















# Prior to manure containment system being built....

A chance to monitor benthos community downstream of manure pit (before and after installation)

### **Methods**

- Qualitative sampling of substrate types representative of 25m sampling reach. Same substrates sampled during both sampling events.
- Macroinvertebrates were identified to lowest practical taxonomic level
- Macroinvertebrate metrics calculated included Hilsenhoff Biotic Index (HBI), Taxa Richness and Ephemeroptera, Plecoptera, Trichoptera (EPT) Index.

#### Methods (continued)

- Ambient WQ parameters were collected using the Hydrolab Datasonde 4a.
- Nutrient grab samples were taken during runoff event (1999), pre-restoration (2002), and postrestoration (2004).
- Nutrient grab samples were collected by Oneida staff and analyzed by contracted laboratory.

#### **Explanation of Metrics**

**The Hilsenhoff Biotic Index (HBI)** was developed to determine organic loading in streams, but is also useful to illustrate the relative tolerance of the insects, isopods and amphipods in benthos samples. Only distinct taxa are included in the index, which is calculated by summing the number of organisms in each distinct taxa multiplied by their tolerance value, then dividing by the total number of organisms in those taxa. The number of organisms in each taxa is limited to ten to eliminate the effects of seasonality.

**Taxa Richness** illustrates the biological integrity of the stream as an indication of diversity. It is simply the number of distinct taxa within the sample. It will decrease as a result of organic, toxic, or thermal pollution, as well as flow disruption. It may be affected by sedimentation as well.

The Ephemeroptera, Plecoptera, Trichoptera (EPT) Index illustrates the biological integrity of the stream by summing the distinct taxa in each of those orders. These three orders generally represent the least tolerant organisms found in stream benthos samples. This index will decrease as a result of organic, toxic, or thermal pollution, as well as flow disruption. It may be affected by sedimentation as well.

#### Response in Benthic Macroinvertebrate Community

- HBI scores improved from 6.79 "fairly poor" to 5.28 "good".
- Taxa Richness increased 9%.
- EPT score improved from 0 to 4 (400% increase). No organisms in these orders in "before" sample, 132 individuals in these orders in "after" sample.



# Table 1. Water quality ratings for HBI values (from Hilsenhoff 1987)

| HBI Value  | Water Quality Rating | Degree of Organic Pollution |
|------------|----------------------|-----------------------------|
| ≤ 3.50     | Excellent            | None Apparent               |
| 3.51-4.50  | Very Good            | Possible Slight             |
| 4.51-5.50  | Good                 | Some                        |
| 5.51-6.50  | Fair                 | Fairly Significant          |
| 6.51-7.50  | Fairly Poor          | Significant                 |
| 7.51-8.50  | Poor                 | Very Significant            |
| 8.51-10.00 | Very Poor            | Severe                      |

### Second Project:

Enhance headwater tributary habitat by constructing meanders and installing large woody habitat















## Methods

- Reach sampled 2<sup>nd</sup> week of July both years
- Multi-habitat, composite samples of 25m reach
- D-frame dip net (traveling kicks, sweeps) and hand washing of substrates (working from downstream to upstream)
- Samples picked to 300 organisms
- Identified to genus or species if possible

| Diptera - Chironomidae          | Diptera - Other | Gastropoda              |
|---------------------------------|-----------------|-------------------------|
| Ablebesmyia mallochi            | Ephydridae      | Gyraulus sp.            |
| Ablebesmyia monilis             | Trichoptera     | Physa sp.               |
| Chironomus sp.                  | (none)          | Oligochaeta             |
| Cryptochironomus sp.            | Coleoptera      | Aulodrilus limnobius    |
| Endochironomus sp.              | Agabus sp.      | Enchytraeidae           |
| Micropsectra sp.                | Berosus sp.     | Limnodrilus hoffmeister |
| Microtendipes pedellus<br>group | Odonata         | Lumbriculus variegatus  |
| Parametriocnemus sp.            | (none)          | Naididae                |
| Paratanytarsus sp.              | Isopoda         | Nais communis           |
| Paratendipes sp.                | Caecidotea sp.  | Nais variabilis         |
| Procladius sp.                  | Pelecypoda      | Slavinia appendiculata  |
| Tanypodinae                     | Pisidium sp.    | Others                  |
| Tanytarsus sp.                  | Sphaerium sp.   | Helobdella stagnalis    |
|                                 | Sphaeriidae     | Orconectes sp.          |

| Diptera - Chironomidae          | Diptera - Other         | Gastropoda                   |
|---------------------------------|-------------------------|------------------------------|
| Chironomini                     | Simulium sp.            | Gyraulus sp.                 |
| Chironomus sp.                  | Trichoptera             | Lymnaeidae                   |
| Conchapelopia sp.               | Cheumatopsyche sp.      | Physa sp.                    |
| Corynoneura sp.                 | Hydroptila sp.          | Stagnicola sp.               |
| Cricotopus bicinctus            | Oecetis sp.             | Oligochaeta                  |
| Cryptochironomus sp.            | Coleoptera              | Aulodrilus limnobius         |
| Dicrotendipes neomodestus       | Agabus subfuscatus      | Enchytraeidae                |
| Micropsectra sp.                | Haliplus immaculicollis | Others                       |
| Microtendipes pedellus<br>group | Heterosternuta sp.      | Abliglossiphonia heterocilta |
| Nanocladius sp.                 | Odonata                 | Helobdella stagnalis         |
| Paratanytarsus sp.              | Aeshna constricta       | Orconectes sp.               |
| Phaenopsectra sp.               | Isopoda                 |                              |
| Procladius sp.                  | Caecidotea sp.          |                              |
| Stictochironomus sp.            | Pelecypoda              |                              |
| Tanytarsus sp.                  | Sphaeriidae             |                              |



| Results        |                      |                       |
|----------------|----------------------|-----------------------|
| Metric         | Pre-<br>construction | Post-<br>construction |
| HBI            | 7.18                 | 6.66                  |
| Taxa richness  | 29                   | 34                    |
| EPT            | 0                    | 3                     |
| % Predators    | 7.8                  | 17.5                  |
| % Simulium sp. | 0                    | 18                    |











### Methods

- Multi-habitat, qualitative composite sample
- 500 micron mesh D-Frame dip net
- Sweeps of sediments, submergent and emergent vegetation at set locations
- Samples picked to 300 organisms

| Diptera - Chironomidae         | Pseudochironomus sp. | Pelecypoda      |
|--------------------------------|----------------------|-----------------|
| Chironomus sp.                 | Tanytarsus sp.       | (none)          |
| Chironominae                   | Diptera - Other      | Gastropoda      |
| Cladopelma sp.                 | Bezzia/Palpomyia     | Gyraulus sp.    |
| Cladotanytarsus sp.            | Trichoptera          | Physa sp.       |
| Corynoneura sp.                | (none)               |                 |
| Cricotopus ornatus             | Ephemeroptera        |                 |
| Cryptochironomus sp.           | Caenis latipennis    | Oligochaeta     |
| Dicrotendipes modestus         | Callibaetis sp.      | Nais variabilis |
| Dicrotendipes sp.              | Coleoptera           |                 |
| Endochironomus sp.             | Berosus sp.          |                 |
| Glyptotendipes species group A | Haliplus sp.         |                 |
| Labrundina neopilosella        | Tropisternus sp.     | Others          |
| Larsia sp.                     | Odonata              | (none)          |
| Parachironomus arcuatus group  | (none)               |                 |
| Parachironomus sp.             | Hemiptera            |                 |
| Paratanytarusus sp.            | Palmacorixa buenoi   |                 |
| Polypedilum sp.                | Amphipoda            |                 |
| Procladius sp.                 | (none)               |                 |

#### Two years post construction

| Diptera - Chironomidae     | Diptera - Other         | Pelecypoda                        |
|----------------------------|-------------------------|-----------------------------------|
| Ablebesmyia sp.            | Bezzia/Palpomyia        | Sphaerium sp.                     |
| Acricotopus sp.            | Hedriodiscus/Odontomyia | Gastropoda                        |
| Chironominae               | Trichoptera             | Gyraulus sp.                      |
| Chironomus sp.             | Agraylea sp.            | Helisoma sp.                      |
| Corynoneura sp.            | Ephemeroptera           | Physella sp.                      |
| Cricotopus tricinctus      | Baetis sp.              | Stagnicola sp.                    |
| Demeijerea sp.             | Caenis latipennis       | Oligochaeta                       |
| Dicrotendipes modestus sp. | Callibaetis sp.         | Chaetogaster diaphanus            |
| Dicrotendipes sp.          | Coleoptera              | Imm. Tubificidae w/o hair chaetae |
| Endochironomus sp.         | Enochrus sp.            | Limnodrilus claparedeinanus       |
| Larsia sp.                 | Peltodytes sp.          | Limnodrilus hoffmeisteri          |
| Orthocladiinae             | Tropisternus sp.        | Others                            |
| Parachironomus sp.         | Odonata                 | Collembola                        |
| Paratanytarsus sp.         | Aeshnidae               | Hydra sp.                         |
| Polypedilum sp.            | Enallagma sp.           |                                   |
| Procladius sp.             | Leucorrhinia proxima    |                                   |
| Pseudochironomus sp.       | Amphipoda               |                                   |
| Tanytarsus sp.             | Hyalella azteca         |                                   |



| Metric        | 1 <sup>st</sup> year post-<br>construction | 2 <sup>nd</sup> year post-<br>construction |
|---------------|--------------------------------------------|--------------------------------------------|
| Taxa richness | 28                                         | 39                                         |
| EPT           | 2                                          | 4                                          |
| % Predators   | 8.6                                        | 32.5                                       |













# Summary (continued)

 Initiating watershed restoration in the headwaters makes ecological sense, builds momentum and gains community constituency as you move downstream. Larger, main channel projects are thus easier to "sell" as a result.



# Partners in Trout Creek watershed restoration:

- Brown County
- Outagamie County
- Wisconsin Department of Natural Resources
- Wisconsin Department of Corrections
- U.S. Fish and Wildlife Service
- Glacierland R, C and D
- NRCS