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Transport of metabolites between cells and between subcellular compartments is facilitated by
special protein channels that form aqueous pores traversing biological membranes. Accumulating
evidence demonstrates that solute-specific channels display pronounced binding to the
corresponding solutes. In this paper we rationalize this observation by showing that a wide and deep
potential well inside the channel is able to greatly increase the transit probability of the particle
through the channel. Using a one-dimensional diffusion model with radiation boundary conditions,
we give exact analytical expressions for the particle translocation probabilities. We also run
Brownian dynamics simulations to verify the model and the quantitative predictions of our theory.
© 2002 American Institute of Physic§DOI: 10.1063/1.1475758

I. INTRODUCTION length. A similar problem concerning ion translocation was
recently addressed using the Fokker—Planck equation in
It is now well established that transport of various me-phase spaceOur theory, which permits us to avoid some
tabolites across cellular and organelle membranes occutdifficulties inherent to this approach, is developed in the
through protein channelsTherefore one of the main goals framework of a one-dimensional diffusion model with the
of membrane biophysics is to understand how these channeladiation boundary conditions. Previou8lwe derived these
work. Here we study a fragment of this general problemboundary conditions to study particle number fluctuations in
namely, how does solute-channel interaction influence tha simple case of a cylindrical channel. We found an expres-
probability that the solute, having entered the channel, willsion for the radiation parametérate constantin terms of
traverse the membrane? the channel radius and the diffusion constant in the bulk
Accumulating evidence suggests that metabolite-specifioutside the channel. We used this model to analyze spectral
channels have evolved to bind corresponding metaboliteharacteristics of particle number fluctuations and showed
molecules. For example, it is long recognized that the sugaexcellent agreement between theory and computer simula-
specific channel, maltoporin, shows pronounced interactiongons that did not contain any adjustable parameters.
with penetrating sugars® The binding is so strong that re- One of the main results of the present study is general
cently it has become possible to observe the time-resolveexact expressions for the translocation probabilities for par-
events of single sugar molecule translocation through théicles that enter the channel from either side of the mem-
channel poré:® Another recent exampldllustrates the im-  brane. They are derived in Sec. lll and given by Ej14).
portance of solute-channel interactions in antibiotic transloDetailed analysis of these expressions is performed in Sec.
cation through bacterial general porin, OmpF. InterestinglyJV. It shows that the presence of a deep potential well that
in this case it is not the bacterial channel that has evolved toccupies most of the channel length makes the translocation
bind an antibiotic moleculéntibiotics kill bacterig it isthe ~ more probable. To test our theory we run Brownian dynam-
attacking organisms, molds, which have evolved to producécs simulations as described in Sec. V. We found excellent
antibiotics that effectively penetrate bacterial walls. agreement between the translocation probabilities predicted
In this article we study how the interaction with the by the theory and obtained in simulations. Some important
channel influences the translocation of a metabolite molfactors determining the efficiency of the channel, but omitted
ecule, assuming that its size is small compared to the channigl our analysis, are discussed in the concluding section.
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R III. TRANSLOCATION PROBABILITIES

: s tiiss Using the propagator one can find the survival probabil-
SRS ity S(t|Xo), which is the probability for a particle that started

S at position x=x,, has not escaped from the channel by
! ° . time t,

0T ! : L
S S(tlxo) = fo G(x,t|xo)dx. (3.

The probability density for the particle lifetime in the chan-
nel is given by

dS(t[xq) _ f'- dG(X,t[Xg) dx.

e(tx) =~ —q R (3.2

Integrating both sides of the diffusion equation in E2.1)
with respect tox from 0 toL and using the boundary condi-
tions in EqQ.(2.3), one finds

@(t[x0) =koG(0,t|xo) + ki G(L,t|xo)

—
\ 4
>

FIG. 1. A sketch of the system under study. Brownian particles wander

freely in two reservoirs connected by a cylindrical channel of letgdnd =Tfo(t|Xg) + fL(t]X0). (3.3
radiusa. The black circle represents a particle diffusing in the channel.

There is no interaction between particles; any number of them can be in théhis gives ¢(t|x,) as a sum of two probability fluxes,

channel simultaneously. fo(t|xo) =koG(0t|xo) and f (t|xq) =k G(L,t|xo), that es-
cape the channel from the two ends at tineThe total
probabilities for the particle to escape through the left and

Our goal is to calculate probabilities of both outcomes for"ght ends of the channel, denotedRgxo) andPy (xo), are

particles that enter the channel from both sides.

We will model the particle motion in the channel by Po(Xo)=f0
one-dimensional diffusion on the interval [, (see Fig. L
The interaction of the particle with the channel will be taken
into account by assuming théd) the diffusion occurs in the PL(Xo0)= fo
potential U(x), and (b) the diffusion coefficientD(x) de-
pends on particle positior. The behavior of the particle in Using the definitions introduced above one can check that
the channel is described by the propagator or Green function,

oo

fo(t|X0)dt: kofoxG(O,t|X0)dt,
(3.9

[

fL(t|x0)dt=kLJ G(L,t|xg)dt.
0

G(x,t|xg), which is the probability density to find the par- Po(Xg) + PL(xo)zf o(t|xg)dt=1. (3.5
ticle at pointx at timet assuming that at=0 the particle 0
(Smoluchowski equation F(x|xo), defined as

G 9 Jd *

-2 G u) _

T D(x)e ﬁx[Geﬂ 1t, (2.1 F(x|Xo) fo G(X,t[xp)dt. (3.6)

where 8= (kgT) %, kg and T are the Boltzmann constant Then we can write the probabilities in E.4) as
and absolute temperature, with the initial condition
P Po(Xo) =koF (0[Xo), Py (Xo) =k, F(L|xo). (3.7

G(x,0/X0) = 8(X—Xo). (22 Using Egs.(2.1)—(2.3) one can check thaE(x|x,) satisfies

Boundary conditions imposed at the channel ends describe d —BU) d BUX)
escape of the particle from the channel. They have the form gy | P(¥)e axle F(XIxo) ] =~ 8(x—xo),
of radiation boundary conditions (3.9

o with the boundary conditions

d k
R U(x) —
aX[GeB ]|X:0 D(0

) ePYOG(0t]xe),

d Ko
_ reBUX) — BU(0)
9 k (23) dx[e F(X|X0)]|X=O D(O)e F(0|X0)y
— —[GePYN]| = eBUMIG(L,t|xo), (3.9
o o —i[eB““’F(xlx Nlx=L= al PR (Lxo)
dX 0 x=L D(L) 0/-

where ko and k_ are the rate constants characterizing the
efficiency of the escapék== andk=0 correspond to ab- One can find=(x|x,) from Egs.(3.8) and(3.9) and then the
sorbing and reflecting end points, respectiyely probabilities using Eq(3.7). This leads to
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- - d probabilities does not depend on the potential prdfil)
L gBuy) Y -
ko| 1+kLSx e By and depends only on the potential differenicd:
Po(Xg)= ,
o Ro-+K ok, [heum 9V PLO) ki gy @)
-OHOT D(y) Po(l) ko= ‘
g (3.10 _ o
K| 14K, 0B y The translocation probabilities reach their maximum values
B - 0’0 D(y) when a deep potential well occupies the entire channel so
PL(XO)_~ LY ' that the integral in Eq(3.14 can be neglected. The maxi-
Ko+ k +kok, [oeP~VY 1Y) mum values are
where we have introduced the notations pmay ) = ke AaY pmaX | ) Ko
Ko=k.e BUO K =k e AUWL) 3.1 ) kotk e PRUr 7O ko+k.e PRV
0= Ko€ v K=K e . (3.1 (4.2)

The probabilities in Eq(3.10 satisfy the normalization con- The translocation probabilities take these maximum values

dition in Eq. (3.5. ) NN
In this paper we are interested in translocation probablll-When intrachannel e_qU|I|brat|on occurs much faster than all
. . : . other processes. This happens wibgix) — oo.
ties, that can be easily obtained from the general expressions L ) LN
Next, we indicate that in the limiting case of the mem-

:gﬂE(q); (i'(l)?'aigrr?gar:%ei tr;aihzltsrpt:;%;gﬁggg Ire?srgete brane of zero thicknesd. &AU=0) separating two identi-
0 0 ’ cal solutions ky=k,) our theory recovers the trivial result

tively, are
T PL(0)=Po(L)=3 (43
P'-(O):N o dy ’ When AU=0 andky=k =k, the translocation prob-
kot+k_+kok f5ePv® DY) abilities are equal to one another and given by
y
~ (3.12
Ko Po(L)=PL(0)=Py= v (4.4
Po(L)= - 24 kaeBU(y)_y
T AT (Lasu 3Y TbW
ko+ ki +kok fge”"Y
D(y) In the absence of the potential and for position-independent
It is convenient to introduce a notation for the potential-diffusion coefficient, D(x) =constD, the translocation
energy difference along the channel probability in Eq.(4.4) takes the form
AU=U(L)—-U(0). (3.13 1
Py= (4.9

In addition, for certainty we takel(0)=0. This allows us to
write the translocation probabilities in the form

kLe—ﬁAU

T
D

Previously, we found that for a cylindrical channel of radius

PL(0)=

Ko+ ke P+ kok, e P2V fLgBUE) dy ° a the rate constant is given by
D(y)
4D
K (3.14 k= —2, (4.6)
Po(L)= day ma
ko+ ke PAY+kok e FAY [GefU) Bly) whereDy, is the particle diffusion constant in the bulk which

_ o in general may differ from the diffusion constabt in the
The translocation probabilities in E(B.14 can be used channel. Substituting this into Eq. (4.5), we obtain
to find the probabilities that particles do not translocate and

escape the channel through the same end where they entered. 1
The nontranslocation probabilities are Pv= 4DyL" 4.7
2+
Po(0)=1-P_(0), mDa
(3.15

For a long narrow channelL&a) this translocation prob-
ability takes the form

PL(L)=1=Po(L).
The probabilities given in Eq$3.14) and(3.15 are one of
the main results of this paper. ~Da

Py~ AD,L <1. 4.9

IV. DISCUSSION - .
Thus, the probability of translocation through a narrow cy-

We begin our discussion of the translocation probabili-lindrical channel in the absence of attractive potential is very
ties in Eq.(3.14 with an observation that the ratio of these small.
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FIG. 2. The record of the number of particles in the channel in the absenc
of a potential wellpanel a and in the presence of the well of dimensionless
depth BUy=In5 that occupies the entire channkk 198 (panel B. The s
events corresponding to particle’s passage through the channel are markgg
by the pairs of upward and downward arrows. Most of the patrticles leave the
channel from the same opening they enter. One can see that the translocation
is more probable in the presence of the potential well.

BIG. 3. The translocation probability as a function of the dimensionless well
depth for wells of the length=198, 176, and 120, from top to bottom. The
lid curves are drawn according to E4.10. The horizontal dashed lines
rrespond to the limiting values in E(t.11).

dimensionless well deptBU,. Figure 2 shows records of

To analyze how the translocation probability depends orf€ number of particles in the channel for the well with
the potentialU(x), we use Eq(4.4), where we takeD(x) — 198 andBU,=0 and In5[panels(a) and (b), respec-

—const=D and tively]. One can see that the number of successful attempts to
pass through the channel in parib] is greater than that in
U(x)= 0, O<X<Xqy,Xp<xX<L, (4.9 Panel(@ as the presence of the potential well facilitates pas-
—Ug, X =<X=Xj. ' sage of the particles.

The translocation probability was calculated as a ratio of
the number of particles that passed through the channel to
the total number of particles that entered the channel. The
results presented in Fig. 3 show that the translocation prob-

This potential has three parameters: the well delpth, and
length,l =x,—x4, as well as the position of the well center,
(x4 +x5)/2. The translocation probability in this case is

given by ability increases as the well depth grows approaching the
1 limiting value in Eq.(4.11). At a fixed well depth the prob-

Puy= Dy ' (4.10 ability increases as the well length grows. The results found

2+ m[L—I(l—e*ﬁUO)] in simulations are in excellent agreement with the predic-

tions of our theory given in Eq4.10.
where we have used the expressionkan Eq. (4.6). From
Eq. (4.10 one can see th&,, does not depend on where the
well is located. For deep wellgU,>1, P, becomes inde-

L VI. CONCLUDING REMARKS
pendent of the well depth and is given by

1 In this paper we have developed a theory to relate

P~ 2D . (4.11) metabolite-channel interaction to the translocation probabil-
24 b (L—1) ity of single metabolites. Our theory completely neglects
mDa competition among different molecules. In reality, a metabo-

The translocation probability approaches its maximum valuglite molecule passing through a channel acts as a “stopper”
0.5, ad —L, so that a deep well occupies the entire channelfor other moleculebecause the molecules cannot jump one

This conclusion can also be drawn from the more genereﬂ)ver the other. Therefore, for the efficient work of the chan-
expression in Eq(44), as well as from the expressions in nel |t iS required that the m0|ecu|es dO not Spend too mUCh
Eq. (4.2). time in the channel. This means that a channel with a very
deep potential well occupying the entire channel will not be
efficient in spite of its high translocation probability. Thus,
depending on metabolite concentration, there is an “optimal
To test the theory we performed Brownian dynamicspotential well” that makes the channel most efficient. The
simulations for a channel with radius=5.5 and lengthL metabolite translocation probability through this channel
=200 in conditional dimensionless units, taking equal diffu-would be sufficiently high while metabolite lifetime in the
sion constants in the channel and in the bulkDy, (for  channel would not be too long.
more details see Ref)8For the sake of simplicity we used Here we have studied translocation probabilities of neu-
the square-well potential in Eq4.9) symmetric about the tral molecules. In principle, the same approach can be used
channel center, i.ex;=(L—1)/2, x,=(L+1)/2, wherel is  to analyze translocation of ions. However, in the case of ions
the length of the well. The translocation probability was cal-it is not obvious that the problem can always be reduced to a
culated forl=120, 176, and 198 at several values of theone-dimensional one. If such a reduction is justified, our

V. SIMULATIONS
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theory can be applied after the corresponding potehk{i) 1T, Schirmer, J. Struct. Bioll21, 101(1998.
is precalculated. 2M. Luckey and H. Nikaido, Proc. Natl. Acad. Sci. U.S.A7, 167
In conclusion, it would be interesting to generalize our (1980-

: . °R. Benz, A. Schmid, and G. H. Vos-Scheperkeuter, J. Membr. &
analysis to the case of multichannel membrane and to de-. (12%27) chmid, an os-Scheperkeuter, J. Membr. B0,

Ve'PP a genera_l approach of the type of Siegel's thé%hyv 4S. M. Bezrukov, L. Kullman, and M. Winterhalter, FEBS LetZ6, 224
which he considers transport across laterally homogeneous2000.
membranes. We will address this problem in our forthcoming®L. Kullman, M. Winterhalter, and S. M. Bezrukov, Biophys. 82, 803

work. (2002.
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