Objectives Provide high resolution rain rate and DSD retrievals from combination of polarimetric and Doppler radar data. Investigate radar/radiometer vain retrieval techniques and quantify their error characteristics through physical validation. ## **XPOL System Overview** - 9.3 GHz H/V transmission at 50 KW peak power; - NCAR's transmitter/receiver system; - 0.9 deg beam width; variable pulse length (60-400 m); 110 km max range **Measurement noise** # **XPOL System Overview** #### TOGA and WSR cal. assessment from PR #### **XPOL** cal. ass. from TOGA #### **XPOL Data & Rain Products** Raw data (~25 GB) Filtered & compressed data (~2.5 GB) Φdp unfolding and filtering: Ψdp V.2 data reading code (March 02) Zh/Zdr attenuation correction & microphysical retrievals for selected cases (09/19; 09/26-28) Rain rate and DSD products archive ### **Attenuation Correction – A way to retrieve rain rate and DSD** > Parameterizations derived from DSD data: b/a=(1+0.05 $$\beta$$)- β *D Ah = $\gamma(\beta)$ Kdp Ah=a N_w^{1-b} Zh^b A_{dp} = c N_w^{1-d} K_{dp}^d D₀ = e {Z_{DR} + A_{dp}}f R = g N_w^{1-h} Z_e^h # Example cases for Sept. 19th @18:50 UTC ## Example cases for Sept. 19th @ 18:50 UTC ## **Comparison with DSD data from other experiments** #### **Assessment of rain rate estimates** ### **Continued research** - ✓ Use the Sept. 19th XPOL rain rate and DSD products with coincident airborne observations to investigate combined radar/radiometer retrievals. - For other storm cases (e.g., Sept. 27-28) in KAMP use coincident XPOL and dual-Doppler TOGA/SMART-R observations to do combined microphysics-kinematics tropical ocean precipitation studies.