

Protein vs. nucleic acid sequence analysis?

- Protein sequence analysis provides greater specificity and less noise than nucleic acid analysis for identification of similarities because of the inherent differences in the message content of nucleic acid and amino acid codes
- Due in part to 4-letter vs. 20-letter code, degeneracy of codon messaging
- But some searches must be done at the nucleotide level...

Applications

- tracing ancestral connections
- deduction/inference of function
- understanding enzyme mechanisms
- clustering of families, superfamilies
- structural analysis of receptors, molecules involved in cell signaling
- identification of molecular surfaces in protein-protein, protein-DNA interactions
- metabolic computing/comparative genome analysis
- · guidance for functional genomics, protein engineering

BayG

BLOSUM (<u>Blo</u>cks <u>Su</u>bstitution) <u>Matrices</u>

- Derived from the BLOCKS database, which, in turn is derived from the PROSITE library http://blocks.fhcrc.org/blocks/, http://www.expasy.ch/prosite/
- BLOCKS generated from multiply aligned sequence segments without gaps clustered at various similarity thresholds and corrected to avoid sampling bias
- Derived from data representing highly conserved sequence segments from divergent proteins rather than data based on very similar sequences (as with PAM matrices)

equences producing significant alignments:	Score (bits)	E Value
p 006995 PGMB_BACSU Begin: 93 End: 204 PUTATIVE BETA-PHOSPHOGLUCOMUTASE (BETA-PGM)	38	0.02
pP31467 VIEH_ECOLI Begin: 1 End: 180 HYPOTHETICAL 24.7 KD PROTEIN IN TNAB-BGLB I	36	0.10
p 014165 YDX1_SCHPO Begin: 34 End: 201 HYPOTHETICAL 27.1 KD PROTEIN C4C5.01 IN CHR	31	2.6
p P41277 GPP1_YEAST Begin: 133 End: 200 (DL)-GLYCEROL-3-PHOSPHATASE 1	30	4.4
$p $ Q39565 DYHB_CHLRE Begin: 3911 End: 4032 DYNEIN BETA CHAIN, FLAGELLAR OUTER ARM	29	7.б
32 P77625 YFBT_ECOLI Begin: 143 End: 187 HYPOTHETICAL 23.7 KD PROTEIN IN LRHA-ACKA I	29	10.0
32 Q40297 FCPA_MACPY Begin: 146 End: 176 FUCOXANTHIN-CHLOROPHYLL A-C BINDING PROTEIN	29	13
3p P40853 GPHP_ALCEU Begin: 94 End: 188 PHOSPHOGLYCOLATE PHOSPHATASE, PLASMID (PGP)	29	13
g]Q40296 FCPB_MACPY Begin: 146 End: 176 FUCOXANTHIN-CHLOROPHYLL A-C BINDING PROTEIN	29	13
pp P52183 ANNU_SCHAM Begin: 119 End: 168 ANNULIN (PROTEIN-GLUTAMINE GAMMA-GLUTAMYLTR	29	13
pP40106 GPP2_YEAST Begin: 133 End: 200 (DL)-GLYCEROL-3-PHOSPHATASE 2	28	17
pp P37934 MAY3_SCHCO Begin: 435 End: 552 MATING-TYPE PROTEIN A-ALPHA Y3	27	29
3p[006219]MURE_MYCTU Begin: 255 End: 371 UDP-N-ACETYLMURAMOYLALANYL-D-GLUTAMATE2,6	27	29
ppP08419 EL2_PIG Begin: 182 End: 245 ELASTASE 2 PRECURSO	27	38
p[Q11034 Y07S_MYCTU Begin: 163 End: 218 HYPOTHETICAL 69.5 KD PROTEIN CY02B10.28C	27	38
pp0577 RPOC_ECOLI Begin: 1290 End: 1401 DNA-DIRECTED RNA POLYMERASE BETA' CHAIN (T	27	38
3p P32662 GPH_ECOLI Begin: 20 End: 49 PHOSPHOGLYCOLATE PHOSPHATASE (PGP)	27	38
3p P32662 GPH_ECOLI Begin: 116 End: 224 PHOSPHOGLYCOLATE PHOSPHATASE (PGP)	27	28
32 P32282 RIR1_BPT4 Begin: 239 End: 266 RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE ALPHA C	27	50
3p P17346 LEC2_MEGRO Begin: 36 End: 121 LECTIN BRA-2	27	50
3p P54947 YXEH_BACSU Begin: 24 End: 51 HYPOTHETICAL 30.2 KD PROTEIN IN IDH-DEOR IN	27	50
<pre>sp P77366 PGMB_ECOLI Begin: 95 End: 190 PUTATIVE BETA-PHOSPHOGLUCOMUTASE (BETA-PGM)</pre>	27	50
sp[P30139]THIG_ECOLI Begin: 43 End: 79 THIG PROTEIN	27	50
sp[P95649]CBBY_RHOSH Begin: 96 End: 189 CBBY PROTEIN	27	50
p[Q43154]GSHC_SPIOL Begin: 228 End: 327 GLUTATHIONE REDUCTASE, CHLOROPLAST PRECURSO	26	66
<pre>3p P34132 NT6A_HUMAN Begin: 191 End: 215 NEUROTROPHIN-6 ALPHA (NT-6 ALPHA)</pre>	26	66
p P34134 NT6G_HUMAN Begin: 115 End: 144 NEUROTROPHIN-6 GAMMA (NT-6 GAMMA)	26	66

Database searching

- The first and most common operation in protein informatics...and the only way to access the information in large databases
- Primary tool for inference of homologous structure and function
- · Improved algorithms to handle large databases quickly
- Provides an estimate of statistical significance
- Generates alignments
- Definitions of similarity can be tuned using different scoring matrices and algorithm-specific parameters

BayG

ВГ	ASTP 1.	4.9	
Que	ery= T	ITLE: URF	
	(269 letters)	
Dat	tabase:	Non-redundant SwissProt sequences	
		49,825 sequences; 17,390,645 total lette	rs.
			a
			smallest
			Sum
			Propabil.
an	024162	ENOVI-CON HYDRATASE HOMOLOC (OPE257)	6 10-31
<u>90</u>	D34550	DENOTE-COA HIDRATASE HOMOLOG (ORF257)	5 20-29
90 90	D14604	FNOVL-COA HYDRATASE MITOCHONDRIAL P	3 10-28
en	D30084	ENOVI-COA HYDRATASE MITOCHONDRIAL P	1 30-24
	11 33001	THOTE CON MIDINIADE, MITOCHONDRINE F	1.36-24
en.	023066	INADUTUAATE SVNTUASE (DIUVDDAVNADUTU	2 30-21

BLZ	STP 1.4.9			
Que	ry= TITLE:	Urf		
	(269 1	etters)		
Dat	abase: Non	-redundant Swis	sProt sequences	
	49,	825 sequences;	17,390,645 total let	tters.
				Smallest
				Sum
				Probabil.
-				
\mathbf{sp}	P24162 ENOY	L-COA HYDRATASE	HOMOLOG (ORF257)	6.1e-31
sp	P34559 PROB	ABLE ENOYL-COA	HYDRATASE, MITOCH	5.2e-29
\mathbf{sp}	P14604 ENOY	L-COA HYDRATASE	, MITOCHONDRIAL P	. 3.1e-28
\mathbf{sp}	P30084 ENOY	L-COA HYDRATASE	, MITOCHONDRIAL P	1.3e-24
\mathbf{sp}	P23966 NAPH	THOATE SYNTHASE	(DIHYDROXYNAPHTH	2.3e-21
		•		
-		•		
		•		

ery= /phosphonatase/phosBc	.gcg (302 letters)			
atabase: swissprot				
77,273 sequences;	27,815,109 total letters.		0	_
			Smallest	-
		High	Probabili	ty
equences producing High-sco	ring Segment Pairs:	Score	P (N)	Ň
P77247 YNIC_ECOLI HYPOTHE	TICAL 24.3 KD PROTEIN IN P	FKB 116	2.2e-05	1
067359 GPH_AQUAE PHOSPHC	GLYCOLATE PHOSPHATASE (PGP) 106	0.00030	1
006995 PGMB_BACSU PUTATIV	E BETA-PHOSPHOGLUCOMUTASE	(BE 97	0.0039	1
P31467 YIEH_ECOLI HYPOTHE	TICAL 24.7 KD PROTEIN IN T	NAB 94	0.0082	1
P44755 GPH_HAEIN_PHOSPHC	GLYCOLATE PHOSPHATASE (PGP) 93	0.011	1
PIPS4607 YHCW BACSU HYPOTHE	TICAL 24.7 KD PROTEIN IN C	SPB 89	0.030	1
	GLYCOLATE PHOSPHATASE (PGP) 8/	0.06/	

PGPhos	M P G V V F D L D G T L V H S A P D I H A A V N K
Phosphon	M D R M K I E A V I F D W A G T T V D Y G C F A P L E V F M
PGPhos	A L A E E GGA P FTL AE I T G F IG N G V PVL I Q
Phosphon	E I F H K RGV A ITA EEAR K P MGL L K I D HVR V T
PGPhos	R V L A A R GE A P D A HR Q A E L Q G R F M A H Y E A D P
Phosphon	E M P R I A S E W N R V F R Q L P T E A D I Q E M Y E E F E
PGPhos	A T L T S V Y P G A E A A I R H L R A E G W R
Phosphon	E I L F A I L P R Y A S P I N G V K E V I A S L R E R G I K
PGPhos	IGLCTNKPVGASRQILSLFGLLELF
Phosphon	IGSTTGYTREMMDIVAKEAALQGYKP
PGPhos	DAIIGGESLPORKPDPAPLRATAAALN
Phosphon	DFLVTPDDVPAGRPYPWMSYKNAMELGVYP
PGPhos	E E V V L Y V G D S E V D A A T A E A A G L R F A L F T E G
Phosphon	M N H M I K V G D T V S D M K E G R N A G M W T V G V I L G
PGPhos	YRHAPV HELPHHGLFSHHDELQDLLRRL

	10	151	176
	*	*	*
Cu++ATPase.Ec	L D T V V F D K T G T L T E G	V I A G V L P D G K A E A I K H L	A M V G D G I N D A P A L
Cu++ATPase.Hs	VKVVVFDKTGTITHG	V F A E V L P S H K V A K V K O L	AMVG D GINDSPAL
Ca++ATPase.At	ATTICSDKTGTLTTN	VMARSSPMD K HTLVRLL	AVTG D GTNDAPAL
Urf.Mj	KVAIVF D SAGTLVKI	E AHQEL KRDLIRNL	I M V G D G A N D V P A M
PhosSerPhos.Hs	ADAVCFD VDSTVIRE	TAE - SGGKG K VIKLLKE	IMIG D GATDMEAC
2-DO-6-PPhos.Sc	V D L C L F D L D G T I V S T	I T G F D V K N G K P D P E G Y S	VVFE D APVGIKAG
DL-Gly-3-Phos.Sc	INAALF D VDGTIIIS	I T A N D V K Q G K P H P E P Y L	VVFE D APAGIAAG
Phosphon.Pa	L Q A A I L D W A G T V V D F	ATDEV-PNG R PWPAQAL	VKVD D TWPGILEG
Phosphon.St	I H A V I L D W A G T T V D F	ATDDLAAGG R PGPWMAL	VKVD D AAPGISEG
Phosphon.Bc	IEAVIFD WAGTTVDY	T P D D V - P A G R P Y P W M S Y	I K V G D T V S D M K E G
PhosGlycolPhos.Rs	MPGVVFDLDGTLVHS	IGGESLPQR K PDPAPLA	LYVG D SEVDAATA
NtermDom.IGPD.Pp	V Q A L L L D M D G V M A E V	LEDCPP K PSPEPIL	AMVG D TVDDIIAG
B-PhosGlucoMut.Ll	F K A V L F D L D G V I T D T	A E V A A S K P A P D I F I	IGLE D SQAGIQAI
HaloAcidDehal.PspYL	I K G I A F D L Y G T L F D V	L S V D P V Q V Y K P D N R V Y E	L F V S <mark>S</mark> N A W D A T G A
NtermDomEpoxHyd.Hs	L R A A V F D L D G V L A L P	IESCQVGMV <mark>K</mark> PEPQIYK	VFLD D IGANLKPA
EnolasePhos.Ko	IRAIVT D IEGTTSDI	F D T L V G A K R E A O S Y R	LFLS D IHQELDAA

BayGen

	10	151	176
	* • • • • • • • • • • • • • • • • • • •	* V T A C V I DD C V A E A T V H I	* ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
CULLATPOSE.EC			
lunf Mi			
DhacSarDhac Hc			TMTC D CATDMEAC
2_DD_6_DDbos Sc			
DI Cly 2 Dhoc Sc			VVFED APVOIKAG
DL-GLY-J-PHOS.JC Dhocnhon Da			V K V D D TWDG TIEG
Phoenhon St			
Phosphon Rc	TEAVIED WAGTIVDY		TKVG D TVSDMKFG
Phoselycol Phose Ps			I YVG D SEVDAATA
NtermDom TGPD Pn			
R_PhosGlucoMu+ 11	FKAVIEDIDGVITAL	A EVAAS K PAPD TET	TGLEDSONGTONT
HaloAcidDehal PsnYl	TKGTAEDLYGTLEDV		LEVS S NAWDATGA
NtermDomEnoxHvd Hs			VELD DITGANIKPA
Nuer Indonie poznyu. ns			

	10	10 151	
	*	*	*
Cu++ATPase.Ec	L D T V V F D K T G T L T E G	VIAGVLPDG K AEAIKHL	AMVG D GINDAPAL
Cu++ATPase.Hs	V K V V V F D K T G T I T H G	V F A E V L P S H K V A K V K Q L	A M V G D G I N D S P A L
Ca++ATPase.At	ATTICS D KTGTLTTN	V M A R S S P M D K H T L V R L L	AVTG D GTNDAPAL
Urf.Mj	KVAIVF D SAGTLVKI	E AHQEL K RDLIRNL	I M V G D G A N D V P A M
PhosSerPhos.Hs	ADAVCFD VDSTVIRE	TAE-SGGKG K VIKLLKE	IMIG D GATDMEAC
2-DO-6-PPhos.Sc	V D L C L F D L D G T I V S T	I T G F D V K N G K P D P E G Y S	V V F E D A P V G I K A G
DL-Gly-3-Phos.Sc	INAALF D VDGTIIIS	I T A N D V K Q G K P H P E P Y L	VVFE D APAGIAAG
Phosphon.Pa	L Q A A I L D W A G T V V D F	ATDEV-PNG R PWPAQAL	VKVD D TWPGILEG
Phosphon.St	I H A V I L D W A G T T V D F	ATDDLAAGG R PGPWMAL	V K V D D A A P G I S E G
Phosphon.Bc	I E A V I F D W A G T T V D Y	T P D D V - P A G R P Y P W M S Y	IKVG D TVSDMKEG
PhosGlvcolPhos.Rs	M P G V V F D L D G T L V H S	I G G E S L P O R K P D P A P L A	LYVG D SEVDAATA
NtermDom.IGPD.Pp	VOALLL D MDGVMAEV	LEDCPP K PSPEPIL	AMVG D TVDDIIAG
B-PhosGlucoMut.Ll	FKAVLFDLDGVITDT	A E V A A S K P A P D I F I	IGLE D SOAGIOAI
HaloAcidDehal.PspYL	IKGIAFDLYGTLFDV	L S V D P V O V Y K P D N R V Y E	L F V S S NAWDATGA
NtermDomEnoxHvd Hs	IRAAVEDIDGVIALP	TESCOVGMV K PEPOTYK	V F I D D T G A N I K P A
Freilase Dhea Ke	TRATVED TECTER		

gram.pos	L K A K G M N T A V G D E G G Y A P N L G S N D E A L A V I A			
gram.neg	L S A K G M N T N V G D E G G F A P S L D S A S S A L D F I V			
eukaryote	T K K R Y G A S A G N V G D E G G V A P N I Q T A E E A L D L I V			
archea.	L A D R D L P A G K G D E G A W A P S V - S D D E A F E I M D			
cpeps	V E R R F G P V P L S A S S G L M V P L D S A G Q - L D L L Q			
gram.pos	EAVKAAGYELGKDITLAMDCAASEFYKD-GK			
gram.neg	DSISKAGYKPGEDVFIALDAASSEFYNK-DQNI			
eukaryote	DAIKAAGHDGKVKIGLDCASSEFFKD-GKYD			
archea.	EAVETVADDFGFAISFGLDVARAELYDD-EADG			
cpeps	AAVAETGHTEVCTLGVDVAAEHLLTEPGRYR			
gram.pos	Y V L A G E G N K A F T S E E F T H F L E E L T K Q Y P I V			
gram.neg	Y D L K G E G R K - L T S A Q L V D Y Y V E L C G K Y P I Y			
eukaryote	L D F K N P N S D K S K W L T G P Q L A D L Y H S L M K R Y P I V			
archea.	Y V Y D D G V K S T E E Q I E Y I A G K V E E Y D L V			
cpeps	F G D R V L T A P D F A D H L A D L A H R F R M S			
	Enols: 37-62% identical to each other Cpeps: 35-50% identical to Enols			

DVFS -VFS 	AHGV -EGI CESV -EAV	VLEL LLEL VLEL VIEL	THNW THNW THNW THNW TYNW	G T E K N G T E K E G T E N D G V D K -	PDY SGP PNF	K I NN VYHN HYHN
- V F S	- EGI CESV - EAV	LLEL VLEL VIEL	THNW THNW TYNW	G T E K E G T E N D G V D K -	SGP PNF	VYHN HYHN
- V F S 	CESV -EAV	VLEL	T H N W (T Y N W (G T EN D GV DK -	PNF	HYHN
	- EA V	VIEL	TYNW	GVDK-		
אידדס						
NTTD	_					[2]
NILCE	KRGI	FGHI	CFTV	DNIES	ACA	YLE-
NEEP	HRGI	FGHI	CFSV	SDINK	TCE	ELE-
NDGD	EKGY	YGHV	CISV	DNINA	ACS	KFE-
N-SE	POG	YGHI	CISC	DDAGA	LCK	EIEV
T	A Y	үднт	ALSVI	DNAAF	ACE	KTRO
1-			<u>-</u>			x
- SKG	VSFF	к к к т.	SDGKI	икнта	च	
- 5 0 G	ידיי	K K R T .	SEGRO		F	
- AEG	T. PFF		TDGRI			FT. T. D
11 11 (1			NOCDI		1	
VCDK	$T \cap W $					H. I. K II
	NEEP NDGD N-SE T -SKG -SQG -AEG	NEEPHRG NDGDEKG N - SEPQG T A - SKGVSF1 - SQGVKF1 - AEGLPF1	NEEPHRGFGHI NDGDEKGYGHV N - SEPQGYGHI T AYGHI - SKGVSFKKKL - SQGVKFKKRL - AEGLPFKKKL	NEEPHRGFGHICFSV NDGDEKGYGHVCISV N - SEPQGYGHICISC T AYGHIALSV - SKGVSFKKKLSDGKI - SQGVKFKKRLSEGRO - AEGLPFKKKLTDGRI	NEEPHRGFGHICFSVSDINK NDGDEKGYGHVCISVDNINA N - SEPQGYGHICISCDDAGA T AYGHIALSVDNAAE - SKGVSFKKKLSDGKMKHIA - SQGVKFKKRLSEGRQKDIA - AEGLPFKKKLTDGRMKDIA	NEEPHRGFGHICFSVSDINKTCE NDGDEKGYGHVCISVDNINAACS N-SEPQGYGHICISCDDAGALCK TAYGHIALSVDNAAEACE -SKGVSFKKKLSDGKMKHIAF -SQGVKFKKRLSEGRQKDIAF -AEGLPFKKKLTDGRMKDIA

Some Primary Algorithms for Multiple Alignment

- Global alignment methods construct an alignment throughout the length of the entire sequence
 - Examples: Pileup, Clustal family, MSA
- Local alignment methods identify ordered series of motifs, then aligns the intervening regions
 - Examples: MACAW, PIMA
- 1D profile analysis

BayGe

A few important topics we didn't even mention

- Mapping Sequence Æ Structure Æ Function
- Structural superposition and 3D motif finding
- The 3D genome project
- Mapping the protein universe
- Census studies (Gerstein)
- Informatics for Proteomics
 - post-translational modifications
 - investigating protein machines

BayG