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State permutations from manipulation of near level-crossings.
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We discuss some systematic methods for implementing state manipulations in systems formally
similar to chains of a few spins with nearest-neighbor interactions, arranged such that there are

large and small scales of coupling links.

States are permuted by means of bias potentials applied

to a few selected sites. Equivalent operations can be performed in some atoms-in-a-cavity models.
We note in passing that the establishment of “decoherence-free subspaces” in these models does not
require the dissipative processes invoked by other authors.

PACS numbers: 3.65Xp, 3.67a

Two central concerns of quantum information theory
are representation of data through occupancy of quan-
tum states and the manipulation of these data. In this
paper we discuss a way of implementing permutations in
state occupancies by the application of controlled time-
varying potentials to selected sites in the underlying sys-
tem, beginning with an example of five spins in a line,
and continuing with some more complex examples. The
dynamics also has two very different scales of inter-site
coupling: strong (S) and weak (W).

In the first example we take the five spins to be num-
bered consecutively from left to right, with pure exchange
interactions built of the operators between adjacent spins
¢ and j,
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We choose the Hamiltonian
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where we have added a single time-dependent term in-
volving the operator of the middle spin #®). We refer
to the function f(¢) as the bias on site #3. Since this
Hamiltonian commutes with the operator >, o.%ﬁ we can
operate within the set of five states with four of the spins
up and one spin down. The S-W structure comes from
taking A < g1,92, and g1 # g2. When f(t) = 0, this
choice has the effect of creating eigenstates of H that are
very nearly the following,

(T4 + 4D (1) /V2,
(14 = 4D (1) /V2,
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vy = (M),
va = (M +10)/V2,
vs = (M) — 1)/ V2. (3)

We understand these combinations qualitatively by not-
ing that they would be the exact f = 0 eigenstates if the
small coupling A were set to zero, and that, treating A
as a perturbation, the link between the pairs of states
(#1,42) and (#4,4#5) is of order A%

Now we ask the question: Of the 120 permutations on
this set of five states, how many can we implement by
applying a small series of simple pulses in f(¢)? In form-
ing these pulses we shall tailor f(¢) to the permutation
that is sought, but we shall insist that f(¢) begins at and
ends at the value zero. By a permutation we mean just
the reshuffling of the states, modulo phase. This demand
effectively rules out setting relative phases, which would
require fine-tuning in any system that is to be considered
over a period of time. The answer to the question is “all
120”.

The method uses adiabatic avoided-level-crossing dy-
namics, with an additional feature that can be embodied
in the above Hamiltonian, namely, that the bias on the
weakly coupled site can be changed suddenly, without
affecting the state of the system appreciably, at all times
when the system is far from any (near) level-crossing. As
an example, we choose the parameters g1 = 30, g2 = 60,
A =1, and begin by defining two bias operations f(t),

Falt) = (¢ —to) Oft — to]0fto + 7 — 1] — Ua(to),
fot) = =fa(t) = Up(to). (4)

The signal begins at ¢ = tg, grows linearly until ¢ = tg+7
when it is switched off abruptly. We take 7 20 1n
the applications that follow. Any bias f,(¢) defines a
transformation,

to+7
Uato) = Tlexpl=i [ arm)l. ()
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We will show [:l:] that the operation U, effects the per-
mutation (13), while U, effects (23). The turn-off of the
bias at t = tg + 7 leaves the state at time ¢t = ¢g + 7
evolving with the Hamiltonian of Eq. ('@') with f = 0,
so that we are prepared to apply another signal to get a
compound of the permutations. Thus we can write,

Urea = [Ua(27)][Us(7)][Ua(0)], (6)

where the time arguments emphasize that the transfor-
mations are to be executed serially over a total time
of 37. Using the composition property of permutations
(13)(23)(13) = (12), we see that U;42 just interchanges
states #£1 and #2, leaving #3 alone. The basis for antic-
ipating the actions of both the individual and compound
transformations can be shown in an averted level-crossing
diagram based on Eq. (:_2) with the bias function given by,

W) = fa@) + fo(t = 7) + falt = 27). (7)

Figure 1 shows plots of the energy levels for the first three
states as they evolve under the above successive changes
of the bias.
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FIG. 1: Level diagrams for the three states that are appre-
ciably affected by the pulse chain of Eq. (). The numbers
on the curves indicate possible initial states, enumerated as
in Eq. (3). In the adiabatic limit, the system, beginning in
one of these states, follows the path labeled by the state’s
number. States #4 and #5 remain virtually unmixed and at
their original energies.

To show that the states really follow these paths, we
construct the matrix U(t) = T[exp(—ifot dt'H(t'))] by
directly solving the Schrodinger equation with the time-
dependent bias of Eq. (:Z:) In Figs. 2 and 3, we plot
[(1,2,3|U(t)[1)]* and |(1,2,3|U(¢)|2)|* against time in
this solution, giving the expected behavior, |U(37)[* =
|U142]? with negligible contamination either from non-
adiabaticity in the region of small level separation, or
from transitions induced in any of the three sudden
changes. The plots show clearly the effects of each of
the constituent transitions in turn, giving rise to the fac-
torization indicated in Eq. ('@‘)
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FIG. 2: The evolution of probabilities for the Hamiltonian of
Eq. (:2:) with f(t) from Eq. (:Z:), and the initial state #1. The
light solid curve is the probability of the system in state #1
(displaced slightly upward for clarity), the heavy solid curve
is for #3, and the dashed curve is for #2 (displaced slightly
downward).

CooQo
N OO

e |
60 80

FIG. 3: Same as Fig. 2, but with the initial state taken as
#2. Together, Figs. 2 and 3 show the interchange operation
effected by the particular pulses of (:j)

To implement the transformations involving states #4
and #£5, we introduce four more bias functions,

fot) = 2(r = 0)0(r — O(t) — U, — (352),

Falt) = —fo(t) = Ug — (341),

fot) = —2(r —1/2)0(r — 1)0(1) — U. — (34),
fi(t) = —fe(t) = Uy — (35), (8)

where, for simplicity, we have chosen {5 = 0. By straight-
forward multiplication of the operations in Egs. (:f_l:) and
(8), we obtain UglU,—(14), U.Up—(25), U,U;Uys—(15),
UpUUp— (24), U U U.—(45). These five composite op-
erations, together with U,UpU,—{(12) and the four single
pulse operations Uy, Uy, Ue, Uy, give all of the simple in-
terchanges. All permutations can be built from these
interchanges, although in most cases it would be more
efficient to draw on the cycle-of-three permutation op-
erators U, and Uy as well, or on further primary pulse



shape variants that directly embody other operators.
Now we consider longer chains with nearest neighbor
couplings,

Ho= Y gijh"9) - Eq, (9)
i=j+1

where g¢; ; are coupling coefficients, and Fy is the en-
ergy that gives (Hy) = 0 for the case of all spins up.
We again adopt two scales of coupling strength: S and
W. As an example, we consider the pattern of couplings
{91,2, 92,3, g374,...} to be {S, W, W, S, W, W, S, W,
W, ...}. Under this scheme, the states #3,#6,#9... are
only weakly coupled to their neighbors.

As before, we take only states with one spin down and
the remainder up. With the W coupling constants turned
off, the eigenvalues of the states in which the down spin
occupies one of the large blocks, i.e., {(#1,42), (#4,#5),
(#7,#8) ...}, come in pairs of +g; ,11. We assume that
the S couplings are sufficiently irregular so that the dif-
ferences in energies between nearest strong blocks, e.g.,
g1,2—ga 5, are still of the strong (S) scale. When we add
the W couplings, the eigenvectors will remain almost lo-
calized, as can be seen from a perturbation expansion.
In general, small energy differences between two non-
adjacent blocks are not a concern, since as we move across
n additional weak links we can tolerate energy denomi-
nators that are smaller by a factor of (gw /gs)*" < 1.

Thus for most cases the eigenvectors can be ar-

ranged in a list {(glaTaTaTa"')a (nlaTaTaTa"')a (TaTa\L
aTaTa )a (TaTaTa€2aTa )a (TaTaTa nZaTa )a (TaTaTaTaT
ATy, .} Here, the &’s and #’s stand for the sym-

metric and anti-symmetric two-component eigenstates of
the strong blocks with one spin up and the other down. If
the system begins with all of its amplitude in one block,
the amplitude will stay almost within that block under
the evolution governed by Hy.

Now, generalizing the earlier five-site example, we can
ask whether biases placed at every third site, #3, #6,
#9, ..., which are weakly coupled both to the right and
to the left, have the capability of moving information
around the whole system. We have looked at an eight-
site example, with independently manipulable biases at
sites #3 and #6. In complete analogy with the five-
site case, we find it is easy, for example, to move one of
the (#1,#2) eigenstates successively to the blocks (#3),
(#4,#5), (#6), (#7,#8), again by numerically solving
the Schrodinger equation for the system.

A summary and a generalization of these outcomes:

(1) If we have a chain of blocks of states connected, one
to another, through an intermediary state that is weakly
coupled to both blocks, the dynamics within the blocks
will be nearly self-contained. That is, if the probability is
localized within a particular block at a particular time,
in the form of any superposition of the eigenstates be-
longing to that block, then the probability will remain in
that block. Likewise, a block of several states in which

the mutual couplings and the diagonal elements are weak
will, in general, not admix appreciably with strongly cou-
pled states to its left or right.

(2) By putting controllable biases on a weak connection
site to bring the energy of an associated level to (nearly)
coincide with a level in an adjacent strong block, shifts
of probability from block to block can be implemented in
an orderly and complete fashion.

We turn to another application of these general con-
clusions, appropriating the model of Ref. [?.'], a paper en-
titled “Quantum computing using dissipation to remain
in a decoherence-free subspace”. These authors consider
a hypothetical system in which two identical three-level
atoms, with levels {0, 1,2}, are placed in a cavity tuned
exactly to the 1—2 level spacing, with the atoms sep-
arately addressible by weak laser fields that drive Rabi
oscillations. The cavity mode, if excited, is also allowed
to escape through conversion to photons at a partially
transmitting wall. This is the only decohering process.
The connection scheme is depicted in Fig. 4.

[2,2)g <= |s)1 = D
1
D+ |sh <= 12,2) & |a)g < |1,0)9 ¢ [2,0)y <= |1,0); = D

! I

1,1)9  [s)o <= |1,1)1 = D

FIG. 4: The state connection scheme in the model of Ref. [:?.']
In a notation close to that of Ref. Fg:], the states are labeled
as |atom #1, atom #2)cay where “cav” is the excitation of the
cavity mode. The states denoted “s” and “a” (for the atomic
part) are |s,a) = (|1,2) £12,1))/v/2. The connections are
those variously induced by the three laser couplings and the
cavity mode, as explained in the text.

The excitation of the cavity mode from the states in the
chain that are coupled thereto are the S links, denoted by
fat double arrows. The thin double arrows are W links,
and the single arrows leading to D represent the cavity
mode leakage to the outside. In Ref. ['-_2] this leakage is
stated to be the dissipation that creates a decoherence-
free subspace (DFS). All W links come from the laser
interactions, which are three-fold: on atom #2, an ex-
actly tuned 0 < 2 signal and an exactly tuned 1 < 2
signal; on atom #1, just an exactly tuned 1< 2 signal,
180° out of phase with the corresponding signal on the
other atom.

The structure shown in Fig. 4 has a general property
in common with the models discussed above; there is an
S block within which all connections are weak,

|1, 1>0 — |Cl>0 — |1,0>0, (10)

characterized in Ref. [:'2:] as a DFS. Every other state in
the picture has at least one strong connection. Our ob-
servation is that if the system begins in this subspace,



then the dynamics remains almost entirely within the
subspace, just from the S-W configuration of the cou-
plings. The cavity leakage, the only dissipation in this
system, is irrelevant to this conclusion. We have veri-
fied this assertion with a direct calculation using the full
model that includes all of the states shown in Fig. 4.

Thus, the D’s can be deleted from the ends of the chain
in Fig. 4 without producing an appreciable effect on the
evolution of the subspace given in Eq. (:_1_9') Note, how-
ever, that even though the cavity mode is not excited
in the operative subspace, we cannot turn off the cou-
pling to the cavity (the double arrows in Fig. 4) without
destroying the isolation of the subspace. Without the
strong cavity coupling, the laser pulses would excite the
states |2, 2)g and |2, 0)¢; in the presence of the cavity cou-
pling these states become isolated in the respective left
and right S blocks in Fig. 4.[d]

We now write an effective Hamiltonian operating
within the block of Eq. (:IQ‘), utilizing the laser coupling
strengths and phases of Ref. @], but allowing the laser
frequencies to be detuned by a small amount,

Q.. )
Hen= [e/241, 0)o(alo + e"25 |a)o(L, 1|o]+h.c., (11)

where A, p are the respective detunings of the 0 < 2
and 14> 2 lasers. Transition probabilities in the indicated
basis will be unaffected by the transformation (acting in
the atomic space only), ¥ (t) = exp(—iAt)¥(¢), where

2A = (A4+Ap)|1,0)(1,0] + (Ap—Aa)|a){al
— (Aa+Ap)|1, 1){1,1], (12)

giving the new effective Hamiltonian,

= A 111, 0yoalo) + (Ja)o(L, 1o)] + b, (13)

This is exactly the first example of the present paper,
with the five states reduced to three by taking only the
symmetric states in place of the (#1,#2) and (#4,#5)
complexes. Thus by adiabatically changing the combi-
nation Ay—Ap, while keeping Ajs+Ap constant, we
can effect the interchange of the states |1, 1)y and |1, 0)q
exactly as before. We begin with a steady situation in
which the detuning parameters Ay p are substantially
greater than €, and the initial state is (very stably) ei-
ther |1,1)g or |1,0)p. Then the detuning is manipulated,
using simultaneous slow changes of both laser frequencies
process._ parallel_to that_described in Fg. () and shown
graphically in Fig. 3. By contrast, Ref. [:_Z] uses the per-
fectly tuned case Ay p = 0, and takes Q = 0 until a
pulse turn-on time. The pulse is then turned off at ex-
actly the time for the interchange |1,0) 4 |1, 1)g to have
occurred under the influence of precession alone. In ei-
ther method, the transformation represents a c-not gate,
the states |0, 1)g and |0, 0)¢ being frozen due to the S-W

effect. Note that our implementation does not require
accurate timing of applied fields.

A number of models similar to that of Ref. [}_Z] can be
found in the recent literature @:, '§, '(_i, :Z:], with dissipation
or continuous measurement cited as the key element in
creating decoherence-free subspaces. However, since the
S-W paradigm provides both the intuitive and the com-
putational basis for the conclusions, it 1s unnecessary to
add either theoretical interpretations in terms of mea-
surement or gratuitous couplings to the model like the D
links of Fig. 4. In particular, we note that the outcomes
of the first three of the four models described in Ref. Eﬁ]
are directly explicable by S-W considerations.

The S-W classification, really an elementary observa-
tion about eigenvalues, is not the only way in which sub-
spaces can become mutually isolated. Indeed Ref. ['@‘] and
many subsequent works have discussed cases in which
rapid incoherent scattering or frequently interrupted ex-
ternal field interactions r-g, :IQ‘] can freeze a system in a
single state or subspace of states. However, none of these
considerations are relevant to the models presented in the
present paper.

To summarize, in systems with appropriate arrange-
ments of strong and weak couplings, variable potentials
applied to a relatively small number of sites can effi-
ciently effect state permutations for spin chains with
pure-exchange coupling. Using the same approach, we
found a new way to implement a c-not gate in an atoms-
in-a-cavity model discussed by previous authors.
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