Overview

- Week 2: Comparative methods and concepts
 - Similarity vs. Homology
 - Global vs. Local Alignments
 - Scoring Matrices
 - BLAST
 - BLAT
- Week 3: Predictive methods and concepts
 - Profiles, patterns, motifs, and domains
 - Secondary structure prediction
 - Structures: VAST, Cn3D, and *de novo* prediction

Why do sequence alignments?

- Provide a measure of relatedness between nucleotide or amino acid sequences
- Determining relatedness allows one to draw biological inferences regarding
 - structural relationships
 - functional relationships
 - evolutionary relationships

 \rightarrow importance of using correct terminology

Defining the Terms

- The quantitative measure: *Similarity*
 - Always based on an observable
 - Usually expressed as percent identity
 - Quantify changes that occur as two sequences diverge
 - substitutions
 - insertions
 - deletions
 - Identify residues crucial for maintaining a protein's structure or function
- High degrees of sequence similarity *might* imply
 - a common evolutionary history
 - possible commonality in biological function

Defining the Terms

- The conclusion: *Homology*
 - Genes *are* or *are not* homologous (not measured in degrees)
 - Homology implies an evolutionary relationship
- The term "homolog" may apply to the relationship
 - between genes separated by the event of speciation (*orthology*)
 - between genes separated by the event of genetic duplication (*paralogy*)

Defining the Terms

- Orthologs
 - Sequences are direct descendants of a sequence in a common ancestor
 - Most likely have similar domain structure, threedimensional structure, and biological function
- Paralogs
 - Related through a gene duplication event
 - Provides insight into "evolutionary innovation" (adapting a pre-existing gene product for a new function)

Overview

- Week 2: Comparative methods and concepts
 - Similarity vs. Homology
 - Global vs. Local Alignments
 - Scoring Matrices
 - BLAST
 - BLAT
- Week 3: Predictive methods and concepts
 - Profiles, patterns, motifs, and domains
 - Secondary structure prediction
 - Structures: VAST, Cn3D, and *de novo* prediction

Global Sequence Alignments

- Sequence comparison along the entire length of the two sequences being aligned
- Best for highly-similar sequences of similar length
- As the degree of sequence similarity declines, global alignment methods tend to miss important biological relationships

Local Sequence Alignments

- Sequence comparison intended to find the most similar regions in the two sequences being aligned ("paired subsequences")
- Regions outside the area of local alignment are excluded
- More than one local alignment could be generated for any two sequences being compared
- Best for sequences that share some similarity, or for sequences of different lengths

Overview

- Week 2: Comparative methods and concepts
 - Similarity vs. Homology
 - Global vs. Local Alignments
 - Scoring Matrices
 - BLAST
 - BLAT
- Week 3: Predictive methods and concepts
 - Profiles, patterns, motifs, and domains
 - Secondary structure prediction
 - Structures: VAST, Cn3D, and *de novo* prediction

Scoring Matrices

- Empirical weighting scheme representing physicochemical and biological characteristics of nucleotides and amino acids
 - Side chain structure and chemistry
 - Side chain function
- Amino acid-based examples:
 - Cys/Pro important for structure and function
 - Trp has bulky side chain
 - Lys/Arg have positively-charged side chains

Scoring Matrices

- *Conservation:* What residues can substitute for another residue and not adversely affect the function of the protein?
 - Ile/Val both small and hydrophobic
 - Ser/Thr both polar
 - Conserve charge, size, hydrophobicity, other physicochemical factors
- *Frequency:* How often does a particular residue occur amongst the entire constellation of proteins?

Scoring Matrices

- Why is understanding scoring matrices important?
 - Appear in all analyses involving sequence comparison
 - Implicitly represent particular evolutionary patterns
 - Choice of matrix can strongly influence outcomes of analyses

Matrix Structure: Proteins					
	A R N D C Q E G H I L K M F P S T W V B Z X * A 4 -1 -2 -2 -1 -1 0 -2 -1 -1 -2 -1 -1 0 -2 -1 -1 0 -2 -1 -1 0 -2 0 -2 -1 0 -4 -4 -1 -3 -2 -1 -1 -3 -2 -3 -1 -1 -2 -3 -2 -3 -1 -1 -3 -2 -3 -1 -1 -2 -3 -3 -1 -4 -2 -3 -1 -1 -2 -1 -2 -1 -3 -3 -2 -1 -2 -1 -2 -1 -3 -3 -2 -1 -2 -1 -2 -1 -3 -3 -3 -1 -4 -2 1 -3 -3 -1				
	BLOSUM62				

PAM Matrices

- Margaret Dayhoff and colleagues, 1978
 - Look at patterns of substitutions in highly related proteins (> 85% similar) within multiple sequence alignments
 - Analysis documented 1572 changes in 71 groups of proteins examined
 - Substitution tables constructed based on results of this analysis
 - Given high degree of similarity within original sequence set, results represent substitution pattern that would be expected over short evolutionary distances

PAM Matrices

- Short evolutionary distance
 .: change in function unlikely
- Point Accepted Mutation (PAM)
 - The new side chain must function the same way as the old one ("acceptance")
 - On average, 1 PAM corresponds to 1 amino acid change per 100 residues
 - $1 \text{ PAM} \sim 1\%$ divergence
 - Extrapolate to predict patterns at longer evolutionary distances

PAM Matrices: Assumptions

- All sites assumed to be equally mutable, not accounting for conserved blocks or motifs
- Replacement of amino acids is independent of previous mutations at the same position
- Replacement is independent of surrounding residues
- Forces responsible for sequence evolution over shorter time spans are the same as those over longer time spans

PAM Matrices: Sources of Error

- Small, globular proteins of average composition used to derive matrices
- Errors in PAM 1 are magnified up to PAM 250 (only PAM 1 is based on direct observation)

BLOSUM Matrices

- Henikoff and Henikoff, 1992
- <u>Blo</u>cks <u>Substitution Matrix</u>
 - Look only for differences in conserved, ungapped regions of a protein family ("blocks")
 - Directly calculated, using no extrapolations
 - More sensitive to detecting structural or functional substitutions
 - Generally perform better than PAM matrices for local similarity searches (*Henikoff and Henikoff, 1993*)

BLOSUM n

- Calculated from sequences sharing no more than *n*% identity
- Contribution of sequences > n% identical clustered and weighted to 1

2,000 blocks representing > 500 groups of related proteins

BLOSUM n

- Clustering reduces contribution of closelyrelated sequences (less bias towards substitutions that occur in the most closely-related members of a family)
- Substitution frequencies are more heavilyinfluenced by sequences that are more divergent than this cutoff
- Reducing *n* yields more distantly-related sequences

So many matrices...

Triple-PAM Strategy (Altschul, 1991)

PAM 40	Short alignments, highly similar	70-90%
PAM 160	Detecting known members of a protein family	50-60%
PAM 250	Longer, weaker local alignments	~ 30%

BLOSUM (Henikoff, 1993)

BLOSUM 90	Short alignments, highly similar	70-90%
BLOSUM 80	Detecting known members of a protein family	50-60%
BLOSUM 62	Most effective in finding all potential similarities	30-40%
BLOSUM 30	Longer, weaker local alignments	< 30%

So many matrice	S					
Matrix Equivalencies						
PAM 250	~	BLOSUM 45				
PAM 160	~	BLOSUM 62				
PAM 120	\sim	BLOSUM 80				
 Specialized matrice Transmembrane p Species-specific m 	s roteins atrices					
Wheeler, 2003						

Gaps

- Compensate for insertions and deletions
- Used to improve alignments between two sequences
- Must be kept to a reasonable number, to not reflect a biological implausible scenario (~1 gap per 20 residues good rule-of-thumb)
- Cannot be scored simply as a "match" or a "mismatch"

Affine Gap Penalty

Fixed deduction for introducing a gap *plus* an additional deduction proportional to the length of the gap

Deduction for a gap = G + Ln

		nuc	pro
where	where $G =$ gap-opening penalty	5	11
	L = gap-extension penalty	2	1
and	nd $n =$ length of the gap		
where and	where $G =$ gap-opening penalty L = gap-extension penalty nd $n =$ length of the gap	5 2	11 1

Can adjust scores to make gap insertion more or less permissive, but most programs will use values of G and L most appropriate for the scoring matrix selected

Overview

- Week 2: Comparative methods and concepts
 - Similarity vs. Homology
 - Global vs. Local Alignments
 - Scoring Matrices
 - BLAST
 - BLAT
- Week 3: Predictive methods and concepts
 - Profiles, patterns, motifs, and domains
 - Secondary structure prediction
 - Structures: VAST, Cn3D, and de novo prediction

BLAST

- <u>Basic Local Alignment Search Tool</u>
- Seeks high-scoring segment pairs (HSP)
 - pair of sequences that can be aligned with one another
 - when aligned, have maximal aggregate score (score cannot be improved by extension or trimming)
 - score must be above score threshold S
 - gapped or ungapped
- Results not limited to the "best HSP" for any given sequence pair

-	BLAST Algorithms				
	Program	Query Sequence	Target Sequence		
	BLASTN	Nucleotide	Nucleotide		
	BLASTP	Protein	Protein		
	BLASTX	Nucleotide, six-frame translation	Protein		
	TBLASTN	Protein	Nucleotide, six-frame translation		
	TBLASTX	Nucleotide, six-frame translation	Nucleotide, six-frame translation		

$\Theta \Theta \Theta$	NC	BI Blast		C
🔶 🔶 🥌	😢 🕋 🗟 http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi?CMD=Web&L	AYOUT=TwoWindows&AUTO_F	ORMAT=Semiauto&ALIGNME V	
S NCBI Nucleotide	protein-protein BLAS Protein Translations Retrieve results an RID	for		
Search	Protein query MSSAAAAAAGAAGGALFQPQSVSTANSSSSNNNNSSTPA FGGSSAKMINELFGRQMKQAQDATSGLPQSLDNAMLAAAM PANSTPMSNGTNASISPGSAHSSSHSHQGVSPKGSRVSA ASSGEQHQSQLQHDLVAHHMLRNILQGKKELMQLDQELRT (ALATHSPTSNSPVSGA ETATSAELLIGSLNST CSDRSLEAAAADVAGG AMQQQQQLQEKEQLH	SSAS SKLL SPPR SKLN	
Set subsequence	From: To:			_
Choose database	nr 🔹	Available pr	otein databases include:	
Do CD-Search	۲	nr refseg	Non-redundant Reference Sequences	
Now:	BLAST! UI (Reset query (Reset all	swissprot	SWISS-PROT	
		pat .	Patents	
Options	for advanced blasting	pdb	Protein Data Bank	
Limit by entrez query	or select from: All organisms	env_nr month	Environmental samples Last 30 days	
Compositional adjustments	Composition-based statistics			_
Choose filter	✓ Low complexity ✓ Mask for lookup table only ✓ Mask lo	ower case		

$\Theta \Theta \Theta$	NCBI Blast	\bigcirc
🔶 - 🔶	😢 🏠 🗟 http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi?CMD=Web&LAYOUT=TwoWindows&AUTO_FORMAT=Semiauto&ALIGNME 🔻 🔘 💽	2
		1
Options	for advanced blasting	- 1
Limit by		- 1
entrez query	or select from: All organisms	
Compositional	Composition based statistics	- 1
adjustments		- 1
Choose filter	\overline{r} Low complexity \overline{r} Mask for lookup table only \overline{r} Mask lower case	ſ
Expect	10	
Word Size	3 -	
Matrix	BLOSUM62 🝸 Gap Costs Existence: 11 Extension: 1 💌	
PSSM		
Other	·	
advanced		- 1
PHI pattern		- 1
Format		
CI.		
Snow	Graphical Overview LInkout Sequence Retrieval NCBI-gi Alignment In HIML If ormat In HIML In HIML	A V

) \varTheta 🖯	NCBI Blast	C
┝· 🔶 🖓	Shttp://www.ncbi.nim.nih.gov/BLAST/Blast.cgPCMD=Web&LAYOUT=TwoWindows&AUTO_FORMAT=Semiauto&ALICNME V 🔿 🖓) 3
Options	for advanced blasting	
entrez query	or select from: All organisms	
Compositional adjustments	Composition-based statistics 🔹	
Choose filter	Low complexity $$ Mask for lookup table only $$ Mask lower case	
Expect	10	
Word Size	3 -	
Matrix	BLOSUM62 Gap Costs Existence: 11 Extension: 1 Gap Costs Existence: 11 Extension: 1 Gap Costs Existence: 11 Extension: 1 Gap Costs PAM30	
PSSM	BLOSUM62 BLOSUM45	
Other advanced		
PHI pattern		
Format		
Show	🗟 Graphical Overview 🗟 Linkout 🗟 Sequence Retrieval 🗟 NCBI-gi Alignment 🔄 in HTML 🔄 format	

€ € €	NCBI Blast
🔶 - 🌧 - 🥪	😢 👚 ⊱ http://www.ncbi.nim.nih.gov/BLAST/Blast.cg?CMD=Web&LAYOUT=TwoWindows&AUTO_FORMAT=Semiauto&ALIGNME 🔻 🔘 🕞
Options	for advanced blasting
Limit by entrez query	or select from: All organisms
Compositional adjustments	Composition-based statistics
Choose filter	F Low complexity Mask for lookup table only Mask lower case
Expect	□
Word Size	$\mathbb{R}_{3} = \mathbb{R}_{2}$ Reports all hits with $E < 10$
Matrix	BLOSUM62 🗹 Gap Costs Existence: 11 Extension: 1 🗹
PSSM	
Other	
PHI pattern	
	1
Format	
Show	로 Graphical Overview 로 Linkout 로 Sequence Retrieval 로 NCBI-g Alignment 🔟 in HTML 🔄 format
Done	

00	NCBI Blast	0
🔶 • 🄶 • 🍰	📀 👚 🗟 http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi?CMD=Web&LAYOUT=TwoWindows&AUTO_FORMAT=Semiauto&ALIGNME 🔻 🔘 💽*	- ×
ſ		
Format		
Show	F Graphical Overview F Linkout F Sequence Retrieval F NCBI-g Alignment in HTML format	
	☐ CDS feature	
	Masking Character Lower Case 🔄 Masking Color Grey	
Number of:	Descriptions 500 - Alignments 250 - Graphic overview 100 -	
Alignment view	Pairwise -	
Format for PSI-BLAST	□ with inclusion threshold:0.005	
Limit results by entrez query	or select from: All organisms	
Expect value range:		
Layout:	One Window J Formatting options on page with results: None J	
Autoformat	Semi-auto 🔽	
Jump 2		
BLASTI		
Geographe URL	with preset values ?	
Done		

00			NCBI Blast			0
🔶 🔶 🚽	区 🚹 🗟 http://www	.ncbi.nlm.nih.gov/BLAST/E	Blast.cgi		• © (G •	
S NCBI		formatting	BLAST			
Nucleotide	Protein	Translations	Retrieve results for an RID			
Your request	has been success	fully submitted a	and put into the Blast	Queue.		
Query = Pro	otein query (1403 l	etters)				
Putative co	nserved domains	s have been de	etected, click on the	image below for deta	iled results.	
		Prox1		Prox1		
The request	ID is 1157069483-211	L52-77397033272.BL	ASTQ1			
Eormati or (Reset all					
The state						
The testits are a	estimated to be ready in	n 1 minutes 50 secor	nds but may be done sooner			
Please press "FO "FORMAT!" agai	DRMAT!" when you wish n. You may also request	to check your result t results of a differen	ts. You may change the form It search by entering any oth	atting options for your result vi er valid request ID to see othe	ia the form below and pre er recent jobs.	ss
Format						
Show	Graphical Overview	C Linkout C Sequen	ce Retrieval I⊂ NCBI-gi Alignr	nent 🔄 in HTML 🔄 format		
	CDS feature					
	Masking Character Low	ver Case	Masking Color Gre	/ -		
Done						

00	NCBI Sequence Alignment Visualization Service Alignment detail	0
🔶 - 🔶 - 🔁 🌔	3 👫 🗟 http://www.ncbi.nlm.nlh.gov/Structure/cblast/cblast.cgi?client=blast&output=html&blast_RID=1157070567-21631- 🔻 🔘 🕞	3ª
S NCBI	Related Structures Image: Constructure Image: Constructure Help PubMed Blast Entrez Structure Help	
Query: Structure: Reference:	Local object Query sequence definition line not available 1MIJ Chain A, Crystal Structure Of The Homeo-Prospero Domain Of D. Melanogaster Prospero [MMDB] [PubMed]	
	Get 3D Structure data to: View in Cn3D (To display structure, download Cn3D)	
	E-value = 2e-83, Bit score = 314, Aligned length = 152, Sequence Identity = 0%	
query 1245 IMIJ_A 1 query 1325 IMIJ_A 81	10 20 30 40 50 60 70 80 SSTLTPMHLRKAKLMFFWVRYPSSAVLKMYFPDIKFNKNNTAQLVKWFSNFREFY 90 100 110 120 130 GDSELYRVLNLHYNRNNHIEVPONFRFVVESTLREFFRAIQGGKDTEQSWKKSIY GDSELYRVLNLHYNRNNHIEVPONFRFVVESTLREFFRAIQGGKDTEQSWKKSIY	

	Protein query			C
🔶 🗧 🔶 🚺 😒 🏠 😒 http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgl			• O G•) **.
Sequences producing significant alignments: Descending	Score (Bits)	E Value		
gi 217346 dbi BAA01464.1 prospero [Drosophila me]	1683	0.0	U	
gi 23170988 gb AAF54628.2 CG17228-PC, isoform C [1681	0.0		
gi 28381245 gb AAN13500.2 CG17228-PD, isoform D [Order	1612	0.0	0.0	means
gi 6179901 gb AAF05703.1 homeodomain transcriptio	1593	0.0	~ 1	O -1000
gi 158184 gb AAA28841.1 Pros protein	1586	0.0	<u> </u>	0.000
gi 28381244 gb AAN13501.2 CG17228-PA, isoform A [Drosophila	1063	0.0	•	
gi 55244567 gb EAA05345.2 ENSANGP00000010936 [Anopheles gamb	540	2e-151	G	
gi 54639735 gb EAL29137.1 GA14403-PA [Drosophila pseudoobscura]	521	1e-145		
gi 6274469 gb AAF06660 1 homeodomain transcription factor Pr	494	20-137		
gi 66360556 pdb 1XPX A Chain A. Structural Basis Of Prospero-	347	36-93	30-03	$= 3 \times 10^{-93}$
gi 27065659 pdb 1MIJ A Chain A, Crystal Structure Of The Home	314	2e-83	36-33	3 × 10
gi 91094749 ref XP 971664.1 PREDICTED: similar to CG17228-PD	300	5e-79	0	
gi 110756433 ref XP 392355.3 PREDICTED: similar to prospero	286	5e-75	6	
gi 32261038 emb CAE00181.1 prospero protein [Cupiennius salei]	263	4e-68		
gi 90074853 dbj BAE87100.1 Prospero [Achaearanea tepidariorum]	259	5e-67		
gi 16768018 gb AAL28228.1 GH11848p [Drosophila melanogaster]	248	2e-63	S	Structure
gi 39587414 emb CAE75068.1 Hypothetical protein CBG22984 [Caeno	234	2e-59		Sci uccui c
gi 17552742 ref NP 498760.1 C.Elegans Homeobox family member	233	4e-59	G	Gene
g1 546374 gb AAB30541.1 Prox 1=homeobox gene prospero homolo	219	7e-55		
gi /2009314 ref XP /815/8.1 PREDICTED: similar to Homeobox p	207	36-51	U	UniGene
gi 69421605 rof VD 602962 1 DEEDTCOMPD. cimilar to Homoshow D	201	20-49	0	
gi 1511620 ch ACCOCC 1 homoodomain protoin	100	10 49		
gi 47227457 emb CAG04605.1 unnamed protein product [Tetraodon n	198	20-48		
gi 56785422 ref NP 001005616.1 prospero-related homeobox 1 [197	5e-48	UG	
gi 76638078 ref XP 881466.1 PREDICTED: similar to prospero-r	196	5e-48	G	
gi 55589302 ref XP 514189.1 PREDICTED: similar to prospero-r	196	5e-48	G	
gi 7512233 pir JC5495 Prox 1 protein - chicken	196	5e-48	_	
gi 21359846 ref NP 002754.2 prospero-related homeobox 1 [Hom	196	6e-48	UG	
gi 109499278 ref XP_001067440.1 PREDICTED: similar to Homeob	196	6e-48	G	
gi 76638074 ref XP_881339.1 PREDICTED: similar to prospero-r	196	6e-48	G	
gi 73960372 ref XP_858135.1 PREDICTED: similar to prospero-r	196	6e-48	UG	
gi 6679483 ref NP_032963.1 prospero-related homeobox 1 [Mus	196	7e-48	UG	
gi 11071924 dbj BAB17310.1 Prox 1 [Xenopus laevis]	195	1e-47	UG	
an A0254702 ref ND 571480 2 program related homeobox gape 1	▼ 10/	20-17	II G	

$\Theta \Theta \Theta$	RID=1157070567-21631-154604733693.BLASTQ4, Pr	rotein query			0
🔶 🔶 🥪	😢 🏠 kttp://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi			• O (G •) m
91 JU424022	TEL NF /0040/.1 hypothetical protein boc/3422 [M	190	40-40		
gi 3372869	gb AAC28353.1 Prox1 [Xenopus laevis]	187	3e-45	U	
gi 70570993	dbj BAE06658.1 transcription factor protein [Ciona	187	4e-45	U	`
gi 10947851	6 ref XP 234418.4 PREDICTED: similar to RIKEN CDN	186	7e-45	G	
gi 10908432	1 ref XP 001088672.1 PREDICTED: similar to prospe	186	7e-45	G	
gi 77748060	gb AAI05928.1 Unknown (protein for IMAGE: 40025197)	184	3e-44	UG	
gi 70570999	dbj BAE06659.1 transcription factor protein [Ciona	181	2e-43	U	
gi 47230216	emb CAG10630.1 unnamed protein product [Tetraodon n	176	7e-42		
gi 47224292	emb CAG09138.1 unnamed protein product [Tetraodon n	175	1e-41		
gi 47206446	emb CAF95276.1 unnamed protein product [Tetraodon n	175	2e-41		
gi 1117962	gb AAC59781.1 prospero_like protein	156	6e-36	_	
gi 73964305	ref XP_547908.2 PREDICTED: similar to RIKEN cDNA 17	154	3e-35	G	
gi 21753053	dbj BAC04278.1 unnamed protein product [Homo sapien	144	4e-32	UG	A
gi 11071926	dbj BAB17311.1 Prox 1 [Cynops pyrrhogaster]	141	2e-31		Accept
gi 76628246	ref XP_608175.2 PREDICTED: similar to RIKEN cDNA 17	136	7e-30	G	(for now)
gi 55961898	emb CAI15309.1 prospero-related homeobox 1 [Homo sa	133	6e-29		()
gi 76638080	ref XP_870676.1 PREDICTED: similar to prospero-r	133	6e-29	G	
gi 73960376	ref XP_849216.1 PREDICTED: similar to prospero-r	133	6e-29	UG	
gi 47224321	emb CAG09167.1 unnamed protein product [Tetraodon n	132	2e-28		
gi 47204095	emb CAG13403.1 unnamed protein product [Tetraodon n	100	5e-19	_	
gi 55641159	ref XP_522907.1 PREDICTED: similar to RIKEN cDNA 17	90.1	7e-16	G	
gi 4809335	gb AAD30180.1 homeobox prospero-like protein [Homo s	85.5	2e-14	G	
gi 7512234	pir JC5496 Prox 1 protein 671 - chicken	69.3	1e-09		
gi 76638076	ref XP_593325.2 PREDICTED: similar to prospero-r	69.3	1e-09	G	
gi 73960374	ref XP_547411.2 PREDICTED: similar to prospero-r	69.3	1e-09	UG	
gi 50749012	ref XP 426445.1 PREDICTED: similar to Homeobox p	57.8	4e-06	G	
gi 91095441	ref XP 970352.1 PREDICTED: similar to Protein pr	57.4	6e-06	G	
gi 47202992	emb CAF94749.1 unnamed protein product [Tetraodon n	43.5	0.071		
gi 6466795	gb AAF13029.1 transcription factor Prox1 [Notophthal	41.6	0.29		
gi 10928805	3 gb ABG29070.1 transcription factor Prox1 [Pleurode	41.2	0.35	_	Poinct
gi 67539040	ref XP_663294.1 hypothetical protein AN5690.2 [A	38.5	2.4	G	Reject
gi 50363835	gb AAT75820.1 putative multidrug ABC transporter	37.0	6.8	G	
gi 70982839	ref XP_746947.1 short-chain dehydrogenase/reduct	37.0	6.9	G	
	Alignments				
Get selected se	equences Select all Distance tree of results				
Done					

$\Theta \Theta \Theta$		RID=1157070567-21631-154604733693.BLASTQ4, Protein query			C
(- 2	S http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi#6179901		• O (G •	- ×
> = = 4 1	000010		enter 1		
gi 28 Length	571644 =1535	4 ref NP_731565.2 G prospero CG17228-PA, isoform A [Drosophila melanog	ila melanoo	gaster]	
Score Ident:	= 100 ities	53 bits (2749), Expect = 0.0, Method: Composition-based stats = 915/917 (99%), Continues - 915/917 (99%), Gaps - 0/917 (0%)	. ≥ 2: ≥ 7	5% for proteins 0% for nucleotic	es
Query	1	MSSaaaaaagaagggaLFQPQSVSTAnssssnnnnssTPAALATHsptsnspvsgassas MSSAAAAAAGAAGGALFOPOSVSTANSSSSNNNNSSTPAALATHSPTSNSPVSGASSAS	60	- Gap	
Sbjct	1	MSSAAAAAAGAAGGGALFQPQSVSTANSSSSNNNNSSTPAALATHSPTSNSPVSGASSAS	60	a Low-	
Query	61	$\verb+sltaafgnlfggssakmlnelfgrqmkqaqdatsglpqsldnamlaaametatsaellisltaafgnlfggssakmlnelfgrqmkqaqdatsglpqsldnamlaaametatsaelli$	120	Complexi	ty
Sbjct	61	SLLTAAFGNLFGGSSAKMLNELFGRQMKQAQDATSGLPQSLDNAMLAAAMETATSAELLI	120		́—
Query	121	eq:gslnstskllqqqhnnsiapanstpmsngtnasispgsahssshshqqvspkGsrrvsagslnstskllqqqhnnsiapanstpmsngtnasispgsahssshshqqvspkGsrrvsagsrrv	180		
Sbjct	121	GSLNSTSKLLQQQHNNNSIAPANSTPMSNGTNASISPGSAHSSSHSHQGVSPKGSRRVSA	180		
Sbjct	181	CSDRSLEAAAADVAGGSPPRAASVSSLNGGASSGEQHQSQLQHDLVAHHMLKNILQGKKE CSDRSLEAAAADVAGGSPPRAASVSSLNGGASSGEQHQSQLQHDLVAHMLKNILQGKKE CSDRSLEAAAADVAGGSPPRAASVSSLNGGASSGEQHQSQLQHDLVAHMLKNILQGKKE	240 240		
Query	241	LMQLDQELRTAMqqqqqqqqqqqqekeqlHSKLnnnnnniaatannnnttMESINLIDDSEM	300		
Sbjct	241	$\label{eq:linear} LMQLDQELRTAMQQQQQQLQEKEQLHSKLNNNNNNIAATANNNNNTTMESINLIDDSEM LMQLDQELRTAMQQQQQQLQEKEQLHSKLNNNNNNIAATANNNNNTTMESINLIDDSEM$	300		
Query	301	ADIKIKSEPQTAPQPQQsphgsshssrsgsgsgshssmasdgslrrkssdsldsHGaqdd	360		
Sbjct	301	ADIKIKSEPQTAPQPQQSPHGSSHSSKSGSGSGSHSSKASDGSLKKSSDSLDSHGAQDD ADIKIKSEPQTAPQPQQSPHGSSHSSRSGSGSGSHSSMASDGSLKKSSDSLDSHGAQDD	360		
Query	361	aqdeedaaPTGQRSESRAPEEPQLPTKKESVDDMLDEVELLGLHSRGSDMDSLASPSQSd AODEEDAAPTGORSESRAPEEPOLPTKKESVDDMLDEVELLGLHSRGSDMDSLASPS SD	420		
Sbjct	361	AQDEEDAAPTGQRSESRAPEEPQLPTKKESVDDMLDEVELLGLHSRGSDMDSLASPSHSD	420		
Query	421	mmlldkddvldeddddCVEQKTSGSGCLKKPGMDLKRARVENIVSGMRCSPSSGLAQAG MMLLDKDDVLDEDDDDDCVEQKTSGSGCLKKPGMDLKRARVENIVSGMRCSPSSGLAQAG	480		
Sbjct	421	MMLLDKDDVLDEDDDDDCVEQ KTSGSGCLKKPGMDLKRARVENIVSGMRCSPSSGLAQAG	480		
Query	481	QLQVNGCKKRKLYQPQQHAMERYVaaaaGLNFGLNLQSMMLDQEDSESNELESPQIQQKR	540		

$\Theta \Theta \Theta$		RID=1157070567-21631-154604733693.BLASTQ4, Protein query		(
€ • ⇒				▼ © (G •
Query Sbjct Query Sbjct Score Ident	841 841 901 901 = 54	VLKSEITTSLSALVDTIVTRFVHQRRLFSKQADSVTAAAEQLNKDLLLASQILDRKSPRT VLKSEITTSLSALVDTIVTRFVHQRRLFSKQADSVTAAAEQLNKDLLLASQILDRKSPRT VLKSEITTSLSALVDTIVTRFVHQRRLFSKQADSVTAAAEQLNKDLLLASQILDRKSPRT KVADRPQNGPTPATQSA 917 KVADRPQNGPTPATQSG 917 46 bits (1406), Expect = 3e-153, Method: Composition-based sta = 461/498 (92%), Positives = 463/498 (92%), Gaps = 32/498 (6%)	900 900 ats.	No definition line :. second HSP identified
Query Sbjct	906 1070	PQNGPTPATQSAAAMFQAPKTPQGMNPVAAAALYNSMTGPFCLPPDqqqqqdaqqqaa P P+P +AAAMFQAPKTPQGMNPVAAAALYNSMTGPFCLPPDQQQQQTAQQQQSA PHIRPSPTAAAMFQAPKTPQGMNPVAAAALYNSMTGPFCLPPDQQQQQQTAQQQSA	965 112	6
Query Sbjct	966 1127	qqqqqssqqtqqqLEQNEALSLVVTPKKKRHKVTDTRITPRTVSRILAQDgvvpptggpp QQQQQSSQQTQQQLEQNEALSLVVTPKKKRHKVTDTRITPRTVSRILAQDGVVPPTGGPP QQQQQSSQQTQQQLEQNEALSLVVTPKKKRHKVTDTRITPRTVSRILAQDGVVPPTGGPP	102 118	5 6
Query Sbjct	1026 1187	$\label{eq:constraint} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	108 124	a Low-
Query Sbjct	1086 1247	VSLPTSVAIPNPSLHESKVFSPYSPFPNPhaaaggataaglhghhqdhphhqsmqlsss VSLPTSVAIPNPSLHESKVFSPYSPFPNPHAAAGQATAAQLHQHHQQHHPHHQSMQLSSS VSLPTSVAIPNPSLHESKVFSPYSPFPNPHAAAGQATAAQLHQHHQQHHPHHQSMQLSSS	114 130	5 Complexity
Query Sbjct	1146 1307	ppgslgALMDSRDspplphppsmlhpallaaahhggspDyKTCLRAVMDAQDRQSBCNSA PPGSLGALMDSRDSPPLPHPPSMLHPALLAAAHHGGSPDYKTCLRAVMDAQDRQSECNSA PPGSLGALMDSRDSPPLPHPPSMLHPALLAAAHHGGSPDYKTCLRAVMDAQDRQSECNSA	120	5 6
Query Sbjct	1206 1367	DMQFDGMAPTISFYKQMQLKTEHQESLMAKHCESLTPLHSSTLFPMHLRKAKLMFFWVRY DMQFDGMAPT STLTPMHLRKAKLMFFWVRY DMQFDGMAPTSSTLTPMHLRKAKLMFFWVRY	126 139	5 7
Query Sbjct	1266 1398	PSSAVLKMYFPDIKFNKNNTAQLVKWFSNFREFYYIQMEKYARQAVTEGIKTPDDLLIAG PSSAVLKMYFPDIKFNKNNTAQLVKWFSNFREFYYIQMEKYARQAVTEGIKTPDDLLIAG PSSAVLKMYFPDIKFNKNNTAQLVKWFSNFREFYYIQMEKYARQAVTEGIKTPDDLLIAG	132 145	5 7
Done	1326	חפידו עסוזיז אוד שעאוסאאש דפיזססאופספיוזופפייזי ספיפיפסא דססטישיספשעע בדעע דדפסא	139	5

Suggested BL	AST Cutoffs	
	<i>E</i> value	Sequence Identity
Nucleotide	$\leq 10^{-6}$	≥ 70%
Protein	≤ 10 ⁻³	≥ 25%
 Do not use t Pay attention the dividing Do not ignore 	hese cutoffs blindly n to alignments on line re biology!	?! either side of

- Low-quality sequence hits
 - Expressed sequence tags (ESTs)
 - Single-pass sequence reads from large-scale sequencing (possibly with vector contaminants)

BLAST 2 Sequences

- Finds local alignments between two protein or nucleotide sequences of interest
 - All BLAST programs available
 - Select BLOSUM and PAM matrices available for protein comparisons
 - Same affine gap costs (adjustable)
 - Input sequences can be masked

$\Theta \Theta \Theta$		NCBI BLAST	
🔶 - 🔶 🦉	E fittp://www.ncbi.nlm.nih.gov/BL	http://ww	w.ncbi.nlm.nih.gov/BLAST
ି NCBI → BLAST		Latest news: 7 May 2000 : DLAST 2.2.14 released	
About • Getting started • News • FAQs	The Basic Local Alignment Search Tool (BLA sequences. The program compares nucleotide or calculates the statistical significance of matches. evolutionary relationships between sequences as	ST) finds regions of local similarity between protein sequences to sequence databases and BLAST can be used to infer functional and well as help identify members of gene families.	
NAR 2004 NAR 2004 NCBI Handbook The Statistics of Soquence Similarity Scores Software Downloads Developer info	Nucleotide Quickly search for highly similar sequences (megablast) Quickly search for divergent sequences (discontiguous megablast) Nucleotide-nucleotide BLAST (blastn) Search for short, nearly exact matches Search for short, nearly exact matches Search trace archives with megablast or discontiguous megablast	Protein Protein-protein BLAST (blastp) Position-specific Iterated and pattern-hit Initiated BLAST (PSI-and PHI-BLAST) Search for short, nearly exact matches Search the conserved domain database (rpsbiast) Protein homology by domain architecture (cdart)	
Other resources • References • NCBI Contributors • Mailing list • Contact us	Translated • Translated query vs. protein database (blastx) • Protein query vs. translated database (tblastx) • Translated query vs. translated database (tblastx)	Genomes • Human, mouse, rat, chimp, cow, pig, dog, sheep, cat • Chicken, puffer fish, zebrafish • Ty, hong bee, other insects • Microbes, environmental samples • Plants, nematodes • Fungi, protozoa, other eukaryotes	
	Special Search for gene expression data (GEO BLAST)	Meta • Retrieve results	
	Augn two sequences (bL2seq) Screen for vector contamination (VecScreen) Immunoglobin BLAST (IgBlast) SNP BLAST		
	Disci Privacy s Acces This page is va	aimer tatement sibility alid XHTML 1.0.	
Done			

000	Blast 2 Sequences	- Netscape			0
G G G C E http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast	st2.cgi			🖸 🔍 Sear	ch 🔏 🔊
Blast 2 Sequences					
NCBI Entrez BL	AST 2 sequences		BLAST	Example	Help
	BLAST 2 SEC	UENCES			
This tool produces the alignment of two given sequence The stand-alone executable for blasting two sequence: Reference: Tatiana A. Tatusova, Thomas L. Madden I FEMS Microbiol Lett. 174:247-250	es using <mark>BLAST</mark> engine s (bl2seq) can be retrie (1999), "Blast 2 sequer	for local align eved from NCI nces - a new t	nment. <mark>BI ftp site</mark> ool for comparing	protein and nucleotide s	equences",
Program blastp 🗉 Matrix BLOSUM62 🗉 🔶 P	AM30				
Parameters used in BLASTN program only: Reward for a match: Penalty for a mis	AM70				
Use Mega BLAST Strand option Not Applicable	LOSUM80				
Open gap 11 and extension gap 1 penalties gap x_dropoff 50 expect 10.0 word size 3 Fi	LOSUM45				
Sequence 1 Enter accession or GI or downloa	d from file	Browse			
OF SEQUENCE IN FASIA TOTMAT (TOTM) DIP 00872.1 SOX-10 (Homo sapiens) MAEEQDLSEVELSPVGSEEPRCLSPGSAPSLGPDGGGGGGGGG CIRRAVSQULSGYDMTLVPHVRVNGASSKPHVKRPMNARYWW, LWRLLNESDKKPFIEBAERLRWQHKKNHPDYKYQPRKKNGKAA HLDNRHPGEGSPNSOGPHEPFPTPTFTLGSGKA ISHEVMSNMETFDVAELDQYLPPNOHPGHVSYSAAGVGLGSAL	SPGPGELGKVKKEQQDG AQAARRKLADQYPHLHN QGEAECPGGEAEQGGTA DPKRDGRSMGEGGKPHI AVASGHSAWISKPPCVA				
Sequence 2 Enter accession or GI or downloa	d from file	Browse			
ON Sequence mr ASTA IOMACHIONLO LODO ONE 003131.1 Sex determining region Y Homo MOSTASAMLSVENSDDYSPAVOENIPALRRSSEFLCTESCNSKY SRORRKMLENERMENESISKOLGYOKMLITEASEMEPFOEAQ NCSLLPADPASVLCSEVQLDNRLYRDDCTKATHSRMEHQLGHLP	sapiens] QCETGENSKGNVQDRVKR KLQAMHREKYPNYKYRPR PINAASSPQQRDRYSHWT				
Align Clear Input					
Comments and suggestions to blast-help@ncbi.nlm.nl	h.gov				
					- I L: 🔨 🖆

000	Blast 2 Sequences -	- Netscape			0
	//www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi			Search	ງ 💐 🔊
🕙 😒 Blast 2 Sequences					×
NCBI Entrez	BLAST 2 sequences		BLAST	Example	Help
	BLAST 2 SEQ	UENCES			
This tool produces the alignm The stand-alone executable i Reference: Tatiana A. Tatus FEMS Microbiol Lett. 174:247	nent of two given sequences using BLAST engine for blasting two sequences (bl2seq) can be retrie sova, Thomas L. Madden (1999), "Blast 2 sequer 7-250	for local align eved from NCE nces - a new to	ment. SI ftp site pol for comparing	protein and nucleotide sec	quences",
Program blastp Matrix BLO	SUM62 💌				
Parameters used in BLASTN Reward for a match:	program only: Penalty for a mismatch: option Not Applicable -				
Open gap 11 and extensio gap x_dropoff 50 expect 1	n gap 1 penalties				
Sequence 1 Enter accession or sequence in FASTA formal PNP 008872.1 SOX-10 (H MAEEQOLSEVELSPVGSEEPRCL: CIREAVSQVLSGYDWTLVPMPVR LWRLINESDKRPF IEEAERLENQ HLDHRHPGGSSPMSCONPEHPSG ISHEVMSNMETFDVAELDQYLPP	or Gi or download from file to to:po omo sapiens) SPGSAPSLOPDGGGGGSGERASPGPGELGKVKKEQODC VIGASKSEPHVKRPMNAPMVNAQAARKKLAOQYPHLIN HKKDHPDYKYOPRRKKNGKAAGGEAECPGGEAEOGGTA SGHOPPTPTTFKTELGSKADPKROGRSMEGGKCPH NGHPGHVSSYSAAGYGLGSALAVASGHSAWISKPPGVA	Browse.	<u></u>		
Sequence 2 Enter accession or sequence in FASTA format PNP 003131.1 sex detern MQSYASAMLSVFNSDDYSPAVQEI SRDQRKMALENPRMNNSEISKQ NCSLLPADPASVLCSEVQLDNRL	or GI or download from file t from: ining region Y [Homo sapiens] NIPALRRSSSFLCTESCNSKYQCETCENSKGNVQDRVKR LCYOWKHLTEAEKWPFPCBACNLOAMHREKYPNYKYRPR YRDDCTKATHSRMEHQLGHLPPINAASSPQQRDRYSHWT	Browse.			
Align Clear Input					
Comments and suggestions	to blast-help@ncbi.nlm.nih.gov				
					- 1 2 1 3 -P

⊖ ⊖ → Blast Result - Netscape	C
🕝 🗿 🕼 🛞 🔀 http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cg/0	š. 🔊
J S Blast Result	X
Blast 2 Sequences results	
BLAST 2 SEQUENCES RESULTS VERSION BLASTP 2.2.10 [Oct-19-2004]	
Matrix [BLOSUM62] gap open:[11 gap extension: [1 x_dropoff: [50 expect:]0.00; wordsize: [3 Filter 🖻 Align	
Sequence 1 Id tmpseq_0 SOX-10 [Homo sapiens] Length 466 (1 466) Sequence 2 Id tmpseq_1 sex determining region Y [Homo sapiens] Length 204 (1 204)	
NOTE: The statistics (bitscore and expect value) is calculated based on the size of nr database Score = 94.7 bits (234), Expect = 8e-18	
Query: 95 NGASKSKPHVKRPMNAFMVWAQAARRKLADQYPHLHNAELSKTLGKLWRLLNESDKRPFI 154 N + VKRPMNAF+VW++ RK+A + P + N+E+SK LG W++L E++K PF Sbjct: 51 NSGRVVQPKRPMAFIVKSRDQRRKMLENPFMRNSEISKQLGVQWKMLTEAEKWPFF 110 Query: 155 EEAERLRMQHKKDHPDYKYQPRRR 178 +EA++L+ H++ +P+YKY+PRR+ Sbjct: 111 QEAQKLQAMHKEXYPNYKYRPRK 134 CPU time: 0.03 user secs. 0.01 sys. secs 0.04 total secs.	
Lambda K H 0.311 0.130 0.399	
Gapped	i si di

- Optimized for aligning very long and/or highly-similar sequences
- Good for batch nucleotide searches
- Search targets include
 - Entire eukaryotic genomes
 - Complete chromosomes and contigs from RefSeq
- Run speeds approximately 10 times faster than BLASTN
 - Adjusted word size
 - Different gap scoring scheme

- Word size
 - BLASTN default = 11
 - MegaBLAST default = 28
- Non-affine gap penalties

Deduction for a gap = r/2 - q

€ € €	BLAST Zebrafish Sequences		0
🔶 🔶 🥩		• O (C •	, she
Search Ma	▶ Genomic Biology ► BLAST		1
Clear			
BLAST	RI AST Zehrafich Sequences		
Overview FAOs	blast Zebransh Sequences		
News	Enter an accession, gi, or a sequence in FASTA format:		
Manual References	GGATCTCAAAATTTTGAGGACCAATTCATGAGTGTCATGTAAAATAATTTAGAATAACAACATATT		
Retrieve results	ATGGAAAAAAAATATATATAACTAGATTTTAAAAATTAAAAACATAATTAAGGGCAGCGCGGTGGTGC GTAGCACAATCACCTCACAGCAAGAACGTCGCTGGTTCGATCCCTGGCTGG		
Genome Project	TGGAGTTTGCATATTCTCCCCCAAGTTCGCGTAGGTTTCTTCCGGGTGCTCCGGAAGTCCAAAAAC GTATAGGTGAATTGGGCAAGTTAAATTGTCCATAGTGTATGTCTGTGAATGAGAGTGTATTGATG		
	C Or, choose a file to upload Browse		
	From: To:		
	Database: genome (reference only) ▼ 21164 sequences		
	Program :		
	megaBLAST: Compare highly related nucleotide sequences		
	Optional parameters		
	Expect Filter Descriptions Alignments		
	0.01 V default V 100 V 100 V		
	Advanced entires		
	Auvanceu options.		
	Renin Search Clear Innut		
	and the second s		
	Get the URL with preset values ? Get URL		
Find: Q >	SFind Next SFind Previous Highlight all Match case		
Done			

Overview

- Week 2: Comparative methods and concepts
 - Similarity vs. Homology
 - Global vs. Local Alignments
 - Scoring Matrices
 - BLAST
 - BLAT
- Week 3: Predictive methods and concepts
 - Profiles, patterns, motifs, and domains
 - Secondary structure prediction
 - Structures: VAST, Cn3D, and *de novo* prediction

BLAT

- "BLAST-Like Alignment Tool"
- Designed to rapidly-align longer nucleotide sequences $(L \ge 40)$ having > 95% sequence similarity
- Can find exact matches reliably down to L = 33
- Method of choice when looking for exact matches in nucleotide databases
- 500 times faster for mRNA/DNA searches
- May miss divergent or shorter sequence alignments
- Can be used on protein sequences

When to Use BLAT

- To characterize an unknown gene or sequence fragment
 - Find its genomic coordinates
 - Determine gene structure (the presence and position of exons)
 - Identify markers of interest in the vicinity of a sequence
- To find highly-similar sequences
 - Identify gene family members
 - Identify putative homologs

• To display a specific sequence as a separate track

00	UCSC Genome Browser Home
← •	
UCSC	C Genome Bioinformatics
Genomes -	Blat - Tables - Gene Sorter - PCR - Proteome - FAQ - Help
Genome	About the UCSC Genome Bioinformatics Site
ENCODE	This site contains the reference sequence and working draft assemblies for a large collection of genomes. It also provides a portal to the ENCODE project.
Blat	We encourage you to explore these sequences with our tools. The Genome Browser zooms and scrolls over chromosomes, showing the work of appotators worldwide. The Gene Sorter shows expression, homology and other information on groups
Table Browser	of genes that can be related in many ways. Blat quickly maps your sequence to the genome. The Table Browser provides convenient access to the underlying database. VisiGene lets you browse through a large collection of <i>in situ</i> mouse and frog images to examine expression patterns.
In Silico PCR	
VisiGene	News News Archives >
Proteome Browser	To receive announcements of new genome assembly releases, new software features, updates and training seminars by email, subscribe to the genome-announce mailing list.
Utilities	8 August 2006 - New Opossum Assembly Available in Genome Browser
Downloads Release Log	The UCSC Genome Browser now includes the latest draft assembly of the opossum genome. The Jan. 2006 release of Monodelphis domestica (UCSC version monDom4) was sequenced and assembled by The Broad Institute, Cambridge, MA, USA.
Custom Tracks Mirrors	This draft, which has approximately 6.5X coverage, has an assembly length of nearly 3.61 billion bp including gaps (3.50 billion bp without gaps) contained on chromosomes 1-8, X, and Un. The N50 of the genome including gaps is 104,359 bp; the N50 without gaps is 107,990. The N50 size is the length such that 50% of the assembled genome lies in blocks of the N50 without gaps is 107,990.
Archives	The monDom4 sequence and annotation data can be downloaded from the Genome Browser FTP server or Downloads page. Please review the guidelines for using the opposum assembly data.
Credits Publications	Many thanks to The Broad Institute for providing these data. The UCSC opossum Genome Browser was produced by Hiram Clawson, Archana Thakkapallayii, Ann Zweig, Kayla Smith and Donna Karolchik. The initial set of annotation tracks was generated by the UCSC Genome Bioinformatics Group. See the Genome Browser Credits page for a detailed list of the organizations and individuals who contributed to the release of this browser.
Licenses	1 August 2006 - v2.1 Chicken Assembly Available in Genome Browser: We have updated the Chicken Genome Browser to include the May 2006 v2.1 assembly (UICSC version calGal3) produced by the Genome Sequencing Center at

e e e Rat BLAT Search		0
🛶 🔶 🧝 😰 🏠 🕒 http://genome.ucsc.edu/cgi-bin/hgBlat	▼ © (C -	, she
Home Genomes Tables Gene Sorter FAQ Help		
Rat BLAT Search		
BLAT Search Genome		
Caraman Arrandum Ourschutz, Cart sutaut, Outschutzar		
Rat V June 2003 V DNA V guery score V hyperlink V		
CGB12815 NICHD Rr Pitl Rattus norvegicus CDNA clone INACE:6690065 GGGGCTCTCGCGTGGCCTGTGTCAGAGAGGCTGCTTGTCCACTCTTCCATATTCCTAAACCATCG GGGGCTCTCGGTGCCGTGGCAGGCGCAGGCCGCCCGCGCAGGCAG		
File Upload: Rather than pasting a sequence, you can choose to upload a text file containing the sequence. Upload sequence: Browse submit file		
Only DNA sequences of 25,000 or fewer bases and protein or translated sequence of 10000 or fewer letters will be processed. Up to 25 sequences can be submitted at the same time. The total limit for multiple sequence submissions is 50,000 bases or 25,000 letters.		
For locating PCR primers, use In-Silico PCR for best results instead of BLAT.		

● ● ●	User Sequence vs Genomic 🤅				
🛨 🄶 🧟 🌘	🔰 🚹 🙆 http://genome.ucsc.edu/cgi-bin/hgc?o=101460824&g=htcUserAli&i=/trash/hg5s/hg5s_genome_57e_823eb0.psix 🔻 🔘 Ğ				
Alignment of	Alignment of CB212815 and chr5:101460825-101461549				
CB312815	Angnment of CB512015 and Chr5:101400825-101401549				
60212015	Click on links in the frame to the left to navigate through the alignment. Matching bases in cDNA and genomic sequences				
Rat.chr5	are colored blue and capitalized. Light blue bases mark the boundaries of gaps in either sequence (often splice sites).				
block1					
together	cDNA CB312815				
	Sacasarance successes northeadace meaning accommence 50				
	TGTGAATTTC CTAAACTCTC TACCTCTGGGT TCATGTTCGC TCTTCTGGAT 100				
	AGTCTGTGTG CAATGAGCCC TTAAAGGAAT ATTGCAATGA GCTATAAGAG 150				
	TTGTGAGCCT GCGGTAGGCA AGGCCTGCAC TGGGACAGCA AAGGAAATTT 200				
	CATTGCATCT GCTCCTAAGT CACAGGTTAT CCAGAGCCCA CTTTACCCCA 250				
	AGAGACAGCC TCTCCCCCAT CCCTAGGAAA CAGTAGAGGT TAGGAAAATG 300				
	ANTGACTCA CCACATTCAA GAGGCOTTCAA ATTGTATACT TGGCATTTCT 350				
	GAGTERACIO CIGARATTEL GALACCETE GAGTERAGIGA ALACIGARATA 400				
	TCATGCCCAC ATAAAACATG TATGGAAGTG TTCATGTTTT GATCATGGCG 500				
	GGGGATATAG CTCAGTCATG GAGTGCTTGC ATAGCAATGT GCATAATCCG 550				
	AGGTTCAAGC CCCAGCACCG AAAAAGAGAA aCGGGAGGAG TGGAGGCATT 600				
	CACAGCAGCG TTTTCAGTAT AGGCGCAAAG GGGAAGGAGT TTAAACACCT 650				
	ACTGAGGGAA TGGATAAGCG GAGTGCCCTT GTCTATACTC GGGgatgGCT 700				
	ACTCATCACG taAGAAAAGT TTGgaAAATG ATAAaatacc aatgggatgg /50 atccccttta aaccatcc				
	Genomic chr5 :				
	cttggaagaa ggtaactata cattaatata gagccctctt tttctttgca 101460774				
	ggcccaggac acacaggacg gatgtttcca agtcactcca gggacagcat 101460824				
	GAGGCTCTCG CTGGCCTGTG TCTCAGAAGC TGCTTTCTCC ACCTCTTCCT 101460874				
	TGTGAATTTC CTAAACTCTC TACCTCTGGT TCATGTTCGC TCTTCTGGAT 101460924				
	AGTCTGTGTG CAATGAGCCC TTAAAGGAAT ATTGCAATGA GCTATAAGGAG 101460974				
	CONTENTS ACCOUNT ACCOU				
	CATTGUATET GETCETARGE CACAGGETAT CCAGAGECCA CETTACCCCA 1014010/4				
	AATGACTICCA CCACATTICAA GAGGGTTICAA AATGGTATACT TGGCATTICT 101461124				
	GATTTCAGTT CTGAAATTCT GTCCCTTAGT CGTGGGGAAA ATAAGAAATG 101461224				
	GAGTTACACC TTGTCATTTA AAAAACCATT GAATTAAGAG AAATGGAAAA 101461274				
	TCATGCCCAC ATAAAACATG TATGGAAGTG TTCATGTTTT GATCATGGCG 101461324				
	GGGGATATAG CTCAGTCATG GAGTGCTTGC ATAGCAATGT GCATAATCCG 101461374				
	AGGTTCAAGC CCCAGCACCG AAAAAGAGAA gCGGGAGGAG TGGAGGCATT 101461424				
	CACAGCAGCG TTTTCAGTAT AGGCGCAAAG GGGAAGGAGT TTAAACACCT 101461474				
	ACTGAGGAAT GGATAAGCGG AGTGCCTTGT CTATACTCGG GATGCTAGTC 101461524				
	Archythann Andrifenna fealfagatac garggatgat cocttaataca 101461574				
0	AREARAS ARATSTATE ASSESSED TO LETT				

$\Theta \Theta \Theta$	User Sequence vs Genomic	0
🔶 🔶 🚽 🌔	3 🔒 http://genome.ucsc.edu/cgi-bin/hgc?o=101460824&g=htcUserAli&i=/trash/hgSs/hgSs_genome_57e_823eb0.psix 🔻 🔘 🔀	- And And
Alignment of	Side by Side Alignment	ŕ
CB312815 CB312815 Pat.cbr5	00000001 ggggctctcgctggcctgtgtctcagaagctgctttctccacctcttcct 000000050 >>>>>>>> iiiiiiiiiiiiiiiiiiiiiiiiiiiii	
block1 together	000000051 tgtgaatttoctaaaetototacctotggttoatgttogctottotggat 000000100 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
	000000101 agtctgtgtgcaatgagcccttaaagggaatattgcaatgagctataaggg 000000150 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
	00000151 ttgtgagcctgcggtaggcaaggcctgcactgggacagcaaaggaaattt 00000200 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
	000000201 cattgcatctgctcctaagtcacaggttatccagagcccactttacccca 00000250 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	ſ
	00000251 agagacagcctctcccccatccctaggaacagtagagcttaggaacatg 00000300 >>>>>>>	
	00000301 aatgactccaccacttcaqaqggcttcaaatgtatacttggcattct 00000350 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
	00000351 gatticagtictgaaaticgtocttagtogtgggaaataggaaatg 00000400 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
	00000401 gagttacaccttgtcattaaaaaccattgaattaagagaatggaaaa 00000450 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
	00000451 tcatgcccacataaaacatgtatggaagtgttcatgtttgatcatggcg 00000500 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
	00000501 ggggatatagetcagtcatggagtgettgoatageaatgtgoataatecg 000000550 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
Dana	000000551 aggttcaagccccagcaccgaaaagagaaacgggaggagtggaggcatt 000000600	4

FASTA

- Identifies regions of local alignment
- Employs an approximation of the Smith-Waterman algorithm to determine the best alignment between two sequences
- Method is significantly different from that used by BLAST
- Online implementations at *http://fasta.bioch.virginia.edu http://www.ebi.ac.uk/fasta33*

