

enjoy satlefylng b-elf that theae graph. are indeed iramorp~@ (equi-connected)r, 



i .-/ / 

Fin. 3. ilamilton’a Hamilton circuit, Tha abetract dodecahedron, rapferented 
\\I 

4a a plmar map of 20 node8. - -. _- 



26631752 22663175 ’ --5226631-f 

Fig. 4 Symmetries and encoding of a cyclic trivalent graph with 8 nodes. 

There are 16 symmetry operation (8 rotational X 2 reflection). Shown sre 

8 rotationa, and a reflection that could be combined with each of theea. With 

each figure is also a span list; the canonical choice of the 16 (not all distinct) 

ia the lowest valued span Hat, 17522663, calculated with the upper rightmost node 

as the initial. This can then be reduced to the code AEBB. or even more econo- 

mically AEB, as outlined in the text. 



(a) 1. (b) (cl id) 

Finl Non phMr graphs. (a) and (b) are Kuratoweki’e findmental forms, 

.&valent end 3-valant reapactively. At laart one of thma mot ba included in ~ 

any nonplanar graph. (c) ir a projection of (b) aa a tetrahedron with an additional. 

internal’ chord,’ mad (d) i, l hypothetical molecular structure that mapr cm to (c) l 



Figare 6 
c4ption follow 

0 
0 

-- --. 

CD 
2 

8AAA , 

Q I ’ 
BABD 

\ c3 
8AEC 

\ Q 
GAB 

\ 0 / 
8AAB 

8BBB 

•l 
bA 

@ \ 

BADD 

lxl 
bB 

6~ 

\ 
,’ Q 

8AElC 

\ 0 
8AEB 

BCEC 8(6AC:B.1:2) 

Fifi. 6 Th. cyclic, trivalent planar grepha with 8 or fewer nodes. where 

possible, these are represented as Hamilton circuit.. the nodes of the graph 

being projected as vertices of . polygon which conetitutee the circuit, the 

remaining edges ahown a. chords, Each of these figures can alao be drewn em l 

plsnar mop. The codea are ebbreviated forms from which the graph can be recon- 

structed. Note thet BBCC end BBDD ore ieomorphic despite the incongruence of the 

Hamilton circuita. The abstract polyhedra of thio liet include tvo degenerate 

form4 (-, circle; 2. hoeohedron) and 4B, tetrahedron: 6BC, prism: 8 CEC, cube: 

BBCC s BBDD, pentagonal wedge. One of these graph., 8(6C:8.1:2) ha. no Hamilton 

circuit. and ia claaalfied aa a union vhich aplicea the B’th edaa of graph 6AC 

with the l’at edge of graph 2. ColPplete liata of tha grapha through 12 nodee 

era preeented in Lederberg (1965). 
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7. Fig. A graph with special edges and two W-free polyhedra. (a) has 16 

nodes. The marked edgee are included in any BC of-the graph. Hence’ the 3-cut 

(b), with 15 nodes, obligates the marked edge ar part of an EIC of any graph in 

which (b) le lneerted. !Chie leads to a contradiction, i.e., no Hamilton circuit 

in (c) Tutte’a greph, with 46 nodes end (d) with 38 nodee, 

- 
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MXILTON CIRCUIT REPRESENTATXONS 

Fig. 8. Morphine nucleuet aynmetry. and choice for coding. The dashed edge 

7 --8 etanda for the spire- (quadrivalent) center in the morphine ring; however, 

4 permutations are posrible under the eymnetry operationr. ‘In the canonical fo?, 

after account ie taken of the mapping of the chemical graph onto the abetract graph, 

this edge ir iabelled 2 -3. The canonical map would be coded ae 

@BDD-N-3,$, e , 3 OJ,,C) each comma marking the next edge of the map. Thir code , . 

is rufficient input for the computer program to reconstruct the molecular rtructure 
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5 
6 
?- ' 
8 
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10 
11 
12 . 
13 
14 . 
15 

-16 
17 
18 
19 
20 
21 . 
22 
23 
24 

ENtiMERATION OF THE ALKANES 
STEREISOMERISM DISREGARDED 

we.. - --- - ----.--,- *-’ , 

I 

:: . 

1: 

2, 
'3 
51 
9, 

. 18' 
35, 

. . 75 
159 . 
355 
802' 

1858' 
4347' 

10359' 
24894 
60523. 

148284% 
366319' 
910726 

2278658 
5731580 

14490245 
25 .-.-%7?zt!L!3 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

. . * 

..--__, 
93839412; 

240215803' 
617105614 

1590507121:a 
411184.6.763 

1066030,779li 
27711253769'~ 
72214088660 

188626236139 
493782952902 

1295297588128 ., 
3404490780161 
9064747474595 

23647478933969 
6248180114734114c 

165351455535782. 
438242894769226' 

1163169707886427 
3091461011836856~ . 
8227162372221203 

21921834086683260 _ 

58481806621986230~ 
*' 1561923664745.87260 

-i 

417612400765371900 
1117743651746931000 

Yable 1. Enumeration of isomerio alkanes (disregarding atereoisomerism), from 

methane to pentacontane. The value8 marked * disagree in Borne digit8 with the 

values oaloulated manually by Hense and Blair (19%) and Perry (1932). While 

*hia ie an amueing exeraise for the computer, the discrepancies, needless to Bay, 

will have no pragmatio chemioal significance. In any ease, a proportion of the 

struoturee will be unrealisable o&ng,to eterio hindrance. 



.C.C.C O.N=O 
l C..CC O.NeO 
.Co C=C N*OeO 
.C.C-C O.N.0 
.C.C=C O.OeN 
.C.C=C N..OO 
.C-C.C N.O.0 
.C=C.C O.N.0 
.C=C.C 0.O.N 
.C=C.C N..OO 
.C.=CC N.O.0 
.C.=CC Oa NeO 
.C.=CC Oo OeN 
.C.=CC N..OO 
.C.C.N O.C=O 
.C.C.N C.-O0 
.C.N.C O.C-0 
.C.N.C Ce=OO 
.N.CeC OeC-0 
.N.C.C C.-O0 
.C..CN O.C-0 
.C..CN C.=OO 
.N. .CC o .c =o  
.Ne.CC C.-O0 
.C.C=N C.O.0 
.C.C-N O.C.0 
.C.C-N 0.O.C 
.C.C=N C.eOO 
.C=C.N C.O.0 
.C-CeN OeC.0 
.C=Ca N OeOa C 
.C=CeN C.000 
.C.N=C Co 000 

P .C.N-C O.CeO 
.C.N-C 0.O.C 
.C.N-C C..OO 
.C=N.C C.OeO 
.C=N.C OeCa O 
.C-N.C 0.O.C 

C...C C=N 0.0 
C . ..C N-C 0.0 
C.9.C CmN OeO 
C.=.C NeC OeO 
C-..C CON 0.0 
c=.. C N.C 0.0 
C . ..C C.0 N-O 
C ..C 0.C N=O 
C...C C-O No0 
C..eC C-O 0.N 
C ..=C Co0 No0 
C..=C 0.C N.0 
C.=.C CeO N.0 
C.-.C Co0 0.N 
C=.. C CeO NbO 

C . . ..C C 0 N=O 
Ceb4.C pi 0 C-0 
C....C 0 0 C=N 

.CaN..C C..OO 
.N.C=C C.O.0 
,N.C=C O.C.0 
.NeC-C O.OmC 
.NaC=C C.100 
.N=C.C C.O.0 
.N*C.C O.CaO 
.N=C.C 0.O.C 
.N=C.C C..OO 
.C.*CN C*O.O 
.C:r=CN O.CaO 
.Ce=CN 0.O.C 
.C.=CN C..OO 
rC-.CN C.OeO 
.C=.CN O.C.0 
.C=.CN 0.O.C 
rC-.CN C..OO 
.CeCeO CaN=O 
.C.C.O C=NeO 
.C.C.O ry.c=o 
.C.C.O N-C.0. 
.C.C.O O.C=N 
.CmC.O O.N-C 
.CaC.O C.=NO 
.CaCeO C=eNO 
.C.O.C C.N-0 
.C.O.C C=N.O 
.C.O.C N.C=O 
.C*O.C NC.0 
rCe0.C O.C-N 
,CoO.C OaN=C 
.CIOIC C,‘NO 
rCe0.C C=.NO 
.O.C.C C.N-0 
r0.C.C C-N.0 
.O.C.C N.C=O 
.OeCeC N=C.O 
l O.Ca C O.C=N 

C=..C C.0 0.N 
C=..C 0.C N.0 
C=r .C 0.C 0-N 
Ca b a N C=C OeO 
C,=.N C.C 0.0 
Cm..N C.C 0.0 
C...N C.0 C=O 
C.eeN C-O OeC 
Ca a =N Ca O Cd0 
C.-ON C.0 OeC 
C-..N C.0 C.0 
C=..N C.0 0.C 
C-�.N 0.C 0.C 
C.a .0 C.C N=O 
CIIIO C-C NeO 

Ceo .eC 0 0 N=C 
Ce,r r N 0 0 C-C 

.O.CeC O.N=C 

.O.C.C C.=NO 

.O.C.C C=.NO 

.C.rCO C.N-0 
rC..CO C-N.0 
.C,.CO N.C=O 
.C..CO N-C*0 
.C..CO ObC=N 
.C..CO O.N=C 
.C.aCO Ce=NO 
.C..CO C=.NO 
.C.C-0 C.N.0 
.C.C=O C.0.N 
.C.C-0 N.C.0 
.C.C-0 N.OeC 
.C.C=O O.CaN 
.C.C=O ObNaC 
.C,C-0 CIINO 
.C.C=O N..CO 
.C-C.0 C.N.0 
.C=C.O C.0.N 
.C=C.O N.C.0 
.C=C.O N.0.C 
.C=C.O O,CaN 
.C=C.O 0,N.C 
.C-C.0 C..NO 
.C=C.O N..CO 
.O.C=C CaNa 
.O.C=C CeOeN 
l O.C=C No Co O 
l O.C-C N.0.C 
r O.C=C 0o C.N 
.O.C=C 0.N.C 
.O.C=C C..NO 
.O.C=C N..CO 
.C.=CO C.NeO 
.C.=CO CIOIN 
r Co =CO No CeO 

C . ..O C=C 0.N 
C..=O CeC No 0 
C.=a O CeC NeO 
C.=.O CeC OeN 
C=..O C.C N.0 
Cr .. 0 C.C 0.N 
C . ..O C.N C=O 
C..eO N.C C-O 
Ca r .0 C=N CeO 
C . ..O C=N 0.C 
C . ..O N-C C.0 
C ..a 0 N=C 0.C 
C..=O CON C.0 
C.e=O N.C Cm0 

.c.-CO N.0.C 

.C.-CO 0.C.N 

.C.=CO 0.N.C 

.C.-CO C..NO 

.C.=CO N.eCO 

.C-.CO C.NeO 

.C-.CO C.0.N 

.C-.CO N.CaO 

.C=*CO N.0.C 

.C-.CO 0.C.N 

.C-.CO 0.N.C 

.C-.CO C.eNO 

.C-.CO N..CO 
=C.C.C N.O.0 
=C..CC N.O.0 
-C.CaN C.O.0 
-C.C.N C.rOO 
=C.N.C C.OeO 
=C.N.C C..OO 
-N.C.C C.O.0 
=N.C.C c. .oo 
-C.rCN C.OeO 
=C. .CN Ce 000 
4.C.O C.N.0 
-C.C.O C.0.N 
=c.c.o F!.C.O 
=C.C.O N.0.C 
rC.C.0 C..NO 
=CaO*C C.N.0 
=C.OeC C.0.N 
=C.O.C N.C.0 
-CeOeC N.0.C 
-C.O.C C..NO 
=C..CO C.N.0 
=C..CO C.0.N 
=C..CO NaCaO 
-C.rCO N.0.C 
-CoeCO CIONO 

C.=.O C.N C.0 
C.=aO CeN OeC 
C.=* 0 NwC Cm0 
c. 9.0 N.C OaC 
Ct..0 C.N C.0 
C=..O CaN OaC 
C=.eO N.C Co0 
C=rrO N.C OeC 
N..rC C-C 0.0 
N . ..c c.0 c-o 
N . ..c c-o 0.c 
N.a.0 CeC C=O 
N...O C=C C.0 
N.rrO C-C 0.C 

Table 2, The isomers of alanina (.C..CN C.-O0 ) systematically ordered in DENDIIAL-64 
notation. Each “.” or “8” stands for a single or double bond respectively which 
must be satisfied by a trailing atom or radical. This will be the first previously 
unreferenced item in the list to the right of the bond. A leading bond constitutes 
a central link, which must then be followed by two radicals. A space is used 
to separatethe primary radicals for convenience in reading but has no coding 
significance. Some 25 of these topological possibilities are recognized chemical 
forms; an equal number are their tautomers. Most of the remainder are either p&oxides 
or Schiff bases or similar unstable forms. A few, like hydracrylaldoxime, (.C.C.O C-N.0) 
might be realizable but were not found in a cursory search of the literature. 
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Table 3. - 

- * _ 
.' '_ - _ . . ; . - _’ : _ . .:-, ...'L m- .- y, * 

: 
. i . .a.. 

:. . . . . . .~ .. . . . :- : -:s .._ .; -_. *_ i 
. * . . . 1. . * . .-. .:-. .-. \..'. -. i . . - . . ,< ,- _. . . _.. _ :_. 

*I -. : _ _- 
. - . .- . :. - a_. -: . . . ._' '.. .- -. . . . . . . -. 'es : 

lumbers in brackets are the count of genera of known examp'les from the ring index. f signifies all. . 
Spiro forms are excluded from this count. _... _I . _ . . .:_ . . . . ._.-* - . 
1 Pig&es drawn fn Lederberg (1965) 

. *' ., . . .'_.. . 
* Lirted in Lcde&rg (1965) 

-.. l . / ;-; 1, .. - "._ ', 
- -,. .' 

._- .. . . _,..- a.- ,* ., 

: According to Grace (1965). 
. . -. . . .' . :. w 

- t ‘. - w is one less than the number of faces of a polyhedron. --. _.___ Ir_. . _ _ ,_. . . - 


