

Tools for Protein Informatics

- sequence and structure comparison
- multiple alignments
- phylogenetic tree construction
- composition/pl/mass analysis
- motif/pattern identification
- 2° structure prediction/threading
- TMD prediction/hydrophobicity analysis
- homology modeling
- visualization

Primary Web Resources

- European Molecular Biology Laboratory, Germany
http:// www.embl-heidelberg.de
- ExPASy Molecular Biology Server, Swiss Institute of Bioinformatics, Switzerland
http://ca.expasy.org/
- National Center for Biotechnology Information, USA
http:// www.ncbi.nlm.nih.gov
http://www3.ncbi.nlm.nih.gov/Entrez/
- San Diego Supercomputer Center, USA
http:// www.sdsc.edu

Other valuable on-line sites

- Entrez
http://www3.ncbi.nlm.nih.gov/Entrez/
- Genome mapping and sequencing
- Human genome project:
http://www3.ncbi.nlm.nih.gov/genome/guide/http://www.ornl.gov/TechResours/
- Model organisms:
http://www.ncbi.nlm.nih.gov/Entrez/Genome/org.html
- Whole genome analysis:
http://www.ncbi.nlm.nih.gov/COG/
- Analysis of polymorphisms:
http://www.ncbi.nlm.nih.gov/SNP/
- Functional genomics:
- Online Mendelian Inheritance in Man (OMIM): http://www.ncbi..nIm.nih.gov/Omim/
- Target identification in drug design, agriculture, biocatalysis:
- Differential digital display (Cancer genome anatomy project):
http://www.ncbi.nlm.nih.gov/ncicgap/
- Array technologies:
http://cmgm.stanford.edu/pbrown/
- Metabolic pathways:
http://www.ecocyc.org/
http://www.genome.ad.jp/kegg/

Primary databases for 3D structure classification/information

- Entrez
http://www3.ncbi.nlm.nih.gov/Entrez/
- Protein Data Bank (PDB)
http://www.rcsb.org/pdb/
- Structural Classification of Proteins (SCOP)
http://scop.mrc-Imb.cam.ac.uk/scop/index.html
- CATH: Protein Structure Classification
http://www.biochem.ucl.ac.uk/bsm/cath_new/index.html

Protein vs. nucleic acid sequence analysis?

- Protein sequence analysis provides greater specificity and less noise than nucleic acid analysis for identification of similarities because of the inherent differences in the message content of nucleic acid and amino acid codes
- Due in part to 4-letter vs. 20-letter code, degeneracy of codon messaging
- But some searches must be done at the nucleotide level...

Some information properties of messages for sequence analysis

- A sequence can be described in terms of the \# of bits needed to specify its message, where one bit distinguishes between two equally likely things.

Ex: Where base frequencies are equal, one bit distinguishes a purine from a pyrimidine, two bits are required to uniquely specify a single base among A, T, C, G.

- Information content of a random message can be calculated from the set of relevant symbols' frequencies:

$$
\mathrm{I}={ }_{i=1}^{n} \mathrm{P}_{i} \log _{2} \mathrm{P}_{i}
$$

- Using a standard measure for overall amino acid frequencies gives the information content of a random protein sequence as 4.19 bits/residue.
- Thus, for an average size protein domain (150 residues), the message length is ~ 630 bits and the probability that 2 random sequences would specify the same message is $2^{-630}\left(10^{-190}\right)$.

Database searching for protein similarities is doable, even for fairly short sequences

- BUT, for a transcription binding site of 8-10 bp, the odds of 2 random sequences arriving at the same message is 10^{-5}.

Database searching for regulatory elements does not work well as databases get larger

Introduction to Protein Sequence Analysis

- Database searching/pairwise alignments
- Pattern searching and motif analysis
- Multiple alignments and Evaluation using Family/Superfamily Concepts

Applications

- tracing ancestral connections
- deduction/inference of function
- understanding enzyme mechanisms
- clustering of families, superfamilies
- structural analysis of receptors, molecules involved in cell signaling
- identification of molecular surfaces in protein-protein, protein-DNA interactions
- metabolic computing/comparative genome analysis
- guidance for functional genomics, protein engineering

References: Database searching

- Altschul et al., "Issues in searching molecular sequence databases"
- Pearson, "Comparison of methods for searching protein sequence databases"
- Altschul, "Amino acid substitution matrices from an information theoretic perspective"
- Pearson \& Lipman, (the original FASTA paper) "Improved tools for biological sequence comparison"
- Altschul et al., (the original Blast paper) "Basic local alignment search tool"
- Henikoff \& Henikoff, "Amino acid substitution matrices from protein blocks"
- Altschul et al., "Gapped Blast and PSI-Blast: A new generation of protein database programs"

The underlying assumption used in functional inference...

Sequence Conservation

 Conservation
 Conservation

...requires comparison of sequences

- The most fundamental operation in protein informatics is finding the best alignment between a query sequence and one or more additional sequences
- Once candidate homologs have been identified, they can be evaluated using statistical methods and structural and biological information
- The correspondence between two aligned sequences can be expressed in a similarity score and/or viewed graphically, e.g., dot plots, alignments, motifs or patterns

Formalizing the Problem

- Given: two sequences that you want to align
- Goal: find the best alignment that can be obtained by sliding one sequence along the other
- Requirements:
- a scheme for evaluating matches/mis-matches between any two characters
- a score for insertions/deletions
- a method for optimization of the total score
- a method for evaluating the significance of the alignment
- Dot matrix plots: a simple description of alignment operations illustrating types of relationships between a sequence pair

SEQUENCEHOMOLOG

- The signal-to-noise ratio can be improved using filtering techniques designed to minimize the composition-dependent background
- Example of common filters: over-lapping, fixed-length "windows" for sequence comparison
- To be counted, a comparison must achieve a minimum threshold score summed over the window, derived empirically or from a statistical or evolutionary model of sequence similarity
- The window size and minimum threshold score (often termed "stringency") at which the score is counted can be user-defined

Seq1 = SEQUENCEHOMOLOG
Seq2 = SEQUENCEANALOG
Window $=7$, Stringency $=42 \%$ (3/7 matches)

SEQUENC
SEQUENCEANALOG (7/7 matches)
SEQUENC
SEQUENCEANALOG (0/7 matches)
-••
EQUENCE
SEQUENCEANALOG
(7/7 matches)
..
HOMOLOG
SEQUENCEANALOG
(3/7 matches)

Window $=30 ;$ Stringency $=2$

Scoring Systems

- The degree of match between two letters can be represented in a matrix
- Changing the matrix can change the alignment
- Simplest: Identity (unitary) matrix
- Better: Definitions of similarity based on inferences about chemical or biological properties
- Examples: PAM, Blosum, Gonnet matrices
- The score should have the form: $p_{a b} / q_{a} q_{b}$, where $p_{a b}$ is the probability that residue a is substituted by residue b, and q_{a} and q_{b} are the background probabilities for residue a and b respectively.
- Handling gaps remains an incompletely solved problem...

PAM units

-PAM (point accepted mutation) is a unit of evolutionary distance between 2 amino acid sequences*
-1 PAM = 1 accepted point-mutation (no insertions or deletions) event per 100 aa
-200 PAM = 200 point mutations/100 aa (assumes mutations occur multiple times at any given position)
-2 sequences diverged by 200 PAM 25% identity
-*PAM is also sometimes defined as "percent accepted mutation"

PAM matrices

- Substitution matrices used to reflect expected evolutionary change (by point mutations only)
- Given 2 sequences i, j, for any specific pair of residues A_{i}, A_{j}, the (i, j) entry in the PAM n matrix reflects the frequency at which A_{i} is expected to replace A_{i} in 2 sequences n PAM units diverged, i.e., use PAM120 matrix to compare 2 protein sequences diverged by 120 PAM units
- Score should be in the form
$\frac{p^{i j}}{p_{i} p_{j}}$
- Usually presented in log-odds form, i.e., probability values are given in logarithmic form

Derivation of ideal PAM matrices*

- Using many sets of 2 aligned sequences, for each amino acid pair Ai, Aj, count the \# of times Ai aligns with Aj and divide that number by the total \# of amino acid pairs in all of the alignments, resulting in the frequency, $f(\mathrm{i}, \mathrm{j})$
- Let fi and fj, respectively, denote the frequencies at which Ai and Aj appear in the sets of sequences
- Then the (i,j) entry for the ideal PAM matrix is

$$
\log \frac{f(i, j)}{f(i) f(j)}
$$

Actual Derivation of PAM matrices

- Originally compiled from a group of sequences $>85 \%$ identical that could be unambiguously aligned (M.O.Dayhoff, R.M. Schwartz, B.C. Orcutt, in Atlas of Protein Sequence and Structure, 5:345-352 (1978)
- These sequences were close in length and the few insertions/deletions could be placed correctly
- A PAM-1 matrix was calculated from these data
- Assumes more distantly related proteins can be described by a series of uncorrelated mutations consistent with the PAM-1 matrix such that a PAM-N matrix is derived by multiplying PAM-1 by itself N times

Guidelines for using PAM matrices

Issues with PAM matrices

- Actually work quite well, with PAM-250 still used routinely for finding distant homologs
- BUT there are some clear problems with the model...
- PAM model assumes all residues are equally mutable
- Model devised using the most mutable positions rather than the most conserved positions, i.e., those that reflect chemical and structural properties of importance
- Derived from a biased set of sequences: small globular proteins available in the database in 1978

BLOSUM (Blocks Substitution) Matrices

- Derived from the BLOCKS database, which, in turn is derived from the PROSITE library
http://blocks.fhcrc.org/blocks/, http://www.expasy.ch/prosite/
- BLOCKS generated from multiply aligned sequence segments without gaps clustered at various similarity thresholds and corrected to avoid sampling bias
- Derived from data representing highly conserved sequence segments from divergent proteins rather than data based on very similar sequences (as with PAM matrices)

Derivation of BLOSUM matrices

- Many sequences from aligned families are used to generate the matrices
- Sequences identical at $>X \%$ are eliminated to avoid bias from proteins over-represented in the database
- Specific matrices refer to these clustering cut-offs, i.e., BLOSUM62 reflects observed substitutions between segments $<62 \%$ identical
- In analogy to PAM matrices, a log-odds matrix is calculated from the frequencies $A_{i j}$ of observing residue i in one cluster aligned against residue j in another cluster

BLOSUM vs. PAM Matrices

- BLOSUM matrices have replaced PAM matrices as the default matrices at many database searching sites (Blast, FASTA servers)
- Both PAM-120 and BLOSUM62 work best for moderately diverged proteins and may miss similarities outside their optimum performance windows
- PAM provides the only easily accessible alternative for short sequences (no appropriate version of Blosum available)
- Best solution is to provide a range of scoring systems, which is currently the practice for most primary servers
- Setting appropriate gap penalties can have a large effect on matrix performance

Optimizing the Score: Brute-force Approach

- Considering two sequences, both of length N :
- If gaps or local alignments are not considered, there is only one optimal solution

- The computational time required to compute the optimal alignment $=\mathrm{N}^{2}$
- But when gaps or local alignments are considered, things get complicated because we have to repeat the calculation 2 N times to allow for the possibility of gaps at each position of each sequence
- Requires time proportional to $\mathrm{N}^{4 \mathrm{~N}}$
- Even when nonsensical alignments are removed (aligning gaps with gaps), for $\mathrm{N}=300$ residues, $\sim 10^{88}$ comparisons are required

Optimizing the Score

- Dynamic Programming
(Needleman, S.B. and Wunsch, C.D. J. Mol. Biol. 48 (1970) 443-453)
- Requires computational time proportional to N^{2}
- Addresses the problem for GLOBAL alignments; still has to deal with gaps
- Next step forward: local alignments
(Smith \& Waterman. J. Mol. Biol. 147 (1981) 195-197)
- Finds the two "most similar" segments to generate an alignment from parts of the two sequences

Statistical Significance

- A good way to determine if an alignment score has statistical meaning is to compare it with the score generated from the alignment of two random sequences
- A model of 'random' sequences is needed. The simplest model chooses the amino acid residues in a sequence independently, with background probabilities

A most important caveat...

- For database searches, the ONLY criteria available to judge the likelihood of a structural or evolutionary relationship between 2 sequences is an estimate of statistical significance
- For a medium-sized protein using default parameters (Blosum62, $E=10$), the cut-off for statistical significance is $\mathrm{P}=10^{-7}-10^{-5}$
for the relationship between E and P, see
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html)
- Statistical significance and biological significance are NOT necessarily the same

Database searching

- The first and most common operation in protein informatics...and the only way to access the information in large databases
- Primary tool for inference of homologous structure and function
- Improved algorithms to handle large databases quickly
- Provides an estimate of statistical significance
- Generates alignments
- Definitions of similarity can be tuned using different scoring matrices and algorithm-specific parameters

BLAST and FASTA

- The rigorous Needleman-Wunsch and Smith-Waterman algorithms are too slow for large database searches
- There are two major heuristic algorithms (BLAST and FASTA) to speed up the searching
- However, these compromise speed and sensitivity and neither of them guarantees to find the best alignment
- BUT, these are the primary search engines used by the majority of scientists today and their excellent performance justifies such use
- NOTE: Pairwise comparisons limit information content

FASTA suite

- "Fast" search algorithm generates global alignments, allows gaps
- Good documentation (Pearson)
http://www2.ebi.ac.uk/fasta3/help.html; http://fasta.bioch.virginia.edu/
- Extensively updated since first release
- more rigorous statistical analysis has been added
- multiple variants available
- FASTA3 is the current implementation

BLAST suite

- Original "fast" search algorithm generates local alignments without gaps (Blast 1.4)
- Newer versions (Blast 2.0x) accommodates gaps
- Documentation
- Manual: http://www.ncbi.nlm.nih.gov/BLAST/blast_help.html
- FACS: http://www.ncbi.nlm.nih.gov/BLAST/blast_FAQs.html
- Tutorial: http://www.ncbi.nlm.nih.gov/BLAST/tutoria//Altschul-1.html
- Other subtypes recently available for aligning 2 sequences, motif searching, domain matching, short sequences

BLAST flavors

- blastp compares an amino acid query sequence against a protein sequence database
- blastn compares a nucleotide query sequence against a nucleotide sequence database
- blastx compares the six-frame conceptual translation products of a nucleotide query sequence (both strands) against a protein sequence database
- tblastn compares a protein query sequence against a nucleotide sequence database dynamically translated in all six reading frames (both strands)
- tblastx compares the six-frame translations of a nucleotide query sequence against the six-frame translations of a nucleotide sequence database

Psi-Blast: Extending our reach...

- Generalizes BLAST algorithm to use a positionspecific score matrix in place of a query sequence and associated substitution matrix for searching the databases
- Position-specific score matrix is generated from the output of an initial Gapped Blast search, i.e., uses a profile or motif defined in the initial Blast search in place of a single query sequence and matrix for subsequent searches of the database
- Results in a database search tuned to the specific sequence characteristics representative of the sequence set of interest

Steps in a Psi-Blast search*

- Constructs a multiple alignment from a Gapped Blast search and generates a profile from any significant local alignments found
- The profile is compared to the protein database and PSI-BLAST estimates the statistical significance of the local alignments found, using "significant" hits to extend the profile for the next round
- PSI-BLAST iterates step 2 an arbitrary number of times or until convergence

PSI-BLAST information at NCBI

- Access
http://www.ncbi.nlm.nih.gov/BLAST/
- Tutorial
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-2.html
- A short explanation of PSI-BLAST statistics
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-3.html
- See also:

Park J; Karplus K; Barrett C; Hughey R; Haussler D; Hubbard T; Chothia C. "Sequence comparisons using multiple sequences detect three times as many remote homologs as pairwise methods." (1998) J. Mol. Biol., 284:1201-10

Part 2

Beyond database searching: How do we turn our results into knowledge?

- Some Basic Principles of Molecular Evolution
- Evaluation using Multiple Alignments
- Finding and Analyzing Motifs
- New Directions in Bioinformatics

Molecular Evolution

Highly relevant but we only have time to mention some very basic issues

References

Saier, M.H. Jr. "Phylogenetic approaches to the identification and characterization of protein families and superfamilies"

Labedan, B. \& Riley, M. "Gene products of E.coli: Sequence comparisons and common ancestries"

Green, P. et al. "Ancient conserved regions in new gene sequences and the protein databases"

Murzin, A.G. "How far divergent evolution goes in proteins"
Textbooks:
Fundamentals of Molecular Evolution, Li \& Graur, Sinauer Associates, 2nd Ed. (1999)

Molecular Systematics, D.M. Hillis \& C. Moritz, Eds., Sinauer Associates (1990)

Web Resources

- Useful Lists
http://www.mcb.harvard.edu/BioLinks/Evolution.html http://darwin.eeb.uconn.edu/molecular-evolution.html
- Tree of Life site
http://tolweb.org/tree/phylogeny.html
- A protocol to get you started http://www.infobiogen.fr/docs/MAcours/phylogeny.htmlg

Tree (Network) Nomenclature

Definitions

- Homology: Sharing a common ancestor, may have similar or dissimilar functions
- Analogy: Performing a common function but no common ancestry
- Convergence: Performing the same function, having similar structural characteristics, but do not share a common ancestor
- Paralogy: Sequence similarity between the descendants of a duplicated ancestral gene
- Orthology: Sequence similarity as a consequence of a speciation event

Important principles

- Evolutionary history is accessed only through contemporary species and molecules
- The basic models for substitution are generally robust for sequences 80% identical (nucleotide level), e.g., not highly diverged
- General assumptions of the models
- Changes in different copies of genes are independent
- Changes at each site are independent
- All sites change at the same rate
- All bases occur at equal frequencies (corrected in later models to come a little closer to reality)

- Different domains within a single protein evolve at different rates

Evaluation using Multiple Alignments

References on multiple alignment tools

McClure, "Comparative analysis of multiple protein sequence analysis methods"

Thompson et al., "ClustalW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice"
(MSA) Lipman et al., "A tool for multiple sequence alignment"
Notredame \& Higgins, "SAGA: Sequence alignment by genetic algorithm"
(PIMA) Smith \& Smith "Automatic generation of primary sequence patterns from sets of related protein sequences"
See also:
(MACAW) Schuler, G.D., Altschul, S.F., Lipman, D.J. (1991) "A workbench for multiple alignment construction and analysis," Proteins 9, 180-90
(PILEUP) Feng, D.F. \& Doolittle, R.F. "Progressive sequence alignment as a prerequisite to correct phylogenetic trees" (1987) J. Mol. Evol. 25, 351-60

Evaluation of sequence relationships using multiple alignments

- Screening for membership in a family/superfamily
- Identification of conserved elements important to function
- Distinguishing global vs. local patterns of similarity characteristic of the structural scaffold
- Determination of the level and sites of variability across the members of subgroups/families/ superfamilies
- Multiple alignments are more informative than pairwise comparisons


```
>Sp|P24162|ECHH_RHOCA ENOYL-COA HYDRATASE HOMOLOG (ORF257) . >pir||S19026
        enoyl-CoA hydratase homolog - Rhodobacter capsulatus >gi|45984
        (X60194) enoyl-CoA hydratase homologue [Rhodobacter capsulatus]
        Length = 257
    Score = 207 (96.1 bits), Expect = 6.1e-31, Sum P(3) = 6.1e-31
    Identities = 51/137 (37%), Positives = 71/137 (51%)
Query: 89 WHQMIHKIIRVKRPVLAAINGVAAGGGLGISLASDMAICADSAKFVCAWHTIGIGNDTAT 148
        + ++ I PVLAA+NG AAG G ++LA+D+ I A SA F+ A+ IG+ D
    Sbjct: 83 YEPLLQAIYSCPLPVLAAVNGAAAGAGANLALAADVVIAAQSAAFMQAFTRIGLMPDAGG }14
Query: 149 SYSLARIVGMRRAMELMLTNRTLYPEEAKDWGLVSRVYPKDEFREVAWKVARELAAAPTH }20
        ++ L R VGM RAM + L + EEA GL+ P +F A LA P+
Sbjct: 143 TWWLPRQVGMARAMGMALFAEKIGAEEAARMGLIWEAVPDVDFEHHWRARAAHLARGPSA 202
Query: 209 LNVMAKERFHAGWMNPV 225
                K+ FHAG NP+
Sbjct: 203 AFAAVKKAFHAGLSNPL }21
```


- A multiple alignment distinguishes the dehalogenase from the enoyl Co-A hydratase family

Multiple alignments provide more information than pairwise alignments

- Useful to confirm distant relationships
- Provides a context for interpreting patterns of similarity and difference
- "Speciation" over alignment space helps to connect and confirm widely degenerate motifs
Query= /phosphonatase/phosBc.gcg (302 letters)

Database: swissprot
77,273 sequences; 27,815,109 total letters.

Sequences producing High-scoring Segment Pairs:
sp|P77247|YNIC_ECOLI HYPOTHETICAL 24.3 KD PROTEIN IN PFKB.. SplO67359|GPH ĀOUAE PHOSPHOGLYCOLATE PHOSPHATASE (PGP) P sp|O06995|PGMB_BACSU PUTATIVE BETA-PHOSPHOGLUCOMUTASE (BE.. Sp|P31467|YIEH ECOLI HYPOTHETICAL 24.7 KD PROTEIN IN TNAB.. SP|P44755|GPH HAEIN PHOSPHOGLYCOLATE PHOSPHATASE (PGP) SP|P54607|YHCW BACSU HYPOTHETICAL 24.7 KD PROTEIN IN CSPB... splP32662|GPH_ECOLI PHOSPHOGLYCOLATE PHOSPHATASE (PGP)

High	$\begin{aligned} & \text { Smallest } \\ & \text { Sum } \end{aligned}$	
	Probability	
Score	P (N)	N
116	2.2e-05	1
106	0.00030	
97	0.0039	1
94	0.0082	
93	0.011	
89	0.030	
87	0.067	

~ 21\% identical

$$
\begin{aligned}
& \text { PGPhos - - - - MPGVVFDLDGTLVHSAPDIHAAVNK } \\
& \text { Phosphon MDRMKIEAVIFDWAGTTVDYGCFAPLEVFM }
\end{aligned}
$$

Active site of haloacid dehalogenase

Issues in using multiple alignment information

- What question are you asking when you create a multiple alignment?
- Example: GPCRs

Close relationships: Muscarinic receptors
Intermediate relationships: Prostaglandin receptors
Distant relationships: Fungal pheromone receptors

- What is the range of sequence divergence among the sequences you plan to align?

```
enol1 EAMKMGAEVYHHLKSVIKKKYGQDATNVGDEGGFAPNIQENKEGL
enol2 EAMKMGCEVYHHLKKVIKKKYGQDATNVGDEGGFAPNIQENKEGL
enol3 EALRIGSEVYHNLKSLTKKKYGQSAGNVGDEGGVAPDIKTPKEAL
enol4 EAMKMGVEVYHNLKSIIKKKYGQDATNVGDEGGFAPNIQENKEGL
enol5 EALRIGSEVYHNLKSLTKKRYGASAGNVGDEGGVAPNIQTAEEAL
enol6 EALKMGSEVYHALKSVIKAKYGQDACNVGDEGGFAPNIQDNKEGL
enol7 EAMKMGSEVYHHLKNVIKAKFGLDATAVGDEGGFAPNIQSNKEAL
enol8 DAMRVGAEVYHSLKGVIKAKYGKDATNVGDEGGFAPNILDNHEAL
cpeps D-IEVADRVFTAAHRNVERRFGPVPLS-ASSGLMVP--LDSAGQL
enol1 ELLKTAIAKAGYTGKVVIGMDVAASEFYG-SDKTYDLNFKEENND
enol2 ELLKTAIEKAGYTGKVVIGMDVAASEFYG-KDKSYDLNFKEESND
enol3 DLIMDAIDKAGYKGKVGIAMDVASSEFY--KDGKYDLDFKNPESD
enol4 ELLKAAIEKAGYTGKVVIGMDVAASEFFGEKDKTYDLNFKEENND
enol5 DLIVDAIKAAGHDGKVKIGLDCASSEFF-- KDGKYDLDFKNPNSD
enol6 ELLNEAIAKAGYTGKVKIGGMDVASSEFY--KDGKYDLDFKNPNSD
enol7 NLISDAIAKAGYTGKIEIGMDVAASEFY--KDGQYDLDFKNEKSD
enol8 ELLKAAIAQAGYTDKVVIGMDVAASEFC--RDGRYDLDFKSP-PD
cpeps DLLQAAVAETGHTEVCTLGVDVAA-EEHLLTEPGRGYRF
```

> enoll EAMKMGAEVYHHLKSVIKKKYGODATNVGDEGGFAPNIQENKEGL
> enol2 EAMKMGCEVYHHLKAVIKKKYGQDATNVGDEGGFAPNIQENKEGL
> enol3 EALRIGSEVYHNLKSLTKKKYGQSAGNVGDEGGVAPDIKTPKEAL
> enol4 EAMKMGVEVYHNLKSIIKKKYGQDATNVGDEGGFAPNIQENKEGL
> enol5 EALRIGSEVYHNLKSLTKKRYGASAGNVGDEGGVAPNIQTAEEAL
> enol6 EALKMGSEVYHALKSVIKAKYGQDACNVGDEGGFAPNIQDNKEGL
> enol7 EAMKMGSEVYHHLKNVIKAKFGLDATAVGDEGGFAPNIQSNKEAL
> enol8 DAMRVGAEVYHSLKGVIKAKYGKDATNVGDEGGFAPNILDNHEAL
> cpeps D-IEVADRVFTAAHRNVERRFGPVPLS-ASSGLMVP--LDSAGQL
> enoll ELLKTAIAKAGYTGKVVIGMDVAASEFYG-SDKTYDLNFKEENND enol2 ELLKTAIEKAGYTGKVVIGMDVAASEFYG-KDKSYDLNFKEESND enol3 DLIMDAIDKAGYRGKVGIAMDVASSEFY--KDGKYDLDFKNPESD enol4 ELLKAAIEKAGYTGKVVIGMDVAASEFFGEKDKTYDLNFKEENND enols DLIVDAIKAAGHDGKVKIGLDCASSEFF--KDGKYDLDFKNPNSD enol6 ELLNEAIAKAGYTGKVKIGMDVASSEFY--KDGKYDLDFKNPNS D enol7 NLISDAIAKAGYTGKIEIGMDVAASEFY--KDGQYDLDFKNEKSD enol8 ELLKAAIAQAGYTDKVVIGMDVAASEFC--RDGRYDLDFKSP-PD cpeps DLLQAAVAETGHTEVCTLGVDVAA-EHLLTEPGRYRF-..........

Enols 1-8: all >60\% identical to each other Cpeps: $<35 \%$ identical to Enols 1-8

gram.pos	LKAK--GMNTAVGDEGGYAPNLGSNDEALAVIA
gram.neg	LSAK--GMNTNVGDEGGFAPSLDSASSALDFIV
eukaryote	TKKRYGASAGNVGDEGGVAPNIQTAEEALDLIV
archea.	LADR - DLPAGKGDEGAWAPSV-SDDEAFEIMD VERRFGPVP - - LSASSGLMVPLDSAGQ - LDLLQ
gram.pos	EAVKAAGYELGKDITLAMDCAASEFYKD-GK--
gram.neg	DSISKAGYKPGEDVFIALDAASSEFYNK-DQNI
eukaryote	DAIKAAGH - DGKVKIGLDCASSEFFKD-GKYD
archea.	EAVETVADDFGFAISFGLDVARAELYDD-EADG
cpeps	AAVAETGH - - TEVCTLGVDVAAEHLLTEPGRYR
gram.pos	YVLA - - GEGNKAFTSEEFTHFLEELTKQYPIV
gram.neg	YDLK - - GEGRK-LTSAQLVDYYVELCGKYPIY
eukaryote	LDFKNPNSDKSKWLTGPQLADLYHSLMKRYPIV
archea.	YVY - - - D GVK- - STEEQIEYIAGKVEEYDLV
cpeps	F - - - - - GD R LTAPDFADHLADLAHRFRMS

Enols: 37-62\% identical to each other
Cpeps: 35-50\% identical to Enols

How do you handle internal repeats?

glyoxalase
hyp. protein (S55115)

> q09751.N VERSKREGILELTYNEGEKKEGPVYIN s55115.N PDVFSAHGVLELTHNWGTEKNPDYKINN q09751. C - - - - - - EGLLELTHNWGTEKESGPVYHN s55115.C - - VFSCESVLELTHNWGTENDPNFHYHN
q09751.N
s55115. N
q09751. C
s55115.C
glyox.
q09751.N - - SKGVSFKKKLSDGKMKHIAF----- -
s55115.N - - SQGVKFKKRLSEGRQKDIAF------
q09751. C - - AEGLPFKKKLTDGRMKDIA---FLID
s55115.C KYGDKIQWSPKFNQGRMKNIA---FLKD
glyox. NGGNVTREAGPVKGG----TTVIAFVED
GNTEPKRGFGHICFTVDNIESACAYLE-
GNEEPHRGFGHICFSVSDINKTCEELE-
GNDGDEKGYGHVCISVDNINAACSKFE-
GN-SEPQGYGHICISCDDAGALCKEIEV
GT- - - - AYGHIALSVDNAAEACEKIRQ

General Issues in Multiple Alignment

- Computational complexity: a true multiple alignment of N sequences would require an N -dimensional matrix
- No single "correct" multiple alignment can be achieved except in trivial cases
- Methods assume sequences are independent rather than related by a phylogenetic tree in which the "branches" may evolve at different rates and with different positions being important to function

Some Primary Algorithms for Multiple Alignment

- Global alignment methods construct an alignment throughout the length of the entire sequence
- Examples: Pileup, Clustal family, MSA
- Local alignment methods identify ordered series of motifs, then aligns the intervening regions
- Examples: MACAW, PIMA
- 1D profile analysis

PILEUP (in GCG package*)

1) Calculates a diagonal matrix of $N(n-1) / 2$ distances between all sequence pairs of N sequences using Needleman-Wunsch algorithm
2) Constructs a guide tree (dendogram) from the distance matrix to direct the order of addition of subsequent pairwise alignments
3) Progressively aligns each cluster to the next most related sequence or cluster of sequences, adjusting the position of indels in all sequences

Issues in the use of PILEUP

- Fast, generates reasonable alignments
- Current implementation in GCG handles up to 500 sequences
- All alignments determined from pairwise alignments, losing the information contained in the multiple alignment for position-specific scoring
- Overrepresentation of a subset of sequences to be aligned may bias the inference of an ordered series of motifs

ClustalW*

- From a family of programs using profile-based progressive alignment
- Access: http://www2.ebi.ac.uk/clustalw/
- Permits user adjustment of many parameters for both the pairwise and multiple alignment stages
- Computes position-specific gap opening and extension penalties as the alignment proceeds, e.g., varies parameters at different positions
*"W" stands for "weighting" the sequences to correct for unequal sampling of sequences from different evolutionary distances

Steps in a ClustalW alignment

1) Constructs a distance matrix of all $\mathrm{N}(\mathrm{N}-2) / 2$ pairs using dynamic programming and converts scores to distances
2) Generates a "guide tree" using the neighborjoining clustering algorithm of Saitou \& Nei
3) Progressively aligns sequences in order of decreasing similarity using variable parameters and position-specific gap penalties

The Bottom Line... *

- For multiple alignments of divergent proteins, e.g., $<30 \%$ identity, none of these methods is very satisfactory, suffering from 3 types of problems:
- Inability to produce a single multiple alignment from correctly aligned subsets of the input sequences
- Sensitivity to the number of sequences used
- Sensitivity to the specific sequences used for multiple alignment

1-D Profile analysis

- Access: GCG package at SACS and at http://www.sdsc.edu/projects/profile/new/help_main.html (Gribskov, M., McLachlan, E.D., Eisenberg, D. (1987) PNAS USA, 84:4355-4358)
- Information in a multiple alignment is represented quantitatively as a table of position-specific symbol comparison values and gap penalties
- All information in the alignment is used
- Implementations available for both for database searching/sequence alignment

Hidden Markov Models

- Probability-based models for database searching, multiple alignments, family generation (Pfam)
- Software and tools sites:
http://hmmer.wustl.edu/ http://www.cse.ucsc.edu/research/compbio/HMM-apps/HMMapplications.html

Precomputed Multiple Alignments of Protein Families

- Pfam: http://pfam.wustl.edu/
- Multiple sequence alignments and HMMs for many protein domains (3071 models as of 8/01)
- Prodom: http://protein.toulouse.inra.fr/prodom.html
- Families generated automatically using PSI-BLAST with a profile built from the seed alignments of Pfam
- Systers: http://www.dktz-heidelberg.de/tbi/services/documentation/ systershelp.html
- Families clustered from SW-Prot/PIR using sequence walks and aligned via ClustalW
- MetaFam: http://metafam.ahc.umn.edu/
- Functional assignments and a tool for comparison of how other family databases have made the classification

Finding and Analyzing Motifs

Applications for Motif Analysis

- Identification of very distant homologs
- May point to important functional units in a protein
- Can be used to "anchor" a multiple alignment
- Databases of motifs can be used to develop other informatics applications

Example: BLOCKS Blosum

See: Bork, P. \& Gibson, T. J. "Applying Motif and Profile Searches," in Methods in Enzymology 266: Computer methods for macromolecular sequence analysis, pp. 162-184

Prosite: Protein Family Signatures
 http://tw.expasy.org/prosite/

- Contains signatures for ~1500 families/domains
- Can be accessed using description, accession number, author, citation, full text search
- Provides several useful tools allowing a user to
- Scan a sequence against a PROSITE pattern
- Scan a pattern generated by a user or from PROSITE against the Swiss-Prot database
- Scan a sequence against Profile databases, e.g., generalized profiles derived from multiple alignments
- Many other specialized tools for motif/pattern generation and analysis
- Includes substantial meta data: experts on each system, references, some statistical analysis

Meme \& Mast
http://meme.sdsc.edu/meme/website/

- Meme: motif discovery tool
(Grundy, W. M. et al. 1997. CABIOS 13, 397)
- motifs represented as position-dependent letterprobability matrices which describe the probability of each possible letter at each position in the pattern
- output can be converted to BLOCKS which can then be converted to PSSMs (position-specific scoring matrices)
- Mast: database searching tool using one or more motifs as queries
- provides a match score for each sequence in the database compared with each of the motifs in the group of motifs provided represented as P -values
- provides probable order and spacing of occurrences of the motifs in the sequence hits

New Directions in Protein Bioinformatics

Using Protein Informatics for Really New Insight into Biology

- Comparative genomics
- Metabolic computing: EcoCyc \& MetaCyc http://ecocyc.org/ecocyc/index.html
- $\underline{\text { Clusters of }} \underline{\text { Orthologous }}$ Groups (COGS) http://www.ncbi.nlm.nih.gov/COG/
- Genetic circuits/Systems analysis http://gobi.lbl.gov/~aparkin/index.html
- Protein-Protein Interactions
- Co-evolution

Overview of E. coli metabolic systems

used with permission: Peter D. Karp (EcoCyc)

MetaCyc: Yeast Expression Data
used with permission: Peter D. Karp (EcoCyc)

Nature 1999 Nov 4;402(6757):83

6
"A combined algorithm for genome-wide prediction of protein function"

EDWARD M. MARCOTTE, MATTEO PELLEGRINI, MICHAEL J. THOMPSON, TODD O. YEATES \& DAVID EISENBERG

The availability of over 20 fully sequenced genomes has driven the development of new methods to find protein function and interactions. Here we group proteins by correlated evolution, correlated messenger RNA expression patterns and patterns of domain fusion to determine functional relationships among the 6,217 proteins of the yeast Saccharomyces cerevisiae. Using these methods, we discover over 93,000 pairwise links between functionally related yeast proteins. Links between characterized and uncharacterized proteins allow a general function to be assigned to more than half of the 2,557 previously uncharacterized yeast proteins. Examples of functional links are given for a protein family of previously unknown function, a protein whose human homologues are implicated in colon cancer and the yeast prion Sup35.

A few important topics we didn't even mention

- Mapping Sequence Structure Function
- Structural superposition and 3D motif finding
- The 3D genome project
- Mapping the protein universe
- Census studies (Gerstein)
- Informatics for Proteomics
- post-translational modifications
- investigating protein machines

See also:

- Nucleic Acids Res. , Jan. issue each year
- Description and useful information on 112 databases of interest to the genomics/proteomics/bioinformatics communities

