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We study the distribution of direct translocation times for particles passing through membrane channels
connecting two reservoirs. The direct translocation time is a conditional first-passage time defined as the
residence time of the particle in the channel while passing to the other side of the membrane directly, i.e.,
without returning to the reservoir from which it entered. We show that the distributions of direct
translocation times are identical for translocation in both directions, independent of any asymmetry in
the potential across the channel and, hence, the translocation probabilities.
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The transport of ions, metabolites, and other large mole-
cules across cell and organelle membranes is in many cases
controlled by membrane proteins that form solute-specific
channels [1]. Together with active transport [2], passive
diffusion of molecules facilitated by channels is now rec-
ognized as one of the major mechanisms of metabolic
regulation. A complex interplay of position-dependent
forces acting on a translocating molecule determines the
transport rates and channel selectivity for different solutes.

The constructive role of attractive interactions between
the particle and the pore was recently analyzed in the
framework of a one-dimensional diffusive model of the
channel transport [3] and it was shown that, rather counter-
intuitively, the average direct translocation time in the
presence of an arbitrary potential is independent of the
direction in which the particle goes [4]. For example, for
ions going through a channel in the presence of an external
voltage (Fig. 1) the ‘‘uphill’’ and ‘‘downhill’’ average
direct translocation times are equal even though the uphill
translocation probability is much smaller than the downhill
one. A special case of such direction invariance has been
discussed in Ref. [5] in the context of rate calculations for
fluctuating barriers where the independence of the mean
instanton time of the travel direction was demonstrated.

In the present study we prove a more general statement.
This Letter deals specifically with the direct translocation
time of ions, metabolites, and macromolecular solutes
through channels in membranes and, more generally, the
direct translocation time between two arbitrary hypersur-
faces in configuration space. The direct translocation time
is defined as the time it takes for a particle entering the
channel on one side to exit the channel on the opposite side
without returning to the reservoir from which it entered.
This time is a conditional first-passage time which should
not be confused with the unconditional one [6]. We show

that the distributions of the uphill and downhill direct
translocation times are the same, and that this is an almost
immediate consequence of detailed balance or microscopic
reversibility.

We begin by assuming that the dynamics of the particle
in the channel can be described by a one-dimensional
Langevin equation. As we discuss at the end, the main
result can readily be generalized to other dynamics and
higher dimension. We will show that the probability den-
sities of the uphill and downhill direct translocation times
are equal

 ’�tjxL ! xR� � ’�tjxR ! xL�; (1)

where xL and xR are the left and right boundaries of the
channel (Fig. 1). For a particle of mass m moving in the
channel the Langevin equation is
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FIG. 1. Membrane channel and the potential of mean force,
U�x�, along the channel axis; �U is the potential drop across the
channel.
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 m �x� � _x�U0�x� � f�t�: (2)

Here U�x� is the potential of mean force along the channel
axis, � is the friction coefficient, and f�t� is a Gaussian
delta-correlated random force with zero mean related to the
friction coefficient by the fluctuation-dissipation relation
hf�t�f�t0�i � 2kBT���t� t0�, where kB and T are the
Boltzmann constant and the absolute temperature. One
can find a discussion of ion transport through membrane
channels based on the one-dimensional Langevin equation
in Ref. [7].

Both the particle translocation probability and the dis-
tribution of the direct translocation times can be expressed
in terms of the propagator G�x; v; tjx0; v0� defined as the
probability density of finding the particle at point x with
velocity v at time t conditional on the particle being at
point x0 with velocity v0 at t � 0, xL < x; x0 < xR. The
propagator satisfies the Klein-Kramers equation [8]
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with the initial condition G�x; v; 0jx0; v0� � ��x�
x0���v� v0� and absorbing boundary conditions at the
channel ends. It is assumed that particles leaving the
channel instantly become indistinguishable from other
particles of the reservoir. Therefore, only direct transloca-
tions contribute into the translocation process. The motion
of diffusing particles at the channel boundaries is examined

in Refs. [3,4]. Diffusion corresponds to the high-friction
limit of the Langevin dynamics, and it can be shown that
Eq. (1) is true in this case.

Consider particles that enter the channel from the left.
We assume that particles in the reservoirs are in thermal
equilibrium and that there is no hydrodynamic flow
through the channel. The flux entering the channel is given
by cL

R
1
0 vLpeq�vL�dvL, where cL is the particle concen-

tration in the left reservoir and peq�vL� is the Maxwell
distribution. The velocity distribution of the entering par-
ticles is p�vL� � �mvL exp���mv2

L=2�H�vL�, where
H�z� is the Heaviside step function. When a particle enters
the channel at xL with an initial velocity vL, the flux
escaping at xR at time t, f�tjxL ! xRjvL�, is given by

 f�tjxL ! xRjvL� �
Z 1

0
vRG�xR; vR; tjxL; vL�dvR: (4)

Averaging this flux over the initial distribution of vL we
obtain

 f�tjxL ! xR� �
Z 1

0
f�tjxL ! xRjvL�p�vL�dvL: (5)

This flux, in turn, can be used to find the translocation
probability, P�xL ! xR�,

 P�xL ! xR� �
Z 1

0
f�tjxL ! xR�dt (6)

and the probability density of the direct translocation time
from left to right

 ’�tjxL ! xR� �
f�tjxL ! xR�
P�xL ! xR�

�

R
1
0 dvL

R
1
0 dvRvRG�xR; vR; tjxL; vL�vL exp���mv2

L=2�R
1
0 dt

R
1
0 dvL

R
1
0 dvRvRG�xR; vR; tjxL; vL�vL exp���mv2

L=2�
: (7)

Similarly, the probability density of the direct translocation time from right to left is given by

 ’�tjxR ! xL� �

R
0
�1 dvL

R
0
�1 dvRvLG�xL; vL; tjxR; vR�vR exp���mv2

R=2�R
1
0 dt

R
0
�1 dvL

R
0
�1 dvRvLG�xL; vL; tjxR; vR�vR exp���mv2

R=2�
: (8)

To prove that the probability densities in Eqs. (7) and (8) are equal, we use the fact that the propagators G�xR; vR; tjxL; vL�
and G�xL; vL; tjxR; vR� satisfy the condition of detailed balance which is proved below

 G�xR; vR; tjxL; vL� exp
�
��

�
mv2

L

2
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��
� G�xL;�vL; tjxR;�vR� exp
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�
mv2

R

2
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��
: (9)

To derive the equality in Eq. (1) we (i) multiply both
numerator and denominator by exp���U�xL�� in Eq. (7)
and by exp���U�xR�� in Eq. (8), (ii) change variables of
integration vL ! �vL and vR ! �vR in Eq. (8), and
(iii) invoke the condition of detailed balance, Eq. (9).

Now we will prove that the condition of detailed balance
in Eq. (9) is valid in the presence of absorbing boundary
conditions at the channel ends. Note that both propagators
in Eq. (9) can be considered as sums over trajectories
which start from the two ends at t � 0 and leave the

channel at time t, with specified initial and final velocities.
For each trajectory contributing into the propagator
G�xR; vR; tjxL; vL� there exists its time-reversed counter-
part that contributes into G�xL;�vL; tjxR;�vR� and vice
versa. Let fxf�t0�; vf�t0�g, 0 	 t0 	 t, be a trajectory con-
tributing into G�xR; vR; tjxL; vL� and fxr�t0�; vr�t0�g be its
time-reversed counterpart, i.e., xr�t� t

0� � xf�t
0� and

vr�t� t
0� � �vf�t

0�. We will show that realization proba-
bilities for these trajectories, W�fxf; vfg� and W�fxr; vrg�,
satisfy
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Since the propagators are weighted sums over trajectories,
the condition of detailed balance in Eq. (9) is a conse-
quence of Eq. (10).

To find the weights W�fxf; vfg� and W�fxr; vrg� we use
the Harmonic Oscillator Bath approach to the stochastic
dynamics suggested by Zwanzig [9]. According to this
approach, different stochastic trajectories fx�t0�; v�t0�g cor-
respond to different initial conditions of the Hamiltonian
system formed by the bath oscillators and the system under
consideration which bilinearly couples with the oscillators.
The oscillators are described by their positions, fqjg, and
velocities, f _qjg, j � 1; 2; . . . . The total energy of the entire
system, E, is

 E �
m
2
v2 �U�x� � Eosc�fqj; _qjgjx�; (11)

where Eosc�fqj; _qjgjx� is the oscillator bath energy which
depends on x as a parameter

 Eosc�fqj; _qjgjx� �
X
j

mj

2
� _q2
j �!

2
j �qj � �jx�

2�: (12)

Let fqj;f�0�g and f _qj;f�0�g be the set of initial conditions for
the bath oscillators that leads to the trajectory
fxf�t0�; vf�t0�g, 0 	 t0 	 t. The realization probability of
this trajectory is the Maxwell-Boltzmann probability of the
corresponding set of initial conditions for the bath oscil-
lators assuming that xf�0� � xL

 W�fxf; vfg� � Z�1 exp���Eosc�fqj;f�0�; _qj;f�0�gjxL��;

(13)

where Z is the partition function of the oscillator bath.
When the trajectory reaches the channel boundary at time
t, xf�t� � xR, the bath oscillators have their final positions,
fqj;f�t�g, and velocities, f _qj;f�t�g. We use this information to
construct the initial conditions for the bath oscillators,
which will lead to the time-reversed trajectory
fxr�t

0�; vr�t
0�g: qj;r�0� � qj;f�t�, _qj;r�0� � � _qj;f�t�. The

realization probability for the reversed trajectory is the
Maxwell-Boltzmann probability of the initial conditions
fqj;r�0�; _qj;r�0�g for the bath oscillators assuming that
xr�0� � xR

 W�fxr; vrg� � Z�1 exp���Eosc�fqj;f�t�; _qj;f�t�gjxR��;

(14)

where we have used the fact that Eosc�fqj;r�0�;
_qj;r�0�gjxR� � Eosc�fqj;f�t�; _qj;f�t�gjxR�.

The realization probabilities in Eqs. (13) and (14) satisfy
the relation in Eq. (10). This follows from the fact that the
energies mv2

L=2�U�xL� � Eosc�fqj;f�0�; _qj;f�0�gjxL� and
mv2

R=2�U�xR� � Eosc�fqj;f�t�; _qj;f�t�gjxR� are equal be-

cause they are the same total energy of the isolated
Hamiltonian system at times 0 and t. Thus, we have proved
the relation in Eq. (10) and, hence, the condition of detailed
balance in Eq. (9).

We now show that the identity of the distributions of the
uphill and downhill direct translocation times, Eq. (1), is an
almost immediate consequence of microscopic time re-
versibility. Up to now we dealt with the one-dimensional
motion of the particle in the potential U�x� on the interval
xL 	 x 	 xR. Let us now consider the particle motion over
the entire range of the x coordinate assuming that this
motion occurs in the potential V�x� which is identical to
U�x� for xL 	 x 	 xR and tends to infinity as jxj ! 1 so
that

R
1
�1 exp���V�x��dx is finite. Figure 2 illustrates the

difference between V�x� and U�x�. The point is that the
probability densities ’�tjxL ! xR� and ’�tjxR ! xL� can
be determined from infinitely long equilibrium trajectories
of particles that move in the potential V�x�. Such trajecto-
ries cross the interval (xL, xR) many times and the proba-
bility densities can be found from the fragments that
traverse the interval without returning to the entrance
point. The velocity distributions of particles entering the
channel from the two sides are identical to the velocity
distributions of particles crossing xL and xR found from the
equilibrium trajectories. The identity of the probability
densities of the direct translocation times, Eq. (1), is a
consequence of the fact that for each trajectory fragment
going from left to right there exists its ‘‘mirror image’’
obtained by inverting the sign of the particle velocity at
each point of the interval, which goes from right to left, and
vice versa (Fig. 3).

The above analysis can be readily generalized to more
complex dynamics [like generalized Langevin dynamics or
continuous-time random walks on a one-dimensional lat-
tice [10] ], channel geometries, and higher dimensions to

xxL xR

U(x) 

U(x) 

V(x) V(x) 

U(x)=V(x) 

FIG. 2. Auxiliary potential V�x� is identical to U�x� on the
interval corresponding to the channel, xL 	 x 	 xR, and tends to
infinity as jxj ! 1.
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include, e.g., protein and solvent coordinates. In essence,
microscopic reversibility combined with averaging over
equilibrium trajectories ensures that the direct transloca-
tions in the forward direction and their mirror images, the
direct translocations in the backward direction, appear with
equal probability. Specifically, if one defines ‘‘entrance’’
and ‘‘exit’’ to a channel as crossing certain surfaces, then
the distributions of the direct translocation times from left
to right and from right to left are identical for any three-
dimensional membrane channel in the presence of an
arbitrary external potential. Time-reversal symmetry has
been used explicitly in transition path sampling [11].

Identity of the distributions of the direct uphill and
downhill translocation times proved in the present Letter
is a crucial step in constructing a comprehensive theory of
counting single-molecule translocations through single
membrane channels [12]. Among the possibilities of ex-
perimental verification of our results, we would like to
indicate digital video microscopy of colloidal particles
[13] and single-molecule protein folding experiments
[14]. Such experimental ‘‘tests’’ would touch upon
Loschmidt’s paradox by demonstrating directly that sys-
tem trajectories are microscopically time reversible, even if
the macroscopic system satisfies the Second Law.

We thank Attila Szabo and Adrian Parsegian for numer-
ous very helpful discussions. This study was supported by
the Intramural Research Program of the NIH, Center for
Information Technology, National Institute of Diabetes and
Digestive and Kidney Diseases, and National Institute of
Child Health and Human Development.

Note added.—Independence of the direct translocation
time distribution of the passage direction is discussed in a
recent paper [15] published after the present manuscript

was submitted. The analysis in Ref. [15] is based on a
discrete time random walk model of the particle motion in
the channel. When the number of sites modeling the chan-
nel tends to infinity and the interval between successive
steps of the random walk tends to zero in an appropriate
way, this model corresponds to diffusion of the particle in
the channel, which is the high-friction limit of our more
general description.
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FIG. 3. Fragment of an equilibrium trajectory that goes from
left to right and its mirror image that goes from right to left. The
direct translocation times tL!R and tR!L are equal.
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