

Turning up the Heat on Commercial Kitchen Water Savings

USEPA Energy-Water Workshop March 5, 2008

> Richard Harris Manager of Water Conservation

U.S. Water and Sewer Rate Increases

Source: AWWA/Raftelis Financial Consultants, Inc.

2

8E

Overview

EBMUD Commercial Food Service Programs

- Water conservation services
- Water savings
- Incentives

Research and development

- Conservation partners
- Lessons learned, challenges and barriers
- Looking forward

3

В

Partners With Business and Industry

REBATES FOR BUSINESS & INDUSTRY

East Bay Municipal Utility District Water Conservation Division PC, Box 24055, MS 48 Dakland, CA 94625

Water use efficiency assessments targeting high water uses

Customized rebates for measure implementation

WaterSmart business certification and recognition of customer achievements

В

Water Use Survey Methodology

- Water use process analyses
- Water consumption graphs (e.g. flow rates, equipment counts, hours of operation, etc.)
- Behavioral studies
- Leak detection mapping
- Identify conservation measures
- Landscape water use estimates

Commercial Food Service Water Use

Dish Room	Food Prep	Roof Top & Outside	Refrigeration	Dining Room
Dish washers Glass washers Pot washers Pre-rinse nozzles Conveyor spray Manual wash down Disposals systems	Steamers Combination ovens Pasta cookers Steam tables Sinks: defrosting Sinks: food washing	Evaporative- cooling Cooling towers Landscaping Cleaning	Water-cooled- condensing Ice machines	Table water Bathroom: Hand washing Toilets Urinals

Selling Conservation Benefits

- Lower water bills
- Reduced wastewater charges
- Lower energy costs
- Positive public image
- Improved process controls
- Reinvestment/reallocation of savings

Avg. Customer Costs and Savings

Product	Avg. Usage	Incr. Unit Cost	Projected 5- Year Water Savings (gal)	Potential 5-Yr Cost Savings	Payback Period
Food Steamers	2 gal/hr	\$0 - \$1,000	675,000	\$26,000	Immed < 1 year
Pre-rinse Valves	1.6 gpm; 6 hrs/day	\$50	325,000	\$5,000	2.6 weeks
Ice Machines	Per 100 Ibs ice	\$1,000	1,000,000	\$5,720	< 1 year
HET Toilets	1.28 gpf	\$50- \$150	5,000-90,000	\$40-\$600	1-5 years
Irrig. Controller	10,000 Sq ft.	\$400	125,000	\$400	5 years

Volume-Related Cost for Sewered Water (Oakland)

Component	Rate per CCF		
Flow	\$1.83	\$2.35	
Wastewater Treatment	\$0.46	\$6.37	
Sewer	\$0.71	\$0.96	
Total	\$3.00	\$9.68	
		W	

B

Customized Rebate\$

- Up to 50% of the installed equipment cost (no labor)
- Cash rebate based on estimated savings and customer payback period (min. > 2 Yrs)
- Ate up to \$0.75 per CCF (750 gal.) savings
- Rebate issued after implementation
 - 50% post inspection; 50% 6-12 months later
- Offsets initial customer cost

EBMUD Water Conservation Research

- Market Saturation and End Use Demand Studies
- Food Steamer Study
- Air-cooled Ice Machine Study
- Water Efficient Product Rating and Labeling
- PG&E Embedded Energy/Water in Food Processing
- WaterSmart Guidebook for Commercial Water Effic.

Commercial Conservation Partners

- Food Service Technology Center
- Pacific Gas & Electric Company
- USEPA Energy Star and WaterSense
- Consortium for Energy Efficiency
- California Energy Commission
- California Public Utilities Commission
- California Urban Water Conservation Council
- Alliance for Water Efficiency

Commercial Market Saturation Study

	Percent of Market in Each Sector Surveyed						
Water – Conserving Fixture	Warehouses	Retail	Food Sales	Fast Food	Restaurants	Offices	
ULFTs	32	45	47	68	44	50	
Urinals	22	6	24	22	23	24	
Aerators	72	66	61	60	58	Water 1	

Energy

ЕВМИЛ

Monitoring the Landscaping

Steamer Field Study Cost Comparison

Steamer Type	Boilerless Steamer (single compartments)	Boiler-Based Steamer (single compartments)
Annual Energy	\$912	\$4,822
Annual Water	\$33	\$979
Total Costs	\$945	\$5,801
Savings	\$4,856	

Based on monitoring 12 steamers with an average daily use of 6.5 hours 360 days/yr operation at \$0.13/kWh & \$5.00/100 cu.ft. water/sewer

Timed vs. Manual Mode

Variation in Steamer Use

♦ 6:40 am – 3:15 pm:

- Steamer on manual mode
- 8.5 hours
- 69 kWh, 545 gallons
- ♦ 3:15 pm 11:00pm:
 - Steamer on timer mode
 - 5 hours energized
 - 30.5 kWh, 240 gallons

Based on 360 days/yr operation at \$0.13/kWh & \$5.00/100 cu.ft. total water cost in Los Angeles.

Ice Machines

- Ice machines harvest ice at a rate ranging from 100-lb/24 hrs to 1800 lb/24 hr
- They represent about 10% of the overall commercial refrigeration energy

ARI Database

22

Economics of open loop water-cooled ice machines not attractive!

	Standard	Standard	Energy (& Water) Efficient
Performance	Water-Cooled Model	Air-Cooled Model	Air-Cooled Model
Energy Consumption	6	7.6	5.6
Water Consumption (gal/100	156	28	20
Annual Energy Use (kWh) ^a	9855	12483	9198
Annual Water Use (gal) ^a	256230	45990	32850
Annual Energy Cost ^b	\$986	\$1,248	\$920
Annual Water & Sewer Cost ^c	\$1,713	\$307	\$220
Total Annual Utility Cost	\$2,699	\$1,555	\$1,140

^a Annual energy use is based on a 75% duty cycle, 365 days per year.

^b Energy costs are based on \$0.10/kWh.

^c Water and sewer costs are based on \$2.00/ccf and \$3.00/ccf, respectively.

Commercial Dishwashers

	Gal. Per Hour	Hours Used Per Day	Annual Water Costs*	Annual Waste Water Costs*	Annual Water Heating Costs*	Combined Annual Operating Costs	Annual Savings New Washer
Old washer	500	8	\$3,835	\$5,750	\$15,360	\$24,945	
New washer	214	8	\$1,620	\$2,425	\$6,475	\$10,520	\$14,425

Flight-type Dish Machine

* Water, waste water, and agency fee costs of \$5.00 per unit, \$1.20/ therm

Commercial Combination Ovens

- Annual Electric Savings \$2,300
 - 4.2 kW, 18,000 kWh per year
- Annual Gas Savings \$400
 - 403 Therms per year
 - 30,000-50,000 gallons per year
- Annual Water savings \$600
- Costs
 - Qualifying Combination Oven Cost = \$15,000
 - Incremental Cost = \$8,000
- Payback
 - 2.4 Years

Hidden Costs ???

Dip Well

- Water Cost = \$210/yr
- Sewer Cost = \$315/yr
- Energy Cost = \$830/yr
- Grand Total = \$1,355/yr

0.15 gpm \$1.20/therm, \$5.00/unit of water & sewer, 24h, 360 d/y, 140°F water

Hidden Costs ???

Evaporative Cooling

- Cooler's sump overflowing into the drain line
- In the second second
- Measured flow = 92,000 gal/yr
- Un-necessary \$5,500 expense

WaterSmart Development Guidebook

- A reference document on CII water-use efficiency
- Applies 15+ water use technologies
- Covers 20+ different business types
 - Description of end uses
 - Water savings hardware and processes
 - Cost-benefit analyses
 - Hardware and customer profiles
 - Permit process
 - Marketing plan
 - Appendices

Matrix of Operations

Type of Business (20)

- Offices
- Schools
- Restaurants
- A Retail
- Hotel/Motel
- Grocery
- Medical facilities
- Laboratories
- Laundries
- Manufacturing
- Vehicle washing
- Bakeries
- Automotive
- Printing

Water Using Technology (15)

- **Plumbing fixtures**
- Landscaping
- Pools, spas & fountains
- Water treatment
- Alternate water sources
- Thermodynamic processes
- Food service
- Wash down & sanitation
- Laundry
- Submetering
- Process water
- Photo & film processing
- Medical & laboratory
- Vehicle wash

Commercial Water Treatment Examples

			Treatr	nent Pro	ocess		
COMMERCIAL OPERATION	Sediment Filtration	Carbon Filtration	Softening & Ion Exchange	Membrane Processes	Distillation	Disinfection	Other
All Food Service	X	X	X	Х			X
All Laundry & Dry Cleaning	X		X				
Hospitals & Laboratories	X	X	X	X	X	X	X
Car Washes	X		X	X			
Beverage Manufacturers	X	X	X	X		X	
Metal Plating	X	X	X	X			X
Cooling Towers & Boilers	X		X	X		X	X
Pools, Spas, & Water Features	X					X	
Offices and non process	X	X	X			X	X

California Water Efficient Product Rating and Labeling Initiative (2008-2010)

- \$0.8M seed funding from Ca. DWR and water utilities
- Select/shortlist candidate products
- Establish test procedures
- Develop directory/independent testing of certified ratings
- Develop performance specifications and labeling
- Evaluate standards and codes applications
- Establish voluntary incentive programs, clearinghouse entity (e.g. WaterSense; Energy Star; California Urban Water Conservation Council; Alliance for Water Efficiency; CEE; etc.)

Food Service Water and Energy Efficiency One Stop Pilot Study

- 3-year \$0.8M study (2008-2010)
- EBMUD and PG&E partnership
- CPUC and CA DWR co-sponsors
- Bakeries, beverage manufacturing, packaging
- "no-cost", "low-cost" and "investment-grade" recommendations and incentives
- Outreach/market transformation thru local green building and community-based programs
- Report on water, wastewater, energy and greenhouse gas savings

Looking Forward

Commercial WaterSmart Loan Program

- Convenient
- No up front payment for installation
- No need for source funding
- Make payments in lieu of savings from reduced water usage
- Optional payment methods

Looking Forward

Life-Cycle Cost/Benefit

Interactive (present value) models

- Assist businesses in calculating the benefit of investment in water efficient equipment
- Water, sewer, and energy costs need to be considered in the model

Specify Water Efficient Models

AboutUs

Appliances

Types Test Methods Performance Testing

Education

Seminars Presentations Tip Sheets

Save Energy

ENERGY STAR® Site Surveys FEMP Rebates

Publications

Report List Report Types Industry

CKV

Ventilation Lab Design Guide UpYourStack™

Tools

Online

Toolbox

Food Service

Technology

Center

Outdoor Air Load Calculator Pre-Rinse Spray Valve Calculator Life-Cycle & Energy Cost Calculators

Contact

People Directions Lodging

L**inks** Industry

General Advisory Group

Search Site:

Low-Flow Pre-rinse Spray Valves

A low-flow pre-rinse spray valve is one of the easiest and most cost effective energy saving devices available to the foodservice operator.

In addition to minimizing water consumption, water heating energy and sewer charges are also reduced. Replacing a typical spray valve that flows up to three gallons of water per minute (gpm) with a low-flow unit can yield the following results:

Hours of Spray Valve Usage	Water Savings gallons/day	Waste Water Savings gallons/day	Gas Sa∨ings therms/day	Annual Dollar Savings
1 hour/day	60 gallons	60 gallons	0.5 therms	\$400 - \$450
2 hours/day	120 gallons	120 gallons	1.0 therms	\$800 - \$900
3 hours/day	180 gallons	180 gallons	1.5 therms	\$1200 - \$1350

Table shows results based on spray valve water savings of 1 gallon per minute, water cost of \$2.00 per unit (748 gallons), sewer cost of 3.00 per unit (748 gallons), and gas cost of \$1.60 per therm.

The FSTC recommends a pre-rinse spray valve with a flow rate of 1.6 gallons per minute or less, and with a cleanability performance of 26 seconds per plate or less, based on the ASTM Standard Test Method for Performance of Pre-Rinse Spray Valves.

The following pre-rinse spray valves have been verified by the FSTC to meet this criteria: (Click any model for the test summary)

- Encore KN50-Y002-12

- Fisher Ultra-Spray 2949
- Niagara N2180
- Strahman Kwik-Clean II

- T&S B-0107

- T&S B-0107-C

Looking **Forward**

Interactive web tools

- Account histories
- Performance criteria
- Water, energy and cost savings

Food Service Technology Center Promoting Energy Efficiency in Home >> Tools >> Life-Cycle & Energy Cost Calculators >> Ice Machine Life-Cycle Cost Calculator [About this calculator] User Inputs

January 29, 2007

About Us

Orenview Tept Lab

Appliances Types Test Nethods

Performance. Testing Education

Seminars. Presentations Save Energy ENERIGY STARIS Rebates Energy Tips Spray Valvez

FEMP Sibe Surveys Publications Report List Report Types Endustry

CKV

Tools Outdoor Air Load Calculator

People Directions Lodging inks. Industry General Advicory Group Search Site: 0

Ventilation Lab Design Guide UpVourSteck**

Pre-Ringe Spree Value Calculator Dfer-Cycle & Energy Cost Calculators Contact

Ice Machine Performance (Based on ARI Standard	eso. CNA bere for the ARI .	ice Hachioe Detabase			
Condenser Type	C Air Cooled	(Default) (Help)			
Ice Harvest Rate	600.0 lbs/d	(Default) [Help]			
Energy Consumption	6.4 kwb/100b	(Default) [Help]			
Potable Water Consumption	24.0 gal/100bs	(Default) (Help)			
Condenser Cooling Water Consumption	150.0 gaV100bs	[Default] [Help]			
Ice Machine Usage					
Pounds of Ice Made per Day	450.0 Ibs/day	(Default) (Help			
Operating Days per Year	365 d/year	(Default) (Help			
Utility Cost and Lifespan					
Electric Cost per kWh	0.100 \$/kWh	[Default] [Help			
Electric Demand Charge per kW	0.00 \$/kW	[Default] [Help			
Water/Sewer Cost per CCF (100 R ³)	5.00 \$/CCF	[Default] [Help			
Lifespan of Ice Maker in Years	10.0 years	(Default) (Help			
Discount Rate	3.10 %/year	(Default) (Help			
	Calculate	(Default All)			
Results: Energy Cost					
	Base	High			

Æ

Commercial Food Service.

Looking Forward

California Energy Commission/ DWR/PIER Energy and Water Study

Water-Energy Partners Workgroup

- Voluntary venue for dialogue
- Catalysts
 - CEC Water-Energy Task Force
 - NRDC "Energy Down the Drain" Report
- First Ad-Hoc workgroup meeting July 2006
- 5 meetings to date
- 1 public workshop October 2006
- Membership = water and energy utilities, regulators, non-profits, public interest groups research and academia, etc.

CPUC Commissioner Gruenich Ruling

- Announced on October 16, 2006
- Energy IOUs to partner with water utilities
 - 12 month pilot study
 - \$10 million statewide cost
 - No energy efficiency credits in 2006-08 program
 - EM&V key to inform 2009-11 energy efficiency portfolio
 - Proposals due Jan. 15, 2008
 - Pilot projects to start July 1, 2008

Some Energy Savings Questions

- Simplistic cost/benefit model
- Statewide vs. regional vs. sub-regional avg.
- Size of market potential
- Interregional benefits transfer
- General marketing
- Total budget
- What benefits/additions from joint programs
 - energy, water, wastewater, recycled, etc.

WEP Opportunity Matrix

- Lessons and Linkages (illuminate)
- Baseline information
- Calculating embedded energy, cost, value
- Where does energy comes from (source, facility)
- Existing funding (partners, cost estimates)
- Co-funding options (partners, grants, other)
- Regional differences (north-south, urban-ag, etc.)

WEP Opportunity Matrix (cont.)

- How large is potential market?
 - Transformation
 - Physical scale
 - Efficiency, recharge, recycled, water management
- Diversity and differences
 - Customer
 - Technology
 - Project
 - regional

WEP Opportunity Matrix

- Multiple benefits/partners
 - Resource
 - Funding
 - Environmental
 - Green house gases
- Evaluation, Monitoring & Verification
 - Methodologies
 - Estimated savings (energy + water)
 - Geographic implications

WEP Pilot Program Concepts

PG&E	Edison	SCG	SDG&E
•CII target	•6-8 ideas	•Low-income	•HETs
•Schools/landscaping	•Low-income	MF residential	•Recycled water
 Manufacturing 	direct install	 Marketing 	•Large
(processes, food	(MWD)	•80/20 split	landscapes
processing)	•Educational	implementation	•Large CII audits
•Wastewater	outreach	vs. EM&V	•General
•Measurement is key	(Alliance to Save	•\$10.8M	marketing (acct.
• Identify where	Energy)		execs, smaller
energy originates from	•Industrial		utilities)
•In discussions	•Large landscape		•\$14M
w/SCWA EBMUD	(golf course		
SCVWD,	retrofit)		
	•no competitive		
	solicitation		Water
	•ramp-up exist		
	water programs		Energy

Potential WEP Sub-Workgroups

Regional Focus	Technical Focus	Policy Focus	Workshops/ Outreach
•Source(s) of marginal supply	 Measurement methodologies (water + energy savings) Pilot partners Matrix Uniform terminology Data collection standards Portfolio diversity Emerging technologies Quantifying end use opportunities 	 Water-Energy Partners (WEP) <i>EM&V</i> (<i>methodology</i>, <i>metrics</i>, <i>responsible</i> <i>parties</i>, <i>funding</i>) 	 Facilitation – different focus groups + engage additional key stakeholders Report writing (consensus docs) Non-pilot opportunities

Looking Forward - Resource Partners

Looking Forward - Retail Partnerships

Find this and other qualifying toilets at our Everyday Low Prices at your local Lowe's.

East Bay WaterSmart[™] Toilet Rebate Program

EBMUD customers can receive rebates for the purchases of qualifying WATERSMART™ toilets. Rebate amounts are up to \$100 for an approved High-Efficiency Toilet (HET) or up to \$25 for an approved Ultra-Low-Flush Toilet (ULFT).

- Customer purchases and installs the WaterSmart[™] toilet.
- Replacement toilet must be on the <u>current</u> EBMUD approved list of qualifying toilets on the date of toilet purchase.
 - For a <u>current</u> EBMD approved list, visit <u>ebmud.com</u> or call 1-866-403-2683.
- Approved toilet must be installed within the EBMUD service area and must replace toilets designed to use more than 1.6 gpf.
- Customer mails in the application (including account number) with original receipt to EBMUD. The application must be postmarked within 90 days of the purchase.
- Sites may be subject to inspection by the Water Conservation staff.

<u>Click here to get details including application and</u> <u>eligibility rules.</u>

Questions?

ЕВМИС

Richard Harris Water Conservation Manager rharris@ebmud.com (510) 287-1675