Specification of the Process Specification Language (PSL)

Version: 0.98

by:

Krishna N. Jha

ACT, Boeing Corp., Philadelphia, PA

for NIST

Aug. 17, 98

�PSL Syntax

Notational Convention

We present the PSL syntax in extended BNF format, marked up for easier readability. (The exact, unadulterated syntax in the BNF format is provided in the appendix.) We follow the following notational guidelines in the syntax specification:

 The reserved words (e.g. And) , operators (e.g. +) and other key-symbols (e.g. :) are highlighted with Bold formatting.

 The terminals begin with uppercase letters, non-terminals begin with lowercase letters.

 In extended BNF, the following notational convention is used:

 [X]		denotes an optional X		i.e. 0 or 1 occurrence of X ;

 X* or {X}*	denotes optionally multiple X	i.e. 0 or more occurrences of X ;

 X+ or {X}+ 	denotes potentially multiple X	i.e. 1 or more occurrences of X ;

 A list (e.g. var1, var2, var3) of elements represented by (syntax-)symbol X is represented as: List^X. This is a shorthand for the following high-level extra-BNF rule:

List^X : List^X , X

|	X

|	

;

 A set (e.g. [var1, var2, var3]) of elements represented by (syntax-)symbol X is represented as: Set^X. This is a shorthand for the following high-level extra-BNF rule:

Set^X	:	[List^X]

;

 To improve the readability of the syntax-rules, we often delete the ending ; of a syntax-rule-specification if such an action introduces no ambiguity in the reading of the rule.

�The Syntax

psl		:	global*

		|	class*

		;

global	:	Annotation: Set^ itemValuePair;

|	Ontology: Set^ itemValuePair ;

		;

class: Class className [: className (List^arg)]

Annotation: Set^ itemValuePair;

Ontology: Set^ itemValuePair ;

Parameters : List^varDefinition ;

[Variables: List^varDefinition ;]

{ attribute ; }*

EndClass

className	:	Symbol

attribName	:	Symbol

attribute	:	attribName : valuesAttribute

		|	attribName : conditionAttribute

		|	attribName : processStepsAttribute

valuesAttribute	:	Values : [guardCondition] : List^value

conditionAttribute	:	Condition : [guardCondition] : condition

processStepsAttribute	:	ProcessSteps : [guardCondition] : processStepList

guardCondition	:	condition

		;

itemValuePair:	itemName : value

itemName	:	Symbol

label	:	Symbol

processStepList:	processStepList , processStep

		|	processStepList | processStep

		|	processStep

processStep	:	(processStepList)

		|	basicStep [: label]

basicStep	:	If (condition : thenProcessStepList [: elseProcessStepList])

		|	While (condition : processStepList)

		|	predicateName (List^arg)

		|	value [= value]

thenProcessStepList	:	processStepList

elseProcessStepList	:	processStepList

varDefinition		:	baseVarDefinition [= value]

baseVarDefinition	:	varName : className (List^arg) [[expr]]

			|	varName : baseType

baseType	:	Integer

		|	Real

		|	Boolean

		|	Symbol

condition		:	logical_expr

		;

arg		:	[varName :] value

value	:	expr

		|	valueSet

valueSet	:	[List^value]

varSet	:	[List^varName]

		;

expr		:	expr + expr

		|	expr - expr

		|	expr * expr

		|	expr / expr

		|	- expr

		|	(expr)

		|	baseExpr

baseExpr	:	baseLhsValue

		|	baseLhsValue [List^expr]

		|	predicateName (List^arg)

		|	number

baseLhsValue:	varName			/* e.g. acctgDept	*/

		|	VarAttribName		/* e.g. acctgDept.DeptNumber */

constant	:	number

		|	String

number	:	Integer

		|	Real

varName	:	Symbol

		;

logical_expr	:	logical_expr And logical_expr

		|	logical_expr Or logical_expr

		|	Not logical_expr

		|	(logical_expr)

		|	comparison

		|	expr

		|	True

		|	False

comparison	:	expr == expr

		|	expr >= expr

		|	expr > expr

		|	expr <= expr

		|	expr < expr

		|	expr =/= expr

predicateName:	Symbol

		;

�The Lexicon

The various components of the PSL lexicon are shown below.

Reserved Words

And

Annotation

Condition

Class

EndClass

If

False

Integer

Not

Ontology

Or

Parameters

ProcessSteps

Real

Symbol

True

Values

Variables

While

Symbolic Operators

=

+

-

*

/

==

=/=

<

>

<=

>=

:

;

,

|

.

(

)

[

]

Variable Names

The variable names (including the class-names) begin with an alphabetic character, followed by any number of alphanumeric or underscore (i.e. _) characters.

Numbers

A number may be an integer (e.g. 123) or a real (e.g. 12.54) number.

String

A string is a sequence of characters enclosed within matching single-quotes (i.e. ’) or double-quotes (i.e. ”). A string may not contain a quote. A string may span over multiple lines.

Predicate Names

The predicate names, similar to the variable names, begin with an alphabetic character, followed by any number of alphanumeric or underscore (i.e. _) characters.

VarAttribName: Accessing Object Attribute

An attribute (e.g. Attrib) of an object (e.g. Obj) is referenced using the dot (i.e. .) operator (e.g. Obj.Attrib) . Within a class, one refers to its own attributes simply by name e.g. within a class with attribute Attrib, one can refer to the attribute as Attrib. (Note that this implies that the variable-names and the attribute-names must be different from each other i.e. the same name-space contains the variable-names and the attribute-names.)

�

PSL Semantics

Global attributes

A PSL file may contain two kinds of global attributes: Annotation, and Ontology.

An Annotation attribute provides an informal documentation for the PSL file. An item in an item-value-pair is a user-defined name e.g. Description, or Author. An example of annotation is : [Description: “A PSL-file for drilling processes.”].

An Ontology attribute specifies the default ontology for all the classes in the PSL file which do not specify an ontology themselves. If a class itself specifies an ontology, the class-specified ontology augments the default ontology for that class if there are no conflicts. If there are conflicts between the two ontologies, the class-specified ontology supersedes the default ontology for that class.

Classes and Objects

A class represents a related set of attributes of type: Values, Condition, and ProcessSteps. A small number of attributes are predefined in the language, others can be defined by the users.

The Types of Class Attributes

The different types of user-definable attributes in a class are:

 Values attribute: This attribute takes a list of values (including only one value) as its attribute-value. On being accessed through the use of the dot operator on the object (e.g. Object.attribName), when the attribute is valid (i.e. the associated guard-condition is true), it unifies with the set (including a single value) of the associated values.

For example, assuming an object Obj has an unguarded Values attribute: Coordinate containing a list of values: X, Y, Z, the expression Obj.Coordinate unifies with the set of the values of X, Y, and Z from the object Obj e.g. [2.5, 4, 3.6] . (In case a single value is associated with the Values attribute, a single value (rather than a set of one element) is unified with.)

 Condition attribute: This attribute takes a conditional expression as its attribute-value. On being accessed through the use of the dot operator on the object (e.g. Object.attribName), when the attribute is valid (i.e. the associated guard-condition is true), it unifies with the truth-conditional value (i.e. True, or False) of the associated expression.

For example, assuming an object Obj has an unguarded Condition attribute isEqual with the value: (X == Y), invoking Obj.isEqual unifies with the truth-conditionality of the conditional expression (X==Y) from the object Obj.

 ProcessSteps attribute: This attribute takes a list of a potential mixture of sequential and parallel process-steps as its attribute-value. A guard-condition associated with the ProcessSteps attribute represents the condition which must be true before the first process-step(s) may start. (A class may have a maximum of one ProcessSteps attribute which is not named after itself.) A process-step is represented either through a process-instantiation (described later) of a class or through a basic process-step. A process-step derived by instantiating a (generic) process represents an instance of the (generic) process.

The sequentiality of the process-steps is specified using the , and | operators. Sequential process-steps are specified using the , operator. For example, Task1 , Task2 specifies that Task1 be executed before Task2. Asynchronous process-steps are specified using the | operator. For example, Task1 | Task2 specifies that Task1 and Task2 may be executed asynchronously. (We have no
PSL-
language-provided
 representation to specify that one of the tasks: Task1 or Task2 may be executed. We can simulate that using ontology-provided predicates.)

Predefined Attributes

The predefined attributes of a class include:

 Annotation: The value of this attribute is a set of item-value pairs describing the class in an informal manner (e.g. for documentation). An item in an item-value-pair is a user-defined name e.g. Description, or Author. An example of annotation is : [Description: “A class for the drilling-machines.”].

 Ontology: The value of this attribute is a set of item-value pairs specifying the ontology needed to interpret the class correctly and completely. An item in an item-value-pair is a user-defined name e.g. Version.

 Parameters: This attribute contains the definitions of the arguments being passed to instantiate the class in order to create an object. When creating an instance of a class, one must supply the values for the required arguments (i.e. ones without default values), and, optionally, the values for the optional arguments (i.e. ones with default values). These parameters can be referenced inside the class. (The Parameters, in other words, specify the arguments to the class.)

For example, a class may specify the following parameters:

distance:	integer,			// required argument

gasPrice:	real	= 1.25; 		// optional argument

One can specify the arguments to the class by position (i.e. first argument maps to the first parameter, second argument maps to the second parameter, and so on), or by parameter-names i.e. using the parameter-name : argument pairs. All the arguments are passed by value only.

 Variables: This attribute contains the definitions of the various objects used in the class. (The Variables, in other words, specify the local variables of the class.)

All the variables used in a class must be defined. A variable used in a class must have been defined either in the Variables or in the Parameters attribute.

Objects from Classes

A user can instantiate a class by supplying its arguments using the scheme: ClassName(argsList) to create an object from the class. For example, to create an object of class Department, one could use the expression: Department(Number: “Act123”, Name: “Accounting Dept.”).

In PSL, we provide for two kinds of instantiations of a class: object-instantiation, and process-instantiation. An object-instantiation occurs when a class is instantiated in Variables or Parameters attribute. A process-instantiation occurs when a class is dynamically instantiated outside of these two attributes e.g. in a ProcessSteps attribute.

�
The object-instantiation of a class, in the Variables or Parameters attribute, entails the following instantiation-steps in the given sequence:

 The class-parameters are mapped with the supplied arguments. If arguments are supplied by position, they are mapped by position. If the arguments are supplied by name, they are mapped by matching the parameter-names.

 Its parent class, if any, is instantiated with the specified arguments.

 The argument-validity-check attribute (i.e. a Condition attribute named after the class itself) is evaluated for truth-conditionality. If the attribute evaluates to true, further steps in the instantiation are carried out. Otherwise, if the attribute evaluates to false, no further steps in the instantiation are carried out, and an appropriately initialized Instantiation-Error-Object (to be defined in ontology) is returned.

 The constructor attribute (i.e. a ProcessSteps attribute named after the class itself), if any, is checked for its associated guard-conditions (if any). If the guard-condition of the constructor attribute evaluates to true, the associated process-steps are evaluated (satisfying the specified steps-ordering) and the next instantiation-step is taken only after the evaluation of all the process-steps is completed successfully. Otherwise (i.e. the guard-condition evaluates to false, or the evaluation of process-steps completes unsuccessfully), no further steps in the instantiation are carried out, and an appropriately initialized Instantiation-Error-Object (to be defined in ontology) is returned.

 An instantiated copy of the class, semantically speaking, is provided.

The process-instantiation of a class, outside of the Variables or Parameters attribute (e.g. in a ProcessSteps attribute), entails the following instantiation-steps in the given sequence:

 The class is object-instantiated as specified above.

 The non-constructor ProcessSteps attribute (i.e. the ProcessSteps attributes named not after the class-name itself), if any, is checked for its guard-conditions. If the guard-condition for a ProcessSteps attribute evaluates to true, its associated process-steps are ready for evaluation (satisfying the specified steps-ordering).

 After all the process-steps have been evaluated successfully, it evaluates the values from the output attribute (i.e. a Values attribute named after the class). The values from the output attribute are provided as the result of the process-instantiation.

Specially Named Attributes of the Class

A class may contain attributes named after its class-name. Such attributes are special in the sense that they are used during object-instantiation.

 A Condition attribute named after the class: argument-validity-check attribute: The conditional expression associated with such an attribute is evaluated during object-instantiation, and the instantiation proceeds if the expression evaluates to true.

 A ProcessSteps attribute named after the class: constructor attribute: The process-steps associated with such an attribute are evaluated during object-instantiation.

 A Values attribute named after the class: output attribute: The values associated with such an attribute are returned at the end of a class’s evaluation of all its process-steps.

User-Defined Attributes

A user may define various kinds of attributes in a class. Each attribute is associated with a condition called the guard-condition. A user-defined attribute is valid only when the associated guard-condition is true. (When no guard-condition is specified, it is assumed to be trivially true.) The value(s) returned from an attribute are valid only when the attribute is valid. The status (e.g. valid, invalid) of an attribute (e.g. X) can be determined through the object status(Attribute) (e.g. status(X)).

The Parent Class

A class may optionally specify a parent-class. The class inherits the user-defined attributes from its parent-class. The attributes of the class are a union of the inherited attributes and the local attributes. In case of a conflicting attribute (i.e. the parent class and the local class both have an attribute with the same name within a section), the local attribute overrides the parent attribute.

No Assignment in PSL

No assignments can be carried out using PSL constructs i.e. variables in PSL may not be reassigned after their first initialization. When an entity is not modified after its first initialization, we can use the equality operator (i.e. =) inside the
ProcessSteps
 attribute to model assignment-like behavior. For example, to specify that the result of a drilling operation is a hole (say, Hole_1), we can use: DrillOp() = Hole_1. (Or, equivalently, Hole_1= DrillOp().) We can then use Hole_1 in subsequent operations without modifying it e.g. we can specify the screwing of a bolt (say, Bolt_1) into the hole as: ScrewBolt(Bolt_1, Hole_1).

What we cannot specify, without resorting to extra-logical operators (which the ontology, if it so chooses, may provide), is the modification of a variable using assignment. For example, we cannot specify that the result of drilling operation on a part (say, Part_1) is the part with a hole as: DrillOp(Part_1) = Part_1. This is because the part is different after the drilling operation (i.e. the part has a new hole in it) and, as such, is really a different part and must be modeled as such. Thus, a correct representation for the current example may use two parts of the same basic type to model the part before drilling and after drilling. Assuming Part is declared as an array of two element, a correct specification for this operation may be: DrillOp(Part[1]) = Part[2] .

�Sample Examples in PSL

Example 1: PIF to PSL Representation

We present a PSL representation for the example process encoded in PIF in the PIF specification document: PIF: The Process Interchange Format v.1.2 (dated: Dec. 8, 1997). (You can download a MS-Word formatted version of this document from: ftp://splicer2.cba.hawaii.edu/jl/pif/pif1-2.doc .)

The PIF-representation for the example process is presented on pp.38-46 of the PIF specification document. Please review the PIF specification document for the PIF-representation of the example process.

Brief Overview of the Example Process

A brief overview of the example process, borrowed from the PIF specification document, is presented here for convenience.

The example design project is composed of five activities and a design team with four designers. The precedence network of the activities and the task responsibilities of the Agents are illustrated below:

� EMBED Visio.Drawing.4 ���

�PSL Representation of the Example Process: Version 1.

In version 1 of the PSL representation for the example process, a simple representation is presented. (We assume that the italicized predicates and operators are provided by the underlying ontology.)

Class PSL_Example_1_V1

Annotation:	 [Descriprion: “PSL Representation for the example in PIF-specification, version 1”];

Ontology:		[Name: Gruninger, Version: 0.5] ;

Parameters:

architectName:			String	= “Robert Callahan”,

electricalEngineerName:		String	= “Cristina Marconi”,

mechanicalEngineerName:	String	= “Gary Fassbinder”,

projectManagerName:		String	= “Ann Rollins”;

Variables:

	architect_1:		Architect(architectName),

	electrical_engineer_1:	ElectricalEngineer(electricalEngineerName,

[“Electrical Skill”, “Mechanical Skill”]),

	mechanical_engineer_1:	MechanicalEngineer(mechanicalEngineerName),

	project_manager_1:	ProjectManager(projectManagerName,

[“Electrical Skill”, “Mechanical Skill”, “Management Skill”]);

ResourceNeeded:	Condition: 	overTime(PSL_Example_1_V1):

	isAvailable(architect_1) And

	isAvailable(electrical_engineer_1) And

	isAvailable(mechanical_engineer_1) And

	isAvailable(project_manager_1) ;

Steps:	ProcessSteps: ResourceNeeded :

	Architecture_Design_1(architect_1) 	: Step1,

	Electrical_Design_2(electrical_engineer_1) |

	if (status(delayed, Step1, Step1.end):	// status of Step1at Step1.end

		Mechanical_Design_4(mechanical_engineer_1)	// then

		: Mechanical_Design_3(mechanical_engineer_1)),	// else

	Design_Review_5([project_manager_1, architect_1,

electrical_engineer_1, mechanical_engineer_1])

		;

EndClass

�PSL Representation of the Example Process: Version 2

We present a slightly more detailed and accurate model of the example process in version 2. (We assume that the italicized predicates and operators are provided by the underlying ontology.)

Class PSL_Example_1_V2

Annotation:	“PSL Representation for the example in PIF_specification, version 2” ;

Ontology:		[Name: Gruninger, Version: 0.5] ;

Parameters:	

Architect_1:	Personnel= Personnel(“Robert Callahan”, “Architectue Skill”),

ElectEngr_1:	Personnel= Personnel(“Cristina Marconi”,

[“Electrical Skill”, “Mechanical Skill”]),

MechEngr_1:	Personnel= Personnel(“Gary Fassbinder”, “Mechanical Skill”),

ProjectMgr:	Personnel= Personnel(“Ann Rollins”,

[“Electrical Skill”, “Mechanical Skill”, “Management Skill”]);

Variables:

	ElectDesign:	ElectricalDesign()[3],

	MechDesign:	MechanicalDesign()[3],

	isElectDesignRevwd:	Boolean,

	isMechDesignRevwd:	Boolean;

ParamsCheck: Condition: :

hasSkill(Architect_1, “Architecture Skill”) And

hasSkill(ElectEngr_1, [“Electrical Skill”, “Mechanical Skill”]) And

hasSkill(MechEngr_1, “Mechanical Skill”) And

hasSkill(ProjectMgr, [“Electrical Skill”, “Mechanical Skill”, “Management Skill”]);

PSL_Example_1_V2:	Values :		atEndTime(Steps):	// output

	isElectDesignRevwd,

isMechDesignRevwd;

ResourceNeeded:	Condition : :

	availableOverTime(Architect, Step1) And

availableOverTime(Architect, ReviewStep) And

	availableOverTime(ElectEngr_1, ElectStep) And

availableOverTime(ElectEngr_1, ReviewStep) And

	(availableOverTime(MechEngr_1, Mech3Step) Or

availableOverTime(MechEngr_1, Mech4Step)) And

availableOverTime(MechEngr_1, ReviewStep) And

availableOverTime(ProjectMgr, PSL_Example_1_V2) ;

Steps:	ProcessSteps: ResourceNeeded :

	Architecture_Design_1(Architect) = [ElectDesign[1], MechDesign[1]] : Step1,

	Electrical_Design_2(ElectEngr_1, ElectDesign[1]) = ElectDesign[2] : ElectStep |

	if (status(delayed, Step1, Step1.end):	// status of Step1 at Step1.end

	 (Mechanical_Design_4(MechEngr_1, MechDesign[1]) = MechDesign[2]

: Mech4Step):

	 Mechanical_Design_3(MechEngr_1, MechDesign[1]) = MechDesign[2]

: Mech3Step),

	Design_Review_5([ProjectMgr, Architect, ElectEngr_1, MechEngr_1],

[ElectDesign[2], MechDesign[2]]) =

[ElectDesign[3], MechDesign[3]] : ReviewStep,

	isElectricalDesignReviewed = True,

	isMechanicalDesignReviewed = True,

		;

EndClass

�Example 2: PIF to PSL Representation

For the second example of PIF-to-PSL representation, we choose Steve Polyak’s Supply Chain Process specification represented in PIF. (You can fetch his Supply Chain Process specification (in PIF) and the associated PSV from: http://www.dai.ed.ac.uk/students/stevep/pif/supply/supply.pif

and http://www.dai.ed.ac.uk/students/stevep/pif/supply/supply.psv respectively.)

Brief Overview of the Example Process

The objects and the processes and the temporal relationships between the processes from the example process are illustrated below. (The illustrations are my attempt at capturing Steve Polyak’s intentions from the PIF coded example process. As such, the illustrations may be incomplete and/or incorrect. Your help to complete/correct them is welcome.)

Object-Classes in the Example Process

The object-class-hierarchy of high-level object-classes (which include agents, and timepoints) in the example is represented below.

�

�Process-Classes in the Example Process

The process-class-hierarchy (of high-level process-classes) from the example is presented below.

� EMBED OrgPlusWOPX.4 ���

�Process-Flow for the Example Process

The process-flow for the example process is illustrated below.

�

�PSL Representation of the Example Process

(We assume that the italicized predicates and operators are provided by the underlying ontology.)

Class Handle_Customer_Order_V1		// called Replenish_Inventory process in the PIF example

Annotation:	“PSL Representation (V. 1) for the Handle_Customer_Order (Replenish_Inventory ?) process in the example.” ;

Ontology:		[Name: Gruninger, Version: 0.5] ;

Parameters:	

	Product_1:		Product(),

	Customer_1:		Customer(),

	Retailer_1:		Retailer_V1(),

	Distributor_1:		Distributor();

Variables:

	RetailSalesOrder_1:	RetailSalesOrder()[2],

	Employee_1:		Employee(Company: Retailer_1);

NeededResources :	Condition :	overTime(Handle_Customer_Order_V1):

	isAvailable(Employee_1);

Steps:	ProcessSteps : NeededResources :

	Receive_Order(Employee_1, Product_1, Customer_1) = RetailSalesOrder_1[1],

	Gather_Order_Details(Employee_1, RetailSalesOrder_1[1])= RetailSalesOrder_1[2],

	Check_Order_Details(Employee_1, RetailSalesOrder_1[2]),

	if (Detect_Condition(Employee_1, RetailSalesOrder_1[2], Retailer_1.Inventory):

Replenish_Inventory_V1(Employee_1, RetailSalesOrder_1[2], Distributor_1)

)

		;

EndClass

Class Retailer_V1

Annotation:	“PSL Representation (V. 1) for the Retailer.” ;

Ontology:		[Name: Gruninger, Version: 0.5] ;

Parameters:	

	Number:		String = “r001”,

	Name:		String = “Retailing Company”,

	Address:		String = “1 Retailer Street”,

	Departments:	List(Department),

	Inventory-1:	Inventory(),

	LoadingDocks:	List(LoadingDock);

Inventory:	Values :	:

	Inventory-1;

EndClass

�Class Replenish_Inventory_V1		// called Send_Order in the PIF example

Annotation:	“PSL Representation (V. 1) for the Replenish_Inventory (Send_Order ?) process in the example.” ;

Ontology:		(Name: Gruninger, Version: 0.5) ;

Parameters:	

	Initiator:		Employee(),

	RetailSalesOrder:	RetailSalesOrder(),

	Distributor_1:	Distributor();

Variables:

	PL_1:			PurchaseLedger(),

	AccountingDept_1:	AccountingDept_V1(PL_1),

	ProductReplenishmentOrder_1:	ProductReplenishmentOrder(),

	Employee_1:		Employee(Company: Initiator.Company);

NeededResources:	Condition :	overTime(Replenish_Inventory_V1) :

	isAvailable(Employee_1);

Steps:	ProcessSteps : NeededResources :

	Send_Order(Employee_1, RetailSalesOrder_1, Distributor_1)= ProductReplenishmentOrder_1 |

Request_Prepare_Payment(Employee_1, RetailSalesOrder_1, AccountingDept_1) =

 PaymentRequest_1,

	Take_Delivery_V1(ProductReplenishmentOrder_1) = Product_1,

	Request_Release_Payment(Employee_1, PaymentRequest_1, AccountingDept_1)

		;

EndClass

Class AccountingDept_V1 : Department(“Accounting”)

Annotation:	“PSL Representation (V. 1) for the Accounting Dept.” ;

Ontology:		[Name: Gruninger, Version: 0.5] ;

Parameters:	

	Number:		String = “r001”,

	PurchaseLedger:		PurchaseLedger;

EndClass

�

Class Take_Delivery_V1

Annotation: “PSL Representation (V. 1) for the Take_Delivery process in the example.” ;

Ontology:		[Name: Gruninger, Version: 0.5] ;

Parameters:	

	ProductReplenishmentOrder:	ProductReplenishmentOrder(),

	Employee_1:		Employee(Company: ProductReplenishmentOrder.Company),

	Product_1:		Product();

NeededResources:	Condition :	overTime(Take_Delivery_V1):

	isAvailable(Employee_1);

Take_Delivery_V1:	Values:		atTime(Take_Delivery_V1.end):	// output

	Product_1;

Steps:	ProcessSteps : NeededResources :

	Receive_Product(Employee_1, ProductReplenishmentOrder) = Product_1,

	Verify_Delivery(Employee_1, Product_1, ProductReplenishmentOrder),

	Update_Inventory(Employee_1, Product_1)

		;

EndClass

�Example 3: CAMILE Pilot Scenario (Idef3 to PSL)

Example 3 represents the Make GT350 process as described in Manufacturing Process Interoperability Scenario, (dated: April 22, 1998) by Steve Polyak, AIAI, University of Edinburgh. An overview of the example (i.e. Make GT350) in IDEF3 notation is shown in Figure 19, in section 6. The example is elaborated further in the section.

(We assume that the italicized predicates and operators are provided by the underlying ontology.)

Class MakeGT350

Annotation:	[Description: “Represents the Make GT350 Process”];

Ontology:		[Name: Gruninger, Version: 0.5] ;

Parameters:	

	Assembler_1:	Assembler();

Variables:

	Interior_1:	Interior(),

	Drive_1:		EngineDrive(),

	Trim_1:		Trim(),

	Engine_1:	Engine(),

	Chassis_1:	Chassis();

NeededResources:	Condition :	overTime(MakeGT350):

	isAvailable(Assembler_1);

MakeGT350:	Values:	atEnd(MakeGT350.Steps):	// output

	GT350_1;

Steps:	ProcessSteps : NeededResources :

(Make_Interior()	= Interior_1 |

Make_Drive()	= Drive_1 |

Make_Trim()	= Trim_1 |

Make_Engine()	= Engine_1 |

Make_Chassis()	= Chassis_1),

FinallyAssembleGT350(Interior_1, Drive_1, Trim_1, Engine_1, Chassis_1,

Assembler_1) = GT350_1

		;

EndClass

Class Make_Interior

Annotation:		[Description: “The Make-Interior subprocess of the GT350 Process”];

Ontology:		[Name: Gruninger, Version: 0.5] ;

Variables:

	Interior_1:	Interior(),

	Cockpit_1:	Cockpit(),

	Seat_1:		Seat(),

	GearShift_1:	GearShift(),

	AssemblyBench_1:	AssemblyBench(A002).

NeededResources:	Condition :	overTime(Make_Interior):

	isPurchased(Cockpit_1) And isAvailable(Cockpit_1) And

	isPurchased(Seat_1) And isAvailable(Seat_1) And

	isAvailable(AssemblyBench_1);

TimeToProduce:	Values: :

	3;		// 3 minutes per kit

Make_Interior :	Values: 	atTime(Make_Interior.end):

	Interior_1;

Steps:	ProcessSteps : NeededResources :

ProduceGearShift()	= GearShift_1,

AssembleInterior(Cockpit_1, Seat_1, GearShift_1) = Interior_1

		;

EndClass

Class Make_Drive

Annotation:		[Description: “The Make-Drive subprocess of the GT350 Process”];

Ontology:		[Name: Gruninger, Version: 0.5] ;

Variables:

	Drive_1:		EngineDrive(),

	Motor_1:	Motor(),

	Electronics_1:	Electronics(),

	AssemblyBench_1:	AssemblyBench(A002),

	AssemblyBench_2:	AssemblyBench(A003);

NeededResources:	Condition :	overTime(Make_Drive):

	isPurchased(Motor_1) And isAvailable(Motor_1) And

	(isAvailable(AssemblyBench_1) Or isAvailable(AssemblyBench_2));

TimeToProduce:	Values: :

	12;		// 12 minutes per piece

Make_Drive :	Values:		atTime(Make_Drive.end):

	Drive_1;

Steps:	ProcessSteps : NeededResources :

MakeElectronics()	= Electronics_1,

AssembleDrive(Motor_1, Electronics_1) = Drive_1

		;

EndClass

�Class Make_Trim

Annotation:		[Description: “The Make-Trim subprocess of the GT350 Process”];

Ontology:		[Name: Gruninger, Version: 0.5] ;

Variables:

	Trim_1:		Trim(),

	Options_1:	TrimOptions(),

	Stand_1:		Stand(),

	Wheel_1:	Wheel(),

	IdPlate_1:	IdPlate(),

	Decal_1:	Decal(),

	AssemblyBench_1:	AssemblyBench(A002),

	AssemblyBench_2:	AssemblyBench(A005);

NeededResources:	Condition :	overTime(Make_Trim):

	isPurchased(Decal_1) And isAvailable(Decal_1) And

	(isAvailable(AssemblyBench_1) Or isAvailable(AssemblyBench_2));

TimeToProduce:	Values: :

	20;		// 20 minutes per piece

Make_Trim :	Values:		atTime(Make_Trim.end):

	Trim_1;

Steps:	ProcessSteps : NeededResources :

(MakeTrimOptions() = Options_1 |

MakeStand()	= Stand_1 |

MakeWheels()	= Wheel_1 |

MakeIdPlate()	= IdPlate_1),

AssembleTrim(Options_1, Stand_1, Wheel_1, IdPlate_1, Decal_1) = Trim_1

		;

EndClass

�Class Make_Engine

Annotation:		[Description: “The Make-Engine subprocess of the GT350 Process”];

Ontology:		[Name: Gruninger, Version: 0.5] ;

Variables:

	Engine_1:	Engine(),

	Block_1:	EngineBlock(),

	Harness_1:	Harness(),

	Wires_1:	Wire(),

	PartNum_1:	PartNumber(),	// this should really be a parameter

	AssemblyBench_1:	AssemblyBench(A004);

NeededResources:	Condition :	overTime(Make_Engine):

	isAvailable(AssemblyBench_1);

TimeToProduce:	Values: :

	5;		// 5 minutes per piece

Make_Engine :	Values:		atTime(Make_Engine.end):

	Engine_1;

Steps:	ProcessSteps : NeededResources :

(MakeEngineBlock()	= Block_1 |

MakeHarness()		= Harness_1 |

MakeWires()		= Wires_1),

AssembleEngine(Block_1, Harness_1, Wires_1) = Engine_1

		;

EndClass

Class MakeEngineBlock

Annotation:		[Description: “The Make-Engine-Block subprocess of the Make-Engine Process”];

Ontology:		[Name: Gruninger, Version: 0.5] ;

Parameters:	

	PartNum_1:	PartNumber();

Variables:

	Block_1:	EngineBlock(),

	MoldedPart_1:	MoldedPart();

MakeEngineBlock :	Values:		atTime(MakeEngineBlock.end):

	Block_1;

Steps:	ProcessSteps : :

ProduceMoldedMetalItem(PartNum_1) = MoldedPart_1,

MachineBlock(MoldedPart_1)	= Block_1

		;

EndClass

�Class Make_Chassis

Annotation:		[Description: “The Make-Chassis subprocess of the GT350 Process”];

Ontology:		[Name: Gruninger, Version: 0.5] ;

Variables:

	Chassis_1:	Chassis(),

	Unibody_1:	Unibody(),

	Frame_1:	Frame(),

	AssemblyBench_1:	AssemblyBench(A002);

NeededResources:	Condition :	overTime(Make_Chassis):

	isAvailable(AssemblyBench_1);

TimeToProduce:	Values: :

	50;		// 50 minutes per piece

Make_Chassis :	Values:		atTime(Make_Chassis.end):

	Chassis_1;

Steps:	ProcessSteps : NeededResources :

(MakeUnibody()	= Unibody_1 |

MakeFrame()	= Frame_1),

AssembleChassis(Unibody_1, Frame_1) = Chassis_1

		;

EndClass

Class FinallyAssembleGT350

Annotation:		[Description: “The final assembly subprocess of the GT350 Process”];

Ontology:		[Name: Gruninger, Version: 0.5] ;

Parameters:	

	Interior_1:	Interior(),

	Drive_1:		EngineDrive(),

	Trim_1:		Trim(),

	Engine_1:	Engine(),

	Chassis_1:	Chassis(),

	Assembler_1:	Assembler();

Variables:

	AssembledGT350_1:	AssembledGT350()[2];

FinallyAssembleGT350 :	Values:	atTime(FinallyAssembleGT350.end):

	AssembledGT350_1[1];

Steps:	ProcessSteps : :

FinallyAssemble(Interior_1, Drive_1, Trim_1, Engine_1, Chassis_1, Assembler_1) =

AssembledGT350_1[1],

Engrave(AssembledGT350_1[1]) = AssembledGT350_1[2]

		;

EndClass

Example 3a: Produce Mold Metal Item from CAMILE Scenario

Example 3a represents the Produce Mold Metal Item process as described in Manufacturing Process Interoperability Scenario, (dated: April 22, 1998) by Steve Polyak, AIAI, University of Edinburgh. An overview of the example (i.e. Produce Mold Metal Item) in IDEF3 notation is shown in Figure 1, in section 5.1.

(We assume that the italicized predicates and operators are provided by the underlying ontology.)

Class Foundry

Annotation:		[Description: “A description of the Foundry class for the CAMILE process”];

Ontology:		[Name: Gruninger, Version: 0.5] ;

isWithinOperatingHours:	Condition : :

	isCurTimeInRange(CurrentTime, [“8:00”, “24:00”]),

	isCurDayInRange(CurrentTime, [“Monday”, “Friday”]);

MaxOvertime:	Values: :

	2;		// Max overtime allowed

PreventiveMaintenance:	ProcessSteps : isDueforPM(StartTime) :

DoPreventiveMaintenance();

EndClass

Class ProduceMoldedMetalItem: Foundry()

Annotation:		[Description: “The Produce-Molded-Metal-Item subprocess of the CAMILE Process”];

Ontology:		[Name: Gruninger, Version: 0.5] ;

Parameters:	

	PartNum_1:	PartNumber();

Variables:

	MoldedPart_1:	MoldedPart(PartNum_1),

	Mold_1:		MoldingItem(“F004”)[2],		// the so-called Mold (noun)

	Metal_1:	Metal(),

	MoltenMetal_1:	MoltenMetal(),

	MetalAnalysis_1:	MetalAnalysisReport(),

	Furnace_1:	Furnace()[2],

	Operator_1:	Operator();

NeededResources:	Condition :	overTime(ProduceMoldedMetalItem):

	isAvailable(Furnace_1) And

	isAvailable(Operator_1) And

	isAvailable(Mold_1);

ProduceMoldedMetalItem :	Values:		atTime(ProduceMoldedMetalItem.end):

	MoldedPart_1;

�Steps:	ProcessSteps : NeededResources And isWithinOperatingHours :

if (isNewPart(PartNum_1):

 ChangeMoldingItem() = Mold_1[1]),

SelectAFurnace() = Furnace_1[1],

SetupFurnace(Furnace_1[1]) = Furnace_1[2],

(Melt(Furnace_1[2], Metal_1, Operator_1) = MoltenMetal_1 |

AnalyzeMetal(Furnace_1[2], Metal_1, Operator_1) = MetalAnalysis_1),

Mold(Mold_1[1], MoltenMetal_1, Operator_1) = MoldedPart_1,

Wait(24),

ClearCavities(Mold_1[1], Operator_1) = Mold_1[2]

		;

EndClass

Class Mold: Foundry()

Annotation:		[Description: “The Mold subprocess of the Produce-Molded-Metal-Item Process”];

Ontology:		[Name: Gruninger, Version: 0.5] ;

Parameters:	

	Mold_1:		MoldingItem(),

	MoltenMetal_1:	MoltenMetal(),

	MoldingOperator_1:	Operator();

Variables:

	MoldedBatch_1:	MoldedPart(),

	MoldedLot_1:	MoldedPart(),

	Racks_1:	MoldingRack(Quantity: 2)[2],

	Operators_x:	Operator(Quantity: 2);

NeededResources:	Condition :	overTime(Mold):

	isAvailable(Racks_1[1]) And

	isAvailable(Operators_x);

Mold:	Values:		atTime(Mold.end):

	MoldedPart_1;

Steps:	ProcessSteps : NeededResources :

while (isBatchIncomplete():

SetupRacks(Racks_1[1], Mold_1, Operators_x) = Racks_1[2],

PourMetal(MoltenMetal_1, Racks_1[2], MoldingOperator_1) = MoldedLot_1,

AddToSet(MoldedBatch_1, MoldedLot_1) = MoldedBatch_1

)

		;

EndClass

�

Appendix

PSL Syntax in BNF

%{

/*

 *	PSL-spec.y :	Syntactic specification for PSL. (Process it using bison)

 *

 *	Version: 0.98	Date: Aug. 17, 98

 *

 *	Developed by: Krishna N. Jha, Boeing Corp., in contract for NIST

*/

#include <stdio.h>

%}

%token Symbol String Integer Real

%token IntegerType RealType BooleanType SymbolType

%token Class EndClass If While True False

%token Values Condition ProcessSteps

%token Annotation Ontology Parameters Variables

%token VarAttribName

%token GE LE EQ NEQ

%right '='

%left And Or

%left Not

%left '+' '-'

%left '*' '/'

%%

psl	: globals

	| classes

	;

globals	: globals global

	| global

	;

classes	: classes class

	| class

	;

global	: annotation

	| ontology

	;

class	: Class className inheritFromClass annotations ontology params variables

attributes EndClass

	;

className:	Symbol

	;

inheritFromClass:	':' className '(' argList ')'

	|					/* empty */

	;

annotations:	annotations annotation

	|					/* empty */

	;

annotation:	Annotation ':' String ';'

	;

ontology:	Ontology ':' '[' itemValuePairList ']'

	;

params	:	Parameters ':' varDefinitionList ';'

	;

variables:	Variables ':' varDefinitionList ';'

	|					/* empty */

	;

attributes:	attributes attribute

	|					/* empty */

	;

attribute:	attribName ':' valuesAttribute ';'

	|	attribName ':' conditionAttribute ';'

	|	attribName ':' processStepsAttribute ';'

	;

attribName:	Symbol

	;

valuesAttribute:	Values ':' guardCondition ':' valueList

	;

conditionAttribute	:	Condition ':' guardCondition ':' condition

	;

processStepsAttribute:	ProcessSteps ':' guardCondition ':' processStepList

	;

guardCondition	:	condition

	|

	;

valueList:	valueList ',' value

	|	value

	;

itemValuePairList:	itemValuePairList ',' itemValuePair

	|	itemValuePair

	;

itemValuePair	:	itemName ':' value

	;

itemName	:	Symbol

	;

varDefinitionList:	varDefinitionList ',' varDefinition

	|	varDefinition

	;

processStepList	:	processStepList ',' processStep

	| 	processStepList '|' processStep

	|	processStep

	;

processStep:	'(' processStepList ')'

	|	basicStep ':' label

	|	basicStep

	;

label	:	Symbol

	;

�basicStep:	If '(' condition ':' thenProcessStepList ':' elseProcessStepList ')'

	|	If '(' condition ':' thenProcessStepList ')'

	|	While '(' condition ':' processStepList ')'

	|	value '=' value

	|	value

	;

thenProcessStepList	:	processStepList

	;

elseProcessStepList	:	processStepList

	;

varDefinition:	baseVarDefinition

	|	baseVarDefinition '=' value

	;

baseVarDefinition:	varName ':' className '(' argList ')' '[' expr ']'

	|	varName ':' className '(' argList ')'

	|	varName ':' baseType

	;

baseType:	IntegerType

	|	RealType

	|	BooleanType

	|	SymbolType

	;

condition:	logical_expr

	;

argList	:	auxArgList

	|					/* empty */

	;

auxArgList:	auxArgList ',' arg

	|	arg

	;

arg	:	varValuePair

	|	value

	;

varValuePair:	varName ':' value

	;

value	:	expr

	|	valueSet

	;

valueSet:	'[' valueList ']'

	;

exprList:	exprList ',' expr

	|	expr

	;

�expr	:	expr '+' expr

	|	expr '-' expr

	|	expr '*' expr

	|	expr '/' expr

	|	'-' expr	%prec '*'

	|	'(' expr ')'

	|	baseExpr

	;

baseExpr:	baseLhsValue

	|	baseLhsValue '[' exprList ']'

	|	predicateName '(' argList ')'

	|	number

	;

baseLhsValue:	varName			/* e.g. acctgDept	*/

	|	VarAttribName		/* e.g. acctgDept.DeptNumber */

	;

constant:	number

	|	String

	;

number	:	Integer

	|	Real

	;

varName	:	Symbol

	;

logical_expr:	logical_expr And logical_expr

	|	logical_expr Or logical_expr

	|	Not logical_expr

	|	'(' logical_expr ')'

	|	comparison

	|	expr

	|	True

	|	False

	;

comparison:	expr "==" expr

	|	expr ">=" expr

	|	expr '>' expr

	|	expr "<=" expr

	|	expr '<' expr

	|	expr "=/=" expr

	;

predicateName:	Symbol

	;

%%

�PAGE �

�PAGE �
20
�

