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We will show [1] that the operation Ua e�ects the per-
mutation h13i, while Ub e�ects h23i. The turn-o� of the
bias at t = t0 + � leaves the state at time t = t0 + �
evolving with the Hamiltonian of Eq. (2) with f = 0,
so that we are prepared to apply another signal to get a
compound of the permutations. Thus we can write,

U1,2 � [Ua(2� )][Ub(� )][Ua(0)]; (6)

where the time arguments emphasize that the transfor-
mations are to be executed serially over a total time
of 3� . Using the composition property of permutations
h13ih23ih13i = h12i, we see that U1,2 just interchanges
states #1 and #2, leaving #3 alone. The basis for antic-
ipating the actions of both the individual and compound
transformations can be shown in an averted level-crossing
diagram based on Eq. (2) with the bias function given by,

f(t) = fa(t) + fb(t � � ) + fa(t � 2� ): (7)

Figure 1 shows plots of the energy levels for the �rst three
states as they evolve under the above successive changes
of the bias.

20 40 60 80
t

-40

-20

0

20

40

E

3

2

1

1

3

1

3
2

2

1

FIG. 1: Level diagrams for the three states that are appre-
ciably a�ected by the pulse chain of Eq. (7). The numbers
on the curves indicate possible initial states, enumerated as
in Eq. (3). In the adiabatic limit, the system, beginning in
one of these states, follows the path labeled by the state's
number. States #4 and #5 remain virtually unmixed and at
their original energies.

To show that the states really follow these paths, we
construct the matrix U (t) = T [exp(�i R t

0
dt0H(t0))] by

directly solving the Schr�odinger equation with the time-
dependent bias of Eq. (7). In Figs. 2 and 3, we plot
jh1; 2; 3jU (t)j1ij2 and jh1; 2; 3jU (t)j2ij2 against time in
this solution, giving the expected behavior, jU (3� )j2 =
jU1,2j2 with negligible contamination either from non-
adiabaticity in the region of small level separation, or
from transitions induced in any of the three sudden
changes. The plots show clearly the e�ects of each of
the constituent transitions in turn, giving rise to the fac-
torization indicated in Eq. (6).

20 40 60 80
t

0.2
0.4
0.6
0.8

1
P

FIG. 2: The evolution of probabilities for the Hamiltonian of
Eq. (2) with f(t) from Eq. (7), and the initial state #1. The
light solid curve is the probability of the system in state #1
(displaced slightly upward for clarity), the heavy solid curve
is for #3, and the dashed curve is for #2 (displaced slightly
downward).
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P

FIG. 3: Same as Fig. 2, but with the initial state taken as
#2. Together, Figs. 2 and 3 show the interchange operation
e�ected by the particular pulses of (7).

To implement the transformations involving states #4
and #5, we introduce four more bias functions,

fc(t) = 2(� � t)�(� � t)�(t)! Uc ! h352i;
fd(t) = �fc(t)! Ud ! h341i;
fe(t) = �2(� � t=2)�(� � t)�(t)! Ue ! h34i;
ff (t) = �fe(t)! Uf ! h35i; (8)

where, for simplicity, we have chosen t0 = 0. By straight-
forward multiplication of the operations in Eqs. (4) and
(8), we obtain UdUa!h14i, UcUb!h25i, UaUfUa!h15i,
UbUeUb!h24i, UeUfUe!h45i. These �ve composite op-
erations, together with UaUbUa!h12i and the four single
pulse operations Ua; Ub; Ue; Uf , give all of the simple in-
terchanges. All permutations can be built from these
interchanges, although in most cases it would be more
eÆcient to draw on the cycle-of-three permutation op-
erators Uc and Ud as well, or on further primary pulse
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shape variants that directly embody other operators.
Now we consider longer chains with nearest neighbor

couplings,

H0 =
X

i=j+1

gi;jh
(i;j) � E0; (9)

where gi;j are coupling coeÆcients, and E0 is the en-
ergy that gives hH0i = 0 for the case of all spins up.
We again adopt two scales of coupling strength: S and
W. As an example, we consider the pattern of couplings
fg1;2; g2;3; g3;4; : : :g to be fS, W, W, S, W, W, S, W,
W, . . .g. Under this scheme, the states #3,#6,#9... are
only weakly coupled to their neighbors.
As before, we take only states with one spin down and

the remainder up. With the W coupling constants turned
o�, the eigenvalues of the states in which the down spin
occupies one of the large blocks, i.e., f(#1,#2), (#4,#5),
(#7,#8) ...g, come in pairs of �gi;i+1. We assume that
the S couplings are suÆciently irregular so that the dif-
ferences in energies between nearest strong blocks, e.g.,
g1;2�g4;5, are still of the strong (S) scale. When we add
the W couplings, the eigenvectors will remain almost lo-
calized, as can be seen from a perturbation expansion.
In general, small energy di�erences between two non-
adjacent blocks are not a concern, since as we move across
n additional weak links we can tolerate energy denomi-
nators that are smaller by a factor of (gW =gS)

2n � 1.
Thus for most cases the eigenvectors can be ar-

ranged in a list f(�1; "; "; "; :::); (�1; "; "; "; :::); ("; "; #
; "; "; :::); ("; "; "; �2; "; :::); ("; "; "; �2; "; :::); ("; "; "; "; "
; #; "; :::); :::g. Here, the �'s and �'s stand for the sym-
metric and anti-symmetric two-component eigenstates of
the strong blocks with one spin up and the other down. If
the system begins with all of its amplitude in one block,
the amplitude will stay almost within that block under
the evolution governed by H0.
Now, generalizing the earlier �ve-site example, we can

ask whether biases placed at every third site, #3, #6,
#9, ..., which are weakly coupled both to the right and
to the left, have the capability of moving information
around the whole system. We have looked at an eight-
site example, with independently manipulable biases at
sites #3 and #6. In complete analogy with the �ve-
site case, we �nd it is easy, for example, to move one of
the (#1,#2) eigenstates successively to the blocks (#3),
(#4,#5), (#6), (#7,#8), again by numerically solving
the Schr�odinger equation for the system.
A summary and a generalization of these outcomes:
(1) If we have a chain of blocks of states connected, one

to another, through an intermediary state that is weakly
coupled to both blocks, the dynamics within the blocks
will be nearly self-contained. That is, if the probability is
localized within a particular block at a particular time,
in the form of any superposition of the eigenstates be-
longing to that block, then the probability will remain in
that block. Likewise, a block of several states in which

the mutual couplings and the diagonal elements are weak
will, in general, not admix appreciably with strongly cou-
pled states to its left or right.
(2) By putting controllable biases on a weak connection

site to bring the energy of an associated level to (nearly)
coincide with a level in an adjacent strong block, shifts
of probability from block to block can be implemented in
an orderly and complete fashion.
We turn to another application of these general con-

clusions, appropriating the model of Ref. [2], a paper en-
titled \Quantum computing using dissipation to remain
in a decoherence-free subspace". These authors consider
a hypothetical system in which two identical three-level
atoms, with levels f0; 1; 2g, are placed in a cavity tuned
exactly to the 1�2 level spacing, with the atoms sep-
arately addressible by weak laser �elds that drive Rabi
oscillations. The cavity mode, if excited, is also allowed
to escape through conversion to photons at a partially
transmitting wall. This is the only decohering process.
The connection scheme is depicted in Fig. 4.

j2; 2i0 () j s i1 ! D

l

D j s i1 () j2; 2i0 $ jai0 $ j1; 0i0 $ j2; 0i0 () j1; 0i1 ! D

l l

j1; 1i0 jsi0 () j1; 1i1 ! D

FIG. 4: The state connection scheme in the model of Ref. [2].
In a notation close to that of Ref. [2], the states are labeled
as jatom#1; atom#2icav where \cav" is the excitation of the
cavity mode. The states denoted \s" and \a" (for the atomic
part) are js; ai = (j1; 2i � j2; 1i)=p2. The connections are
those variously induced by the three laser couplings and the
cavity mode, as explained in the text.

The excitation of the cavity mode from the states in the
chain that are coupled thereto are the S links, denoted by
fat double arrows. The thin double arrows are W links,
and the single arrows leading to D represent the cavity
mode leakage to the outside. In Ref. [2] this leakage is
stated to be the dissipation that creates a decoherence-
free subspace (DFS). All W links come from the laser
interactions, which are three-fold: on atom #2, an ex-
actly tuned 0 $ 2 signal and an exactly tuned 1 $ 2
signal; on atom #1, just an exactly tuned 1$ 2 signal,
180Æ out of phase with the corresponding signal on the
other atom.
The structure shown in Fig. 4 has a general property

in common with the models discussed above; there is an
S block within which all connections are weak,

j1; 1i0 $ jai0 $ j1; 0i0; (10)

characterized in Ref. [2] as a DFS. Every other state in
the picture has at least one strong connection. Our ob-
servation is that if the system begins in this subspace,
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then the dynamics remains almost entirely within the
subspace, just from the S-W con�guration of the cou-
plings. The cavity leakage, the only dissipation in this
system, is irrelevant to this conclusion. We have veri-
�ed this assertion with a direct calculation using the full
model that includes all of the states shown in Fig. 4.
Thus, the D's can be deleted from the ends of the chain

in Fig. 4 without producing an appreciable e�ect on the
evolution of the subspace given in Eq. (10). Note, how-
ever, that even though the cavity mode is not excited
in the operative subspace, we cannot turn o� the cou-
pling to the cavity (the double arrows in Fig. 4) without
destroying the isolation of the subspace. Without the
strong cavity coupling, the laser pulses would excite the
states j2; 2i0 and j2; 0i0; in the presence of the cavity cou-
pling these states become isolated in the respective left
and right S blocks in Fig. 4.[3]
We now write an e�ective Hamiltonian operating

within the block of Eq. (10), utilizing the laser coupling
strengths and phases of Ref. [2], but allowing the laser
frequencies to be detuned by a small amount,

He�=
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�
ei�Atj1; 0i0haj0 + ei�Btjai0h1; 1j0

�
+h:c:; (11)

where �A;B are the respective detunings of the 0$ 2
and 1$2 lasers. Transition probabilities in the indicated
basis will be una�ected by the transformation (acting in
the atomic space only), 	0(t) = exp(�i�t)	(t), where

2� = (�A+�B)j1; 0ih1; 0j + (�B��A)jaihaj
� (�A+�B)j1; 1ih1; 1j; (12)

giving the new e�ective Hamiltonian,

H0
e� = �+




2
[(j1; 0i0haj0) + (jai0h1; 1j0)] + h:c: (13)

This is exactly the �rst example of the present paper,
with the �ve states reduced to three by taking only the
symmetric states in place of the (#1,#2) and (#4,#5)
complexes. Thus by adiabatically changing the combi-
nation �A��B , while keeping �A+�B constant, we
can e�ect the interchange of the states j1; 1i0 and j1; 0i0
exactly as before. We begin with a steady situation in
which the detuning parameters �A;B are substantially
greater than 
, and the initial state is (very stably) ei-
ther j1; 1i0 or j1; 0i0. Then the detuning is manipulated,
using simultaneous slow changes of both laser frequencies
in order to interchange these two states, in the three-step
process parallel to that described in Eq. (6) and shown
graphically in Fig. 3. By contrast, Ref. [2] uses the per-
fectly tuned case �A;B = 0, and takes 
 = 0 until a
pulse turn-on time. The pulse is then turned o� at ex-
actly the time for the interchange j1; 0i0$j1; 1i0 to have
occurred under the inuence of precession alone. In ei-
ther method, the transformation represents a c-not gate,
the states j0; 1i0 and j0; 0i0 being frozen due to the S-W

e�ect. Note that our implementation does not require
accurate timing of applied �elds.
A number of models similar to that of Ref. [2] can be

found in the recent literature [4, 5, 6, 7], with dissipation
or continuous measurement cited as the key element in
creating decoherence-free subspaces. However, since the
S-W paradigm provides both the intuitive and the com-
putational basis for the conclusions, it is unnecessary to
add either theoretical interpretations in terms of mea-
surement or gratuitous couplings to the model like the D
links of Fig. 4. In particular, we note that the outcomes
of the �rst three of the four models described in Ref. [5]
are directly explicable by S-W considerations.
The S-W classi�cation, really an elementary observa-

tion about eigenvalues, is not the only way in which sub-
spaces can become mutually isolated. Indeed Ref. [8] and
many subsequent works have discussed cases in which
rapid incoherent scattering or frequently interrupted ex-
ternal �eld interactions [9, 10] can freeze a system in a
single state or subspace of states. However, none of these
considerations are relevant to the models presented in the
present paper.
To summarize, in systems with appropriate arrange-

ments of strong and weak couplings, variable potentials
applied to a relatively small number of sites can eÆ-
ciently e�ect state permutations for spin chains with
pure-exchange coupling. Using the same approach, we
found a new way to implement a c-not gate in an atoms-
in-a-cavity model discussed by previous authors.
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