# Water Resources Data Kentucky Water Year 1999 

By D.L. McClain, F.D. Byrd, and A.C. Brown

## Water-Data Report KY-99-1



# U.S. DEPARTMENT OF THE INTERIOR <br> BRUCE BABBITT, Secretary <br> U.S. GEOLOGICAL SURVEY <br> Charles G. Groat, Director 

For additional information write to:
District Chief, Water Resources Division
U.S. Geological Survey

9818 Bluegrass Parkway
Louisville, Kentucky 40299-1906

## PREFACE

This volume of the annual hydrologic data report of Kentucky is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by state, local, and federal agencies, and the private sector for developing and managing our Nation's land and water resources.

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Survey policy and established guidelines. Most of the data were collected, computed, and processed from the District and field offices.

The data were collected, computed, and processed by the following personnel:

| H.C. Allen | P.L. Faith | B.L. Moore |
| :--- | :--- | :--- |
| P.J. Bruenderman | J.D. Filbeck | C.R. Moses |
| S.J. Couts | B.S. Fink | D.S. Mueller |
| A.S. Crain | M.S. Griffin | S.B. Pickard |
| R.S. Darnell | Zeke Hensley | R.E. Puckett |
| A.K. Dirrim | H.A. Hitchcock | E.A. Shreve |
| A.C. Downs | G.R. Martin | D.D. Zettwoch |
| D.W. Eichert | G.K. McCombs |  |

This report was prepared in cooperation with the Commonwealth of Kentucky and with other agencies under the general supervision of Dennis L. McClain, Supervisory Hydrologic Technician, and Harry C. Rollins, District Chief, Kentucky.

| REPORT DOCUMENTATION PAGE |  |  |  | Form Approved OMB No. 0704-0188 |
| :---: | :---: | :---: | :---: | :---: |
| Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collececion of information. Send comments regarding this burden estimate or any other aspecto of this <br>  |  |  |  |  |
| 1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE <br> March 27, 2000 | 3. REPORT TYPE AND DATES COVEREDAnnual—October 1, 1998 to September 30, 1999 |  |  |
| 4. TITLE AND SUBTITLE <br> Water Resources Data - Kentucky, Water Year 1999 |  |  | 5. Fun | VIING NUMBERS |
| 6. AUTHOR(S) <br> D.L. McClain, F.D. Byrd, and A.C. Brown |  |  |  |  |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Geological Survey, Water Resources Division Kentucky District 9818 Bluegrass Parkway Louisville, KY 40299-1906 |  |  | $\begin{aligned} & \text { 8. PERF } \\ & \text { REP } \\ & \text { USS } \end{aligned}$ | FORMING ORGANIZATION PORT NUMBER <br> GS-WDR-KY-99-1 |
| 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Geological Survey, Water Resources Division Kentucky District 9818 Bluegrass Parkway Louisville, KY 40299-1906 |  |  | $\begin{array}{\|c} \text { 10. SPC } \\ \text { AG } \\ \text { USC } \end{array}$ | ONSORING / MONITORING GENCY REPORT NUMBER <br> GS-WDR-KY-99-1 |
| 11. SUPPLEMENTARY NOTES <br> Prepared in cooperation with the Commonwealth of Kentucky and other agencies. |  |  |  |  |
| 12a. DISTRIBUTION / AVAILABILITY STATEMENT <br> No restriction on distribution. This report may be purchased from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. |  |  | ${ }^{12 \mathrm{~b} . \mathrm{D}}$ | IISTRIBUTION CODE |
| 13. ABSTRACT (Maximum 200 words) <br> Water resources data for the 1999 water year for Kentucky consists of records of stage, discharge, and water quality of streams and lakes; and water levels of wells. This report includes daily discharge records for 106 stream-gaging stations. It also includes water-quality data for 10 stations sampled at regular intervals. Ground-water levels are published for 6 recording and 14 partial record sites. Precipitation data at a regular interval are published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Kentucky. |  |  |  |  |
| 14. SUBJECT TERMS <br> *Kentucky, *Hydrologic data, *Surface waters, *Water quality, *Ground waters, Gaging stations, Streamflow, Flow rates, Lakes, Wells, Chemical analyses, Suspended sediments, Water temperature, Water levels |  |  |  | 15. NUMBER OF PAGES <br> 492 <br> 16. PRICE CODE |
| 17. SECURITY CLASSIFICATION <br> Unclassified | 8. SECURITY CLASSIFICATION OF THIS PAGE | 19. SECURIT |  | 20. LIMITATION OF ABSTRACT <br> Unclassified |
| NSN 7540-01-280-5500 |  |  |  | andard Form 298 (Rev. 2-89) escribed by ANSI Std 239-18 $8-102$ - |

## CONTENTS

Page
Preface ..... iii
List of gaging stations, in downstream order, for which records are published ..... vii
List of ground-water wells, by county, for which records are published. .....  x
List of precipitation-quality stations, by county, for which records are published. .....  X
Introduction .....  1
Cooperation .....  1
Summary of hydrologic conditions .....  2
Surface water .....  2
Quality of water ..... 2
Ground-water levels .....  6
Special networks and programs .....  6
Explanation of records .....  8
Station identification numbers .....  8
Downstream order system. .....  8
Latitude-longitude system. .....  9
Records of stage and water discharge .....  9
Data collection and computation .....  9
Data presentation ..... 10
Station manuscript ..... 11
Data table of daily mean values ..... 12
Statistics of monthly mean data ..... 12
Summary statistics ..... 12
Identifying estimated daily discharge ..... 14
Accuracy of the records ..... 14
Other records available ..... 15
Records of surface-water quality ..... 15
Classification of records. ..... 15
Arrangement of records ..... 15
On-site measurements and sample collection ..... 15
Water temperature. ..... 16
Sediment ..... 16
Laboratory measurements ..... 17
Data presentation ..... 17
Remarks codes ..... 18
Dissolved trace-element concentrations ..... 18
Change in National Trends Network procedures ..... 18
Records of ground-water level ..... 19
Data collection and computation ..... 19
Data presentation ..... 19
Records of precipitation-quality ..... 20
On-site measurements and sample collection. ..... 20
Data presentation ..... 21
Access to WATSTORE data ..... 21
Definition of terms ..... 23
Publications on techniques of water-resources investigations ..... 34
Station records, surface water ..... 42
Discharge at partial-record stations ..... 428
Crest-stage partial-record stations. ..... 428
Miscellaneous discharge measurements ..... 435
Station records, ground water ..... 441
Ground-water levels listed by county ..... 441
Station records, precipitation records ..... 453
Discontinued gaging-station records ..... 456
Discontinued water-quality records ..... 464
Discontinued ground-water records ..... 473
Index ..... 476

## ILLUSTRATIONS

Page
Figure 1. Mean discharge during 1999 water year and period of record for three representative gaging stations .....  3
2. Diagram showing system for numbering wells and miscellaneous sites (latitude and longitude). .....  9
3. Map showing location of gaging stations in Kentucky ..... 39
4. Map showing location of surface water quality stations in Kentucky ..... 40
5. Map showing location of gaging stations in Jefferson County ..... 41
6. Map showing location of observation wells in downtown Louisville ..... 439
7. Map showing location of observation wells in northeast Jefferson County ..... 440

## TABLES

Table

1. Mean, maximum, and minimum streamflow for water year 1999 and recurrence intervals at selected stations 4
2. Summary of quality-control samples for selected nutrients, major ions, and trace elements collected at NASQAN stations from October 1995 through September 1999. ..... 7

# SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME 

[Letters after station name designate type of data: (d) discharge, (g) stage, (c) chemical,

(b) biological, (t) water temperature, (s) sediment]
STATION NUMBER
OHIO RIVER BASINOhio River:
BIG SANDY RIVER BASIN
Levisa Fork (head of Big Sandy River):
Grapevine Creek near Phyllis (d) 03207965 ..... 42
Levisa Fork at Pikeville (d) 03209500 ..... 44
Johns Creek near Meta (d) 03210000 ..... 46
Levisa Fork at Paintsville (d) 03212500 ..... 48
LITTLE SANDY RIVER BASIN
Little Sandy River at Grayson (d). 03216500 ..... 50
Ohio River at Greenup Dam (d, c). 03216600 ..... 52
TYGARTS CREEK BASIN
Tygarts Creek near Greenup (d) 03217000 ..... 60
KINNICONICK CREEK BASINKinniconick Creek at Tannery (d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0323725062
LICKING RIVER BASIN
LICKING RIVER:
Fox Creek:
Rock Lick Creek above Unnamed Tributary near Sharkey (d) 03250310 ..... 64
Rock Lick Creek at State Highway 158 near Sharkey (d) 03250322 ..... 66
North Fork Licking River near Mt. Olivet (d) 03251200 ..... 68
South Fork Licking River:
Hinkston Creek near Carlisle (d) 03252300 ..... 70
Licking River at Catawba (d) 03253500 ..... 72
Ohio River at Markland Dam (d) 03277200 ..... 74
KENTUCKY RIVER BASIN
North Fork Kentucky River (head of Kentucky River):
North Fork Kentucky River at Whitesburg (d) 03277300 ..... 76
North Fork Kentucky River at Jackson (d) 03280000 ..... 78
Middle Fork Kentucky River:
Cutshin Creek at Wooton (d) 03280700 ..... 80
Middle Fork Kentucky River at Tallega (d) 03281000 ..... 82
Kentucky River:
Red Bird River (head of South Fork Kentucky River) near Big Creek (d) 03281040 ..... 84
Goose Creek at Manchester (d). 03281100 ..... 86
South Fork Kentucky River at Booneville (d) 03281500 .....  88
Kentucky River at lock 14, at Heidelberg (d) 03282000 ..... 90
Sturgeon Creek at Cressmont (d) 03282040 ..... 92
Red River near Hazel Green (d) 03282500 .....  94
Red River at Clay City (d) . 03283500 ..... 96
Kentucky River at lock 10, near Winchester (d) 03284000 ..... 98
Hickman Creek:
East Hickman Creek at Andover Village (d) 03284520 ..... 100
East Hickman Creek Tributary near Lexington (d) 03284525 ..... 102
East Hickman Creek near East Hickman (d) 03284530 ..... 104
West Hickman Creek near East Hickman (d) 03284555 ..... 106
Dix River near Danville (d) 03285000 ..... 108
Spears Creek at Railroad Culvert near Danville (d,g). 03285280 ..... 110
Spears Creek at Streamland Drive near Danville (d,g) 03285290 ..... 128
Mocks Branch at Bluegrass Pike near Danville (d,g) . 03285320 ..... 138
Mocks Branch at Highway 1915 (Gentry Lane) near Danville (d,g). 03285325 ..... 146
Mocks Branch at Highway 127 near Danville (d,g) 03285330 ..... 164
Mocks Branch at Highway 1896 near Danville (d,g) 03285335 ..... 182
Kentucky River at lock 7, near High Bridge (d) 03286500 ..... 200
Kentucky River at lock 6, near Salvisa (d) 03287000 ..... 202
Kentucky River at lock 4, at Frankfort (d) 03287500 ..... 204

# SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME--Continued 

[Letters after station name designate type of data: (d) discharge, (g) stage, (c) chemical,
(b) biological, ( t ) water temperature, ( s ) sediment]

Page


# SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME--Continued 

[Letters after station name designate type of data: (d) discharge, (g) stage, (c) chemical, (b) biological, (t) water temperature, (s) sediment]

## STATION NUMBER

PageOHIO RIVER BASIN--Continued
Salt River Basin--Continued
Pond Creek:
Pond Creek at Pendleton Road near Louisville (d) . . . . . . . . . . . . . . . . . . . . . . . . . . . 03302030 ..... 288
Brier Creek at Pendleton Road near Louisville (d) 03302050 ..... 290
OTTER CREEK BASIN
Otter Creek at Otter Creek Park near Rock Haven (d) 03302110 ..... 292
Ohio River at Cannelton Dam (d,c) 03303280 ..... 294
GREEN RIVER BASIN
Green River:
Russell Creek near Columbia (d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 03307000 ..... 302
Green River at Munfordville (d) 03308500 ..... 304
Nolin River at White Mills (d) . 03310300 ..... 306
Nolin River at Kyrock (d) 03311000 ..... 308
Beaver Creek at Hwy 31 E near Glasgow (d) 03312765 ..... 310
Barren River:
West Fork Drakes Creek near Franklin (d) 03313700 ..... 312
Green River at Paradise (d) 03316500 ..... 314
Green River at lock 2, at Calhoun (d) 03320000 ..... 316
Pond River near Apex (d) 03320500 ..... 318
Pond River near Madisonville (g) 03321060 ..... 320
WABASH RIVER BASIN
Wabash River at New Harmony, IN (c). 03378500 ..... 322
TRADEWATER RIVER BASIN
Tradewater River at Olney (d) 03383000 ..... 328
Ohio River at Smithland Dam (d) 03399800 ..... 330
CUMBERLAND RIVER BASIN
CUMBERLAND RIVER:
Martins Fork Lake at Martins Fork Dam near Smith (c,t). 03400798 ..... 332
Martins Fork near Smith (d,c,t) 03400800 ..... 354
Cumberland River near Harlan (d) 03401000 ..... 364
Yellow Creek near Middlesboro (d) 03402000 ..... 366
Cumberland River at Pine St. Bridge at Pineville, KY (d) 03402900 ..... 368
Cumberland River at Barbourville (d) 03403500 ..... 370
Clear Fork at Saxton (d) 03403910 ..... 372
Cumberland River at Williamsburg (d) 03404000 ..... 374
Laurel River
Lynn Camp Creek at Corbin (d) 03404900 ..... 376
Rockcastle River at Billows (d) 03406500 ..... 378
South Fork Cumberland River near Stearns (d,c) 03410500 ..... 380
South Fork Cumberland River at Yamacraw (d,c) 03410600 ..... 386
Beaver Creek near Monticello (d) 03413200 ..... 392
Little River near Cadiz (d) 03438000 ..... 394
Cumberland River near Grand Rivers (c). 03438220 ..... 396
TENNESSEE RIVER BASIN
Tennessee River at Hwy 60, near Paducah, Ky (c) 03609750 ..... 402
Clarks River at Almo (d). 03610200 ..... 408
MASSAC CREEK BASIN
Massac Creek near Paducah (d) 03611260 ..... 410
Ohio River at Metropolis, IL (d). 03611500 ..... 412
BAYOU CREEK BASIN
Bayou Creek near Heath (d) 03611800 ..... 414
Bayou Creek near Grahamville (d) 03611850 ..... 416
Little Bayou Creek near Grahamville (d) 03611900 ..... 418
Ohio River at lock and dam 53, near Grand Chain, IL (c) 03612500 ..... 420

# SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME--Continued 

[Letters after station name designate type of data: (d) discharge, (g) stage, (c) chemical, (b) biological, (t) water temperature, (s) sediment]<br>STATION NUMBER<br>``` LOWER MISSIPPI RIVER BASIN<br>BAYOU DE CHEIN BASIN<br>Bayou De Chein near Clinton (d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 07024000 . . . . . . . . . . . .42

```
}

\section*{GROUND-WATER WELLS, BY COUNTY, FOR WHICH RECORDS ARE PUBLISHED GROUND-WATER LEVELS}
GRAVES COUNTY
Well 365210088391301 (Viola) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
JEFFERSON COUNTY
Well 381441085452701 Local number 45-14-71, (A-2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
Well 381442085444801 (Metro United Way) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Well 381445085460201 ( 9 th \& Broadway QW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Well 381447085454001 Local number 45-14-66, (CJ\&T \#5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Well 381501085445601 (UL Med.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
Well 381503085453301 Local number 45-15-36, (Ky. Towers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
Well 381504085443202 Local number CP-7A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
Well 381517085455501 Local number 86-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Well 381518085453402 Local number 86-11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
Well 381522085445201 (LSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
Well 381538085453001 Local Number 86-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
Well 381638085415801 Local Number 41-16-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
Well 381648085421201 Local Number 42-16-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
Well 381653085413302 Local Number WC-9A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
Well 381701085414002 Local Number WC-8A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
Well 381742085402001 Local Number 40-17-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
Well 381827085392401 Local Number 39-18-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
Well 381904085384801 Local Number 38-19-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
Well 382039085375201 Local Number WP-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

PRECIPITATION STATION, BY COUNTY FOR WHICH RECORD IS PUBLISHED
\(\frac{\text { ROWAN COUNTY, KENTUCKY }}{390706083324900 \text {. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 453}\)

\section*{WATER RESOURCES DATA - KENTUCKY, 1999}

\section*{INTRODUCTION}

Water resources data for the 1999 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water levels of wells. This report includes daily discharge records for 106 stream-gaging stations. It also includes water-quality data for 10 stations sampled at regular intervals. Ground-water levels are published for 6 recording and 14 partial record sites. Precipitation data at a regular interval are published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Kentucky.

Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers titled, "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers titled, "Quality of Surface Waters of the United States." Records of groundwater levels were published from 1944 to 1973 in a series of water-supply papers titled, "Ground-Water Levels in the United States."

Beginning with the 1961 water year and continuing through water year 1999, streamflow data have been released by the U.S. Geological Survey in annual reports on a State-boundary basis. Water-quality records beginning with the 1964 water year, and ground-water data since the 1971 water year have been similarly released either in separate reports or in conjunction with streamflow records. These reports provided rapid release of preliminary water data shortly after the end of the water year. The final data were then released in the water-supply paper series mentioned above. Beginning with the 1975 water year, water data will be released on a State-boundary basis in final form and will not be republished in the water-supply paper series. The 1975 and subsequent water year reports will be in a series which will carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as "U.S. Geological Survey Water-Data Report KY 99-1." These reports are for sale to the public for a nominal fee by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (502) 493-1900.

\section*{COOPERATION}

The U.S. Geological Survey and organizations of the Commonwealth of Kentucky have had cooperative agreements for the systematic collection of streamflow records since 1938, for ground-water records since 1943, and for water-quality records since 1949. Organizations that assisted in collecting data through cooperative agreements with the Survey are

\footnotetext{
Ohio River Valley Water Sanitation Commission, Alan Vicory, Executive Director,
Kentucky Cabinet for Health Services, John H. Morse, Secretary,
Kentucky Geological Survey, Dr. Donald C. Haney, Director and State Geologist,
Kentucky Natural Resources and Environmental Protection Cabinet, James E. Bickford, Secretary,
Kentucky River Authority, Steve Reeder, Executive Director,
Kentucky Transportation Cabinet, James C. Codell, III, Secretary,
Bullitt County, Kenneth J. Rigdon, Judge/Executive,
Jefferson County, Rebecca D. Jackson, Judge/Executive,
Lexington-Fayette Urban County Government, Sandra M. Varellas, Judge/Executive,
City of Bardstown, William G. Brown, Mayor,
}

City of Carrollton, Ann C. Deatherage, Mayor,
City of Elizabethtown, David Willmoth, Jr., Mayor,
City of Georgetown, Everette L. Varney, Mayor,
City of Glasgow, Charles B. Honeycutt, Mayor,
City of Lewisburg, Gwyneth J. McKinney, Mayor,
City of Louisville, David L. Armstrong, Mayor,
City of Owingsville, Clarence Rister, Mayor,
City of Simpsonville, Steve Eden, Mayor,
Kentucky Heritage Resource Conservation \& Development Council, John Overing, RC\&D Coordinator,
University of Louisville, Dr. John Schumaker, President,
Water Resources Research Institute, Dr. Lyle Sendlein, and
Assistance in the form of funds or services was given by the Federal Highway Administration; U.S. Army Corps of Engineers; the U.S. Environmental Protection Agency, Region IV--Atlanta; and the U.S. Navy.

Organizations that supplied data are acknowledged in station descriptions.

\section*{SUMMARY OF HYDROLOGIC CONDITIONS}

\section*{Surface Water}

Monthly and annual mean streamflow for the 1999 water year and the period of record are shown in figure 1 for three representative streamflow-gaging stations in Kentucky.

Based on flow data collected at 23 surface-water gaging stations across Kentucky, annual peak flows during the 1999 water year had recurrence intervals of less than five years. The eastern half of the State had recurrence intervals of less than two years while the central and western parts of the State had recurrence intervals of less than two and five years. Because of an extremely dry summer, low flow recurrence intervals accross the State ranged from less than two years to greater than twenty years. Some recurrence intervals were greater than twenty years in the Kentucky, Salt, and Cumberland River Basins, however most of the recurrence intervals in these Basins were less than ten years (table \(1)\).

No major flooding occurred in the State during the 1999 water year and mean daily streamflows across the State ranged from 42 to 95 percent of normal.

\section*{Quality of Water}

Water-quality data were collected primarily within the National Stream Quality Accounting Network (NASQAN) program. During water year 1999, five NASQAN stations were operated including Ohio River at Greenup Dam near Greenup, Kentucky (03216600); Ohio River at Cannelton Dam, Kentucky (03303280); Wabash River at New Harmony, Indiana (03378500); Tennessee River at Highway 60 near Paducah, Kentucky (03609750); and the Ohio River at Dam 53 near Grand Chain, Illinois (03612500). Each station is routinely sampled 12 times per year with more intensive sampling (every 2 weeks) occurring from April to June. Three additional samples can be collected at each station, with the exception of the Tennessee River at Highway 60 near Paducah which has completely regulated flow, if there is an occurrence of a high flow or low flow event. The samples collected from all stations are analyzed for major anions and cations, nutrients, trace elements, pesticides, suspended sediment, and selected physical properties. With a redesign of the sampling protocol in 1998, trace element samples are collected and analyzed only 4 times per year at each station.


Figure 1. Mean Discharge during 1999 water year and period of record for three representative gaging stations.

Table 1. Mean, maximum, and minimum streamflow for water year 1999 and recurrence intervals
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Station number} & \multirow[b]{2}{*}{Length of record (years)} & \multicolumn{2}{|c|}{Mean} & \multicolumn{2}{|c|}{Maximum} & \multicolumn{2}{|c|}{Minimum} \\
\hline & & Daily streamflow \(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\) & Percent of average & Peak streamflow (ft \({ }^{3} / \mathrm{s}\) ) & Recurrence interval (years) & Daily streamflow (ft \({ }^{3} / \mathrm{s}\) ) & Recurrence interval (years) \\
\hline \multicolumn{8}{|c|}{TYGARTS CREEK BASIN} \\
\hline 03217000 & 59 & 130 & 42 & 3020 & \(<2\) & . 09 & \(<10\) \\
\hline \multicolumn{8}{|c|}{KINNICONICK CREEK BASIN} \\
\hline 03237250 & 8 & 137 & 47 & 2680 & & 0.00 & \\
\hline \multicolumn{8}{|c|}{LICKING RIVER BASIN} \\
\hline 03251200 & 8 & 175 & 55 & 3870 & & 0.00 & \\
\hline \multicolumn{8}{|c|}{KENTUCKY RIVER BASIN} \\
\hline 03280700 & 42 & 59.6 & 64 & 2380 & <2 & . 37 & \(<10\) \\
\hline 03281040 & 27 & 186 & 66 & 10800 & \(<2\) & . 80 & \(<10\) \\
\hline 03281100 & 35 & 170 & 64 & 7280 & \(<2\) & . 85 & \(<10\) \\
\hline 03281500 & 66 & 688 & 65 & 18800 & <2 & . 10 & >20 \\
\hline 03282500 & 44 & 46.7 & 53 & 1830 & \(<2\) & 0.00 & \(=10\) \\
\hline 03283500 & 62 & 286 & 57 & 9400 & <5 & 5.4 & <10 \\
\hline 03285000 & 57 & 314 & 66 & 18800 & <5 & 0.10 & \(<10\) \\
\hline \multicolumn{8}{|c|}{BEARGRASS CREEK BASIN} \\
\hline 03293000 & 55 & 17.1 & 67 & 680 & \(<2\) & 0.00 & \(=10\) \\
\hline \multicolumn{8}{|c|}{SALT RIVER BASIN} \\
\hline 03298000 & 55 & 121 & 66 & 5180 & \(<2\) & 0.00 & <2 \\
\hline 03300400 & 27 & 358 & 56 & 14400 & <2 & 0.00 & \(>20\) \\
\hline 03301500 & 61 & 1100 & 60 & 18700 & <2 & 7.3 & <10 \\
\hline \multicolumn{8}{|c|}{GREEN RIVER BASIN} \\
\hline 03307000 & 60 & 218 & 75 & 9410 & <5 & 2.9 & \(<10\) \\
\hline 03310300 & 40 & 217 & 44 & 3090 & <2 & 27 & \(>20\) \\
\hline 03320500 & 59 & 212 & 77 & 7860 & <5 & 0.00 & <2 \\
\hline \multicolumn{8}{|c|}{CUMBERLAND RIVER BASIN} \\
\hline 03404900 & 26 & 56.3 & 63 & 2140 & \(<2\) & . 10 & >20 \\
\hline 03406500 & 63 & 616 & 65 & 25300 & <5 & 6.7 & \(<10\) \\
\hline 03410500 & 57 & 1548 & 87 & 38700 & \(<2\) & 22 & \(<10\) \\
\hline 03438000 & 59 & 337 & 95 & 7630 & <5 & 19 & \(<10\) \\
\hline \multicolumn{8}{|c|}{MASSAC CREEK BASIN} \\
\hline 03611260 & 28 & 10.5 & 60 & 1090 & >2 & 0.54 & \(<2\) \\
\hline \multicolumn{8}{|c|}{BAYOU DE CHIEN BASIN} \\
\hline 07024000 & 54 & 77.4 & 75 & 3780 & \(<5\) & 14 & \(<2\) \\
\hline
\end{tabular}

A water-quality study related to the environmental effects of coal mining was started in June 1999 on the Big South Fork to assist the National Park Service in their assessment of remedial activities in the Big South Fork National River and Recreation Area and the Big South Fork watershed. The selected stations for water-quality monitoring include the Big South Fork near Yamacraw, Kentucky (03410500) and the Big South Fork near Stearns, Kentucky (03410600). Selection of these stations allow investigators to assess any changes in the water-quality of the Big South Fork from the upstream station (03410500) to the downstream station (03410600) during the abatement of contaminated mine drainage. Each station is sampled once a month, and the samples collected are analyzed for major cations and selected trace elements. Temperature, specific conductance, and pH are continuously monitored at each station. This study is expected to end in September 2000.

\section*{QUALITY-CONTROL DATA}

Data generated from quality-control (QC) samples (table 2) are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by the Kentucky District for the NASQAN program and the Big South Fork study are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples.

\section*{BLANK SAMPLES}

Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collected by this district are:

Field blank: a blank solution that is subjected to all aspects of sample collection, field processing, preservation, transportation, and laboratory handling as an environmental sample.

Trip blank: a blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection.

Equipment blank: A blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in a more controlled environment such as the office).

\section*{REPLICATE SAMPLES}

Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some portion of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic settings, such as a flowing stream. the types of replicates collected by this district are:

Concurrent sample: a type of replicate sample in which the samples are collected simultaneously with two or more samplers or by using one sampler and alternating collection of samples into two or more compositing containers.

Sequential sample: A type of replicate sample in which the samples are collected one after the other, typically over a short time.

\section*{SPIKE SAMPLES}

Spike samples are sample to which known quantities of a solution with one or more well established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

\section*{Ground-Water Levels}

Most currently monitored observation wells tap the alluvial aquifer underlying Downtown Louisville and northeast Jefferson County.

Ground-water levels in the alluvial aquifer underlying Louisville and northeast Jefferson County respond to rainfall, pumpage, river stage, and natural flow to the Ohio River. In general, even during the drought conditions of 1999 most ground-water levels remained normal due to the influence of the Ohio River. Some water levels in northeast Jefferson County continue to decline because of increased pumpage in the area.

\section*{SPECIAL NETWORKS AND PROGRAMS}

Hydrologic Benchmark Network is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities.

National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within four of the Nation's largest river basins--the Mississippi, Columbia, Colorado, and Rio Grande. The network consists of 39 stations. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to largeriver systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals.

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical climate of precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to accomplish the following objectives; (1) Provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 191 precipitation chemistry monitoring sites. (2) Provide the mechanism to evaluate the effectiveness of the significant reduction in SO 2 emissions that began in 1995 as implementation of the Clean Air Act Amendments (CAAA) occurred. (3) Provide the scientific basis and nationwide evaluation mechanism for implementation of the Phase II CAAA emission reductions for SO 2 and NOx scheduled to begin in 2000.

Data from the network, as well as information about individual sites, are available through the world wide web at:

\section*{http://nadp.nrel.colostate.edu/NADP}

Table 2. Summary of quality-control samples for selected nutrients, major ions, and trace elements collected at NASQAN stations from October 1995 through September 1999
[MDL, maximum detection limit; \(N\), number of samples; <, less than, CV, coefficient of variation; nutrient and major ion concentrations in milligrams per liter; trace element concentrations in micrograms per liter]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Analyte} & \multicolumn{5}{|c|}{Blanks} & \multicolumn{3}{|c|}{Replicates} \\
\hline & MDL & N & N>MDL & Minimum & Maximum & Number of replicate samples & Number of replicate sets & Pooled CV \\
\hline \multicolumn{9}{|l|}{A. Dissolved nutrients} \\
\hline Ammonia nitrogen & 0.01 & 39 & 0 & \(<0.002\) & 0.024 & 36 & 18 & 15 \\
\hline Nitrite plus nitrate nitrogen & 0.05 & 39 & 0 & \(<0.005\) & 1.132 & 34 & 17 & 3.2 \\
\hline Total phosphorus & 0.01 & 39 & 1 & \(<0.001\) & 0.028 & 36 & 18 & 19 \\
\hline \multicolumn{9}{|l|}{B. Dissolved major ions} \\
\hline Calcium & 0.01 & 42 & 8 & \(<0.002\) & 18.923 & 36 & 18 & 1.3 \\
\hline Magnesium & 0.01 & 42 & 3 & \(<0.001\) & 3.037 & 36 & 18 & 1.2 \\
\hline Sodium & 0.025 & 42 & 5 & \(<0.025\) & 4.239 & 36 & 18 & 1.3 \\
\hline \multicolumn{9}{|l|}{C. Dissolved trace elements} \\
\hline Copper & 0.2 & 42 & 5 & \(<0.2\) & 2.3 & 26 & 13 & 15 \\
\hline Iron & 3.0 & 42 & 1 & 0 & 5.726 & 33 & 16 & 21 \\
\hline Lead & 0.3 & 42 & 3 & 0.3 & 1 & 27 & 13 & 0 \\
\hline Manganese & 0.1 & 42 & 5 & 0.1 & 1 & 27 & 13 & 19 \\
\hline Strontium & 0.1 & 42 & 6 & 0.1 & 52.875 & 36 & 18 & 1.8 \\
\hline Zinc & 0.5 & 42 & 25 & 0.5 & 25.25 & 27 & 13 & 44 \\
\hline
\end{tabular}

The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 53 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison
committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies.

Additional information about the NAWQA Program is available through the world wide web at:
http://wwwrvares.er.usgs.gov/nawqa/nawqa_home.html

\section*{EXPLANATION OF THE RECORDS}

The surface-water and ground-water records published in this report are for the 1999 water year that began October 1, 1998, and ended September 30, 1999. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, and water-quality data for surface-water gaging stations. The locations of the stations and wells where the data were collected are shown in figures 3-7. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter ( \(\mu \mathrm{g} / \mathrm{L}\) ) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter ( \(\mathrm{ng} / \mathrm{L}\) ). Present data above the \(\mu \mathrm{g} / \mathrm{L}\) level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey will begin using new trace-element protocols in the near future.

\section*{Station Identification Numbers}

Each data station, whether stream site or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitudelongitude" system is used for wells, and in Kentucky for surface-water stations where only miscellaneous measurements are made.

\section*{Downstream Order System}

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eightdigit number for each station, such as 03208000 , which appears just to the left of the station name, includes the twodigit Part number "03" plus the six-digit downstream-order number "208000." The Part number designates the major river basin; for example, Part "03" is the Ohio River Basin.

\section*{Latitude-Longitude System}

The identification numbers for wells and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1 -second grid. This site-identification number, once assigned, is a pure number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description (fig.2).

\section*{Records of Stage and Water Discharge}

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record.

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records."

\section*{Data Collection and Computation}

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage."


Figure 2. System for numbering wells, springs, and miscellaneous sites (latitude and longitude).

Continuous records of stage are obtained with data-collection platforms which transmit stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contractedopening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

For some gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

\section*{Data Presentation}

Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences.

The records published for each continuous-record surface-water discharge station (gaging station) now consists of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that included statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration.

\section*{Station Manuscript}

The manuscript provides, under various headings, descriptive information such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gaging station with respect to the cultural and physical features in the vicinity and with respect to the referenced place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available vary from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which records have been published for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that flow at it can reasonably be considered equivalent to flow at the present station.

REVISED RECORDS.--Because of new information, published records occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; " \((\mathrm{m})\) " that only the instantaneous minimum was revised; and " \((\mathrm{P})\) " that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily discharge will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a REMARKS paragraph is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and possibly to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if the data for a discontinued station were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, AND EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the EXTREMES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentations of lake contents.

\author{
Data Table of Daily Mean Values
}

The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"); or in inches (line headed "IN"); or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if there is extensive regulation or diversion or if the drainage area included large noncontributing areas. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

\section*{Statistics of Monthly Mean Data}

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS ___ , BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript.

\section*{Summary Statistics}

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period as appropriate. The designated period selected, "WATER YEARS ___," will consist of all the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the
manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designatedperiod column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table.

ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period.
LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period.
HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period.
LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period.
ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climactic year (April 1March 31). The date shown in the summary statistics table is the initial date of the 7 -day period. (This value should not be confused with the 7 -day 10-year low-flow statistic).

INSTANTANEOUS PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by writing to the District Office. (See address on back of title page of this report.)

INSTANTANEOUS PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.

INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period.

ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:

Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area.

Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.

10 PERCENT EXCEEDS.--The discharge that is exceeded 10 percent of the time for the designated period.
50 PERCENT EXCEEDS.--The discharge that is exceeded 50 percent of the time for the designated period.
90 PERCENT EXCEEDS.--The discharge that is exceeded 90 percent of the time for the designated period.
Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partialrecord stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

\section*{Identifying Estimated Daily Discharge}

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

\section*{Accuracy of the Records}

The accuracy of streamflow records depends primarily on: (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than \(1 \mathrm{ft}^{3} / \mathrm{s}\); to the nearest tenth between 1.0 and \(10 \mathrm{ft}^{3} / \mathrm{s}\); to whole numbers between 10 and \(1,000 \mathrm{ft}^{3} / \mathrm{s}\); and to three significant figures for more than \(1,000 \mathrm{ft}^{3} / \mathrm{s}\). The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

\author{
Other Records Available
}

Information used in the preparation of the records in this publication, such as discharge-measurement notes, gageheight records, temperature measurements, and rating tables is on file in the Kentucky District. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the office whose address is given on the back of the title page of this report.

\section*{Records of Surface-Water Quality}

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

\section*{Classification of Records}

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records," as used in this report, and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape or recorded electronically. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figures 4.

\section*{Arrangement of Records}

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

\section*{On-Site Measurements and Sample Collection}

In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH , and dissolved oxygen, need to be made on-site when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of WaterResources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. All of these references are listed under "PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS" which appears at the end of the introductory text. Detailed information on collecting, treating, and shipping samples may be obtained from the Kentucky District.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals depends on flow conditions and other factors which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the Kentucky District whose address is given on the back of the title page of this report.

\section*{Water Temperature}

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the Kentucky District office.

\section*{Sediment}

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027 , the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sedimentdischarge characteristics of the stream.

\section*{Laboratory Measurements}

Sediment samples, samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the Geological Survey laboratory in Arvada, Colorado. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the Geological Survey laboratory are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

\section*{Data Presentation}

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH , water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.
DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstreamorder sequence.

\section*{Remarks Codes}

The following remark codes may appear with the water-quality data in this section:
\begin{tabular}{ll} 
PRINT OUTPUT & REMARK \\
E & \begin{tabular}{l} 
Estimated value.
\end{tabular} \\
\(>\) & \begin{tabular}{l} 
Actual value is known to be greater than \\
the value shown.
\end{tabular} \\
K & \begin{tabular}{l} 
Actual value is known to be less than the \\
value shown.
\end{tabular} \\
L & \begin{tabular}{l} 
Results based on colony count outside the \\
acceptance range (non-ideal colony count).
\end{tabular} \\
D & \begin{tabular}{l} 
Biological organism count less than 0.5 percent \\
(organism may be observed rather than counted).
\end{tabular} \\
V & \begin{tabular}{l} 
Biological organism count equal to or greater \\
than 15 percent (dominant).
\end{tabular} \\
\& & \begin{tabular}{l} 
Analyte was detected in both the environmental \\
sample and the associated blanks
\end{tabular} \\
Biological organism estimated as dominant.
\end{tabular}

\section*{Dissolved Trace-Element Concentrations}
*NOTE.--Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter ( \(\mu \mathrm{g} / \mathrm{L}\) ) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10 's to 100 's of nanograms per liter ( \(\mathrm{ng} / \mathrm{L}\) ). Data above the \(\mu \mathrm{g} / \mathrm{L}\) level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced
during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994.

\section*{Change in National Trends Network Procedures}
*NOTE.--Sample handling procedures at all National Trends Network stations were changed substantially on January 11,1994 , in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on
a special intercomparison study, is available from the NADP/NTN Coordination Office, Colorado State University, Fort Collins, CO 80523 (Telephone: 303-491-5643).

\section*{Records of Ground-Water Levels}

Water-level data from selected observation wells are given in this report. These data are intended to provide a sampling and historical record of water-level changes. Locations of observation wells in Kentucky are shown in figures 6 and 7.

\section*{Data Collection and Computation}

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The prime identification number for a given well is the 15-digit number that appears in the upper left corner of the table. The secondary identification number is the local well number.

Water-level records are obtained from direct measurements with a steel tape or from the graph or punched tape of a water-stage recorder. The water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. If known, the elevation of the land-surface datum is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error of determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given to a tenth of a foot or a larger unit.

\section*{Data Presentation}

Each well record consists of two parts, the station description and the data table of water levels observed during the water year. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings.

LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); a landline location designation; the hydrologic-unit number; the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER.--This entry designates by name (if a name exists) and geologic age the aquifer(s) open to the well.
WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, use, and additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION.--This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.

DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base, and so on) and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above (or below) National Geodetic Vertical Datum of 1929 (NGVD of 1929); it is reported with a precision depending on the method of determination.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that also are water-quality observation wells, and may be used to acknowledge the assistance of local (non-Survey) observers.

PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the Geological Survey, may be noted.

EXTREMES FOR PERIOD OF RECORD.--This entry contains the highest and lowest water levels of the period of published record, with respect to land-surface datum, and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet below landsurface datum and all taped measurements of water level are listed. The highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level.

\section*{Records of Precipitation Quality}

The precipitation-quality data presented in this report represent analyses of time-composite samples, most often for a collection period of one week. This is in contrast to most of the published surface-water quality data which represent samples taken of specific times.

\section*{On-Site Measurements and Sample Collection}

Precipitation samples are collected with wet/dry collectors. The wet/dry collector is the preferred precipitation sampler and consists of a bucket which is open only during periods of wet (rainfall, snow, etc.) precipitation. During dry periods the sample bucket is covered, thus excluding dry-fall precipitation from the sample.

National Trends Network (NTN) stations are equipped with weighing-bucket rain gages, which graphically record rainfall as well as count rainfall events. The other commonly-used recording gage consists of a rainfall catchment pipe and a float-driven digital recorder which periodically records the water-level in the pipe.

Time-composite wet-precipitation samples are collected and brought back to the laboratory and weighed. Rainfall quantity is estimated from the sample weight. A temperature-density correction can be applied if desired but normally this correction results in a very small change in the estimated quantity of rainfall. An estimation of the sampler efficiency is made by computing the ratio of rainfall amount collected in the sample bucket to that measured by the recording rain gage. This collector efficiency ratio is an important indicator of possible collector malfunction. For example, a ratio substantially less than one indicates that the wet/dry collector was not opening properly and thus, excluding rainfall.

After weighing the sample, a small portion is removed for measurement of pH , specific conductance, and, in some instances, titratable acidity. The pH and special conductance are both determined electrometrically according to methods described in the National Atmospheric Deposition Program "NADP Instruction Manual: Site Operation." The remainder of the sample is then used for laboratory chemical analyses. This portion of the sample is shipped to the
laboratory raw and untreated. In the case of NTN operation, the original bucket is resealed and mailed to the Illinois State Water Survey Central Analytical Laboratory (CAL) for analysis. In all other instances, sample portions are preserved, treated, and analyzed according to specific project requirements.

\section*{Data Presentation}

Records of precipitation quality are published following the "records of ground-water" section of this report. As with records of daily water discharge and surface-water quality, precipitation-quality records consist of two parts, a station header and a data table. The station header contains the descriptive information pertinent to the establishment, location, and operation of the site. Records are presented alphabetically by county and, within each county, by latitude, longitude, and sequence number. As with ground-water wells, the primary site identifier used for precipitation-quality stations in this report is the 15 -digit composite of these three numbers. The following text presents a clarification of the subheadings which follow the station identification number and station name.

LOCATION.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.
PERIOD OF RECORD.--This indicates the periods for which there are published precipitation-quality records for the station. Periods of record are presented separately for each type of sample collected at the site (in this report, wet precipitation, dry precipitation, and fog).

INSTRUMENTATION.--In this section, an abbreviated-style listing of the data-recording and sample-collection equipment permanently housed at the site is presented.

REMARKS.--This section is reserved for comments pertaining to unusual or extraordinary circumstances or to qualifying information which must be used accurately interpret the data presented for the site. More general comments which may pertain to several or all of the sites are presented in the "EXPLANATION OF RECORDS" section in the introductory part of the report.

COOPERATION.--Chemical-quality data were provided by National Atmospheric Deposition Program.

\section*{ACCESS TO USGS DATA}

The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the world wide web (WWW). These data may be accessed at http://www.water.usgs.gov.

Some water-quality and ground-water data also are available through the WWW. In addition, data can be provided in various machine-readable formats on magnetic tape or 3-1/2 inch floppy disk. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division Districts Offices (See address on the back of the title page).

\section*{Water Quality-Control Data}

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this district are described in the following section.

Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples.

\section*{Blank Samples}

Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the over all data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collect in this district are:

Field blank- a blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample.

Trip blank- a blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection.

Equipment blank- a blank solution that is oricessed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office).

Sampler blank- a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

Filter blank- a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

Splitter bank- a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.

Preservation blank- a blank solution that is treated with the sampler preservatives used for an environmental sample.

\section*{Reference Samples}

Reference material is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

Replicate Samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are: Sequential samples- a type of replicate sample in which the samples are collected one after the other, typically over a short time.

Split sample- a type of replicate sample in which a sample is split into subsamples contemporaneous in time and space.

\section*{Spike Samples}

Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing analysis.

\section*{DEFINITION OF TERMS}

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover.

Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Alkalinity is the capacity of solutes in an aqueous system to neutralize acid.
Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warm-blooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at \(35^{\circ} \mathrm{C}\). In the laboratory these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at \(35^{\circ} \mathrm{C}\) plus or minus \(1.0^{\circ} \mathrm{C}\) on M -Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at \(44.5^{\circ} \mathrm{C}\) plus or minus \(0.2^{\circ} \mathrm{C}\) on MFC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as Gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at \(35^{\circ} \mathrm{C}\) plus or minus \(1.0^{\circ} \mathrm{C}\) on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Enterococcus bacteria are commonly found in the feces of humans and other warm-blooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria which produce pink to red colonies with black or reddish-brown precipitate after incubation
at \(41^{\circ} \mathrm{C}\) on mE agar and subsequent transfer to EIA medium. Enterococci include Streptococcus feacalis, Streptococcus feacium, Streptococcus avium, and their variants.

Bedload is the sediment which moves along in essentially continuous contact with the streambed by rolling, sliding, and making brief excursions into the flow a few diameters above the bed.

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed.
Benthic invertebrates are invertebrate animals inhabiting the bottoms of lakes, streams, and other water bodies. They are useful as indicators of water quality.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by micro-organisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of \(500^{\circ} \mathrm{C}\) for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter ( \(\mathrm{g} / \mathrm{m}^{3}\) ), and periphyton and benthic organisms in grams per square mile \(\left(\mathrm{g} / \mathrm{m}^{2}\right)\).

Dry mass refers to the mass of residue present after drying in an oven at \(105^{\circ} \mathrm{C}\) for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

\section*{Bottom material: See Bed material.}

Cells/volume refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).
\(C f s\)-day is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-ft, about 646,000 gallons, or 2,447 cubic meters.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes.

Chlorophyll refers to the green pigments of plants. Chlorophyll a and \(b\) are the two most common green pigments in plants.

Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuing-record station is a specified site which meets one or all conditions listed:
1. When chemical samples are collected daily or monthly for 10 or more months during the water year.
2. When water temperature records include observations taken one or more times daily.
3. When sediment discharge records include periods for which sediment loads are computed and are considered to be representative of the runoff for the water year.

Control designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Cubic foot per second ( \(\mathrm{FT} 3 / \mathrm{S}, \mathrm{ft}^{3} / \mathrm{s}\) ) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute.

Discharge is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.
Instantaneous discharge is the discharge at a particular instant of time.

Annual 7-day minimum is the lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7 -day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

Dissolved refers to that material in a representative water sample which passes through a 0.45 um membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

Dissolved-solids concentration of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

Drainage area of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

Drainage basin is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Extractable organic halides (EOX) are organic compounds which contain halogen atoms such a chlorine. These organic compounds are semi-volatile and extractable by ethyl acetate from air-dried stream bottom sediments. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the stream bottom sediments.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate \((\mathrm{CaCO} 3)\).

High tide is the maximum height reached by each rising tide.

Hydrologic Benchmark Network is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8 -digit number.

Low tide is the minimum height reached by each falling tide.
Mean high tide is the average of all high tides over a specified period.
Mean low tide is the average of all low tides over a specified period.
Mean water level is the average of all tides over a specified period.
Membrane filter is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

Micrograms per gram ( \(\mathrm{mg} / \mathrm{g}\) ) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per liter ( \(\mathrm{UG} / \mathrm{L}, \mathrm{mg} / \mathrm{L}\) ) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Microsiemens per centimeter ( \(\mathrm{mS} / \mathrm{cm}\), US/CM) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in \(\mathrm{mg} / \mathrm{L}\) and is based on the mass of dry sediment per liter of water-sediment mixture.

Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. It is determined from the distribution of gas-positive cultures among multiple inoculated tubes.

Multiple-plate samplers are artificial substrates of known surface area used for obtaining benthic-invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.

National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within four of the Nation's largest river basins--the Mississippi, Columbia, Colorado, and Rio Grande. The network consists of 39 stations. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals.

The National Atmospheric Deposition Program/ National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical climate of precipitation throughout the United States. As the lead federal agency, the U.S. Geological Survey (USGS) works together with over 100 organizations to accomplish the following objectives; (1) Provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 191 precipitation chemistry monitoring sites. (2) Provide the mechanism to evaluate the effectiveness of the significant reduction in SO2 emissions that began in 1995 as implementation of the Clean Air Act Amendments (CAAA) occurred. (3) Provide the scientific basis and nationwide evaluation mechanism for implementation of the Phase II CAAA emission reductions for SO2 and NOx scheduled to begin in 2000.

The National Water-Quality Assessment (NAWQA) Program of the USGS is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Organism is any living entity.
Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter \(\left(\mathrm{m}^{2}\right)\), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter ( mL ) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.
Parameter Code is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent. The codes used in NWIS are the same as those used in the U.S. Environmental Protection Agency (USEPA) data system, STORET. The USEPA assigns and approves all requests for new codes.

Partial-record station is a particular site where limited streamflow and (or) water-quality data are collected systematically over a period of years for use in hydrologic analyses.

Particle size is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification used in this report agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:
\begin{tabular}{lll} 
Classification & Size \((\mathrm{mm})\) & Method of analysis \\
Clay & \(0.00024-0.004\) & Sedimentation \\
Silt & \(.004-.062\) & Sedimentation \\
Sand & \(.062-2.0\) & Sedimentation/sieve \\
Gravel & \(2.0-64.0\) & Sieve
\end{tabular}

The partial-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

Picocurie \((\mathrm{PC}, \mathrm{pCi})\) is one trillionth \((1 \times 10-12)\) of the amount of radioactivity represented by a curie \((\mathrm{Ci})\). A curie is the amount of radioactivity that yields \(3.7 \times 1010\) radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

Diatoms are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells \(/ \mathrm{mL}\) ) of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells \(/ \mathrm{mL}\) ) of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

Polychlorinated biphenyls (PCB's) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mgC/(m2/time)] for periphyton and macrophytes and [mgC/(m3/time \()\) ] for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [ \(\mathrm{mgO} /(\mathrm{m} 2 /\) time \()\) ] for periphyton and macrophytes and [ \(\mathrm{mgO} /(\mathrm{m} 3 /\) time \()\) ] for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Return period is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.

River mile as used herein, is the distance above the mouth of Delaware Bay, measured along the center line of the navigation channel or the main stem of the Delaware River. River mile data were furnished by the Delaware River Basin Commission.

Runoff in inches (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Bed load is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

Bed load discharge (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture ( \(\mathrm{mg} / \mathrm{L}\) ). The entire sample is used for the analysis.

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24 -hour day.

Suspended-sediment discharge (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration \((\mathrm{mg} / \mathrm{L}) \times\) discharge \(\left(\mathrm{ft}^{3} / \mathrm{s}\right) \times 0.0027\).

Suspended-sediment load is a general term that refers to material in suspension. It is not synonymous with either discharge or concentration.

Suspended total residue at \(105^{\circ} \mathrm{C}\) concentration is the concentration of suspended sediment in the sampled zone expressed as milligrams of dry sediment per liter of water-sediment mixture ( \(\mathrm{mg} / \mathrm{L}\) ). A small aliquot of the sample is used for the analysis.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry mass or volume, that passes a section during a given time.

Total sediment load or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total sediment discharge.

Sodium-adsorption-ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance that is dissolved in water.
Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at \(25^{\circ} \mathrm{C}\). Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water, per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "stream-
flow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.
Natural substrate refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization or organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and Plexiglas strips for periphyton collection.

Surface area of a lake is that area outlined on the latest USGS topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. all areas shown are those for the stage when the planimetered map was made.

Surficial bed material is the part ( 0.1 to 0.2 ft ) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45 -micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Synoptic Studies Short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata, is the following:

Kingdom: Animal
Phylum: Arthropoda
Class: Insecta
Order: Ephemeroptera
Family: Ephemeridae
Genus: Hexagenia
Species: Hexagenia Limbata
Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-ft indicates the dry mass of dissolved solids in 1 acre-ft of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136 .

Tons per day (T/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.)

Total discharge is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross-section per unit of time. This term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Tritium Network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

Volatile Organic Compounds (VOC's) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOC's are man-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinking-water supplies is a human health concern because many are toxic and are known or suspected human carcinogens (U.S. Environmental Protection Agency, 1996).

Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1985, is called the "1985 water year."
\(W D R\) is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976).

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WSP is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports.

\section*{TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY}

The USGS publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the USGS, Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be made in the form of a check or money order payable to the "U.S. Geological Survey." Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations."

\section*{Book 1. Collection of Water Data by Direct Measurement}

\section*{Section D. Water Quality}

1-D1. Water temperature—influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS-TWRI book 1, chap. D1. 1975.65 pages.

1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS-TWRI book 1, chap. D2. 1976. 24 pages.

\section*{Book 2. Collection of Environmental Data}

\section*{Section D. Surface Geophysical Methods}

2-D1. Application of surface geophysics to ground-water investigations, by A.A. R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS-TWRI book 2, chap. D1. 1974. 116 pages.

2-D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS-TWRI book 2, chap. D2. 1988. 86 pages.

\section*{Section E. Subsurface Geophysical Methods}

2-E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS-TWRI book 2, chap. E1. 1971. 126 pages.
2-E2. Borehole geophysics applied to ground-water investigations, by W.S. Keys: USGS-TWRI book 2, chap. E2. 1990. 150 pages.
Section F. Drilling and Sampling Methods
2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS-TWRI book 2, chap. F1. 1989. 97 pages.

\section*{Book 3. Applications of Hydraulics}

\section*{Section A. Surface-Water Techniques}

3-A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGSTWRI book 3, chap. A1. 1967. 30 pages.

3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M.A. Benson: USGS-TWRI book 3, chap. A2. 1967. 12 pages.
3-A3. Measurement of peak discharge at culverts by indirect methods, by G.L. Bodhaine: USGS-TWRI book 3, chap. A3. 1968. 60 pages.

3-A4. Measurement of peak discharge at width contractions by indirect methods, by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 pages.

3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS-TWRI book 3. chap. A5. 1967. 29 pages.

\section*{TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY—Continued}

3-A6. General procedure for gaging streams, by R.W. Carter and Jacob Davidian: USGS-TWRI book 3, chap. A6. 1968. 13 pages.
3-A7. Stage measurement at gaging stations, by T.J. Buchanan and W.P. Somers: USGS-TWRI book 3, chap. A7. 1968. 28 pages.
3-A8. Discharge measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS-TWRI book 3, chap. A8. 1969. 65 pages.

3-A9. Measurement of time of travel in streams by dye tracing, by F.A. Kilpatrick and J.F. Wilson, Jr.:
USGS-TWRI book 3, chap. A9. 1989. 27 pages.
3-A10. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A10. 1984. 59 pages.
3-A11. Measurement of discharge by the moving-boat method, by G.F. Smoot and C.E. Novak: USGS-TWRI book 3, chap. A11. 1969. 22 pages.

3-A12. Fluorometric procedures for dye tracing, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS-TWRI book 3, chap. A12. 1986. 34 pages.
3-A13. Computation of continuous records of streamflow, by E.J. Kennedy: USGS-TWRI book 3, chap. A13. 1983. 53 pages.
3-A14. Use of flumes in measuring discharge, by F.A. Kilpatrick and V.R. Schneider: USGS-TWRI book 3, chap. A14. 1983. 46 pages.
3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS-TWRI book 3, chap. A15. 1984. 48 pages.
3-A16. Measurement of discharge using tracers, by F.A. Kilpatrick and E.D. Cobb: USGS-TWRI book 3, chap. A16. 1985. 52 pages.
3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI book 3, chap. A17. 1985. 38 pages.
3-A18. Determination of stream reaeration coefficients by use of tracers, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS-TWRI book 3, chap. A18. 1989. 52 pages.
3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A19. 1990. 31 pages.
3-A20. Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS-TWRI book 3, chap. A20. 1993. 38 pages.
3-A21 Stream-gaging cableways, by C. Russell Wagner: USGS-TWRI book 3, chap. A21. 1995. 56 pages.

\section*{Section B. Ground-Water Techniques}

3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS-TWRI book 3, chap. B1. 1971. 26 pages.
3-B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G.D. Bennett: USGS-TWRI book 3, chap. B2. 1976. 172 pages.
3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS-TWRI book 3, chap. B3. 1980. 106 pages.

3-B4. Regression modeling of ground-water flow, by R.L. Cooley and R.L. Naff: USGS-TWRI book 3, chap. B4. 1990. 232 pages.

3-B4. Supplement 1. Regression modeling of ground-water flow --Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS-TWRI book 3, chap. B4. 1993. 8 pages.
3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems-An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS-TWRI book 3, chap. B5. 1987. 15 pages.

\section*{TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY—Continued}

3-B6. The principle of superposition and its application in ground-water hydraulics, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS-TWRI book 3, chap. B6. 1987. 28 pages.

3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS-TWRI book 3, chap. B7. 1992. 190 pages.

\section*{Section C. Sedimentation and Erosion Techniques}

3-C1. Fluvial sediment concepts, by H.P. Guy: USGS-TWRI book 3, chap. C1. 1970. 55 pages.
3-C2. Field methods for measurement of fluvial sediment, by H.P. Guy and V.W. Norman: USGS-TWRI book 3, chap. C2. 1970. 59 pages.

3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI book 3, chap. C3. 1972. 66 pages.
Book 4. Hydrologic Analysis and Interpretation

\section*{Section A. Statistical Analysis}

4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS-TWRI book 4, chap. A1. 1968. 39 pages.
4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI book 4, chap. A2. 1968. 15 pages.

\section*{Section B. Surface Water}

4-B1. Low-flow investigations, by H.C. Riggs: USGS-TWRI book 4, chap. B1. 1972. 18 pages.
4-B2. Storage analyses for water supply, by H.C. Riggs and C.H. Hardison: USGS-TWRI book 4, chap. B2. 1973. 20 pages.
4-B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS-TWRI book 4, chap. B3. 1973. 15 pages.
Section D. Interrelated Phases of the Hydrologic Cycle
4-D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS-TWRI book 4, chap. D1. 1970. 17 pages.

\section*{Book 5. Laboratory Analysis}

\section*{Section A. Water Analysis}

5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M.J. Fishman and L.C. Friedman, editors: USGS-TWRI book 5, chap. A1. 1989. 545 pages.

5-A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGSTWRI book 5, chap. A2. 1971. 31 pages.

5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS-TWRI book 5, chap. A3. 1987. 80 pages.

5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L.J. Britton and P.E. Greeson, editors: USGS-TWRI book 5, chap. A4. 1989. 363 pages.

5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS-TWRI book 5, chap. A5. 1977. 95 pages.

5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS-TWRI book 5, chap. A6. 1982. 181 pages.

\section*{Section C. Sediment Analysis}

5-C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS-TWRI book 5, chap. C1. 1969. 58 pages.

\section*{TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY-Continued}

\section*{Book 6. Modeling Techniques}

Section A. Ground Water
6-A1. A modular three-dimensional finite-difference ground-water flow model, by M.G. McDonald and A.W. Harbaugh: USGS-TWRI book 6, chap. A1. 1988. 586 pages.
6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS-TWRI book 6, chap. A2. 1991. 68 pages.

6-A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS-TWRI book 6, chap. A3. 1993. 136 pages.
6-A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS-TWRI book 6, chap. A4. 1992. 108 pages.

6-A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS-TWRI book 6, chap. A5, 1993. 243 pages.
6-A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler. 1996. 125 pages.

\section*{Book 7. Automated Data Processing and Computations}

\section*{Section C. Computer Programs}

7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS-TWRI book 7, chap. C1. 1976. 116 pages.

7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS-TWRI book 7, chap. C2. 1978. 90 pages.

7-C3. A model for simulation of flow in singular and interconnected channels, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS-TWRI book 7, chap. C3. 1981. 110 pages.

\section*{Book 8. Instrumentation}

\section*{Section A. Instruments for Measurement of Water Level}

8-A1. Methods of measuring water levels in deep wells, by M.S. Garber and F.C. Koopman: USGS-TWRI book 8, chap. A1. 1968. 23 pages.

8-A2. Installation and service manual for U.S. Geological Survey manometers, by J.D. Craig: USGS-TWRI book 8, chap. A2. 1983. 57 pages.

\section*{Section B. Instruments for Measurement of Discharge}

8-B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS-TWRI book 8, chap. B2. 1968. 15 pages.

\section*{Book 9. Handbooks for Water-Resources Investigations}

\section*{Section A. National Field Manual for the Collection of Water-Quality Data}

9-A1. National Field Manual for the Collection of Water-Quality Data: Preparations for Water Sampling, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A1. 1998. 47 p.

9-A2. National Field Manual for the Collection of Water-Quality Data: Selection of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A2. 1998. 94 p.

9-A3. National Field Manual for the Collection of Water-Quality Data: Cleaning of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A3. 1998. 75 p.

9-A4. National Field Manual for the Collection of Water-Quality Data: Collection of Water Samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A4. 1999. 156 p.

9-A5. National Field Manual for the Collection of Water-Quality Data: Processing of Water Samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A5. 1999, 149 p.

9-A6. National Field Manual for the Collection of Water-Quality Data: Field Measurements, edited by F.D. Wilde and D.B. Radtke: USGS-TWRI book 9, chap. A6. 1998. Variously paginated.
9-A7. National Field Manual for the Collection of Water-Quality Data: Biological Indicators, edited by D.N. Myers and F.D. Wilde: USGS-TWRI book 9, chap. A7. 1997 and 1999. Variously paginated.
9-A8. National Field Manual for the Collection of Water-Quality Data: Bottom-material samples, by D.B. Radtke: USGSTWRI book 9, chap. A8. 1998. 48 pages.
9-A9. National Field Manual for the Collection of Water-Quality Data: Safety in Field Activities, by S.L. Lane and R.G. Fay: USGS-TWRI book 9, chap. A9. 1998. 60 pages.


Figure 3. Location of gaging stations in Kentucky.


Figure 4. Location of surface-water quality stations in Kentucky.


Base from U.S. Geological Survey digital data, 1:100,000, 1983
Universal Transverse Mercator projection, Zone 16


Figure 5. Location of gaging stations in Jefferson County.

03207965 GRAPEVINE CREEK NEAR PHYLLIS, KY
LOCATION.--Lat \(37^{\circ} 25^{\prime} 57 "\), long \(82^{\circ} 21^{\prime} 1^{\prime \prime \prime}\), Pike County, Hydrologic Unit 05070202, on right bank at the Grapevine Recreation area, 1.3 mi downstream from Dicks Fork, 1.3 mi southwest of Phyllis, and at mile 1.1 .

DRAINAGE AREA. \(--6.20 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1973 to September 1982, April 1989 to September 1992, October 1994 to current year.
GAGE.--Water-stage recorder. Datum of gage is 780 ft above sea level, from topographic map.
REMARKS.--Records poor.
PEAKS ABOVE BASE.--Peak discharges above base of \(200 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 9 & 0830 & \(* 89\) & 1.27
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 1.6 & 1.9 & 1.1 & 2.9 & 9.4 & 34 & 7.3 & 10 & 1.7 & 2.9 & 2.7 & 1.6 \\
\hline 2 & 1.5 & 1.5 & . 98 & 3.0 & 8.9 & 27 & 6.6 & 7.7 & 4.6 & 5.9 & 2.4 & 1.5 \\
\hline 3 & 1.6 & 3.5 & . 98 & 9.6 & 7.3 & 36 & 6.2 & 6.2 & 3.6 & 3.9 & 2.1 & 1.7 \\
\hline 4 & 1.6 & 3.0 & . 95 & 6.4 & 5.8 & 41 & 6.2 & 5.5 & 2.7 & 3.0 & 2.0 & 2.0 \\
\hline 5 & 1.7 & 2.1 & 3.1 & e4.0 & 4.6 & 33 & 6.4 & 5.5 & 2.2 & 2.9 & 1.6 & 2.3 \\
\hline 6 & 1.7 & 2.2 & 1.6 & e2.9 & 4.2 & 34 & 5.5 & 7.2 & 2.3 & 3.2 & 1.8 & 1.8 \\
\hline 7 & 1.4 & 1.7 & 5.3 & 2.6 & 3.9 & 27 & 4.9 & 6.8 & 2.2 & 3.4 & 1.8 & 2.0 \\
\hline 8 & 3.5 & 2.0 & 17 & 6.7 & 3.4 & 21 & 4.4 & 6.1 & 1.3 & 4.6 & 1.9 & 1.9 \\
\hline 9 & 2.0 & 1.9 & 7.9 & 42 & 3.1 & 22 & 2.6 & 5.1 & 1.4 & 3.1 & 1.8 & 2.1 \\
\hline 10 & 1.8 & 2.0 & 3.2 & 18 & 3.0 & 26 & 2.4 & 4.8 & 2.0 & 3.4 & 1.7 & 2.0 \\
\hline 11 & 1.8 & 3.3 & 2.3 & 9.7 & 2.8 & 23 & 6.1 & 4.8 & 2.4 & 4.9 & 1.6 & 1.9 \\
\hline 12 & 1.7 & 1.5 & 2.6 & 6.2 & 3.5 & 16 & 4.4 & 5.1 & 2.4 & 3.2 & 1.7 & 1.9 \\
\hline 13 & 1.8 & 1.3 & 23 & 5.5 & 3.1 & 15 & 4.2 & 12 & 2.2 & 3.2 & 1.7 & 1.9 \\
\hline 14 & 1.8 & 1.4 & 8.3 & 12 & 2.5 & 22 & 3.9 & 13 & 1.9 & 3.1 & 2.4 & 2.2 \\
\hline 15 & 1.8 & 1.4 & 3.7 & 33 & 2.6 & 57 & 5.6 & 7.4 & 1.4 & 2.8 & 2.1 & 2.0 \\
\hline 16 & 1.8 & 1.3 & 2.5 & 18 & 2.4 & 49 & 4.5 & 6.3 & 1.4 & 2.6 & 1.6 & 2.1 \\
\hline 17 & 2.0 & 1.3 & 2.9 & 12 & 3.0 & 34 & 4.0 & 2.6 & 1.5 & 2.3 & 1.7 & 2.2 \\
\hline 18 & 2.0 & 1.1 & 2.4 & 18 & 2.9 & 25 & 3.4 & 6.6 & 1.5 & 3.6 & 1.4 & 2.2 \\
\hline 19 & 1.9 & 1.1 & 2.1 & 18 & 3.0 & 20 & 3.2 & 9.0 & 1.7 & 2.9 & 1.4 & 1.9 \\
\hline 20 & 1.8 & 1.4 & 1.9 & 13 & 2.7 & 17 & 9.1 & 4.2 & 1.6 & 4.1 & 2.3 & 2.2 \\
\hline 21 & 1.9 & 1.3 & 1.6 & 9.1 & 2.4 & 15 & 8.7 & 2.6 & 1.5 & 4.2 & 2.3 & 2.6 \\
\hline 22 & 1.9 & 1.3 & 5.0 & 6.6 & 2.2 & 14 & 7.4 & 2.3 & 1.5 & 3.9 & 1.8 & 2.2 \\
\hline 23 & 1.9 & 1.3 & 3.9 & 12 & 2.3 & 13 & 6.2 & 2.0 & 1.6 & 3.8 & 1.6 & 2.1 \\
\hline 24 & 1.3 & 1.2 & 3.0 & 46 & 2.7 & 12 & 5.1 & 3.6 & 1.9 & 13 & 1.9 & 2.2 \\
\hline 25 & 1.4 & 1.4 & 2.3 & 23 & 3.5 & 10 & 4.3 & 2.0 & 2.2 & 8.4 & 3.2 & 1.9 \\
\hline 26 & 1.4 & 2.7 & 2.0 & 15 & 3.6 & 9.0 & 5.3 & 1.6 & 2.0 & 1.4 & 1.9 & 1.8 \\
\hline 27 & 1.5 & 1.2 & 1.9 & 12 & 3.9 & 7.6 & 8.8 & 1.5 & 7.5 & 1.7 & 2.2 & 3.1 \\
\hline 28 & 2.3 & 1.1 & 2.6 & 8.7 & 24 & 7.8 & 22 & 1.3 & 5.6 & 2.3 & 2.1 & 3.0 \\
\hline 29 & 2.2 & . 99 & 3.3 & 5.8 & --- & 6.8 & 18 & 1.4 & 4.2 & 3.2 & 1.7 & 4.3 \\
\hline 30 & 2.1 & 1.0 & 4.6 & 4.4 & --- & 6.3 & 13 & 1.4 & 5.1 & 4.3 & 1.6 & 3.5 \\
\hline 31 & 1.7 & --- & 3.8 & 4.4 & --- & 6.4 & --- & 1.5 & --- & 3.2 & 1.7 & --- \\
\hline TOTAL & 56.4 & 50.39 & 127.81 & 390.5 & 126.7 & 686.9 & 199.7 & 157.1 & 75.1 & 118.4 & 59.7 & 66.1 \\
\hline MEAN & 1.82 & 1.68 & 4.12 & 12.6 & 4.53 & 22.2 & 6.66 & 5.07 & 2.50 & 3.82 & 1.93 & 2.20 \\
\hline MAX & 3.5 & 3.5 & 23 & 46 & 24 & 57 & 22 & 13 & 7.5 & 13 & 3.2 & 4.3 \\
\hline MIN & 1.3 & . 99 & . 95 & 2.6 & 2.2 & 6.3 & 2.4 & 1.3 & 1.3 & 1.4 & 1.4 & 1.5 \\
\hline CFSM & . 29 & . 27 & . 66 & 2.03 & . 73 & 3.57 & 1.07 & . 82 & . 40 & . 62 & . 31 & . 36 \\
\hline IN. & . 34 & . 30 & . 77 & 2.34 & . 76 & 4.12 & 1.20 & . 94 & . 45 & . 71 & . 36 & . 40 \\
\hline \multicolumn{2}{|l|}{STATISTICS OF} & \multicolumn{2}{|l|}{MONTHLY MEAN DATA} & \multicolumn{6}{|l|}{WATER YEARS 1974 - 1999, BY WATER YEAR (WY)} & & & \\
\hline MEAN & 3.99 & 6.60 & 8.18 & 14.7 & 13.1 & 18.8 & 13.0 & 11.4 & 7.95 & 2.76 & 2.58 & 2.06 \\
\hline MAX & 28.0 & 31.0 & 18.8 & 42.6 & 34.0 & 53.6 & 30.7 & 47.7 & 23.7 & 10.4 & 10.6 & 5.75 \\
\hline (WY) & 1990 & 1974 & 1979 & 1974 & 1990 & 1975 & 1998 & 1989 & 1998 & 1979 & 1989 & 1989 \\
\hline MIN & . 32 & . 27 & . 98 & 1.44 & 4.08 & 7.12 & 4.62 & . 71 & . 64 & . 32 & . 31 & . 38 \\
\hline (WY) & 1992 & 1982 & 1982 & 1981 & 1992 & 1977 & 1982 & 1976 & 1980 & 1991 & 1981 & 1981 \\
\hline
\end{tabular}

BIG SANDY RIVER BASIN
03207965 GRAPEVINE CREEK NEAR PHYLLIS, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW
ANNUAL RUNOFF (CFSM)
ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS
e Estimated


LOCATION.--Lat \(37^{\circ} 27^{\prime \prime} 51^{\prime \prime}\), long \(82^{\circ} 31^{\prime \prime} 3^{\prime \prime}\), Pike County, Hydrologic Unit 05070203, on right bank 20 ft downstream from bridge on State Highway \(1426,0.75 \mathrm{mi}\) downstream from Lanks Branch, 1.0 mi south of Pikeville, 1.5 mi upstream from Harolds Branch, and at mile 117.3.
DRAINAGE AREA. \(-1,232 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1937 to current year. Gage-height records collected in this vicinity since 1907 are contained in reports of National Weather Service.

REVISED RECORDS.--WRD KY 78-1: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 631.98 ft above sea level. Prior to Sept. 23 , 1944 , nonrecording gage at site 2.3 mi downstream at datum 2.65 ft higher. Sept. 23, 1944 to Sept. 30, 1952 , water-stage recorder 2.3 mi downstream at datum 1.65 ft higher. Oct. 1, 1952 to Sept. 30, 1979, at site 2.1 mi downstream at same datum.

REMARKS.--Records good. Flow regulated since October 1968 by Fishtrap Lake (station 03207995 ), since August 1966 by North Fork Pound River Lake (station 03208680) and since March 1965 by John \(W\). Flannagan Lake (station 03208990).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 280 & 375 & 208 & 688 & 1450 & 6070 & 680 & 1690 & 372 & 324 & 316 & 202 \\
\hline 2 & 214 & 375 & 170 & 653 & 1590 & 5130 & 505 & 1430 & 320 & 262 & 341 & 204 \\
\hline 3 & 189 & 501 & 338 & 1190 & 1370 & 4680 & 465 & 1100 & 347 & 262 & 261 & 207 \\
\hline 4 & 385 & 470 & 522 & 2300 & 1350 & 7160 & 440 & 941 & 302 & 218 & 206 & 210 \\
\hline 5 & 467 & 464 & 510 & 2160 & 1170 & 6020 & 418 & 897 & 275 & 198 & 194 & 210 \\
\hline 6 & 416 & 452 & 528 & 1070 & 994 & 4710 & 392 & 1010 & 265 & 181 & 205 & 221 \\
\hline 7 & 273 & 854 & 529 & 756 & 967 & 4340 & 377 & 905 & 257 & 182 & 214 & 227 \\
\hline 8 & 344 & 875 & 1130 & 885 & 954 & 3460 & 423 & 699 & 246 & 188 & 213 & 291 \\
\hline 9 & 407 & 912 & 2230 & 3040 & 933 & 2930 & 525 & 645 & 238 & 189 & 222 & 194 \\
\hline 10 & 387 & 964 & 1950 & 3630 & 901 & 3260 & 522 & 643 & 233 & 209 & 230 & 189 \\
\hline 11 & 557 & 981 & 1380 & 2500 & 697 & 3690 & 853 & 661 & 227 & 244 & 226 & 214 \\
\hline 12 & 540 & 980 & 1100 & 1710 & 746 & 3190 & 1720 & 515 & 224 & 327 & 213 & 211 \\
\hline 13 & 323 & 949 & 1620 & 1030 & 874 & 2490 & 1270 & 498 & 219 & 252 & 214 & 212 \\
\hline 14 & 296 & 845 & 2920 & 960 & 856 & 2600 & 1100 & 756 & 211 & 227 & 307 & 214 \\
\hline 15 & 251 & 837 & 1780 & 3450 & 837 & 5160 & 1190 & 768 & 210 & 219 & 229 & 227 \\
\hline 16 & 240 & 876 & 1070 & 3860 & 884 & 6750 & 1450 & 664 & 211 & 225 & 211 & 229 \\
\hline 17 & 234 & 585 & 687 & 2550 & 822 & 7590 & 1310 & 588 & 210 & 219 & 223 & 257 \\
\hline 18 & 413 & 605 & 518 & 2750 & 1020 & 6450 & 1190 & 744 & 205 & 224 & 217 & 220 \\
\hline 19 & 393 & 577 & 388 & 4620 & 1170 & 4010 & 996 & 1940 & 200 & 272 & 213 & 220 \\
\hline 20 & 244 & 506 & 360 & 3190 & 1320 & 2260 & 928 & 1320 & 193 & 204 & 224 & 200 \\
\hline 21 & 248 & 534 & 360 & 1930 & 1230 & 1960 & 940 & 1000 & 185 & 242 & 234 & 229 \\
\hline 22 & 267 & 529 & 398 & 1400 & 1080 & 1640 & 991 & 640 & 177 & 235 & 230 & 220 \\
\hline 23 & 272 & 525 & 419 & 1200 & 1030 & 1780 & 939 & 585 & 192 & 212 & 221 & 219 \\
\hline 24 & 327 & 542 & 444 & 5360 & 978 & 1370 & 794 & 617 & 196 & 250 & 213 & 216 \\
\hline 25 & 601 & 570 & 444 & 6380 & 963 & 1360 & 766 & 920 & 225 & 368 & 298 & 217 \\
\hline 26 & 613 & 604 & 417 & 4420 & 1110 & 1170 & 763 & 881 & 224 & 268 & 278 & 217 \\
\hline 27 & 424 & 587 & 412 & 2580 & 1040 & 1050 & 886 & 621 & 218 & 231 & 233 & 219 \\
\hline 28 & 450 & 577 & 413 & 1920 & 2560 & 936 & 2240 & 459 & 271 & 198 & 211 & 254 \\
\hline 29 & 433 & 569 & 533 & 1550 & --- & 779 & 3420 & 420 & 266 & 205 & 204 & 272 \\
\hline 30 & 496 & 406 & 522 & 1180 & --- & 727 & 2560 & 417 & 245 & 221 & 200 & 306 \\
\hline 31 & 403 & --- & 669 & 1100 & --- & 693 & --- & 415 & --- & 239 & 201 & --- \\
\hline TOTAL & 11387 & 19426 & 24969 & 72012 & 30896 & 105415 & 31053 & 25389 & 7164 & 7295 & 7202 & 6728 \\
\hline MEAN & 367 & 648 & 805 & 2323 & 1103 & 3400 & 1035 & 819 & 239 & 235 & 232 & 224 \\
\hline MAX & 613 & 981 & 2920 & 6380 & 2560 & 7590 & 3420 & 1940 & 372 & 368 & 341 & 306 \\
\hline MIN & 189 & 375 & 170 & 653 & 697 & 693 & 377 & 415 & 177 & 181 & 194 & 189 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 814 & 1136 & 1591 & 2369 & 2833 & 3035 & 2295 & 2030 & 1034 & 569 & 469 & 1856 \\
MAX & 3939 & 3991 & 5385 & 6861 & 6371 & 8081 & 7646 & 6067 & 3492 & 1022 & 1606 \\
(WY) & 1990 & 1978 & 1973 & 1974 & 1994 & 1975 & 1977 & 1984 & 1979 & 1979 & 1971 & 1989 \\
MIN & 158 & 353 & 300 & 278 & 814 & 529 & 388 & 349 & 210 & 200 & 203 & 168 \\
(WY) & 1970 & 1970 & 1981 & 1981 & 1992 & 1988 & 1986 & 1976 & 1988 & 1988 & 1969 & 1969
\end{tabular}

BIG SANDY RIVER BASIN
03209500 LEVISA FORK AT PIKEVILLE, KY--Continued



LOCATION.--Lat \(37^{\circ} 34^{\prime} 01^{\prime \prime}\), long \(82^{\circ} 27^{\prime} 29^{\prime \prime}\), Pike County, Hydrologic Unit 05070203, on left bank 10 ft downstream from bridge on U.S. Highway 119, 1,100 ft downstream from Ford Branch, 0.7 mi upstream from Raccoon Creek, 1.2 mi southwest of Meta, and at mile 42.7 .
DRAINAGE AREA. \(--56.3 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--April 1941 to September 1993, October 1994 to current year.
REVISED RECORDS.--WSP 1705: Drainage area. WRD KY-76-1: 1975. WDR KY-87-1: 1986.
GAGE:--Water-stage recorder. Datum of gage is 715.66 ft above sea level. See WDR KY-90-1 for history of changes prior to Dec. 21, 1965.

REMARKS.--Records fair.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of 1939 reached a stage of 15.6 ft, from floodmark, present datum, at site 600 ft upstream, discharge, \(4,500 \mathrm{ft}^{3} / \mathrm{s}\).
PEAKS ABOVE BASE.--Peak discharges above base of \(1,600 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 9 & 1200 & \(* 877\) & 9.71
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 9.0 & 9.3 & 5.1 & 27 & 73 & 226 & 27 & 98 & 13 & 16 & 12 & 4.7 \\
\hline 2 & 6.4 & 7.8 & 4.2 & 23 & 79 & 141 & 24 & 88 & 16 & 16 & 12 & 4.0 \\
\hline 3 & 6.6 & 9.2 & 3.6 & 81 & 74 & 214 & 24 & 73 & 30 & 15 & 9.3 & 3.3 \\
\hline 4 & 7.5 & 12 & 3.8 & 66 & 66 & 253 & 23 & 64 & 14 & 8.3 & 8.5 & 3.9 \\
\hline 5 & 7.1 & 9.0 & 7.7 & e47 & 55 & 179 & 21 & 60 & 14 & 9.2 & 8.4 & 4.7 \\
\hline 6 & 6.3 & 10 & 17 & e36 & 49 & 185 & 19 & 49 & 14 & 7.9 & 7.5 & 7.3 \\
\hline 7 & 5.7 & 10 & 18 & 29 & 47 & 145 & 18 & 35 & 14 & 7.6 & 6.4 & 6.8 \\
\hline 8 & 16 & 9.1 & 121 & 74 & 42 & 110 & 20 & 38 & 15 & 7.3 & 7.0 & 5.1 \\
\hline 9 & 11 & 9.8 & 84 & 491 & 38 & 114 & 22 & 37 & 14 & 6.8 & 10 & 3.8 \\
\hline 10 & 7.1 & 8.6 & 26 & 220 & 35 & 165 & 19 & 24 & 17 & 6.6 & 7.1 & 3.8 \\
\hline 11 & 6.3 & 11 & 13 & 110 & 31 & 170 & 29 & 20 & 12 & 8.3 & 5.1 & 3.3 \\
\hline 12 & 6.2 & 13 & 12 & 79 & 37 & 129 & 27 & 19 & 13 & 6.5 & 5.2 & 3.6 \\
\hline 13 & 6.0 & 9.4 & 215 & 59 & 37 & 103 & 24 & 24 & 16 & 6.4 & 6.1 & 4.8 \\
\hline 14 & 5.2 & 11 & 88 & 87 & 30 & 121 & 24 & 47 & 18 & 7.3 & 18 & 6.0 \\
\hline 15 & 4.9 & 12 & 42 & 328 & 29 & 247 & 30 & 28 & 16 & 7.9 & 13 & 4.3 \\
\hline 16 & 4.8 & 12 & 26 & 192 & 31 & 262 & 32 & 25 & 17 & 7.1 & 10 & 3.2 \\
\hline 17 & 5.5 & 7.2 & 24 & 131 & 36 & 195 & 29 & 24 & 21 & 6.6 & 7.2 & 3.3 \\
\hline 18 & 6.4 & 11 & 20 & 196 & 38 & 143 & 28 & 26 & 15 & 5.5 & 5.7 & 3.2 \\
\hline 19 & 5.7 & 5.6 & 18 & 212 & 39 & 108 & 27 & 43 & 16 & 11 & 5.1 & 3.5 \\
\hline 20 & 6.5 & 5.7 & 17 & 139 & 38 & 86 & 47 & 28 & 17 & 4.6 & 5.0 & 5.0 \\
\hline 21 & 5.5 & 6.8 & 15 & 102 & 34 & 77 & 52 & 25 & 15 & e5.3 & 6.5 & 5.4 \\
\hline 22 & 5.7 & 5.5 & 31 & 79 & 30 & 63 & 65 & 23 & 16 & 6.1 & 6.2 & 5.7 \\
\hline 23 & 5.5 & 4.7 & 32 & 97 & 29 & 54 & 60 & 23 & 14 & 7.3 & 7.1 & 4.6 \\
\hline 24 & 6.1 & 5.6 & 28 & 318 & 29 & 50 & 56 & 29 & 14 & 13 & 6.6 & 3.7 \\
\hline 25 & 6.3 & 4.9 & 22 & 208 & 33 & 43 & 47 & 20 & 13 & 19 & 25 & 2.6 \\
\hline 26 & 6.4 & 20 & 21 & 126 & 35 & 38 & 48 & 16 & 10 & 8.0 & 11 & 3.3 \\
\hline 27 & 5.4 & 10 & 18 & 97 & 33 & 34 & 54 & 15 & 12 & 8.8 & 6.3 & 4.2 \\
\hline 28 & 6.8 & 6.3 & 19 & 78 & 179 & 32 & 160 & 14 & 18 & 11 & 6.4 & 7.3 \\
\hline 29 & 10 & 5.7 & 27 & 61 & --- & 29 & 127 & 15 & 23 & 18 & 7.1 & 8.4 \\
\hline 30 & 6.8 & 5.7 & 35 & 49 & --- & 25 & 113 & 16 & 30 & 15 & 7.0 & 21 \\
\hline 31 & 7.3 & -- & 31 & 43 & --- & 24 & --- & 16 & --- & 15 & 6.1 & -- \\
\hline TOTAL & 212.0 & 267.9 & 1044.4 & 3885 & 1306 & 3765 & 1296 & 1062 & 487 & 298.4 & 263.9 & 153.8 \\
\hline MEAN & 6.84 & 8.93 & 33.7 & 125 & 46.6 & 121 & 43.2 & 34.3 & 16.2 & 9.63 & 8.51 & 5.13 \\
\hline MAX & 16 & 20 & 215 & 491 & 179 & 262 & 160 & 98 & 30 & 19 & 25 & 21 \\
\hline MIN & 4.8 & 4.7 & 3.6 & 23 & 29 & 24 & 18 & 14 & 10 & 4.6 & 5.0 & 2.6 \\
\hline CFSM & . 12 & . 16 & . 60 & 2.23 & . 83 & 2.16 & . 77 & . 61 & . 29 & . 17 & . 15 & . 09 \\
\hline IN. & . 14 & . 18 & . 69 & 2.57 & . 86 & 2.49 & . 86 & . 70 & . 32 & . 20 & . 17 & . 10 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1941 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrrr} 
MEAN & 17.7 & 37.8 & 74.6 & 109 & 137 & 164 & 117 & 73.7 & 39.0 & 25.0 & 16.9 & 15.7 \\
MAX & 175 & 213 & 319 & 413 & 338 & 489 & 356 & 271 & 193 & 136 & 155 & 195 \\
(WY) & 1990 & 1974 & 1973 & 1974 & 1972 & 1955 & 1948 & 1984 & 1979 & 1956 & 1942 \\
MIN & .000 & .23 & .95 & 6.57 & 17.5 & 36.0 & 15.8 & 7.33 & 1.99 & .42 & .35 & .000 \\
(WY) & 1954 & 1954 & 1966 & 1966 & 1954 & 1988 & 1963 & 1941 & 1969 & 1944 & 1943 & 1943
\end{tabular}

BIG SANDY RIVER BASIN
03210000 JOHNS CREEK NEAR META, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & AR YEAR & FOR 1999 WAT & \multicolumn{2}{|l|}{YEAR} & WATER YEARS 1941 - 1999 & \multicolumn{3}{|l|}{1941-1999} \\
\hline ANNUAL TOTAL & 29391.1 & & 14041.4 & & & & & & \\
\hline ANNUAL MEAN & 80.5 & & 38.5 & & & 68.9 & & & \\
\hline HIGHEST ANNUAL MEAN & & & & & & 135 & & & 1974 \\
\hline LOWEST ANNUAL MEAN & & & & & & 24.5 & & & 1954 \\
\hline HIGHEST DAILY MEAN & 1470 & Apr 19 & 491 & Jan & 9 & 3340 & May & 7 & 1984 \\
\hline LOWEST DAILY MEAN & 3.6 & Dec 3 & 2.6 & Sep & & . 00 & Oct & 1 & 1941 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 4.9 & Nov 28 & 4.0 & Sep & & . 00 & Oct & 1 & 1941 \\
\hline INSTANTANEOUS PEAK FLOW & & & 877 & Jan & 9 & 7380 & Mar & 12 & 1963 \\
\hline INSTANTANEOUS PEAK STAGE & & & 9.71 & Jan & 9 & 19.62 & May & 7 & 1984 \\
\hline INSTANTANEOUS LOW FLOW & & & & & & . 00 & Oct & 1 & 1941 \\
\hline ANNUAL RUNOFF (CFSM) & 1.43 & & . 68 & & & 1.22 & & & \\
\hline ANNUAL RUNOFF (INCHES) & 19.42 & & 9.28 & & & 16.62 & & & \\
\hline 10 PERCENT EXCEEDS & 175 & & 105 & & & 157 & & & \\
\hline 50 PERCENT EXCEEDS & 33 & & 17 & & & 23 & & & \\
\hline 90 PERCENT EXCEEDS & 6.6 & & 5.3 & & & 2.0 & & & \\
\hline
\end{tabular}
e Estimated


LOCATION.--Lat \(37^{\circ} 48^{\prime} 55^{\prime \prime}\), long \(82^{\circ} 47^{\prime} 30^{\prime \prime}\), Johnson County, Hydrologic Unit 05070203, on left bank 700 ft downstream from bridge on State Highway 40 at Paintsville, 900 ft downstream from Paint Creek, and at mile 65.2 .
DRAINAGE AREA. \(--2,144 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--June 1915 to September 1916, October 1916 to November 1920 (gage heights only), and October 1928 to current year. Monthly discharge only for October to December 1928, published in WSP 1305. Published. (as "at Thelma" prior to 1928.)

REVISED RECORDS.--WSP 953: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 566.84 ft above sea level. See WDR KY-90-1 for history of changes prior to Oct. 19, 1954.

REMARKS.--Records good except for periods of estimated record, which are fair. Flow regulated since October 1968 by Fishtrap Lake (station 03207995), since August 1966 by North Fork Pound River Lake (station 03208680), since March 1965 by John W. Flannagan Lake (station 03208990), and since May 1950 by Dewey Lake (station 03211000).

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of 1862 reached a stage of 46.6 ft, from levels to floodmark by U.S. Army Corps of Engineers.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 9 & 1730 & 12600 & 16.58
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 351 & 502 & 568 & 1420 & 2370 & 6870 & 1260 & 2930 & 575 & 375 & 312 & 298 \\
\hline 2 & 394 & 506 & 369 & 1360 & 3390 & 8560 & 1110 & 2330 & 528 & 406 & 456 & 292 \\
\hline 3 & 326 & 881 & 317 & 1640 & 3160 & 8490 & 939 & 2000 & 501 & 388 & 469 & 294 \\
\hline 4 & 315 & 851 & 389 & 2560 & 2880 & 11700 & 882 & 1740 & 513 & 362 & 374 & 301 \\
\hline 5 & 455 & 758 & 622 & 3290 & 2520 & 10900 & 841 & 1560 & 456 & 333 & 301 & 313 \\
\hline 6 & 503 & 631 & 677 & 2480 & 2090 & 8210 & 796 & 1480 & 417 & 301 & 273 & 314 \\
\hline 7 & 516 & 594 & 726 & 1660 & 1910 & 6930 & 743 & 1570 & 401 & 283 & 272 & 326 \\
\hline 8 & 575 & 972 & 1730 & 2030 & 1900 & 6050 & 703 & 1480 & 387 & 269 & 287 & 336 \\
\hline 9 & 517 & 1020 & 3360 & 11200 & 1840 & 5250 & 800 & 1250 & 385 & 275 & 294 & 349 \\
\hline 10 & 550 & 1100 & 3210 & 11200 & 1700 & 5210 & 850 & 1080 & 373 & 289 & 293 & 298 \\
\hline 11 & 514 & 1300 & 2310 & 7320 & 1520 & 5450 & 1030 & 1000 & 365 & 327 & 297 & 265 \\
\hline 12 & 652 & 1240 & 1710 & 4690 & 1400 & 5360 & 1640 & 979 & 358 & 349 & 292 & 279 \\
\hline 13 & 622 & 1200 & 2430 & 2630 & 1700 & 4370 & 2060 & 829 & 348 & 395 & 290 & 286 \\
\hline 14 & 425 & 1150 & 4690 & 2520 & 1760 & 4720 & 1690 & 1090 & 340 & 352 & 363 & 289 \\
\hline 15 & 401 & 1050 & 3960 & 3630 & 1680 & 6580 & 1520 & 1190 & 334 & 315 & 497 & 279 \\
\hline 16 & 355 & 1050 & 2520 & 7010 & 1760 & 9440 & 1790 & 1120 & 333 & 303 & 369 & 295 \\
\hline 17 & 343 & 1090 & 1760 & 5580 & 1790 & 9730 & 1830 & 986 & 334 & 312 & 298 & 294 \\
\hline 18 & 333 & 826 & 1370 & 4490 & 1560 & 9540 & 1680 & 862 & 322 & 311 & 300 & 308 \\
\hline 19 & 489 & 815 & 998 & 7070 & 1760 & 7280 & 1530 & 1340 & 312 & 381 & 291 & 285 \\
\hline 20 & 469 & 784 & 847 & 7050 & 1930 & 4510 & 1460 & 2130 & 307 & 394 & 286 & 281 \\
\hline 21 & 340 & 704 & 798 & 4830 & 1970 & 3410 & 1440 & 1490 & 296 & 374 & 291 & 273 \\
\hline 22 & 333 & 710 & 1030 & 3340 & 1800 & 2760 & 1410 & 1230 & 296 & 353 & 299 & 257 \\
\hline 23 & 350 & 706 & 1220 & 4470 & 1600 & 2690 & 1410 & 901 & 313 & 389 & 296 & 269 \\
\hline 24 & 349 & 714 & 1050 & 6920 & 1520 & 2540 & 1390 & 888 & 318 & 330 & 296 & 270 \\
\hline 25 & 413 & 732 & 965 & 10700 & 1520 & 2220 & 1230 & 947 & 359 & 344 & 1060 & 270 \\
\hline 26 & 662 & 818 & 876 & 8970 & 1640 & 2030 & 1210 & 1180 & e370 & 468 & 577 & 266 \\
\hline 27 & 654 & 838 & 854 & 6080 & 1660 & 1760 & 1370 & 1090 & e380 & 380 & 480 & 271 \\
\hline 28 & 504 & 768 & 875 & 4090 & 2490 & 1630 & 3680 & 818 & e410 & 345 & 379 & 273 \\
\hline 29 & 546 & 748 & 1100 & 3030 & --- & 1540 & 5250 & 651 & 399 & 306 & 329 & 300 \\
\hline 30 & 533 & 722 & 1290 & 2290 & -- & 1380 & 5110 & 587 & 412 & 300 & 309 & 348 \\
\hline 31 & 563 & --- & 1320 & 1970 & --- & 1270 & --- & 568 & --- & 313 & 302 & --- \\
\hline TOTAL & 14352 & 25780 & 45941 & 147520 & 54820 & 168380 & 48654 & 39296 & 11442 & 10622 & 11232 & 8779 \\
\hline MEAN & 463 & 859 & 1482 & 4759 & 1958 & 5432 & 1622 & 1268 & 381 & 343 & 362 & 293 \\
\hline MAX & 662 & 1300 & 4690 & 11200 & 3390 & 11700 & 5250 & 2930 & 575 & 468 & 1060 & 349 \\
\hline MIN & 315 & 502 & 317 & 1360 & 1400 & 1270 & 703 & 568 & 296 & 269 & 272 & 257 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
\\
MEAN & 1133 & 1828 & 2773 & 4031 & 4900 & 5283 & 4096 & 3429 & 1751 & 886 & 766 \\
MAX & 6560 & 4908 & 8870 & 12030 & 11000 & 13160 & 10040 & 9665 & 5426 & 2384 & 1837 \\
(WY) & 1990 & 1978 & 1973 & 1974 & 1994 & 1975 & 1987 & 1984 & 1998 & 1979 & 1977 \\
MIN & 181 & 447 & 570 & 435 & 1467 & 963 & 594 & 519 & 278 & 257 & 291 \\
(WY) & 1970 & 1970 & 1981 & 1981 & 1988 & 1988 & 1986 & 1976 & 1988 & 1988 & 1969
\end{tabular}

BIG SANDY RIVER BASIN



03216500 LITTLE SANDY RIVER AT GRAYSON, KY
LOCATION.--Lat \(38^{\circ} 1^{\prime} \prime^{\prime} 48^{\prime \prime}\), long \(82^{\circ} 56^{\prime} 2^{\prime \prime \prime}\), Carter County, Hydrologic Unit 05090104 , on left bank 0.3 mi upstream from bridge on U.S. Highway \(60,0.5 \mathrm{mi}\) downstream from Town Branch, 0.5 mi east of Grayson, and at mile 38.1 .

DRAINAGE AREA. \(--400 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--April 1938 to current year. Prior to October 1964, published as "near Grayson."
REVISED RECORDS.--WSP 1435: 1939(M), 1943 (M), 1948 (P). WSP 1725: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 557.95 ft above sea level. Prior to Aug. 11, 1939, nonrecording gage and Aug. 11, 1939 to Jan. 29, 1965, water-stage recorder at site 1.6 mi downstream at same datum. Apr. 6, 1948 to Jan. 29 , 1965 , supplementary nonrecording gage 800 ft downstream at same datum.

REMARKS.--Records good. Flow regulated since March 1968 by Grayson Lake (station 03216300).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 26 & 93 & 149 & 56 & 324 & 963 & 220 & 255 & 36 & 36 & 34 & 33 \\
\hline 2 & 26 & 92 & 107 & 59 & 1220 & 861 & 198 & 205 & 36 & 35 & 35 & 32 \\
\hline 3 & 26 & 97 & 36 & 52 & 1200 & 1130 & 176 & 170 & 35 & 35 & 35 & 32 \\
\hline 4 & 27 & 106 & 24 & 82 & 778 & 2630 & 163 & 142 & 35 & 34 & 33 & 32 \\
\hline 5 & 27 & 103 & 22 & 277 & 496 & 1760 & 151 & 123 & 34 & 34 & 32 & 32 \\
\hline 6 & 26 & 103 & 22 & 148 & 446 & 1160 & 138 & 111 & 34 & 33 & 32 & 32 \\
\hline 7 & 27 & 102 & 26 & 90 & 437 & 911 & 125 & 97 & 33 & 32 & 32 & 31 \\
\hline 8 & 102 & 102 & 83 & 118 & 489 & 873 & 117 & 87 & 32 & 32 & 34 & 31 \\
\hline 9 & 33 & 101 & 332 & 2520 & 489 & 1010 & 117 & 80 & 32 & 32 & 37 & 31 \\
\hline 10 & 29 & 108 & 158 & 3000 & 309 & 1620 & 113 & 73 & 32 & 34 & 33 & 31 \\
\hline 11 & 28 & 120 & 81 & 2370 & 335 & 1540 & 112 & 67 & 31 & 33 & 32 & 31 \\
\hline 12 & 44 & 114 & 68 & 1650 & 397 & 976 & 142 & 62 & 31 & 32 & 32 & 31 \\
\hline 13 & 27 & 109 & 79 & 604 & 642 & 669 & 108 & 61 & 30 & 32 & 33 & 32 \\
\hline 14 & 27 & 106 & 122 & 389 & 491 & 1090 & 97 & 65 & 34 & 33 & 33 & 31 \\
\hline 15 & 27 & 102 & 191 & 1070 & 428 & 2890 & 96 & 65 & 34 & 32 & 33 & 31 \\
\hline 16 & 27 & 102 & 152 & 859 & 628 & 1990 & 105 & 58 & 36 & 32 & 33 & 31 \\
\hline 17 & 27 & 99 & 70 & 763 & 1060 & 1620 & 100 & 53 & 36 & 32 & 32 & 31 \\
\hline 18 & 26 & 97 & 69 & 909 & 842 & 1160 & 90 & 51 & 36 & 42 & 32 & 32 \\
\hline 19 & 28 & 97 & 52 & 1220 & 355 & 732 & 88 & 53 & 35 & 35 & 32 & 31 \\
\hline 20 & 27 & 99 & 43 & 1380 & 226 & 529 & 98 & 53 & 35 & 36 & 35 & 33 \\
\hline 21 & 27 & 101 & 41 & 631 & 255 & 497 & 124 & 49 & 34 & 35 & 33 & 32 \\
\hline 22 & 96 & 99 & 55 & 500 & 350 & 366 & 213 & 46 & 33 & 33 & 33 & 31 \\
\hline 23 & 102 & 95 & 173 & 1170 & 174 & 337 & 179 & 45 & 33 & 33 & 33 & 31 \\
\hline 24 & 101 & 93 & 159 & 3030 & 202 & 812 & 149 & 50 & 34 & 33 & 43 & 31 \\
\hline 25 & 100 & 94 & 101 & 2540 & 209 & 1080 & 126 & 52 & 34 & 33 & 340 & 31 \\
\hline 26 & 99 & 124 & 58 & 1980 & 259 & 919 & 115 & 46 & 34 & 33 & 123 & 31 \\
\hline 27 & 97 & 117 & 49 & 920 & 390 & 609 & 125 & 43 & 34 & 33 & 61 & 31 \\
\hline 28 & 96 & 111 & 48 & 559 & 818 & 403 & 607 & 40 & 34 & 33 & 46 & 31 \\
\hline 29 & 95 & 108 & 45 & 330 & --- & 399 & 719 & 38 & 46 & 34 & 39 & 32 \\
\hline 30 & 94 & 108 & 46 & 227 & --- & 370 & 351 & 37 & 40 & 34 & 36 & 33 \\
\hline 31 & 94 & --- & 63 & 195 & --- & 315 & --- & 37 & --- & 33 & 34 & --- \\
\hline TOTAL & 1638 & 3102 & 2724 & 29698 & 14249 & 32221 & 5262 & 2414 & 1033 & 1043 & 1485 & 945 \\
\hline MEAN & 52.8 & 103 & 87.9 & 958 & 509 & 1039 & 175 & 77.9 & 34.4 & 33.6 & 47.9 & 31.5 \\
\hline MAX & 102 & 124 & 332 & 3030 & 1220 & 2890 & 719 & 255 & 46 & 42 & 340 & 33 \\
\hline MIN & 26 & 92 & 22 & 52 & 174 & 315 & 88 & 37 & 30 & 32 & 32 & 31 \\
\hline \multicolumn{2}{|l|}{STATISTICS OF} & \multicolumn{2}{|l|}{MONTHLY MEAN DATA} & \multicolumn{6}{|l|}{WATER YEARS 1969 - 1999, BY WATER YEAR (WY)} & & & \\
\hline MEAN & 167 & 342 & 624 & 758 & 928 & 1035 & 672 & 644 & 301 & 171 & 107 & 118 \\
\hline MAX & 733 & 993 & 2630 & 1954 & 2886 & 3226 & 2291 & 2116 & 928 & 841 & 382 & 585 \\
\hline (WY) & 1990 & 1987 & 1979 & 1974 & 1989 & 1997 & 1972 & 1996 & 1974 & 1971 & 1979 & 1979 \\
\hline MIN & 30.1 & 28.4 & 53.6 & 45.2 & 249 & 133 & 113 & 62.1 & 34.4 & 33.6 & 34.7 & 30.4 \\
\hline (WY) & 1981 & 1982 & 1982 & 1981 & 1969 & 1969 & 1986 & 1976 & 1999 & 1999 & 1988 & 1998 \\
\hline
\end{tabular}

LITtLE SANDY RIVER BASIN
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & \multicolumn{5}{|l|}{03216500 LITTLE SANDY RIVER AT GRAYSON, KY--Continued FOR 1998 CALENDAR YEAR FOR 1999 WATER YEAR} & \multicolumn{2}{|l|}{WATER YEARS 1969} & \multicolumn{2}{|l|}{- 1999} \\
\hline ANNUAL TOTAL & 199234 & & 95814 & & & & & & \\
\hline ANNUAL MEAN & 546 & & 263 & & & 487 & & & \\
\hline HIGHEST ANNUAL MEAN & & & & & & 838 & & & 1979 \\
\hline LOWEST ANNUAL MEAN & & & & & & 116 & & & 1969 \\
\hline HIGHEST DAILY MEAN & 4260 & Feb 12 & 3030 & Jan & 24 & 14600 & Mar & 2 & 1997 \\
\hline LOWEST DAILY MEAN & 22 & Dec 5 & 22 & Dec & 5 & 5.8 & Oct & 1 & 1968 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 26 & Sep 30 & 26 & Oct & 1 & 18 & Nov & 1 & 1968 \\
\hline INSTANTANEOUS PEAK FLOW & & & 3550 & Jan & 9 & 24500 & Sep & 22 & 1950 \\
\hline INSTANTANEOUS PEAK STAGE & & & 15.35 & Jan & 9 & 30.57 & Mar & 2 & 1997 \\
\hline INSTANTANEOUS LOW FLOW & & & & & & 1.5 & Oct & 12 & 1953 \\
\hline 10 PERCENT EXCEEDS & 1840 & & 849 & & & 1380 & & & \\
\hline 50 PERCENT EXCEEDS & 159 & & 73 & & & 170 & & & \\
\hline 90 PERCENT EXCEEDS & 30 & & 31 & & & 39 & & & \\
\hline
\end{tabular}


03216600 OHIO RIVER AT GREENUP DAM NEAR GREENUP, KY
LOCATION.--Lat \(38^{\circ} 38^{\prime} 48^{\prime \prime}\), long \(82^{\circ} 51^{\prime} 38^{\prime \prime}\), Greenup County, Hydrologic Unit 05090103, at left bank at downstream end of lock guidewall in lower pool at Greenup locks, 1.1 mi upstream from Grays Branch, 4.7 mi downstream from Little Sandy River, 5.0 mi north of Greenup, and at mile 341.5 .
DRAINAGE AREA. \(--62,000 \mathrm{mi}^{2}\), approximately.
PERIOD OF RECORD.--October 1968 to current year.
GAGE.--Records of Greenup Dam gate operations and hydropower releases are furnished by the U.S. Army Corps of Engineers and are used to determine daily discharge. Water-stage recorder in Greenup Dam tailwater for peak stage determinations. Datum of gage is 472.43 ft above sea level or 472.97 ft Ohio River Datum. Auxiliary water-stage recorder is located at Portsmouth, Ohio, 14.1 mi downstream, established Oct. 1,1981 and used in slope rating computation from Oct. 1 , 1981 to Sept. 30 , 1983. Datum of gage is 470.43 ft above sea level or 470.99 ft Ohio River Datum. Record of Greenup Dam headwater, tailwater, gate openings and lockages used to determine discharge from Oct. 1, 1968 to Sept. 30, 1981. Slope rating computation from Oct. 1, 1981 to Sept. 30, 1983, and Branch Flow Model from Oct. 1, 1983 to Sept. 30, Sept. 30, 1996 based on stage record from the Greenup Dam Tailwater and Portsmouth, Ohio gage.

REMARKS.--Records fair except for those below \(20,000 \mathrm{ft}^{3} / \mathrm{s}\), which are poor. Flow regulated by Ohio River system of locks, dams, and reservoirs upstream from the station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 6020 & 10800 & 12900 & 23600 & 125000 & 98200 & 55000 & 84100 & 26300 & 6890 & 13900 & 5870 \\
\hline 2 & 12400 & 14700 & 14100 & 22000 & 122000 & 127000 & 57600 & 62200 & 17800 & 23700 & 20200 & 11900 \\
\hline 3 & 14700 & 6920 & 16300 & 17300 & 120000 & 143000 & 52200 & 62100 & 26400 & 29200 & 13000 & 8740 \\
\hline 4 & 7240 & 25800 & 11400 & 33700 & 128000 & 186000 & 64600 & 46000 & 21000 & 10300 & 7300 & 8360 \\
\hline 5 & 20700 & 15500 & 10100 & 44200 & 129000 & 213000 & 63600 & 46100 & 19000 & 19200 & 9810 & 6320 \\
\hline 6 & 8710 & 8080 & 14700 & 30300 & 121000 & 215000 & 54400 & 37000 & 19200 & 8360 & 15600 & 9490 \\
\hline 7 & 11800 & 6350 & 14900 & 30800 & 107000 & 232000 & 60800 & 30100 & 11800 & 11500 & 9500 & 10100 \\
\hline 8 & 25200 & 10600 & 22100 & 29400 & 126000 & 248000 & 55600 & 31300 & 19500 & 9550 & 7570 & 16900 \\
\hline 9 & 34100 & 12800 & 15400 & 98900 & 158000 & 216000 & 59400 & 37300 & 23000 & 11200 & 17300 & 10000 \\
\hline 10 & 29900 & 18800 & 26300 & 149000 & 158000 & 180000 & 77100 & 32700 & 8700 & 16100 & 4920 & 9430 \\
\hline 11 & 26200 & 18700 & 23300 & 134000 & 140000 & 165000 & 123000 & 35400 & 3920 & 11800 & 5850 & 15900 \\
\hline 12 & 25200 & 15700 & 18800 & 84600 & 120000 & 132000 & 145000 & 31800 & 18500 & 4760 & 11300 & 9240 \\
\hline 13 & 20200 & 14600 & 21200 & 82400 & 106000 & 111000 & 133000 & 29700 & 5790 & 17800 & 11200 & 5680 \\
\hline 14 & 12300 & 22500 & 22000 & 116000 & 99800 & 98600 & 130000 & 32400 & 19900 & 7940 & 12000 & 6060 \\
\hline 15 & 19000 & 11000 & 29300 & 144000 & 90800 & 126000 & 115000 & 30400 & 10000 & 9140 & 15600 & 14200 \\
\hline 16 & 15800 & 17200 & 23600 & 187000 & 82700 & 147000 & 110000 & 40400 & 16700 & 11500 & 8750 & 7240 \\
\hline 17 & 8960 & 18500 & 23600 & 194000 & 79700 & 152000 & 97000 & 40400 & 8920 & 6950 & 11200 & 8950 \\
\hline 18 & 10400 & 13600 & 22000 & 162000 & 77900 & 150000 & 94300 & 31800 & 14700 & 11700 & 8650 & 10100 \\
\hline 19 & 14300 & 9750 & 14800 & 191000 & 70100 & 168000 & 89600 & 46200 & 8360 & 6730 & 10200 & 8860 \\
\hline 20 & 17000 & 9410 & 10900 & 217000 & 67900 & 180000 & 83200 & 62800 & 6810 & 16100 & 12700 & 8770 \\
\hline 21 & 14900 & 24100 & 21700 & 203000 & 70100 & 167000 & 99300 & 53600 & 9230 & 4940 & 4420 & 12800 \\
\hline 22 & 10100 & 10100 & 25900 & 213000 & 63700 & 135000 & 108000 & 30900 & 15100 & 16700 & 10900 & 8650 \\
\hline 23 & 12100 & 13000 & 55000 & 222000 & 56600 & 120000 & 121000 & 45700 & 10000 & 7990 & 8900 & 6940 \\
\hline 24 & 13600 & 14100 & 62100 & 272000 & 48900 & 121000 & 125000 & 44800 & 8530 & 8390 & 14100 & 5680 \\
\hline 25 & 13600 & 16400 & 53700 & 303000 & 41700 & 114000 & 131000 & 66400 & 7720 & 15200 & 32200 & 7110 \\
\hline 26 & 13000 & 18800 & 33700 & 324000 & 43800 & 92600 & 134000 & 79900 & 7690 & 10400 & 29100 & 12000 \\
\hline 27 & 11800 & 12000 & 24800 & 322000 & 45300 & 87900 & 119000 & 68400 & 13100 & 6070 & 18200 & 7310 \\
\hline 28 & 11800 & 12800 & 28900 & 282000 & 55500 & 73200 & 102000 & 51900 & 15500 & 15400 & 20500 & 6480 \\
\hline 29 & 8510 & 21700 & 22000 & 186000 & -- & 70800 & 95300 & 40500 & 9490 & 33700 & 15500 & 14800 \\
\hline 30 & 15200 & 17400 & 23700 & 162000 & --- & 57200 & 95300 & 29900 & 16900 & 23300 & 11000 & 17300 \\
\hline 31 & 14500 & - & 27400 & 144000 & --- & 60300 & --- & 30700 & --- & 11800 & 7840 & \\
\hline TOTAL & 479240 & 441710 & 746600 & 4624200 & 2654500 & 4386800 & 2850300 & 1392900 & 419560 & 404310 & 399210 & 291180 \\
\hline MEAN & 15460 & 14720 & 24080 & 149200 & 94800 & 141500 & 95010 & 44930 & 13990 & 13040 & 12880 & 9706 \\
\hline MAX & 34100 & 25800 & 62100 & 324000 & 158000 & 248000 & 145000 & 84100 & 26400 & 33700 & 32200 & 17300 \\
\hline MIN & 6020 & 6350 & 10100 & 17300 & 41700 & 57200 & 52200 & 29700 & 3920 & 4760 & 4420 & 5680 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrr} 
MEAN & 39840 & 70390 & 111200 & 121600 & 144600 & 166200 & 140900 & 105700 & 66600 & 44510 \\
MAX & 111300 & 208600 & 252700 & 242700 & 259100 & 268600 & 258400 & 276700 & 174000 & 100700 \\
(WY) & 1980 & 1986 & 1973 & 1974 & 1994 & 1994 & 1994 & 1996 & 1981 & 1972 \\
MIN & 11310 & 14720 & 24080 & 27170 & 66240 & 53550 & 52660 & 36610 & 13440 & 13040 \\
(WY) & 1992 & 1999 & 1999 & 1977 & 1978 & 1969 & 1986 & 1980 & 1970 & 9706 \\
\hline
\end{tabular}

OHIO RIVER MAIN STEM
03216600 OHIO RIVER AT GREENUP DAM NEAR GREENUP, KY--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALENDAR YEAR & FOR 1999 WATER YEAR & WATER YEARS & \(1969-1999\) \\
\hline ANNUAL TOTAL & 30609200 & 19090510 & & \\
\hline ANNUAL MEAN & 83860 & 52300 & 89740 & \\
\hline HIGHEST ANNUAL MEAN & & & 120100 & 1996 \\
\hline LOWEST ANNUAL MEAN & & & 49760 & 1988 \\
\hline HIGHEST DAILY MEAN & 375000 Jan 11 & 324000 Jan 26 & 540000 & Jan 121974 \\
\hline LOWEST DAILY MEAN & 6020 Oct 1 & 3920 Jun 11 & 3920 & Jun 111999 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 11700 Oct 1 & 7740 Sep 22 & 7740 & Sep 221999 \\
\hline INSTANTANEOUS PEAK FLOW & & 330000 Jan 27 & 520000 & Mar 41997 \\
\hline INSTANTANEOUS PEAK STAGE & & 45.49 Jan 27 & 62.19 & Mar 41997 \\
\hline 10 PERCENT EXCEEDS & 205000 & 141000 & 204000 & \\
\hline 50 PERCENT EXCEEDS & 46200 & 22000 & 62900 & \\
\hline 90 PERCENT EXCEEDS & 12100 & 8360 & 17000 & \\
\hline
\end{tabular}


OHIO RIVER MAIN STEM
03216600 OHIO RIVER AT GREENUP DAM, KY--Continued
(National stream-quality accounting network station)
WATER-QUALITY RECORDS
PERIOD OF RECORD.--Water years 1974 to September 1986, 1997 to current water year.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: October 1974 to September 1981.
WATER TEMPERATURES: October 1974 to September 1981.
REMARKS.--Flow regulated by Ohio River system of locks, dams, and reservoirs.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & MAGNE- & & POTAS- & \begin{tabular}{l}
BICAR- \\
BONATE
\end{tabular} & ALKALINITY & CHLO- & & FLUO- & SILICA, & SOLIDS, RESIDUE & \\
\hline & CALCIUM & SIUM, & SODIUM, & SIUM, & WATER & WAT DIS & RIDE, & SULFATE & RIDE, & DIS- & AT 180 & NITRO- \\
\hline & DIS- & DIS- & DIS- & DIS- & DIS IT & TOT IT & DIS- & DIS- & DIS- & SOLVED & DEG. C & GEN, \\
\hline & SOLVED & SOLVED & SOLVED & SOLVED & FIELD & FIELD & SOLVED & SOLVED & SOLVED & (MG/L & DIS- & TOTAL \\
\hline DATE & (MG/L & (MG/L & (MG/L & (MG/L & MG/L AS & MG/L AS & (MG/L & (MG/L & (MG/L & AS & SOLVED & (MG/L \\
\hline & AS CA) & AS MG) & AS NA) & AS K) & HCO3 & CACO3 & AS CL) & AS SO4) & AS F) & SIO2) & (MG/L) & AS N) \\
\hline & (00915) & (00925) & (00930) & (00935) & (00453) & (39086) & (00940) & (00945) & (00950) & (00955) & (70300) & (00600) \\
\hline NOV & & & & & & & & & & & & \\
\hline 18. & 42 & 14 & 38 & 3.8 & 85 & 70 & 39 & 110 & . 32 & 3.1 & 334 & 1.6 \\
\hline DEC & & & & & & & & & & & & \\
\hline 15. & 46 & 15 & 39 & 3.8 & 99 & 81 & 41 & 130 & . 29 & 3.4 & 351 & 1.6 \\
\hline 15. & . 002 & <. 001 & \(<.025\) & -- & -- & -- & -- & -- & -- & \(<.020\) & -- & -- \\
\hline JAN & & & & & & & & & & & & \\
\hline 14. & 32 & 9.2 & 23 & 2.8 & 56 & 46 & 27 & 71 & . 17 & 4.2 & 221 & 2.1 \\
\hline MAR & & & & & & & & & & & & \\
\hline 11. & 24 & 7.1 & 16 & 1.8 & 35 & 28 & 21 & 53 & <. 10 & 5.7 & 165 & 1.4 \\
\hline 11. & 24 & 7.1 & 16 & 1.8 & -- & -- & 21 & 52 & \(<.10\) & 5.6 & 162 & 1.4 \\
\hline APR & & & & & & & & & & & & \\
\hline 01. & 27 & 8.1 & 16 & 1.7 & 48 & 39 & 20 & 61 & <. 10 & 4.8 & 178 & . 98 \\
\hline 01. & -- & -- & -- & -- & -- & - & -- & -- & -- & -- & -- & -- \\
\hline 22. & 27 & 8.3 & 15 & 1.8 & 50 & 41 & 18 & 56 & <. 10 & 5.2 & 171 & 1.2 \\
\hline MAY & & & & & & & & & & & & \\
\hline 06.. & 26 & 8.1 & 15 & 1.9 & 54 & 44 & 16 & 59 & . 12 & 5.1 & 181 & . 96 \\
\hline 20. & 26 & 8.5 & 17 & 1.8 & 50 & 41 & 18 & 60 & . 11 & 2.2 & 189 & . 88 \\
\hline 20... & . 004 & \(<.001\) & \(<.025\) & -- & -- & -- & -- & -- & -- & <. 020 & -- & -- \\
\hline JUN & & & & & & & & & & & & \\
\hline 08.. & 34 & 11 & 24 & 2.3 & 63 & 52 & 25 & 85 & . 18 & 2.4 & 250 & 1.0 \\
\hline 08. & -- & -- & -- & -- & -- & - & -- & -- & -- & -- & -- & -- \\
\hline 30. & 35 & 11 & 29 & 2.7 & 64 & 52 & 29 & 93 & . 20 & 3.4 & 265 & 1.3 \\
\hline AUG & & & & & & & & & & & & \\
\hline 05. & 38 & 13 & 40 & 2.9 & -- & -- & 39 & 110 & . 20 & 2.6 & 299 & 1.0 \\
\hline 05. & 37 & 13 & 40 & 2.9 & -- & -- & 41 & 110 & . 19 & 2.5 & 300 & 1.0 \\
\hline 26... & 34 & 13 & 39 & 3.4 & -- & -- & 43 & 97 & . 29 & 3.3 & 297 & 1.3 \\
\hline
\end{tabular}

OHIO RIVER MAIN STEM
03216600 OHIO RIVER AT GREENUP DAM, KY--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DATE & \[
\begin{aligned}
& \text { NITRO- } \\
& \text { GEN } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (MG/L } \\
& \text { AS N) } \\
& (00602)
\end{aligned}
\] & \[
\begin{gathered}
\text { NITRO- } \\
\text { GEN, } \\
\text { ORGANIC } \\
\text { TOTAL } \\
\text { (MG/L } \\
\text { AS N) } \\
(00605)
\end{gathered}
\] & \[
\begin{gathered}
\text { NITRO- } \\
\text { GEN, } \\
\text { ORGANIC } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (MG/L } \\
\text { AS N) } \\
(00607)
\end{gathered}
\] & \[
\begin{gathered}
\text { NITRO- } \\
\text { GEN, } \\
\text { NITRITE } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (MG/L } \\
\text { AS N) } \\
(00613)
\end{gathered}
\] & \[
\begin{aligned}
& \text { NITRO- } \\
& \text { GEN, } \\
& \text { NO2+NO3 } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (MG/L } \\
& \text { AS N) } \\
& (00631)
\end{aligned}
\] & \[
\begin{gathered}
\text { NITRO- } \\
\text { GEN, } \\
\text { AMMONIA } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (MG/L } \\
\text { AS N) } \\
(00608)
\end{gathered}
\] & \[
\begin{gathered}
\text { NITRO- } \\
\text { GEN, } \\
\text { NITRATE } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (MG/L } \\
\text { AS N) } \\
(00618)
\end{gathered}
\] & \[
\begin{aligned}
& \text { NITRO- } \\
& \text { GEN, AM- } \\
& \text { MONIA + } \\
& \text { ORGANIC } \\
& \text { DIS. } \\
& \text { (MG/L } \\
& \text { AS N) } \\
& (00623)
\end{aligned}
\] & \[
\begin{aligned}
& \text { NITRO- } \\
& \text { GEN, AM- } \\
& \text { MONIA + } \\
& \text { ORGANIC } \\
& \text { TOTAL } \\
& \text { (MG/L } \\
& \text { AS N) } \\
& (00625)
\end{aligned}
\] & \[
\begin{gathered}
\text { PHOS- } \\
\text { PHORUS } \\
\text { TOTAL } \\
\text { (MG/L } \\
\text { AS P) } \\
(00665)
\end{gathered}
\] & PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
\((00666)\) & \begin{tabular}{l}
PHOS- \\
PHATE, \\
ORTHO, DISSOLVED (MG/L \\
AS PO4) \\
(00660)
\end{tabular} \\
\hline \[
\begin{gathered}
\text { NOV } \\
18 . . .
\end{gathered}
\] & 1.6 & . 27 & . 25 & . 025 & 1.27 & . 104 & 1.25 & . 35 & . 38 & . 057 & . 050 & . 15 \\
\hline DEC 15... & 1.5 & . 28 & . 21 & .018
\(<.001\) & \[
\begin{aligned}
& 1.21 \\
& .007
\end{aligned}
\] & .127
\(<.002\) & 1.19 & . 33 & . 41 & . 050 & E. 036 & . 10 \\
\hline JAN
\[
14 .
\] & 1.8 & . 55 & . 24 & . 024 & 1.41 & . 125 & 1.39 & . 36 & . 67 & . 135 & <. 050 & . 00 \\
\hline \begin{tabular}{l}
MAR \\
11... \\
11...
\end{tabular} & 1.1
1.2 & -- & - & .010
.013 & .950
.970 & \(<.020\)
\(<.020\) & .940
.957 & .18
.18 & .43
.43 & .085
.087 & .012
.012 & .00
.00 \\
\hline \[
\begin{aligned}
& \text { APR } \\
& 01 \ldots \\
& 01 \ldots \\
& 22 \ldots
\end{aligned}
\] & .98
--
.99 & .19
--
.40 & .19
--
.17 & .012
--
.018 & \[
\begin{gathered}
.739 \\
-- \\
.784
\end{gathered}
\] & .059
--
.028 & .727
--
.766 & .24
--
.20 & .24
--
.43 & .023
--
.074 & .011
.-
.016 & .02
--
.02 \\
\hline \[
\begin{aligned}
& \text { MAY } \\
& 06 \ldots \\
& 20 \ldots \\
& 20 \ldots
\end{aligned}
\] & .90
.82 & .16
.22 & .10
.16 & \[
\begin{array}{r}
.012 \\
.010 \\
<.001
\end{array}
\] & \[
\begin{aligned}
& .735 \\
& .606 \\
& .008
\end{aligned}
\] & \[
\begin{aligned}
& .068 \\
& .060 \\
& .003
\end{aligned}
\] & .723
.596 & .17
.22 & .23
.28 & \[
\begin{aligned}
& .026 \\
& .029
\end{aligned}
\] & \[
\begin{aligned}
& .016 \\
& .011
\end{aligned}
\] & .03
.02
.00 \\
\hline \[
\begin{aligned}
& \text { JUN } \\
& 08 \ldots \\
& 08 \ldots \\
& 30 \ldots
\end{aligned}
\] & 1.1
-8
1.3 & .16
--
.25 & .27
--
.23 & .019
--
.030 & \[
\begin{gathered}
.810 \\
1.02
\end{gathered}
\] & .043
.039 & \begin{tabular}{c}
.791 \\
\hline-990
\end{tabular} & .31
--
.27 & .20
--
.28 & \[
\begin{aligned}
& .023 \\
& .0-- \\
& .017
\end{aligned}
\] & .011
.0
.007 & . 02 \\
\hline \[
\begin{aligned}
& \text { AUG } \\
& 05 \ldots \\
& 05 \ldots \\
& 26 \ldots
\end{aligned}
\] & 1.4
1.2
1.2 & .32
.31
.29 & .63
.43
.25 & \[
\begin{aligned}
& .013 \\
& .013 \\
& .017
\end{aligned}
\] & \[
\begin{aligned}
& .684 \\
& .688 \\
& .882
\end{aligned}
\] & \[
\begin{aligned}
& .037 \\
& .036 \\
& .086
\end{aligned}
\] & \[
\begin{aligned}
& .671 \\
& .675 \\
& .865
\end{aligned}
\] & \[
\begin{aligned}
& .67 \\
& .46 \\
& .34
\end{aligned}
\] & \[
\begin{aligned}
& .35 \\
& .34 \\
& .38
\end{aligned}
\] & \[
\begin{aligned}
& .021 \\
& .020 \\
& .030
\end{aligned}
\] & \[
\begin{aligned}
& .008 \\
& .009 \\
& .017
\end{aligned}
\] & .00
.00
.03 \\
\hline
\end{tabular}


OHIO RIVER MAIN STEM
03216600 OHIO RIVER AT GREENUP DAM, KY--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DATE & \[
\begin{gathered}
\text { COBALT, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS CO) } \\
(01035)
\end{gathered}
\] & \[
\begin{aligned}
& \text { COPPER, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS CU) } \\
& (01040)
\end{aligned}
\] & \[
\begin{aligned}
& \text { IRON, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS FE) } \\
& (01046 \text { ) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LEAD, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS PB) } \\
& (01049 \text { ) }
\end{aligned}
\] & LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
\((01130)\) & \begin{tabular}{l}
MANGA- \\
NESE, DISSOLVED (UG/L AS MN) (01056)
\end{tabular} & MOLYBDENUM, DISSOLVED (UG/L AS MO) (01060) & \[
\begin{aligned}
& \text { NICKEL, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS NI) } \\
& (01065)
\end{aligned}
\] & SELENIUM, DISSOLVED (UG/L AS SE) (01145) & \[
\begin{gathered}
\text { SILVER, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS AG) } \\
(01075)
\end{gathered}
\] & \[
\begin{gathered}
\text { STRON- } \\
\text { TIUM, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS SR) } \\
(01080)
\end{gathered}
\] & \[
\begin{gathered}
\text { THAL- }- \\
\text { LIUM, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS TL) } \\
(01057)
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { NOV } \\
& 18 . .
\end{aligned}
\] & -- & -- & <10 & -- & 12 & -- & -- & -- & <1 & -- & 287 & -- \\
\hline DEC 15. 15. & <-- 20 & <. 20 & E6.3
\(<3.0\) & <. 30 & 11 & \[
<.10
\] & \[
\begin{gathered}
-- \\
<.20
\end{gathered}
\] & \[
<-\overline{--}
\] & 2 & \[
\begin{gathered}
-- \\
<.20
\end{gathered}
\] & \[
\begin{aligned}
& 304 \\
& <.10
\end{aligned}
\] & <-- \\
\hline JAN
14.. & <1.0 & 1.6 & 13 & <1.0 & 7 & 40 & 2.7 & 2.2 & <1 & <1.0 & 182 & -- \\
\hline \begin{tabular}{l}
MAR \\
11... \\
11...
\end{tabular} & -- & -- & 24
17 & -- & E4
E3 & -- & -- & -- & <1 & -- & \[
\begin{aligned}
& 135 \\
& 133
\end{aligned}
\] & --- \\
\hline \begin{tabular}{l}
APR \\
01.. \\
01.. \\
22..
\end{tabular} & -- & -- & 16
-14 & --
--
-- & \begin{tabular}{c} 
E6 \\
\hline-11
\end{tabular} & -- & --- & -- & \[
\begin{gathered}
<1 \\
<-1
\end{gathered}
\] & -- & \begin{tabular}{l}
\[
156
\] \\
146
\end{tabular} & -- \\
\hline \[
\begin{aligned}
& \text { MAY } \\
& 06 \ldots \\
& 20 \ldots \\
& 20 \ldots
\end{aligned}
\] & \(<1.0\)
--20 & 1.5
--
\(<.20\) & \[
\begin{gathered}
18 \\
<10 \\
<3.0
\end{gathered}
\] & \(<1.0\)
-0
.36 & 7
7 & \begin{tabular}{l}
39 \\
\hline-10
\end{tabular} & 1.6
--
\(<.20\) & 1.9
--
\(<.50\) & \(<1\)
\(<1\)
- & \begin{tabular}{c}
\(<1.0\) \\
\hline-20
\end{tabular} & \[
\begin{aligned}
& 162 \\
& 161 \\
& <.10
\end{aligned}
\] & <-- 10 \\
\hline \begin{tabular}{l}
JUN \\
08... \\
08... \\
30
\end{tabular} & <1.0 & --
--
1.8 & \[
\begin{gathered}
<10 \\
-- \\
<10
\end{gathered}
\] & <1.0 & 7
-
9 & 1.8 & 5.5 & 1.6 & \(<1\)
\(<1\) & <1.0 & \begin{tabular}{l}
219 \\
233
\end{tabular} & -- \\
\hline \[
\begin{aligned}
& \text { AUG } \\
& 05 \ldots \\
& 05 \ldots \\
& 26 \ldots
\end{aligned}
\] & --
--
\(<1.0\) & --
--
2.2 & \[
\begin{aligned}
& <10 \\
& <10 \\
& <10
\end{aligned}
\] & \[
\begin{array}{r}
-- \\
-- \\
<1.0
\end{array}
\] & \[
\begin{aligned}
& 15 \\
& 14
\end{aligned}
\] &  & \[
\begin{array}{r}
-- \\
7 .- \\
7.8
\end{array}
\] & \[
\begin{array}{r}
-- \\
2 .- \\
2.8
\end{array}
\] & \[
\begin{aligned}
& <1 \\
& <1 \\
& <1
\end{aligned}
\] & \[
\begin{array}{r}
-- \\
-1.0
\end{array}
\] & \[
\begin{aligned}
& 266 \\
& 264 \\
& 256
\end{aligned}
\] & -- \\
\hline
\end{tabular}


OHIO RIVER MAIN STEM
03216600 OHIO RIVER AT GREENUP DAM, KY--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & DEETHYL & & & & & & & & & \\
\hline DATE & \[
\begin{aligned}
& \text { CYANA- } \\
& \text { ZINE, } \\
& \text { WATER, } \\
& \text { DISS, } \\
& \text { REC } \\
& \text { (UG/L) } \\
& (04041)
\end{aligned}
\] & \[
\begin{aligned}
& \text { ATRA- } \\
& \text { ZINE, } \\
& \text { WATER, } \\
& \text { DISS, } \\
& \text { REC } \\
& \text { (UG/L) } \\
& (04040)
\end{aligned}
\] & DI-
AZINON,
DIS-
SOLVED
(UG/L)
\((39572)\) & \[
\begin{gathered}
\text { DI- } \\
\text { ELDRIN } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L) } \\
(39381)
\end{gathered}
\] & \[
\begin{aligned}
& \text { FONOFOS } \\
& \text { WATER } \\
& \text { DISS } \\
& \text { REC } \\
& \text { (UG/L) } \\
& (04095)
\end{aligned}
\] & \[
\begin{aligned}
& \text { LINDANE } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L) } \\
& (39341)
\end{aligned}
\] & \[
\begin{aligned}
& \text { MALA- } \\
& \text { THION, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L) } \\
& (39532)
\end{aligned}
\] & \[
\begin{aligned}
& \text { METRI- } \\
& \text { BUZIN } \\
& \text { SENCOR } \\
& \text { WATER } \\
& \text { DISSOLV } \\
& \text { (UG/L) } \\
& (82630)
\end{aligned}
\] & \[
\begin{aligned}
& \text { METO- } \\
& \text { LACHLOR } \\
& \text { WATER } \\
& \text { DISSOLV } \\
& \text { (UG/L) } \\
& \text { (39415) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { P,P' } \\
& \text { DDE } \\
& \text { DISSOLV } \\
& \text { (UG/L) } \\
& (34653)
\end{aligned}
\] & \[
\begin{gathered}
\text { PARA- } \\
\text { THION, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L) } \\
(39542)
\end{gathered}
\] \\
\hline \multicolumn{12}{|l|}{NOV} \\
\hline 18. & <. 0040 & E. 0157 & . 005 & <. 001 & <. 0030 & \(<.004\) & <. 005 & <. 004 & . 015 & <. 0060 & <. 004 \\
\hline \multicolumn{12}{|l|}{DEC} \\
\hline 15. & E. 0039 & E. 0068 & \(<.002\) & \(<.001\) & \(<.0030\) & \(<.004\) & \(<.005\) & \(<.004\) & . 011 & <. 0060 & \(<.004\) \\
\hline 15. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JAN} \\
\hline 14. & . 0049 & E. 0079 & <. 002 & <. 001 & \(<.0030\) & \(<.004\) & <. 005 & \(<.004\) & . 010 & E. 0016 & \(<.004\) \\
\hline \multicolumn{12}{|l|}{MAR} \\
\hline 11. & \(<.0040\) & E. 0050 & \(<.002\) & \(<.001\) & <. 0030 & <. 004 & \(<.005\) & \(<.004\) & . 008 & <. 0060 & \(<.004\) \\
\hline 11. & <. 0040 & E. 0049 & <. 002 & <. 001 & <. 0030 & <. 004 & <. 005 & <. 004 & . 008 & <. 0060 & <. 004 \\
\hline \multicolumn{12}{|l|}{APR} \\
\hline 01. & \(<.0040\) & E. 0053 & \(<.002\) & \(<.001\) & \(<.0030\) & \(<.004\) & \(<.005\) & \(<.004\) & E. 004 & \(<.0060\) & \(<.004\) \\
\hline 01. & \(<.0040\) & <. 0020 & \(<.002\) & \(<.001\) & <. 0030 & \(<.004\) & \(<.005\) & \(<.004\) & <. 002 & <. 0060 & \(<.004\) \\
\hline 22. & <. 0040 & E. 0072 & <. 002 & <. 001 & <. 0030 & <. 004 & <. 005 & <. 004 & . 009 & <. 0060 & <. 004 \\
\hline \multicolumn{12}{|l|}{MAY} \\
\hline 06. & \(<.0040\) & E. 0102 & \(<.002\) & \(<.001\) & <. 0030 & <. 004 & \(<.005\) & <. 004 & . 010 & <. 0060 & \(<.004\) \\
\hline 20. & <. 0040 & E. 0083 & <. 002 & <. 001 & <. 0030 & <. 004 & <. 005 & <. 004 & . 010 & <. 0060 & <. 004 \\
\hline 20. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JUN} \\
\hline 08. & \(<.0040\) & E. 0076 & E. 002 & \(<.001\) & \(<.0030\) & \(<.004\) & \(<.005\) & \(<.004\) & . 023 & \(<.0060\) & \(<.004\) \\
\hline 08. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 30. & \(<.0100\) & E. 0408 & E. 004 & <. 001 & \(<.0030\) & \(<.004\) & <. 005 & \(<.004\) & . 104 & <. 0060 & <. 004 \\
\hline \multicolumn{12}{|l|}{AUG} \\
\hline 05. & -- & -- & -- & -- & -- & - & -- & -- & -- & -- & -- \\
\hline 05. & \(<.0040\) & E. 0156 & \(<.002\) & \(<.001\) & \(<.0030\) & \(<.004\) & \(<.005\) & \(<.004\) & . 018 & \(<.0060\) & \(<.004\) \\
\hline 26... & \(<.0040\) & E. 0164 & <. 002 & <. 001 & <. 0030 & <. 004 & <. 005 & <. 004 & . 020 & <. 0060 & <. 004 \\
\hline
\end{tabular}


OHIO RIVER MAIN STEM
03216600 OHIO RIVER AT GREENUP DAM, KY--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{} & & & & & & & & & & & \\
\hline & ETHO- & EPTC & \[
\begin{aligned}
& \text { LIN- } \\
& \text { URON }
\end{aligned}
\] & \begin{tabular}{l}
METHYL \\
AZIN-
\end{tabular} & \begin{tabular}{l}
METHYL \\
PARA-
\end{tabular} & MOL- & NAPROPAMIDE & \[
\begin{aligned}
& \text { PEB- } \\
& \text { ULATE }
\end{aligned}
\] & PERMETHRIN & PHORATE & PRONAMIDE \\
\hline & WATER & WATER & WATER & PHOS & THION & WATER & WATER & WATER & CIS & WATER & WATER \\
\hline & FLTRD & FLTRD & FLTRD & WAT FLT & WAT FLT & FLTRD & FLTRD & FILTRD & WAT FLT & FLTRD & FLTRD \\
\hline & 0.7 U \\
\hline \multirow[t]{2}{*}{DATE} & GF, REC (UG/L) & GF, REC (UG/L) & GF, REC (UG/L) & \[
\begin{aligned}
& \text { GF, REC } \\
& \text { (UG/L) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { GF, REC } \\
& \text { (UG/L) }
\end{aligned}
\] & \begin{tabular}{l}
GF, REC \\
(UG/L)
\end{tabular} & GF, REC (UG/L) & \[
\begin{aligned}
& \text { GF, REC } \\
& \text { (UG/L) }
\end{aligned}
\] & GF, REC (UG/L) & \[
\begin{aligned}
& \text { GF, REC } \\
& \text { (UG/L) }
\end{aligned}
\] & GF, REC (UG/L) \\
\hline & (82672) & (82668) & (82666) & (82686) & (82667) & (82671) & (82684) & (82669) & (82687) & (82664) & (82676) \\
\hline \multicolumn{12}{|l|}{NOV} \\
\hline 18... & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{DEC} \\
\hline 15.. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 15. & -- & -- & & & & -- & -- & -- & & -- & \\
\hline \multicolumn{12}{|l|}{JAN} \\
\hline 14. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{MAR} \\
\hline 11. & <. 0030 & <. 0080 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 11. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{APR} \\
\hline 01... & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 01. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 22. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{MAY} \\
\hline 06... & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 20. & <. 0030 & <. 0020 & <. 0020 & E. 0162 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 20.. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JUN} \\
\hline 08... & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 08.. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 30. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{AUG} \\
\hline 05... & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 05... & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 26... & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <.0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { PRO- } \\
\text { PANIL }
\end{gathered}
\] & \[
\begin{gathered}
\text { PRO- } \\
\text { PARGITE }
\end{gathered}
\] & TEBUTHIURON & \[
\begin{aligned}
& \text { TER- } \\
& \text { BACIL }
\end{aligned}
\] & \[
\begin{aligned}
& \text { TER- } \\
& \text { BUFOS }
\end{aligned}
\] & \begin{tabular}{l}
TRIAL- \\
LATE
\end{tabular} & \[
\begin{gathered}
\text { TRI- } \\
\text { FLUR- }
\end{gathered}
\] & \[
\begin{gathered}
\text { THIO- } \\
\text { BENCARB }
\end{gathered}
\] & & \begin{tabular}{l}
SEDI- \\
MENT,
\end{tabular} & \[
\begin{aligned}
& \text { SED. } \\
& \text { SUSP. }
\end{aligned}
\] \\
\hline & WATER & WATER & WATER & WATER & WATER & WATER & ALIN & WATER & SEDI- & DIS- & SIEVE \\
\hline & FLTRD & FLTRD & FLTRD & FLTRD & FLTRD & FLTRD & WAT FLT & FLTRD & MENT, & CHARGE, & DIAM. \\
\hline & 0.7 U & SUS- & SUS- & \% FINER \\
\hline DATE & \begin{tabular}{l}
GF, REC \\
(UG/L)
\end{tabular} & GF, REC (UG/L) & \begin{tabular}{l}
GF, REC \\
(UG/L)
\end{tabular} & GF, REC (UG/L) & \begin{tabular}{l}
GF, REC \\
(UG/L)
\end{tabular} & \begin{tabular}{l}
GF, REC \\
(UG/L)
\end{tabular} & GF, REC (UG/L) & GF, REC (UG/L) & \begin{tabular}{l}
PENDED \\
(MG/L)
\end{tabular} & \[
\begin{aligned}
& \text { PENDED } \\
& \text { (T/DAY) }
\end{aligned}
\] & \begin{tabular}{l}
THAN \\
.062 MM
\end{tabular} \\
\hline & (82679) & (82685) & (82670) & (82665) & (82675) & (82678) & (82661) & (82681) & (80154) & (80155) & (70331) \\
\hline \multicolumn{12}{|l|}{NOV} \\
\hline 18. & <. 0040 & <. 0130 & E. 0055 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & <. 0020 & 7 & 257 & 97 \\
\hline \multicolumn{12}{|l|}{DEC} \\
\hline 15. & \(<.0040\) & \(<.0130\) & \(<.0100\) & <. 0070 & <. 0130 & \(<.0010\) & <. 0020 & <. 0020 & 6 & 502 & 97 \\
\hline 15. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JAN} \\
\hline 14. & <. 0040 & <. 0130 & <. 0100 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & <. 0020 & 128 & 51800 & 82 \\
\hline \multicolumn{12}{|l|}{MAR} \\
\hline 11. & <. 0040 & <. 0130 & \(<.0100\) & <. 0070 & <. 0130 & <. 0010 & E. 0022 & <. 0020 & 60 & 24900 & 96 \\
\hline 11. & <. 0040 & <. 0130 & <. 0100 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & <. 0020 & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{APR} \\
\hline 01. & \(<.0040\) & \(<.0130\) & \(<.0100\) & \(<.0070\) & \(<.0130\) & \(<.0010\) & <. 0020 & \(<.0020\) & 8 & 1100 & 98 \\
\hline 01 & <. 0040 & \(<.0130\) & \(<.0100\) & <. 0070 & <. 0130 & \(<.0010\) & <. 0020 & <. 0020 & -- & -- & -- \\
\hline 22 & <. 0040 & <. 0130 & <. 0100 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & <. 0020 & 48 & 9250 & 97 \\
\hline \multicolumn{12}{|l|}{MAY} \\
\hline 06. & \(<.0040\) & \(<.0130\) & \(<.0100\) & <. 0070 & <. 0130 & \(<.0010\) & <. 0020 & <. 0020 & 6 & 408 & 98 \\
\hline 20. & <. 0040 & <. 100 & <. 0100 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & <. 0020 & 10 & 1230 & 99 \\
\hline 20. & & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JUN} \\
\hline 08. & <. 0040 & \(<.0130\) & \(<.0100\) & <. 0070 & <. 0130 & \(<.0010\) & <. 0020 & <. 0020 & 7 & 399 & 98 \\
\hline 08. & -- & -- & -- & -- & -- & -- & -- & -- & - & -- & -- \\
\hline 30. & <. 0040 & -- & E. 0054 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & <. 0020 & 5 & 308 & 98 \\
\hline \multicolumn{12}{|l|}{AUG} \\
\hline 05. & -- & -- & -- & -- & -- & -- & -- & -- & 6 & 135 & 96 \\
\hline 05. & \(<.0040\) & \(<.0130\) & E. 0054 & <. 0070 & <. 0130 & \(<.0010\) & <. 0020 & <. 0020 & -- & -- & -- \\
\hline 26.. & <. 0040 & <. 0130 & <. 0100 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & <. 0020 & 11 & 909 & 98 \\
\hline
\end{tabular}


03217000 TYGARTS CREEK NEAR GREENUP, KY
LOCATION.--Lat \(38^{\circ} 33^{\prime} 51^{\prime \prime}\), long \(82^{\circ} 57^{\prime} 08^{\prime \prime}\), Greenup County, Hydrologic Unit 05090103, on downstream side of center pier of bridge on State Highway 7, 100 ft downstream from Lick Run, 0.4 mi upstream from White Oak Creek, 6.5 mi west of Greenup, and at mile 28.1.
DRAINAGE AREA. \(--242 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--August 1940 to current year.
REVISED RECORDS.--WSP 1113: 1942-43, 1945-46. WSP 1625: 1958. WSP 1725: Drainage area. WRD KY 79-1: 1948(P), 1950 (M), 1952 (M), \(1962(\mathrm{M}), 1967(\mathrm{P}), 1970(\mathrm{M}), 1972-76(\mathrm{M}), 1978(\mathrm{M})\).
GAGE.--Water-stage recorder. Datum of gage is 547.14 ft above sea level.
REMARKS.--Records fair except for daily discharges below \(10 \mathrm{ft} 3 / \mathrm{s}\), and for those estimated, which are poor. Occasional diversion at low flow caused by withdrawal of water for cooling purposes by gas transmission plant above station.

PEAKS ABOVE BASE.--Peak discharges above base of \(3,500 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{rccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 10 & 0200 & 3020 & 11.92
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 25 & 1.8 & 4.7 & 19 & 173 & 569 & 144 & 224 & 9.7 & 1.2 & 3.5 & 11 \\
\hline 2 & . 58 & 1.8 & 4.7 & e18 & 776 & 432 & 140 & 185 & 8.4 & 1.4 & 2.8 & 7.8 \\
\hline 3 & . 96 & 2.0 & 7.7 & e17 & 644 & 517 & 133 & 157 & 8.0 & 2.4 & 2.2 & 5.8 \\
\hline 4 & 1.4 & 2.4 & 9.6 & e16 & 381 & 1200 & 130 & 137 & 7.8 & 2.3 & 1.8 & 4.3 \\
\hline 5 & 1.2 & 2.3 & 8.8 & e15 & 278 & 714 & 126 & 122 & 7.3 & 1.9 & 1.7 & 3.2 \\
\hline 6 & 1.2 & 2.1 & 7.8 & e25 & 222 & 627 & 115 & 110 & 6.6 & 2.8 & 1.3 & 1.8 \\
\hline 7 & 1.1 & 2.1 & 9.2 & e60 & 208 & 685 & 104 & 99 & 6.2 & 3.4 & 1.0 & . 63 \\
\hline 8 & 2.2 & 2.3 & 11 & e32 & 248 & 447 & 96 & 90 & 5.6 & 2.8 & . 88 & . 47 \\
\hline 9 & 2.1 & 2.7 & 30 & 1260 & 234 & 390 & 93 & 79 & 5.0 & 2.0 & 1.2 & . 59 \\
\hline 10 & 2.1 & 3.5 & 83 & 1560 & 199 & 1140 & 93 & 68 & 4.6 & 2.5 & 1.0 & . 55 \\
\hline 11 & 1.7 & 12 & 69 & e420 & 176 & 887 & 91 & 60 & 3.2 & 2.4 & . 76 & . 43 \\
\hline 12 & 2.0 & 15 & 47 & e270 & 259 & 483 & 85 & 51 & 2.5 & 1.5 & . 60 & . 35 \\
\hline 13 & 2.1 & 5.7 & 39 & 246 & 766 & 340 & 79 & 48 & 3.3 & 1.1 & . 60 & . 29 \\
\hline 14 & 2.0 & 3.0 & 55 & 346 & 537 & 340 & 74 & 49 & 3.7 & . 76 & . 60 & . 26 \\
\hline 15 & 1.8 & 5.2 & 86 & 810 & 375 & 1430 & 74 & 49 & 4.3 & . 49 & . 60 & . 26 \\
\hline 16 & 1.9 & 16 & 83 & 639 & 328 & 1030 & 90 & 49 & 4.5 & . 23 & . 60 & . 26 \\
\hline 17 & 1.5 & 12 & 57 & 438 & 297 & 584 & 109 & 44 & 4.7 & . 13 & . 60 & . 19 \\
\hline 18 & 1.5 & 8.9 & 42 & 808 & 260 & 389 & 101 & 38 & 3.7 & . 19 & . 53 & . 13 \\
\hline 19 & 1.6 & 7.1 & 33 & 781 & 225 & 294 & 92 & 33 & 3.0 & . 16 & . 27 & . 12 \\
\hline 20 & 1.6 & 6.5 & 28 & 423 & 195 & 244 & 92 & 30 & 2.6 & . 13 & . 30 & . 13 \\
\hline 21 & 1.6 & 5.8 & 24 & 552 & 169 & 221 & 133 & 28 & 2.4 & 1.6 & . 15 & . 12 \\
\hline 22 & 1.8 & 4.7 & 23 & 807 & 148 & 202 & 346 & 26 & 2.4 & 25 & . 09 & . 12 \\
\hline 23 & 1.7 & 4.0 & 24 & 1110 & 133 & 181 & 274 & 24 & 2.4 & 13 & . 16 & . 12 \\
\hline 24 & 1.5 & 4.0 & 37 & 1990 & 125 & 232 & 203 & 24 & 2.5 & 6.9 & 28 & . 12 \\
\hline 25 & 1.3 & 3.3 & 37 & 841 & 121 & 368 & 158 & 23 & 2.3 & 5.4 & 324 & . 12 \\
\hline 26 & 1.4 & 4.2 & 38 & 458 & 124 & 295 & 132 & 22 & 2.0 & 6.5 & 132 & . 12 \\
\hline 27 & 1.3 & 3.6 & 32 & 298 & 148 & 245 & 127 & 22 & 1.8 & 11 & 95 & . 12 \\
\hline 28 & 1.7 & 3.6 & 27 & 219 & 358 & 215 & 648 & 21 & 1.7 & 7.7 & 58 & . 12 \\
\hline 29 & 1.9 & 4.0 & 23 & 182 & --- & 191 & 549 & 19 & 1.4 & 5.9 & 35 & . 18 \\
\hline 30 & 1.8 & 4.7 & 21 & 154 & -- & 170 & 298 & 14 & 1.1 & 4.4 & 23 & . 27 \\
\hline 31 & 1.8 & --- & 20 & 135 & --- & 151 & --- & 12 & --- & 4.0 & 16 & --- \\
\hline TOTAL & 48.59 & 156.3 & 1021.5 & 14949 & 8107 & 15213 & 4929 & 1957 & 124.7 & 121.19 & 734.24 & 39.97 \\
\hline MEAN & 1.57 & 5.21 & 33.0 & 482 & 290 & 491 & 164 & 63.1 & 4.16 & 3.91 & 23.7 & 1.33 \\
\hline MAX & 2.2 & 16 & 86 & 1990 & 776 & 1430 & 648 & 224 & 9.7 & 25 & 324 & 11 \\
\hline MIN & . 25 & 1.8 & 4.7 & 15 & 121 & 151 & 74 & 12 & 1.1 & . 13 & . 09 & . 12 \\
\hline CFSM & . 01 & . 02 & . 14 & 1.99 & 1.20 & 2.03 & . 68 & . 26 & . 02 & . 02 & . 10 & . 01 \\
\hline IN. & . 01 & . 02 & . 16 & 2.30 & 1.25 & 2.34 & . 76 & . 30 & . 02 & . 02 & . 11 & . 01 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1940 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 56.5 & 152 & 381 & 488 & 609 & 698 & 513 & 389 & 179 & 115 & 80.4 & 66.1 \\
MAX & 509 & 869 & 1954 & 1665 & 1953 & 2092 & 1513 & 1309 & 994 & 645 & 445 & 1031 \\
(WY) & 1976 & 1987 & 1979 & 1950 & 1989 & 1997 & 1972 & 1996 & 1961 & 1960 & 1979 & 1950 \\
MIN & .35 & .70 & 3.23 & 31.1 & 20.7 & 80.8 & 90.9 & 27.6 & 4.16 & 3.91 & 2.09 & 1.21 \\
(WY) & 1954 & 1954 & 1954 & 1977 & 1954 & 1941 & 1941 & 1941 & 1999 & 1999 & 1944 & 1998
\end{tabular}

TYGARTS CREEK BASIN
03217000 TYGARTS CREEK NEAR GREENUP, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & R YEAR & FOR 1999 WAT & R YEAR & WATER YEA & \multicolumn{2}{|l|}{\(1940-1999\)} \\
\hline ANNUAL TOTAL & 117141.14 & & 47401.49 & & & & \\
\hline ANNUAL MEAN & 321 & & 130 & & 309 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 589 & & 1979 \\
\hline LOWEST ANNUAL MEAN & & & & & 67.5 & & 1954 \\
\hline HIGHEST DAILY MEAN & 4530 & Jan 8 & 1990 & Jan 24 & 25800 & Mar 2 & 1997 \\
\hline LOWEST DAILY MEAN & . 25 & Oct 1 & . 09 & Aug 22 & . 00 & Aug 24 & 1952 \\
\hline ANNUAL SEVEN-DAY MINIMUM & . 63 & Sep 27 & . 12 & Sep 21 & . 00 & Sep 17 & 1955 \\
\hline INSTANTANEOUS PEAK FLOW & & & 3020 & Jan 10 & 34400 & Mar 2 & 1997 \\
\hline INSTANTANEOUS PEAK STAGE & & & 11.92 & Jan 10 & 23.65 & Mar 2 & 1997 \\
\hline INSTANTANEOUS LOW FLOW & & & & & . 00 & Aug 24 & 1952 \\
\hline ANNUAL RUNOFF (CFSM) & 1.33 & & . 54 & & 1.28 & & \\
\hline ANNUAL RUNOFF (INCHES) & 18.01 & & 7.29 & & 17.37 & & \\
\hline 10 PERCENT EXCEEDS & 894 & & 389 & & 700 & & \\
\hline 50 PERCENT EXCEEDS & 78 & & 15 & & 92 & & \\
\hline 90 PERCENT EXCEEDS & 1.5 & & . 59 & & 4.7 & & \\
\hline
\end{tabular}
e Estimated


03237250 KINNICONICK CREEK AT TANNERY, KY
LOCATION.--Lat \(38^{\circ} 32^{\prime} 36^{\prime \prime}\), long \(83^{\circ} 13^{\prime} 29^{\prime \prime}\), Lewis County, Hydrologic Unit 05090201, near right bank on downstream side of bridge on County Highway \(1149,0.35 \mathrm{mi}\) upstream from Trace Creek, 0.5 mi west of Tannery, and 10.2 mi upstream from mouth.
DRAINAGE AREA. \(--201 \mathrm{mi}^{2}\)
PERIOD OF RECORD.--October 1991 to current year.
GAGE.--Water-stage recorder. Datum of gage is 535.34 ft above sea level.
REMARKS.--Records poor.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 1.8 & . 63 & 33 & 30 & 154 & 791 & 95 & 40 & 1.0 & 5.8 & . 30 & 3.7 \\
\hline 2 & 1.5 & . 64 & 38 & 29 & 1150 & 523 & 98 & 24 & 2.7 & 5.4 & . 22 & 4.0 \\
\hline 3 & 1.4 & . 68 & 42 & e210 & 688 & 739 & 86 & 16 & 3.5 & 6.9 & . 12 & 3.5 \\
\hline 4 & 1.3 & . 71 & 44 & e185 & 454 & 1350 & 79 & 11 & 3.5 & 6.5 & . 04 & 3.0 \\
\hline 5 & 1.2 & . 84 & 46 & e95 & 322 & 783 & 75 & 8.4 & 3.2 & 5.7 & . 00 & 2.4 \\
\hline 6 & 1.1 & 1.0 & 49 & e66 & 248 & 818 & 65 & 6.6 & 3.0 & 5.2 & . 00 & 2.0 \\
\hline 7 & 1.1 & 1.2 & 54 & 35 & 298 & 945 & 56 & 4.8 & 2.8 & 4.1 & . 11 & 1.7 \\
\hline 8 & 1.1 & 1.3 & 60 & e67 & 528 & 583 & 49 & 3.1 & 2.8 & 2.8 & . 35 & 1.4 \\
\hline 9 & 1.1 & 1.5 & 67 & e1450 & 388 & 525 & 48 & 1.7 & 2.8 & 1.9 & . 83 & 1.3 \\
\hline 10 & 1.0 & 1.8 & 94 & e1120 & 298 & 1390 & 48 & . 84 & 2.7 & 1.5 & 1.3 & 1.2 \\
\hline 11 & . 88 & 2.3 & 93 & e190 & 227 & 899 & 41 & . 37 & 2.1 & 1.4 & 1.6 & 1.0 \\
\hline 12 & . 95 & 2.5 & 82 & 61 & 283 & 544 & 30 & . 16 & 1.6 & 1.3 & 1.7 & . 90 \\
\hline 13 & . 99 & 2.8 & 77 & 125 & 851 & 393 & 24 & . 04 & 1.3 & 1.2 & 1.7 & . 79 \\
\hline 14 & 1.1 & 3.2 & 78 & 668 & 546 & 362 & 20 & . 08 & 2.5 & 1.2 & 1.5 & . 69 \\
\hline 15 & 1.1 & 3.7 & 102 & 1060 & 454 & 1140 & 21 & 6.4 & 3.8 & 1.1 & 1.4 & . 55 \\
\hline 16 & 1.2 & 4.2 & 80 & 527 & 429 & 1130 & 43 & 2.0 & 5.1 & . 91 & 1.2 & . 43 \\
\hline 17 & 1.2 & 4.8 & 66 & 576 & 404 & 876 & 83 & . 78 & 7.6 & . 85 & 1.1 & . 32 \\
\hline 18 & 1.1 & 5.3 & 55 & 1960 & 394 & 576 & 75 & . 67 & 7.0 & . 58 & . 93 & . 23 \\
\hline 19 & 1.2 & 5.9 & 50 & 1020 & 331 & 386 & 70 & . 49 & 6.0 & . 31 & . 85 & . 17 \\
\hline 20 & 1.1 & 6.6 & 45 & 476 & 262 & 302 & 101 & . 20 & 4.9 & . 19 & . 94 & . 12 \\
\hline 21 & . 93 & 7.1 & 43 & 853 & 193 & 255 & 350 & . 01 & 4.7 & . 15 & . 87 & . 06 \\
\hline 22 & . 76 & 7.6 & 53 & 1300 & 147 & 203 & 793 & . 00 & 4.7 & . 09 & . 77 & . 00 \\
\hline 23 & . 59 & 8.3 & 73 & 1110 & 117 & 158 & 419 & . 01 & 4.3 & . 00 & . 67 & . 00 \\
\hline 24 & . 48 & 8.7 & 93 & 1490 & 104 & 196 & 230 & . 46 & 3.7 & . 16 & . 74 & . 00 \\
\hline 25 & . 42 & 9.3 & e66 & 645 & 98 & 267 & 97 & 1.3 & 3.3 & . 49 & 33 & . 00 \\
\hline 26 & . 40 & 12 & e54 & 377 & 111 & 231 & 45 & 2.7 & 2.8 & . 53 & 58 & . 00 \\
\hline 27 & . 37 & 13 & e43 & 270 & 174 & 190 & 26 & 4.1 & 3.1 & . 66 & 17 & . 00 \\
\hline 28 & . 45 & 15 & 40 & 200 & 645 & 163 & 80 & 4.2 & 5.9 & . 61 & 9.5 & . 00 \\
\hline 29 & . 51 & 18 & 36 & 144 & --- & 138 & 170 & 2.9 & 6.4 & . 54 & 5.6 & . 00 \\
\hline 30 & . 54 & 23 & 32 & 102 & --- & 115 & 86 & 1.7 & 6.3 & . 46 & 5.1 & . 00 \\
\hline 31 & . 62 & -- & 30 & 78 & --- & 96 & --- & . 86 & --- & . 38 & 4.0 & -- \\
\hline TOTAL & 29.49 & 173.60 & 1818 & 16519 & 10298 & 17067 & 3503 & 145.87 & 115.1 & 58.91 & 151.44 & 29.46 \\
\hline MEAN & . 95 & 5.79 & 58.6 & 533 & 368 & 551 & 117 & 4.71 & 3.84 & 1.90 & 4.89 & . 98 \\
\hline MAX & 1.8 & 23 & 102 & 1960 & 1150 & 1390 & 793 & 40 & 7.6 & 6.9 & 58 & 4.0 \\
\hline MIN & . 37 & . 63 & 30 & 29 & 98 & 96 & 20 & . 00 & 1.0 & . 00 & . 00 & . 00 \\
\hline CFSM & . 00 & . 03 & . 29 & 2.65 & 1.83 & 2.74 & . 58 & . 02 & . 02 & . 01 & . 02 & . 00 \\
\hline IN. & . 01 & . 03 & . 34 & 3.06 & 1.91 & 3.16 & . 65 & . 03 & . 02 & . 01 & . 03 & . 01 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
MEAN & 29.3 & 111 & 234 & 574 & 511 & 813 & 426 & 448 & 246 & 77.7 & 53.8 \\
MAX & 130 & 340 & 468 & 1025 & 1070 & 2242 & 743 & 1187 & 800 & 161 & 189 \\
(WY) & 1996 & 1994 & 1997 & 1994 & 1998 & 1997 & 1998 & 1996 & 1998 & 1996 & 1995 \\
MIN & .45 & 2.20 & 58.6 & 295 & 293 & 345 & 117 & 4.71 & 3.84 & 1.90 & 4.61 \\
(WY) & 1998 & 1998 & 1999 & 1992 & 1995 & 1995 & 1999 & 1999 & 1999 & 1999 & 1999
\end{tabular}

KINNICONICK CREEK BASIN
03237250 KINNICONICK CREEK AT TANNERY, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & R YEAR & FOR 1999 WAT & R YEAR & WATER YEARS & \multicolumn{3}{|l|}{1992-1999} \\
\hline ANNUAL TOTAL & 134269.19 & & 49908.87 & & & & & \\
\hline ANNUAL MEAN & 368 & & 137 & & 294 & & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 408 & & & 1997 \\
\hline LOWEST ANNUAL MEAN & & & & & 137 & & & 1999 \\
\hline HIGHEST DAILY MEAN & 7300 & Jan 8 & 1960 & Jan 18 & 20000 & Mar & 2 & 1997 \\
\hline LOWEST DAILY MEAN & . 37 & Oct 27 & . 00 & May 22 & . 00 & May & 22 & 1999 \\
\hline ANNUAL SEVEN-DAY MINIMUM & . 45 & Oct 24 & . 00 & Sep 22 & . 00 & Sep & 22 & 1999 \\
\hline INSTANTANEOUS PEAK FLOW & & & 2680 & Jan 18 & 45600 & Mar & 2 & 1997 \\
\hline INSTANTANEOUS PEAK STAGE & & & 8.71 & Jan 18 & 28.04 & Mar & 2 & 1997 \\
\hline ANNUAL RUNOFF (CFSM) & 1.83 & & . 68 & & 1.46 & & & \\
\hline ANNUAL RUNOFF (INCHES) & 24.85 & & 9.24 & & 19.85 & & & \\
\hline 10 PERCENT EXCEEDS & 800 & & 495 & & 712 & & & \\
\hline 50 PERCENT EXCEEDS & 100 & & 5.8 & & 85 & & & \\
\hline 90 PERCENT EXCEEDS & 1.4 & & . 37 & & 1.3 & & & \\
\hline
\end{tabular}
e Estimated


LICKING RIVER BASIN
03250310 ROCK LICK CREEK ABOVE UNNAMED TRIBUTARY NEAR SHARKEY, KY
LOCATION.--Lat \(38^{\circ} 15^{\prime} 04^{\prime \prime}\), long \(83^{\circ} 33^{\prime} 58^{\prime \prime}\), Fleming County, Hydrologic Unit 05100101 , on right bank, 1.1 miles above Drip Springs, 1.3 miles north of Sharkey, and 2.7 mi above mouth.

DRAINAGE AREA. \(--1.66 \mathrm{mi}^{2}\)
PERIOD OF RECORD.--October 1996 to current year.
GAGE.--Water-stage recorder. Datum of gage is 700 ft above mean sea level, from topographic map.
REMARKS.--Records poor.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 01 & . 01 & . 05 & . 26 & 7.8 & 1.8 & e. 82 & . 30 & e. 08 & e. 05 & e. 00 & . 00 \\
\hline 2 & . 00 & . 02 & . 05 & . 31 & 3.4 & 1.2 & e. 73 & e. 26 & e. 10 & e. 02 & e. 00 & . 00 \\
\hline 3 & . 01 & . 02 & . 05 & 2.3 & 2.2 & 7.4 & e. 67 & e. 23 & e. 09 & e. 01 & e. 00 & . 00 \\
\hline 4 & . 01 & . 02 & . 05 & . 61 & 1.4 & 3.2 & e. 61 & e. 19 & e. 08 & e. 00 & e. 00 & . 00 \\
\hline 5 & . 00 & . 02 & . 05 & . 38 & 1.0 & 1.9 & e. 55 & e. 21 & e. 08 & e. 00 & e. 00 & . 00 \\
\hline 6 & . 00 & . 02 & . 05 & . 30 & . 86 & 2.3 & e. 49 & e. 19 & e. 07 & e. 00 & e. 00 & . 00 \\
\hline 7 & . 01 & . 02 & . 08 & . 27 & 1.2 & 1.7 & e. 44 & e. 17 & e. 07 & e. 00 & e. 00 & . 00 \\
\hline 8 & . 01 & . 02 & . 36 & 8.5 & 1.2 & 1.2 & e. 40 & e. 16 & e. 07 & e. 00 & e. 00 & . 00 \\
\hline 9 & . 01 & . 02 & 1.0 & 23 & . 89 & 3.4 & e. 37 & e. 15 & e. 07 & e. 00 & e. 00 & . 00 \\
\hline 10 & . 01 & . 03 & . 60 & 1.8 & . 73 & 3.2 & e. 34 & e. 14 & e. 07 & e. 00 & e. 00 & . 00 \\
\hline 11 & . 01 & . 04 & . 42 & . 91 & . 64 & 1.8 & e. 31 & e. 13 & e. 06 & e. 00 & e. 00 & . 00 \\
\hline 12 & . 01 & . 04 & . 34 & . 70 & 4.4 & 1.3 & e. 28 & e. 12 & e. 06 & e. 00 & . 00 & . 00 \\
\hline 13 & . 01 & . 04 & . 61 & . 91 & 2.5 & 1.0 & e. 26 & e. 15 & e. 07 & e. 00 & . 00 & . 00 \\
\hline 14 & . 01 & . 04 & 1.1 & 3.5 & 1.6 & 7.9 & e. 24 & e. 14 & e. 10 & e. 00 & . 00 & . 00 \\
\hline 15 & . 01 & . 04 & . 72 & 2.8 & 1.5 & 4.4 & e. 60 & e. 13 & e. 05 & e. 00 & . 00 & . 00 \\
\hline 16 & . 01 & . 04 & . 53 & 2.5 & 1.4 & 2.6 & e. 40 & e. 12 & e. 02 & e. 00 & . 00 & . 00 \\
\hline 17 & . 01 & . 04 & . 43 & 8.5 & 1.3 & 1.9 & e. 24 & e. 11 & e. 01 & e. 00 & . 00 & . 00 \\
\hline 18 & . 01 & . 04 & . 35 & 7.9 & 1.2 & 1.5 & e. 28 & e. 12 & e. 00 & e. 00 & . 00 & . 00 \\
\hline 19 & . 01 & . 04 & . 32 & 2.3 & . 92 & 1.3 & e. 41 & e. 11 & e. 00 & e. 00 & . 00 & . 00 \\
\hline 20 & . 01 & . 04 & . 29 & 1.4 & . 75 & 1.1 & . 65 & e. 10 & e. 00 & e. 00 & . 00 & . 00 \\
\hline 21 & . 01 & . 04 & . 28 & 1.3 & . 63 & 1.0 & 1.5 & e. 10 & e. 00 & e. 00 & . 00 & . 00 \\
\hline 22 & . 01 & . 04 & . 90 & 1.3 & . 57 & . 94 & . 89 & e. 09 & e. 00 & e. 00 & . 00 & . 00 \\
\hline 23 & . 01 & . 04 & . 92 & 8.9 & . 52 & 2.6 & . 51 & e. 11 & e. 00 & . 00 & . 00 & . 00 \\
\hline 24 & . 01 & . 04 & . 65 & 3.0 & . 49 & 3.7 & . 35 & e. 13 & e. 00 & . 00 & e. 09 & . 00 \\
\hline 25 & . 01 & . 04 & . 52 & 1.6 & . 52 & 2.4 & . 30 & e. 14 & e. 00 & . 00 & e. 06 & . 00 \\
\hline 26 & . 01 & . 06 & . 43 & 1.1 & . 79 & 1.7 & . 29 & e. 12 & e. 00 & . 00 & e. 01 & . 00 \\
\hline 27 & . 01 & . 06 & . 38 & . 87 & 1.1 & 1.4 & . 29 & e. 11 & . 10 & . 00 & . 00 & . 00 \\
\hline 28 & . 02 & . 06 & . 33 & . 73 & 2.5 & 1.2 & . 47 & e. 10 & . 10 & . 00 & . 00 & . 00 \\
\hline 29 & . 01 & . 06 & . 31 & . 60 & -- & e1.1 & . 53 & e. 09 & . 12 & . 00 & . 00 & . 00 \\
\hline 30 & . 01 & . 06 & . 29 & . 52 & --- & e1.0 & . 36 & e. 09 & . 10 & . 00 & . 00 & . 00 \\
\hline 31 & . 01 & --- & . 27 & . 51 & -- & e. 92 & --- & e. 08 & --- & . 00 & . 00 & - \\
\hline TOTAL & 0.29 & 1.10 & 12.73 & 89.58 & 44.01 & 70.06 & 14.58 & 4.39 & 1.57 & 0.08 & 0.16 & 0.00 \\
\hline MEAN & . 009 & . 037 & . 41 & 2.89 & 1.57 & 2.26 & . 49 & . 14 & . 052 & . 003 & . 005 & . 000 \\
\hline MAX & . 02 & . 06 & 1.1 & 23 & 7.8 & 7.9 & 1.5 & . 30 & . 12 & . 05 & . 09 & . 00 \\
\hline MIN & . 00 & . 01 & . 05 & . 26 & . 49 & . 92 & . 24 & . 08 & . 00 & . 00 & . 00 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1996 - 1999, BY WATER YEAR (WY)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MEAN & . 048 & . 37 & 1.18 & 3.01 & 2.91 & 4.42 & 1.86 & 1.74 & 1.88 & . 55 & . 31 & . 27 \\
\hline MAX & . 13 & . 92 & 2.80 & 3.42 & 3.84 & 8.93 & 4.05 & 3.45 & 4.28 & 1.06 & 1.09 & 1.06 \\
\hline (WY) & 1997 & 1997 & 1997 & 1998 & 1997 & 1997 & 1998 & 1998 & 1997 & 1998 & 1996 & 1996 \\
\hline MIN & . 009 & . 037 & . 31 & 2.71 & 1.57 & 2.07 & . 49 & . 14 & . 052 & . 003 & . 005 & . 000 \\
\hline (WY) & 1998 & 1999 & 1998 & 1997 & 1999 & 1998 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 \\
\hline
\end{tabular}

LICKING RIVER BASIN
03250310 ROCK LICK CREEK ABOVE UNNAMED TRIBUTARY NEAR SHARKEY, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 & \multicolumn{2}{|l|}{CALENDAR YEAR} & \multicolumn{4}{|l|}{FOR 1999 WATER YEAR} & \multicolumn{2}{|l|}{WATER YEARS 1996} & \multicolumn{2}{|l|}{- 1999} \\
\hline ANNUAL TOTAL & & 579.17 & & & 238.55 & & & & & & \\
\hline ANNUAL MEAN & & 1.59 & & & . 65 & & & 1.49 & & & \\
\hline HIGHEST ANNUAL MEAN & & & & & & & & 2.24 & & & 1997 \\
\hline LOWEST ANNUAL MEAN & & & & & & & & . 65 & & & 1999 \\
\hline HIGHEST DAILY MEAN & & 51 & Jan 7 & & 23 & Jan & 9 & 134 & Mar & 1 & 1997 \\
\hline LOWEST DAILY MEAN & & . 00 & Sep 14 & & . 00 & Oct & 2 & . 00 & Sep & 15 & 1997 \\
\hline ANNUAL SEVEN-DAY MINIMUM & & . 00 & Sep 12 & & . 00 & Jun & 18 & . 00 & Sep & 15 & 1997 \\
\hline INSTANTANEOUS PEAK FLOW & & & & & 125 & Jan & 8 & 592 & Mar & 1 & 1997 \\
\hline INSTANTANEOUS PEAK STAGE & & & & & 3.41 & Jan & 8 & 5.65 & Mar & 1 & 1997 \\
\hline 10 PERCENT EXCEEDS & & 3.0 & & & 1.6 & & & 2.8 & & & \\
\hline 50 PERCENT EXCEEDS & & . 52 & & & . 08 & & & . 50 & & & \\
\hline 90 PERCENT EXCEEDS & & . 01 & & & . 00 & & & . 00 & & & \\
\hline
\end{tabular}


03250322 ROCK LICK CREEK AT HIGHWAY 158 NEAR SHARKEY, KY
LOCATION.--Lat \(38^{\circ} 14^{\prime} 50^{\prime \prime}\), long \(83^{\circ} 35^{\prime} 22^{\prime \prime}\), Fleming County, Hydrologic Unit 05100101 , on downstream side of bridge, 0.53 miles downstream from Drip Spring, 1.1 miles above mouth, and 1.9 miles northwest of Sharkey.
DRAINAGE AREA. \(--4.2 \mathrm{mi}^{2}\)
PERIOD OF RECORD.--October 1996 to current year.
GAGE.--Water-stage recorder. Datum of gage is 645.451 ft above sea level.
REMARKS.--Records poor.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 00 & . 06 & . 11 & e. 23 & 34 & 5.9 & 2.8 & . 85 & . 13 & . 00 & . 00 & . 00 \\
\hline 2 & . 00 & . 06 & . 09 & e2.3 & 14 & 4.1 & 2.4 & . 66 & . 15 & . 00 & . 00 & . 00 \\
\hline 3 & . 12 & . 11 & . 09 & 10 & 8.2 & 37 & 2.2 & . 57 & . 14 & . 00 & . 00 & . 00 \\
\hline 4 & . 23 & . 10 & . 10 & e3.5 & 5.6 & 13 & 2.1 & . 50 & . 13 & . 00 & . 00 & . 00 \\
\hline 5 & . 16 & . 06 & . 16 & e2.0 & 4.2 & 7.7 & 1.8 & . 62 & . 12 & . 00 & . 00 & . 00 \\
\hline 6 & . 17 & . 06 & . 14 & e1.3 & 3.8 & 9.1 & 1.6 & . 72 & . 12 & . 00 & . 00 & . 00 \\
\hline 7 & 1.1 & . 05 & 1.9 & e1.0 & 4.8 & 6.4 & 1.3 & . 45 & . 12 & . 00 & . 00 & . 00 \\
\hline 8 & 1.4 & . 05 & 2.5 & e60 & 4.3 & 4.6 & 1.2 & . 34 & . 11 & . 00 & . 00 & . 00 \\
\hline 9 & . 16 & . 05 & 1.7 & 120 & 3.5 & 15 & 1.2 & . 29 & . 10 & . 00 & . 00 & . 00 \\
\hline 10 & . 10 & 1.1 & . 82 & 6.7 & 2.9 & 13 & . 96 & . 24 & . 10 & . 00 & . 00 & . 00 \\
\hline 11 & . 08 & . 51 & . 47 & 3.7 & 2.6 & 7.2 & . 89 & . 22 & . 10 & . 00 & . 00 & . 00 \\
\hline 12 & . 07 & . 22 & . 47 & 2.7 & 21 & 5.1 & . 75 & . 20 & . 09 & . 00 & . 00 & . 00 \\
\hline 13 & . 06 & . 18 & 2.7 & 3.3 & 10 & 4.4 & . 68 & . 20 & . 09 & . 00 & . 00 & . 00 \\
\hline 14 & . 05 & . 16 & 2.4 & 13 & 6.6 & 34 & . 64 & . 21 & . 28 & . 00 & . 00 & . 00 \\
\hline 15 & . 05 & . 15 & 1.3 & 10 & 5.7 & 15 & 1.2 & . 20 & e. 10 & . 00 & . 00 & . 00 \\
\hline 16 & . 04 & . 13 & . 78 & 9.3 & 4.9 & 8.1 & 1.1 & . 19 & e. 00 & . 00 & . 00 & . 00 \\
\hline 17 & . 04 & . 12 & . 67 & 46 & 5.1 & 6.0 & . 64 & . 17 & e. 00 & . 00 & . 00 & . 00 \\
\hline 18 & . 05 & . 12 & . 41 & 34 & 4.4 & 4.6 & . 64 & . 19 & e. 00 & . 00 & . 00 & . 00 \\
\hline 19 & . 32 & . 12 & . 44 & 8.7 & 3.7 & 4.0 & . 86 & . 21 & e. 00 & . 00 & . 00 & . 00 \\
\hline 20 & . 08 & . 23 & . 38 & 5.3 & 3.1 & 3.4 & 1.0 & . 19 & e. 00 & . 00 & . 00 & . 00 \\
\hline 21 & . 06 & . 19 & . 32 & 6.1 & 2.6 & 3.2 & 2.7 & . 17 & e. 00 & . 00 & . 00 & . 00 \\
\hline 22 & . 05 & . 13 & 3.2 & 5.6 & 2.2 & 2.8 & 2.5 & . 17 & e. 00 & . 00 & . 00 & . 00 \\
\hline 23 & . 05 & . 12 & 1.8 & 41 & 2.1 & 8.5 & 1.5 & . 19 & . 00 & . 00 & . 00 & . 00 \\
\hline 24 & . 05 & . 10 & 1.1 & 13 & 1.9 & 11 & . 99 & . 71 & . 00 & . 00 & 1.1 & . 00 \\
\hline 25 & . 05 & . 43 & . 76 & 6.6 & 2.4 & 6.9 & . 73 & . 19 & . 00 & . 00 & . 50 & . 00 \\
\hline 26 & . 05 & . 98 & . 57 & 4.6 & 2.7 & 4.7 & . 97 & . 17 & . 00 & . 00 & . 08 & . 00 \\
\hline 27 & . 04 & . 22 & . 42 & 3.7 & 3.7 & 4.0 & 1.1 & . 16 & . 00 & . 00 & . 00 & . 00 \\
\hline 28 & . 65 & . 16 & . 37 & 3.1 & 8.4 & 3.5 & 2.2 & . 15 & . 19 & . 00 & . 00 & . 00 \\
\hline 29 & . 11 & . 15 & . 34 & 2.5 & -- & 3.0 & 1.9 & . 15 & 1.2 & . 00 & . 00 & . 00 \\
\hline 30 & . 07 & . 13 & . 38 & 2.1 & --- & 2.7 & 1.2 & . 13 & . 02 & . 00 & . 00 & . 00 \\
\hline 31 & . 07 & --- & e. 27 & 2.7 & --- & 2.6 & --- & . 13 & --- & . 00 & . 00 & --- \\
\hline TOTAL & 5.53 & 6.25 & 27.16 & 434.03 & 178.4 & 260.5 & 41.75 & 9.54 & 3.29 & 0.00 & 1.68 & 0.00 \\
\hline MEAN & . 18 & . 21 & . 88 & 14.0 & 6.37 & 8.40 & 1.39 & . 31 & . 11 & . 000 & . 054 & . 000 \\
\hline MAX & 1.4 & 1.1 & 3.2 & 120 & 34 & 37 & 2.8 & . 85 & 1.2 & . 00 & 1.1 & . 00 \\
\hline MIN & . 00 & . 05 & . 09 & . 23 & 1.9 & 2.6 & . 64 & . 13 & . 00 & . 00 & . 00 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrrr} 
MEAN & .21 & 1.99 & 4.48 & 12.9 & 8.75 & 11.0 & 6.83 & 6.64 & 6.48 & 2.91 & .46 \\
MAX & .33 & 4.79 & 10.0 & 14.9 & 12.3 & 17.5 & 16.2 & 13.9 & 15.3 & 6.63 & 1.12 & 190 \\
(WY) & 1997 & 1997 & 1997 & 1998 & 1998 & 1997 & 1998 & 1998 & 1997 & 1998 \\
MIN & .12 & .21 & .88 & 9.93 & 6.37 & 7.11 & 1.39 & .31 & .11 & .000 & .054 & 1997 \\
(WY) & 1998 & 1999 & 1999 & 1997 & 1999 & 1998 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999
\end{tabular}

LICKING RIVER BASIN
03250322 ROCK LICK CREEK AT HIGHWAY 158 NEAR SHARKEY, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & \multicolumn{3}{|l|}{FOR 1998 CALENDAR YEAR} & \multicolumn{4}{|l|}{FOR 1999 WATER YEAR} & WATER YEARS & 1997 & \multicolumn{2}{|l|}{- 1999} \\
\hline ANNUAL TOTAL & 2317.80 & & & & 968.13 & & & & & & \\
\hline ANNUAL MEAN & 6.35 & & & & 2.65 & & & 5.22 & & & \\
\hline HIGHEST ANNUAL MEAN & & & & & & & & 6.55 & & & 1998 \\
\hline LOWEST ANNUAL MEAN & & & & & & & & 2.65 & & & 1999 \\
\hline HIGHEST DAILY MEAN & 232 & Jan & 7 & & 120 & Jan & 9 & 232 & Jan & 7 & 1998 \\
\hline LOWEST DAILY MEAN & . 00 & Sep & 3 & & . 00 & Oct & 1 & . 00 & Sep & 21 & 1997 \\
\hline ANNUAL SEVEN-DAY MINIMUM & . 00 & Sep & 3 & & . 00 & Jun & 16 & . 00 & Sep & 21 & 1997 \\
\hline INSTANTANEOUS PEAK FLOW & & & & & 547 & Jan & 9 & 1160 & Jan & 7 & 1998 \\
\hline INSTANTANEOUS PEAK STAGE & & & & & 5.91 & Jan & 9 & 10.71 & Mar & 2 & 1997 \\
\hline 10 PERCENT EXCEEDS & 12 & & & & 5.9 & & & 11 & & & \\
\hline 50 PERCENT EXCEEDS & 1.7 & & & & . 19 & & & 1.4 & & & \\
\hline 90 PERCENT EXCEEDS & . 05 & & & & . 00 & & & . 00 & & & \\
\hline
\end{tabular}


03251200 NORTH FORK LICKING RIVER NEAR MOUNT OLIVET, KY
LOCATION.--Lat \(38^{\circ} 35^{\prime} 41^{\prime \prime}\), long \(84^{\circ} 01^{\prime} 1^{\prime \prime}\), Bracken County, Hydrologic Unit 05100101 , on right bank, downstream side of bridge on State Highway 875,4 mi northeast of 'Mt. Olivet, and at mile 26.1

DRAINAGE AREA.--226 \(\mathrm{mi}^{2}\)
PERIOD OF RECORD.--June 1991 to current year.
GAGE.--Water-stage recorder. Datum of gage is 622.46 ft above sea level.
REMARKS.--Records fair except for periods of estimated record, which are poor.
PEAKS ABOVE BASE.--Peak discharges above base of \(5,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 10 & 0700 & \(* 3870\) & 17.48
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 87 & 1.1 & 8.2 & 24 & 855 & 752 & 82 & 57 & 2.6 & . 51 & . 00 & . 23 \\
\hline 2 & . 74 & 1.3 & 6.5 & 30 & 1850 & 551 & 85 & 54 & 2.7 & . 48 & . 00 & . 18 \\
\hline 3 & . 88 & 1.4 & 5.0 & 518 & 1140 & 778 & 78 & 49 & 2.6 & . 44 & . 00 & . 14 \\
\hline 4 & 1.1 & 1.5 & 4.4 & 596 & 568 & 1280 & 82 & 44 & 2.6 & . 38 & . 00 & . 12 \\
\hline 5 & 1.4 & 1.5 & 3.8 & e300 & 386 & 895 & 76 & 42 & 2.4 & . 39 & . 00 & . 11 \\
\hline 6 & 1.5 & 1.5 & 3.7 & e200 & 298 & 691 & 90 & 42 & 2.1 & . 37 & . 00 & . 09 \\
\hline 7 & 1.7 & 1.5 & 30 & e100 & 462 & 963 & 88 & 38 & 1.9 & . 32 & . 00 & . 08 \\
\hline 8 & 2.7 & 1.6 & 123 & e96 & 628 & e600 & 72 & 34 & 1.9 & . 29 & . 00 & . 08 \\
\hline 9 & 5.9 & 1.5 & 187 & 2910 & 526 & e700 & 67 & 29 & 1.7 & . 27 & . 00 & . 08 \\
\hline 10 & 5.5 & 1.5 & 124 & 3520 & 359 & e1100 & 62 & 25 & 1.6 & . 25 & . 00 & . 07 \\
\hline 11 & 4.3 & 2.0 & 65 & 966 & 269 & e800 & 57 & 21 & 1.4 & . 22 & . 00 & . 04 \\
\hline 12 & 3.8 & 3.6 & 40 & 312 & 328 & e600 & 54 & 17 & 1.2 & . 21 & . 00 & . 07 \\
\hline 13 & 3.1 & 3.4 & 33 & 551 & 692 & e500 & 50 & 14 & 1.2 & . 21 & . 00 & . 26 \\
\hline 14 & 2.3 & 2.8 & 102 & 1050 & 674 & e960 & 48 & 14 & 1.5 & . 17 & . 00 & . 11 \\
\hline 15 & 1.7 & 2.1 & 84 & 842 & 456 & e1600 & 48 & 13 & 1.4 & . 16 & . 00 & . 05 \\
\hline 16 & 1.4 & 1.7 & 74 & 662 & 365 & e1100 & 56 & 11 & 1.1 & . 16 & . 00 & . 01 \\
\hline 17 & 1.2 & 1.7 & 51 & 563 & 324 & e800 & 50 & 9.3 & 1.0 & . 13 & . 00 & . 00 \\
\hline 18 & 1.0 & 1.9 & 39 & 992 & 292 & e560 & 48 & 8.5 & . 92 & . 12 & . 00 & . 00 \\
\hline 19 & 1.3 & 1.9 & 29 & 1190 & 262 & e400 & 46 & 7.7 & . 90 & . 12 & . 00 & . 00 \\
\hline 20 & 1.3 & 2.2 & 22 & 581 & 221 & e300 & 49 & 6.9 & . 84 & . 10 & . 00 & . 00 \\
\hline 21 & 1.2 & 4.0 & 28 & 1720 & 178 & e260 & 245 & 6.6 & . 74 & . 10 & . 00 & . 00 \\
\hline 22 & 1.1 & 8.1 & 564 & 3310 & 146 & e220 & 127 & 6.0 & . 71 & . 11 & . 00 & . 00 \\
\hline 23 & . 94 & 3.5 & 708 & 1990 & 126 & e240 & 93 & 5.3 & . 70 & . 07 & . 00 & . 00 \\
\hline 24 & . 87 & 2.8 & 323 & 1610 & 116 & e320 & 83 & 5.5 & . 75 & . 07 & . 04 & . 00 \\
\hline 25 & . 80 & 2.7 & 122 & 1110 & 106 & e220 & 66 & 5.1 & . 65 & . 12 & 7.1 & . 00 \\
\hline 26 & . 71 & 43 & 72 & 507 & 111 & e150 & 58 & 4.6 & . 58 & . 09 & 27 & . 00 \\
\hline 27 & . 64 & 38 & 54 & 366 & 152 & 122 & 55 & 4.3 & . 59 & . 07 & 1.7 & . 00 \\
\hline 28 & . 76 & 35 & 44 & 292 & 566 & 105 & 72 & 3.9 & . 55 & . 06 & . 53 & . 00 \\
\hline 29 & . 89 & 22 & 38 & 218 & --- & 94 & 57 & 3.6 & . 64 & . 07 & . 32 & . 00 \\
\hline 30 & . 96 & 12 & 32 & 172 & --- & 84 & 53 & 3.1 & . 60 & . 04 & . 31 & . 00 \\
\hline 31 & 1.0 & --- & 27 & 139 & --- & 77 & --- & 2.8 & --- & . 02 & . 27 & --- \\
\hline TOTAL & 53.56 & 208.8 & 3046.6 & 27437 & 12456 & 17822 & 2197 & 587.2 & 40.07 & 6.12 & 37.27 & 1.72 \\
\hline MEAN & 1.73 & 6.96 & 98.3 & 885 & 445 & 575 & 73.2 & 18.9 & 1.34 & . 20 & 1.20 & . 057 \\
\hline MAX & 5.9 & 43 & 708 & 3520 & 1850 & 1600 & 245 & 57 & 2.7 & . 51 & 27 & . 26 \\
\hline MIN & . 64 & 1.1 & 3.7 & 24 & 106 & 77 & 46 & 2.8 & . 55 & . 02 & . 00 & . 00 \\
\hline CFSM & . 01 & . 03 & . 43 & 3.92 & 1.97 & 2.54 & . 32 & . 08 & . 01 & . 00 & . 01 & . 00 \\
\hline IN. & . 01 & . 03 & . 50 & 4.52 & 2.05 & 2.93 & . 36 & . 10 & . 01 & . 00 & . 01 & . 00 \\
\hline \multicolumn{2}{|l|}{STATISTICS OF} & \multicolumn{2}{|l|}{NTHLY MEAN DATA} & \multicolumn{6}{|l|}{WATER YEARS 1991 - 1999, BY WATER YEAR (WY)} & & & \\
\hline MEAN & 10.4 & 130 & 344 & 704 & 512 & 761 & 361 & 507 & 308 & 113 & 47.0 & 16.7 \\
\hline MAX & 31.4 & 454 & 857 & 1165 & 827 & 1796 & 676 & 1524 & 779 & 296 & 123 & 62.7 \\
\hline (WY) & 1994 & 1994 & 1997 & 1994 & 1998 & 1997 & 1994 & 1996 & 1998 & 1992 & 1995 & 1991 \\
\hline MIN & . 036 & . 61 & 34.0 & 369 & 284 & 228 & 73.2 & 18.9 & 1.34 & . 20 & 1.20 & . 057 \\
\hline (WY) & 1998 & 1998 & 1998 & 1992 & 1995 & 1998 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 \\
\hline
\end{tabular}

LICKING RIVER BASIN
03251200 NORTH FORK LICKING RIVER NEAR MOUNT OLIVET, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & R YEAR & \multicolumn{2}{|l|}{FOR 1999 WATER YEAR} & WATER YEARS & \multicolumn{2}{|l|}{1991-1999} \\
\hline ANNUAL TOTAL & 117894.90 & & 63893.34 & & & & \\
\hline ANNUAL MEAN & 323 & & 175 & & 320 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 440 & & 1997 \\
\hline LOWEST ANNUAL MEAN & & & & & 175 & & 1999 \\
\hline HIGHEST DAILY MEAN & 5530 & Jun 12 & 3520 & Jan 10 & 12400 & Mar 2 & 1997 \\
\hline LOWEST DAILY MEAN & . 64 & Oct 27 & . 00 & Aug 1 & . 00 & Oct 10 & 1997 \\
\hline ANNUAL SEVEN-DAY MINIMUM & . 79 & Sep 14 & . 00 & Aug 1 & . 00 & Oct 17 & 1997 \\
\hline INSTANTANEOUS PEAK FLOW & & & 3870 & Jan 10 & 13500 & Mar 2 & 1997 \\
\hline INSTANTANEOUS PEAK STAGE & & & 17.48 & Jan 10 & 34.71 & Mar 2 & 1997 \\
\hline INSTANTANEOUS LOW FLOW & & & & & . 24 & Oct 7 & 1994 \\
\hline ANNUAL RUNOFF ( CFSM) & 1.43 & & . 77 & & 1.41 & & \\
\hline ANNUAL RUNOFF (INCHES) & 19.41 & & 10.52 & & 19.22 & & \\
\hline 10 PERCENT EXCEEDS & 781 & & 587 & & 797 & & \\
\hline 50 PERCENT EXCEEDS & 65 & & 5.0 & & 68 & & \\
\hline 90 PERCENT EXCEEDS & 1.1 & & . 00 & & 1.1 & & \\
\hline
\end{tabular}
e Estimated


03252300 HINKSTON CREEK NEAR CARLISLE, KY
LOCATION.--Lat \(38^{\circ} 14^{\prime} 33^{\prime \prime}\), long \(84^{\circ} 03^{\prime} 10^{\prime \prime}\), (revised) Bourbon County, Hydrologic Unit 05100102, at upstream side bridge on State Highway 13, 0.5 mi upstream from Taylors Creek, 5.0 mi south of Carlisle, and at mile 29.0 .
DRAINAGE AREA. \(--154 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1991 to current year.
REVISED RECORDS.--WRD KY-93-1: Drainage area.
GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 764.88 ft above sea level.
REMARKS.-- Records fair except for discharges below \(10 \mathrm{ft}^{3} / \mathrm{s}\) and periods of estimated record, which are poor.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 1.3 & e16 & 9.5 & 19 & 1480 & 349 & 78 & e33 & e12 & 43 & 5.6 & . 98 \\
\hline 2 & . 95 & e15 & 3.4 & 21 & 1290 & 255 & 76 & e29 & e14 & 23 & 2.7 & . 83 \\
\hline 3 & 1.0 & e15 & 1.8 & 474 & 593 & 527 & 69 & e25 & e18 & 12 & 1.6 & . 82 \\
\hline 4 & 1.2 & e15 & 1.3 & 283 & 354 & 856 & 63 & e21 & e23 & 8.8 & . 93 & . 99 \\
\hline 5 & 1.2 & e15 & 1.4 & 134 & 236 & 451 & 58 & e19 & e19 & 8.3 & . 69 & . 89 \\
\hline 6 & 7.3 & e15 & 1.4 & 96 & 182 & 433 & 54 & e22 & e16 & 7.1 & e. 54 & . 85 \\
\hline 7 & 8.5 & e15 & 3.8 & 65 & 215 & 375 & 49 & e28 & e14 & 3.1 & e. 40 & . 79 \\
\hline 8 & 12 & e15 & 78 & 498 & 207 & 278 & 46 & e26 & e13 & 2.3 & e. 30 & . 70 \\
\hline 9 & 10 & e17 & 147 & 3090 & 159 & 506 & 44 & e23 & e13 & 3.8 & e. 20 & . 62 \\
\hline 10 & 16 & e18 & 85 & 1730 & 129 & 792 & 42 & e19 & e13 & 8.2 & e. 10 & . 58 \\
\hline 11 & 7.7 & e30 & 47 & 388 & 111 & 506 & 38 & e17 & e12 & 5.3 & e. 00 & . 58 \\
\hline 12 & 2.8 & 52 & 33 & 211 & 376 & 336 & 34 & e16 & e12 & 2.5 & e. 00 & . 59 \\
\hline 13 & 1.8 & 32 & 172 & 180 & 531 & 244 & 32 & e14 & e14 & 1.9 & e. 00 & . 57 \\
\hline 14 & 1.3 & 14 & 222 & 404 & 352 & 846 & 29 & e16 & e16 & 8.7 & e. 00 & . 58 \\
\hline 15 & . 99 & 5.5 & 122 & 520 & 253 & 1490 & 31 & e17 & e19 & 9.8 & e. 00 & . 57 \\
\hline 16 & . 78 & 2.5 & 65 & 408 & 203 & 599 & 35 & e16 & e25 & 8.3 & e. 00 & . 55 \\
\hline 17 & 1.6 & 1.3 & 47 & 360 & 182 & 359 & 43 & e15 & e23 & 8.7 & e. 00 & . 50 \\
\hline 18 & 2.4 & . 93 & 37 & 896 & 169 & 248 & 36 & e13 & e14 & 7.0 & e. 00 & . 50 \\
\hline 19 & 3.2 & . 68 & 32 & 667 & 141 & 180 & 30 & e12 & e8.0 & 7.2 & e. 00 & . 50 \\
\hline 20 & 2.9 & . 73 & 27 & 365 & 117 & 145 & 29 & e11 & e4.3 & 7.3 & e. 00 & . 48 \\
\hline 21 & 2.8 & . 78 & 24 & 446 & 99 & 127 & 29 & e10 & 2.8 & 8.2 & e. 00 & e. 56 \\
\hline 22 & 2.8 & . 77 & 134 & 413 & 85 & 109 & 28 & e9.0 & 1.4 & 8.4 & e. 00 & e. 70 \\
\hline 23 & 11 & . 80 & 111 & 988 & 77 & 123 & e27 & e8.2 & . 95 & 8.1 & e. 35 & e1.2 \\
\hline 24 & 15 & 1.9 & 87 & 1330 & 74 & 331 & e25 & e9.2 & . 91 & 6.6 & . 72 & e. 84 \\
\hline 25 & 16 & 1.7 & 55 & 587 & 74 & 285 & e23 & e23 & 1.1 & 3.3 & 9.4 & e. 74 \\
\hline 26 & 15 & 37 & 41 & 350 & 81 & 193 & e25 & e21 & 1.1 & 3.1 & 82 & . 72 \\
\hline 27 & 15 & 36 & 36 & 246 & 99 & 150 & e28 & e16 & 7.3 & 3.3 & 41 & . 71 \\
\hline 28 & e16 & 45 & 31 & 190 & 302 & 124 & e38 & e17 & 19 & 12 & 13 & . 69 \\
\hline 29 & e17 & 33 & 27 & 152 & --- & 106 & e38 & e15 & 40 & 16 & 3.6 & . 71 \\
\hline 30 & e15 & 19 & 25 & 116 & --- & 90 & e36 & e14 & 57 & 12 & 1.8 & . 72 \\
\hline 31 & e17 & - & 22 & 106 & --- & 80 & -36 & e13 & --- & 9.2 & 1.2 & - \\
\hline TOTAL & 227.52 & 471.59 & 1729.6 & 15733 & 8171 & 11493 & 1213 & 547.4 & 433.86 & 276.5 & 166.13 & 21.06 \\
\hline MEAN & 7.34 & 15.7 & 55.8 & 508 & 292 & 371 & 40.4 & 17.7 & 14.5 & 8.92 & 5.36 & . 70 \\
\hline MAX & 17 & 52 & 222 & 3090 & 1480 & 1490 & 78 & 33 & 57 & 43 & 82 & 1.2 \\
\hline MIN & . 78 & . 68 & 1.3 & 19 & 74 & 80 & 23 & 8.2 & . 91 & 1.9 & . 00 & . 48 \\
\hline CFSM & . 05 & . 10 & . 36 & 3.30 & 1.89 & 2.41 & . 26 & . 11 & . 09 & . 06 & . 03 & . 00 \\
\hline IN. & . 05 & . 11 & . 42 & 3.80 & 1.97 & 2.78 & . 29 & . 13 & . 10 & . 07 & . 04 & . 01 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 21.4 & 104 & 212 & 471 & 339 & 529 & 191 & 316 & 183 & 65.0 & 49.7 & 13.7 \\
MAX & 48.2 & 302 & 453 & 675 & 526 & 1210 & 436 & 875 & 652 & 283 & 121 & 56.5 \\
(WY) & 1994 & 1994 & 1997 & 1994 & 1994 & 1997 & 1994 & 1996 & 1997 & 1998 \\
MIN & 1.33 & 9.71 & 55.8 & 166 & 168 & 240 & 40.4 & 17.7 & 14.5 & 8.92 & 4.29 & 1996 \\
(WY) & 1998 & 1998 & 1999 & 1992 & 1996 & 1998 & 1999 & 1999 & 1999 & 1999 & 1997 & 1999
\end{tabular}

LICKING RIVER BASIN
03252300 HINKSTON CREEK NEAR CARLISLE, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & AR YEAR & FOR 1999 WAT & WATER YEAR & WATER YEARS & \multicolumn{2}{|l|}{\(1992-1999\)} \\
\hline ANNUAL TOTAL & 78544.41 & & 40483.66 & & & & \\
\hline ANNUAL MEAN & 215 & & 111 & & 208 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 304 & & 1997 \\
\hline LOWEST ANNUAL MEAN & & & & & 111 & & 1999 \\
\hline HIGHEST DAILY MEAN & 3230 & Jan 8 & 3090 & Jan 9 & 7520 & Mar 2 & 1997 \\
\hline LOWEST DAILY MEAN & . 68 & Nov 19 & . 00 & Aug 11 & . 00 & Aug 11 & 1999 \\
\hline ANNUAL SEVEN-DAY MINIMUM & . 86 & Nov 17 & . 00 & Aug 11 & . 00 & Aug 11 & 1999 \\
\hline INSTANTANEOUS PEAK FLOW & & & 3350 & Jan 9 & 7800 & Mar 2 & 1997 \\
\hline INSTANTANEOUS PEAK STAGE & & & 20.91 & Jan 9 & 37.00 & Mar 2 & 1997 \\
\hline ANNUAL RUNOFF (CFSM) & 1.40 & & . 72 & & 1.35 & & \\
\hline ANNUAL RUNOFF (INCHES) & 18.97 & & 9.78 & & 18.32 & & \\
\hline 10 PERCENT EXCEEDS & 556 & & 351 & & 494 & & \\
\hline 50 PERCENT EXCEEDS & 83 & & 17 & & 61 & & \\
\hline 90 PERCENT EXCEEDS & 2.9 & & . 71 & & 3.2 & & \\
\hline
\end{tabular}
e Estimated


03253500 LICKING RIVER AT CATAWBA, KY
LOCATION. --Lat \(38^{\circ} 42^{\prime} 31^{\prime \prime}\), long \(84^{\circ} 18^{\prime} 38^{\prime \prime}\), Pendleton County, Hydrologic Unit 05100101 , on right bank 1 mi southeast of Catawba, 1.5 mi upstream from Kincaid Creek, 2.3 mi north of Falmouth, and at mile 48.0 .

DRAINAGE AREA. \(-3,300 \mathrm{mi} .2\)
PERIOD OF RECORD.--January 1914 to July 1920 (January 1914 to July 1915 and October 1917 to July 1920 , gage heights only), July 1928 to current year. Published as "at Falmouth" 1914-16. Gage-height records collected in this vicinity since 1887 are published in reports of the National Weather Service.
REVISED RECORDS.--WSP 853: 1937. WSP 1003: 1943. WSP 1385: 1942. WSP 1705: Drainage.
GAGE.--Water-stage recorder. Datum of gage is 500.01 ft above sea level (levels by U>S> Army Corps of Engineers). Jan. 1 , 1914 to July 31, 1916,
nonrecording gage at site 3.8 mi upstream at datum 12.2 ft higher. July 14,1916 to July 5 , 1920 , nonrecording gage at site 1.4 mi downstream at present datum.

REMARKS.--Records good except for periods of estimated record, which are fair. Flow regulated since December 1973 by Cave Run Lake (station 03249498).
PEAKS ABOVE BASE.--Peak discharges above base of \(5,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Mar. 16 & 0800 & 19700 & 18.56
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 272 & 276 & 548 & 591 & 11900 & 5750 & 1570 & 1140 & 108 & 96 & 73 & 83 \\
\hline 2 & 269 & 271 & 423 & 546 & 17300 & 5600 & 1600 & 1000 & 115 & 92 & 74 & 75 \\
\hline 3 & 281 & 268 & 325 & 2490 & 15600 & 6540 & 1460 & 872 & 158 & 156 & 71 & 66 \\
\hline 4 & 293 & 269 & 263 & e8600 & 10800 & 11200 & 1220 & 747 & 150 & 179 & 69 & 60 \\
\hline 5 & 282 & 260 & 231 & e6500 & 7730 & 12000 & 1060 & 647 & 136 & 164 & 67 & 56 \\
\hline 6 & 273 & 256 & 221 & e2600 & 6430 & 10100 & 997 & 587 & 112 & 145 & 65 & 53 \\
\hline 7 & 291 & 255 & 225 & e1800 & 7790 & 9330 & 1200 & 534 & 103 & 127 & 63 & 51 \\
\hline 8 & 330 & 248 & 501 & e1700 & 8650 & 8200 & 988 & 464 & 96 & 104 & 68 & 50 \\
\hline 9 & 319 & 250 & e2100 & 5900 & 7120 & 8060 & 1050 & 407 & 94 & 92 & 77 & 51 \\
\hline 10 & 317 & 271 & e1300 & e17000 & 6110 & 13300 & 888 & 362 & 92 & 90 & 69 & 50 \\
\hline 11 & 306 & 282 & e900 & e10000 & 5430 & 12100 & 788 & 320 & 89 & 77 & 64 & 48 \\
\hline 12 & 279 & 283 & e740 & e6000 & 5520 & 9800 & 715 & 290 & 87 & 74 & 64 & 46 \\
\hline 13 & 277 & 284 & e1800 & e4200 & 7400 & 7210 & 667 & 269 & 87 & 68 & 63 & 46 \\
\hline 14 & 314 & 296 & e4000 & e8000 & 8510 & 5990 & 623 & 258 & 91 & e110 & 60 & 45 \\
\hline 15 & 302 & 307 & e3300 & e14000 & 6960 & 11500 & 596 & 233 & 130 & e90 & 59 & 45 \\
\hline 16 & 294 & 300 & e2600 & e10000 & 5210 & 18700 & 626 & 205 & 143 & e72 & 58 & 44 \\
\hline 17 & 241 & 308 & 1660 & e7600 & 4450 & 15300 & 632 & 191 & 122 & e82 & 60 & 44 \\
\hline 18 & 185 & 340 & 1590 & e6000 & 4130 & 9780 & 615 & 184 & 100 & 56 & 60 & 43 \\
\hline 19 & 274 & 323 & 1430 & e13000 & 3590 & 7250 & 609 & 180 & 92 & 52 & 60 & 42 \\
\hline 20 & 277 & 867 & 1300 & e18000 & 3010 & 6290 & 624 & 192 & 88 & e55 & 63 & 43 \\
\hline 21 & 267 & 1010 & 1040 & e9400 & 2640 & 5680 & 782 & 191 & 86 & e66 & 63 & 45 \\
\hline 22 & 266 & 1000 & 4400 & e15000 & 2260 & 5250 & 1300 & 172 & 84 & e76 & 62 & 48 \\
\hline 23 & 263 & 988 & e7600 & e25000 & 1750 & 4910 & 953 & 157 & 81 & e68 & 61 & 49 \\
\hline 24 & 261 & 950 & e3000 & e15000 & 1580 & 3940 & 940 & 147 & 78 & e62 & 62 & 48 \\
\hline 25 & 256 & 626 & e1600 & e6500 & 1510 & 4100 & 899 & 140 & 78 & 49 & 67 & 47 \\
\hline 26 & 255 & 417 & 1180 & 3810 & 1490 & 4850 & 789 & 138 & 76 & 49 & 76 & 46 \\
\hline 27 & 254 & 661 & 940 & 5270 & 1660 & 4130 & 720 & 132 & 80 & 34 & 85 & 49 \\
\hline 28 & 254 & 708 & 805 & 6150 & 6820 & 3380 & 737 & 116 & 84 & 50 & 84 & 54 \\
\hline 29 & 260 & 674 & 728 & 5660 & --- & 2600 & 914 & 112 & 90 & 79 & 79 & 57 \\
\hline 30 & 268 & 636 & 669 & 5160 & --- & 1870 & 906 & 114 & 94 & 79 & 82 & 62 \\
\hline 31 & 279 & - & 632 & 4300 & --- & 1650 & --- & 113 & --- & 73 & 91 & --- \\
\hline TOTAL & 8559 & 13884 & 48051 & 245777 & 173350 & 236360 & 27468 & 10614 & 3024 & 2666 & 2119 & 1546 \\
\hline MEAN & 276 & 463 & 1550 & 7928 & 6191 & 7625 & 916 & 342 & 101 & 86.0 & 68.4 & 51.5 \\
\hline MAX & 330 & 1010 & 7600 & 25000 & 17300 & 18700 & 1600 & 1140 & 158 & 179 & 91 & 83 \\
\hline MIN & 185 & 248 & 221 & 546 & 1490 & 1650 & 596 & 112 & 76 & 34 & 58 & 42 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1974 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
MEAN & 1356 & 2778 & 5757 & 6953 & 7673 & 8569 & 5789 & 5000 & 3213 & 1591 & 1148 \\
MAX & 7178 & 6516 & 18500 & 15110 & 21140 & 21310 & 11920 & 16660 & 11230 & 6962 & 4630 \\
(WY) & 1976 & 1987 & 1979 & 1974 & 1989 & 1997 & 1975 & 1983 & 1997 & 1979 & 1974 \\
MIN & 263 & 298 & 1092 & 420 & 2321 & 1247 & 666 & 342 & 101 & 86.0 & 68.4 \\
(WY) & 1998 & 1988 & 1981 & 1981 & 1977 & 1983 & 1986 & 1999 & 1999 & 1999 & 1999
\end{tabular}

LICKING RIVER BASIN
03253500 LICKING RIVER AT CATAWBA, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR & 1998 CA & R & AR & \multicolumn{2}{|l|}{FOR 1999 WATER YEAR} & \multicolumn{2}{|l|}{WATER YEARS 1974} & \multicolumn{2}{|l|}{- 1999} \\
\hline ANNUAL TOTAL & & 1667216 & & & 773418 & & & & & \\
\hline ANNUAL MEAN & & 4568 & & & 2119 & & 4253 & & & \\
\hline HIGHEST ANNUAL MEAN & & & & & & & 7730 & & & 1979 \\
\hline LOWEST ANNUAL MEAN & & & & & & & 2006 & & & 1977 \\
\hline HIGHEST DAILY MEAN & & 37500 & Feb & & 25000 & Jan 23 & 104000 & Mar & 3 & 1997 \\
\hline LOWEST DAILY MEAN & & 95 & Sep & & 34 & Jul 27 & 25 & Jul & 8 & 1988 \\
\hline ANNUAL SEVEN-DAY MINIMUM & & 97 & Sep & & 44 & Sep 14 & 38 & Jul & 3 & 1988 \\
\hline INSTANTANEOUS PEAK FLOW & & & & & 19700 & Mar 16 & 110000 & Mar & 3 & 1997 \\
\hline INSTANTANEOUS PEAK STAGE & & & & & 18.56 & Mar 16 & 57.57 & Mar & 3 & 1997 \\
\hline INSTANTANEOUS LOW FLOW & & & & & & & 2.5 & Aug & 5 & 1930 \\
\hline 10 PERCENT EXCEEDS & & 12800 & & & 7310 & & 10700 & & & \\
\hline 50 PERCENT EXCEEDS & & 2140 & & & 293 & & 1700 & & & \\
\hline 90 PERCENT EXCEEDS & & 192 & & & 60 & & 236 & & & \\
\hline
\end{tabular}


03277200 OHIO RIVER AT MARKLAND DAM NR WARSAW, KY
LOCATION.--Lat \(38^{\circ} 46^{\prime} 29^{\prime \prime}\), long \(84^{\circ} 57^{\prime} 52^{\prime \prime}\), Gallatin County, Hydrologic Unit 05090203, at left end of Markland Dam, 0.4 mi upstream from Stephens Creek, 3.4 mi west of Warsaw, and at mile 531.5.
DRAINAGE AREA. \(--83,170 \mathrm{mi}^{2}\), approximately.
PERIOD OF RECORD.--May 1970 to current year.
REVISED RECORDS.--WDR KY-88-1: 1987.
GAGE.--Gate opening and water-stage recorders on left bank. Turbine recorders in powerplant on right bank. Datum of headwater gage 0.5 mi upstream is 443 ft Ohio River datum. Datum of tailwater gage 0.4 mi downstream is 35 ft lower. Records of Markland Dam gate operations, headwater gage readings, and turbine flow are furnished by U.S. Army Corps of Engineers.

REMARKS.--Records fair except for estimated period and those below \(20,000 \mathrm{ft} 3 / \mathrm{s}\), which are poor. Daily discharge computed from head, gate openings, turbine flow, and tailwater rating. Flow regulated by Ohio River system \(f\) locks, dams, and reservoirs upstream from station.

COOPERATION.--U.S. Army Corps of Engineers.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Jan. 26, 1937, reached a stage of 76.1 ft (tailwater gage).
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 9540 & 17500 & 17500 & 26200 & 187000 & 130000 & 72700 & 114000 & 34400 & 14800 & 13800 & 5250 \\
\hline 2 & 5300 & 17200 & 10500 & 26400 & 195000 & 162000 & 64700 & 92400 & 21400 & 11500 & 15100 & 5200 \\
\hline 3 & 19100 & 12800 & 19200 & 26200 & 183000 & 183000 & 73500 & 70200 & 19800 & 49000 & 24100 & 12400 \\
\hline 4 & 10700 & 12100 & 12000 & 29800 & 172000 & 209000 & 69700 & 67700 & 33000 & 8010 & 5680 & 7330 \\
\hline 5 & 17900 & 25000 & 8960 & 56600 & 172000 & 248000 & 79500 & 51100 & 11900 & 20200 & 9180 & 4590 \\
\hline 6 & 13500 & 11600 & 10500 & 48800 & 168000 & 285000 & 69600 & 56400 & 25900 & 11500 & 12000 & 7120 \\
\hline 7 & 13100 & 6200 & 18700 & 31500 & 186000 & 296000 & 73000 & 35200 & 8880 & 12900 & 9790 & 12300 \\
\hline 8 & 15700 & 8230 & 20600 & 47100 & 200000 & 298000 & 71700 & 38200 & 18200 & 7820 & 10500 & 12300 \\
\hline 9 & 47000 & 15200 & 25200 & 92700 & 202000 & 299000 & 72000 & 37200 & 22300 & 21000 & 14200 & 14000 \\
\hline 10 & 33100 & 17300 & 18700 & 181000 & 217000 & 286000 & 85400 & 42300 & 16200 & 6470 & 9890 & 8650 \\
\hline 11 & 30200 & 21900 & 29700 & 196000 & 211000 & 256000 & 104000 & 39900 & 4920 & 19800 & 5600 & 9760 \\
\hline 12 & 22700 & 21800 & 19600 & 162000 & 191000 & 223000 & 146000 & 40300 & 5940 & e4000 & 7860 & 14000 \\
\hline 13 & 20900 & 15300 & 23000 & 138000 & 174000 & 186000 & 166000 & 33800 & 20200 & 4980 & 15900 & 6400 \\
\hline 14 & 16900 & 21700 & 24300 & 154000 & 158000 & 153000 & 161000 & 36000 & 10000 & 14900 & 7300 & 5810 \\
\hline 15 & 8630 & 19300 & 24100 & 168000 & 155000 & 142000 & 157000 & 39100 & 22600 & 6400 & 17300 & 5710 \\
\hline 16 & 22000 & 12000 & 32300 & 189000 & 126000 & 179000 & 143000 & 34000 & 13100 & 9510 & 8060 & 12100 \\
\hline 17 & 11700 & 21200 & 19800 & 231000 & 113000 & 217000 & 131000 & 54000 & 11900 & 5430 & 8500 & 5310 \\
\hline 18 & 5700 & 23700 & 27800 & 254000 & 108000 & 228000 & 121000 & 26900 & 15300 & 14600 & 11000 & 8310 \\
\hline 19 & 19800 & 11900 & 21000 & 248000 & 98700 & 217000 & 121000 & 44200 & 11000 & 4970 & 11600 & 11400 \\
\hline 20 & 7490 & 7610 & 12500 & 260000 & 96700 & 221000 & 109000 & 62800 & 7940 & 13300 & 11800 & 7440 \\
\hline 21 & 15600 & 22800 & 24000 & 282000 & 89600 & 226000 & 118000 & 68800 & 7830 & 11700 & 5770 & 12100 \\
\hline 22 & 13500 & 20900 & 70200 & 309000 & 86500 & 205000 & 147000 & 37000 & 13600 & 9730 & 7840 & 13700 \\
\hline 23 & 7780 & 8890 & 69200 & 333000 & 76600 & 173000 & 156000 & 41500 & 13900 & 14100 & 10700 & 5000 \\
\hline 24 & 10300 & 16800 & 84200 & 341000 & 63800 & 150000 & 160000 & 55000 & 8650 & 7040 & 14300 & 5000 \\
\hline 25 & 19100 & 18400 & 77600 & 342000 & 53500 & 148000 & 160000 & 54800 & 6510 & 13500 & 29300 & 5000 \\
\hline 26 & 16000 & 21100 & 49400 & 333000 & 42300 & 136000 & 164000 & 78700 & 8750 & 14600 & 36900 & 8770 \\
\hline 27 & 9080 & 19300 & 29800 & 352000 & 57100 & 112000 & 165000 & 82000 & 12400 & 7550 & 25500 & 10200 \\
\hline 28 & 12900 & 10500 & 28000 & 349000 & 94500 & 104000 & 146000 & 67500 & 20500 & 10900 & 16200 & 7030 \\
\hline 29 & 14200 & 23900 & 29800 & 318000 & --- & 83900 & 125000 & 52600 & 14700 & 31900 & 23300 & 11800 \\
\hline 30 & 11800 & 22300 & 22100 & 247000 & --- & 79800 & 124000 & 37900 & 9070 & 34100 & 12300 & 17000 \\
\hline 31 & 14000 & --- & 25500 & 206000 & --- & 71900 & --- & 25400 & --- & 14400 & 11000 & --- \\
\hline TOTAL & 495220 & 504430 & 905760 & 5978300 & 3877300 & 5907600 & 3555800 & 1616900 & 450790 & 430610 & 422270 & 270980 \\
\hline MEAN & 15970 & 16810 & 29220 & 192800 & 138500 & 190600 & 118500 & 52160 & 15030 & 13890 & 13620 & 9033 \\
\hline MAX & 47000 & 25000 & 84200 & 352000 & 217000 & 299000 & 166000 & 114000 & 34400 & 49000 & 36900 & 17000 \\
\hline MIN & 5300 & 6200 & 8960 & 26200 & 42300 & 71900 & 64700 & 25400 & 4920 & 4000 & 5600 & 4590 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrr} 
MEAN & 48860 & 86140 & 142200 & 152800 & 177800 & 214000 & 178700 & 139400 & 91300 & 58720 \\
MAX & 144100 & 230600 & 288700 & 289900 & 291200 & 338500 & 292200 & 370100 & 219100 & 109500 \\
(WY) & 1980 & 1986 & 1973 & 1974 & 1975 & 1997 & 1972 & 1996 & 1981 & 1972 \\
MIN & 13910 & 16810 & 29220 & 34060 & 77100 & 98440 & 61160 & 43510 & 15030 & 13890 \\
(WY) & 1992 & 1999 & 1999 & 1977 & 1992 & 1990 & 1980 & 13060 & 1979 \\
& & & & & 19030 & 1976 & 1999 & 1999 & 1988 & 1999
\end{tabular}

OHIO RIVER MAIN STEM
03277200 OHIO RIVER AT MARKLAND DAM NR WARSAW, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALENDAR YEAR & FOR 1999 WATER YEAR & WATER YEARS & 1970 - & 1999 \\
\hline ANNUAL TOTAL & 39515520 & 24415960 & & & \\
\hline ANNUAL MEAN & 108300 & 66890 & 114400 & & \\
\hline HIGHEST ANNUAL MEAN & & & 157300 & & 1979 \\
\hline LOWEST ANNUAL MEAN & & & 60450 & & 1988 \\
\hline HIGHEST DAILY MEAN & 369000 Jan 14 & 352000 Jan 27 & 579000 & Mar 6 & 1997 \\
\hline LOWEST DAILY MEAN & 5300 Oct 2 & 4000 Jul 12 & 4000 & Jul 12 & 1999 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 10600 Sep 13 & 7540 Sep 23 & 7310 & Jul 1 & 1988 \\
\hline INSTANTANEOUS PEAK FLOW & & 352000 Jan 27 & 582000 & Mar 6 & 1997 \\
\hline INSTANTANEOUS PEAK STAGE & & 40.80 Jan 27 & 60.72 & Mar 6 & 1997 \\
\hline 10 PERCENT EXCEEDS & 289000 & 193000 & 260000 & & \\
\hline 50 PERCENT EXCEEDS & 69200 & 23700 & 79800 & & \\
\hline 90 PERCENT EXCEEDS & 12000 & 7830 & 20300 & & \\
\hline
\end{tabular}


03277300 NORTH FORK KENTUCKY RIVER AT WHITESBURG, KY
LOCATION.--Lat \(37^{\circ} 07^{\prime} 03^{\prime \prime}\), long \(82^{\circ} 49^{\prime} \mathbf{2 9}^{\prime \prime}\), Letcher County, Hydrologic Unit 05100201 , on downstream side of bridge on State Highway 15 at Whitesburg, 0.6 mile downstream from Solomon Branch, and at mile 405.4
DRAINAGE AREA. \(--66.4 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1952 to September 1954 and October 1957 to September 1975 (crest-stage partial-record), October 1987 to September 1998 (gage heights only), October 1998 to September 1999.

GAGE.--Water-stage recorder. Datum of gage is 1127.924 ft above sea level. Prior to October 1 , 1998 , crest-stage gage and recording gage at same site and datum 1.0 ft higher.

REMARKS.--Records poor. Small diversions by city of Whitesburg waterworks

PEAKS ABOVE BASE.--Base discharges not determined at this time.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 9 & 0700 & 1040 & 5.73
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 13 & 8.6 & 8.3 & e47 & 92 & 190 & 70 & 101 & 21 & 15 & 6.8 & 4.6 \\
\hline 2 & 11 & 8.3 & 7.7 & e46 & 81 & 137 & 65 & 84 & 24 & 44 & 9.6 & 4.5 \\
\hline 3 & 10 & 12 & 7.8 & e100 & 76 & 258 & 63 & 74 & 25 & 22 & 7.0 & 4.1 \\
\hline 4 & 11 & 12 & 7.8 & e60 & 70 & 224 & 60 & 65 & 20 & 17 & 6.3 & 4.1 \\
\hline 5 & 10 & 8.9 & 18 & e50 & 63 & 177 & 58 & 62 & 19 & 14 & 5.8 & 4.3 \\
\hline 6 & 8.9 & 8.3 & 17 & e48 & 61 & 168 & 55 & 156 & 19 & 13 & 5.4 & 5.9 \\
\hline 7 & 9.1 & 8.0 & 18 & 44 & 59 & 140 & 53 & 105 & 19 & 12 & 5.2 & 6.3 \\
\hline 8 & 40 & 8.5 & 175 & 67 & 55 & 122 & 54 & 85 & 18 & 12 & 6.5 & 4.8 \\
\hline 9 & 17 & 8.9 & 98 & 476 & 53 & 138 & 55 & 70 & 19 & 9.7 & 9.8 & 4.3 \\
\hline 10 & 13 & 9.5 & 45 & 178 & 49 & 129 & 51 & 60 & 19 & 17 & 9.1 & 4.0 \\
\hline 11 & 12 & 21 & 30 & 112 & 46 & 120 & 217 & 52 & 22 & 19 & 7.8 & 3.9 \\
\hline 12 & 9.9 & 13 & 38 & 87 & 54 & 111 & 150 & 49 & 18 & 13 & 6.1 & 3.9 \\
\hline 13 & 9.6 & 8.1 & 319 & 74 & 50 & 105 & 114 & 56 & 16 & 12 & 5.6 & 3.7 \\
\hline 14 & 9.9 & 9.3 & 134 & 115 & 45 & 120 & 98 & 61 & 16 & 11 & 5.5 & 3.9 \\
\hline 15 & 8.8 & 8.9 & 73 & 228 & 44 & 182 & 121 & 45 & 17 & 11 & 6.0 & 4.0 \\
\hline 16 & 8.9 & 8.5 & 52 & 155 & 45 & 232 & 107 & 40 & 15 & 8.9 & 6.2 & 3.7 \\
\hline 17 & 8.2 & 8.5 & 47 & 121 & 57 & 258 & 92 & 37 & 15 & 8.9 & 5.7 & 3.5 \\
\hline 18 & 8.2 & 8.2 & 36 & 330 & 60 & 208 & 85 & 39 & 14 & 13 & 5.4 & 3.8 \\
\hline 19 & 8.7 & 8.2 & 32 & 215 & 66 & 162 & 79 & 43 & 13 & 12 & 7.1 & 3.7 \\
\hline 20 & 9.8 & 9.6 & 30 & 148 & 64 & 135 & 75 & 35 & 13 & 14 & 15 & 3.9 \\
\hline 21 & 8.1 & 10 & 27 & 117 & 63 & 123 & 67 & 32 & 12 & 20 & 8.0 & 4.3 \\
\hline 22 & 7.8 & 8.6 & e45 & 98 & 56 & 108 & 62 & 33 & 12 & 11 & 6.5 & 4.6 \\
\hline 23 & 7.4 & 8.4 & e40 & 164 & 54 & 96 & 67 & 32 & 12 & 11 & 5.7 & 4.3 \\
\hline 24 & 7.7 & 8.5 & e38 & 317 & 52 & 90 & 63 & 43 & 16 & 9.9 & 6.0 & 4.0 \\
\hline 25 & 8.0 & 9.6 & e37 & 186 & 62 & 84 & 57 & 31 & 19 & 11 & 30 & 4.0 \\
\hline 26 & 7.6 & 19 & 36 & 136 & 59 & 82 & 70 & 28 & 14 & 8.5 & 10 & 4.0 \\
\hline 27 & 7.3 & 12 & 35 & 116 & 61 & 79 & 73 & 26 & 14 & 8.6 & 7.1 & 4.0 \\
\hline 28 & 15 & 9.4 & 40 & 101 & 218 & 75 & 252 & 26 & 21 & 8.7 & 6.4 & 11 \\
\hline 29 & 19 & 8.8 & 49 & 87 & -- & 69 & 163 & 24 & 24 & 13 & 5.9 & 15 \\
\hline 30 & 10 & 8.3 & e60 & 78 & --- & 68 & 121 & 23 & 23 & 8.5 & 5.2 & 24 \\
\hline 31 & 8.8 & --- & e56 & 76 & --- & 64 & --- & 22 & --- & 7.5 & 4.9 & --- \\
\hline TOTAL & 343.7 & 298.9 & 1656.6 & 4177 & 1815 & 4254 & 2717 & 1639 & 529 & 416.2 & 237.6 & 164.1 \\
\hline MEAN & 11.1 & 9.96 & 53.4 & 135 & 64.8 & 137 & 90.6 & 52.9 & 17.6 & 13.4 & 7.66 & 5.47 \\
\hline MAX & 40 & 21 & 319 & 476 & 218 & 258 & 252 & 156 & 25 & 44 & 30 & 24 \\
\hline MIN & 7.3 & 8.0 & 7.7 & 44 & 44 & 64 & 51 & 22 & 12 & 7.5 & 4.9 & 3.5 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 11.1 & 9.96 & 53.4 & 135 & 64.8 & 137 & 90.6 & 52.9 & 17.6 & 13.4 & 7.66 \\
MAX & 11.1 & 9.96 & 53.4 & 135 & 64.8 & 137 & 90.6 & 52.9 & 17.6 & 13.4 & 7.66 & 5.47 \\
(WY) & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 \\
MIN & 11.1 & 9.96 & 53.4 & 135 & 64.8 & 137 & 90.6 & 52.9 & 17.6 & 13.4 & 7.66 & 5.47 \\
(WY) & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999
\end{tabular}

KENTUCKY RIVER BASIN
03277300 NORTH FORK KENTUCKY RIVER AT WHITESBURG, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS
e Estimated


03280000 NORTH FORK KENTUCKY RIVER AT JACKSON, KY
LOCATION.--Lat \(37^{\circ} 32^{\prime} 4^{\prime \prime \prime}\), long \(83^{\circ} 22^{\prime} 21^{\prime \prime}\), Breathitt County, Hydrologic Unit 05100201, on left bank at city water plant on Armory Drive at Jackson, 2.8 mi downstream from Quicksand Creek, and at mile 305.0 .
DRAINAGE AREA. \(--1,101 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--June 1928 to September 1931, December 1936 to February 1937, April 1938 to current year. Gage-height records collected at same site during periods 1904-07, 1921-31, and February to December 1934 (above 8.0 ft only), January 1935 to September 1976 are published in reports of National Weather Service.

REVISED RECORDS.--WSP 853: 1929(M). WSP 1335: 1928(M), 1929, 1931(M). WSP 1435: 1954-55. WSP 1505: 1948. WSP 1555: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 697.67 ft above sea level. See WDR KY-90-1 for history of changes prior to Aug. 22, 1980.

REMARKS.--Records good. Small diversions by city of Jackson waterworks. Flow regulated by Carr Fork Lake (station 03277446) beginning January 1976.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 162 & 150 & 151 & 1010 & 1600 & 4110 & 868 & 1630 & 219 & 293 & 134 & 79 \\
\hline 2 & 201 & 158 & 141 & 899 & 2270 & 3610 & 895 & 1280 & 214 & 228 & 221 & 69 \\
\hline 3 & 187 & 168 & 128 & 1540 & 2040 & 4250 & 857 & 1050 & 314 & 213 & 204 & 60 \\
\hline 4 & 176 & 204 & 122 & 1990 & 1790 & 7950 & 808 & 887 & 267 & 204 & 133 & 56 \\
\hline 5 & 165 & 190 & 132 & 1530 & 1540 & 5010 & 769 & 778 & 230 & 220 & 123 & 50 \\
\hline 6 & 162 & 160 & 224 & 1210 & 1310 & 3800 & 722 & 1070 & 209 & 173 & 94 & 46 \\
\hline 7 & 161 & 154 & 287 & 1090 & 1170 & 3230 & 680 & 1580 & 187 & 148 & 71 & 44 \\
\hline 8 & 342 & 150 & 1590 & 1390 & 1110 & 2640 & 641 & 1890 & 176 & 126 & 61 & 44 \\
\hline 9 & 455 & 146 & 2790 & 3220 & 1000 & 2540 & 667 & 1620 & 176 & 113 & 59 & 39 \\
\hline 10 & 289 & 140 & 1770 & 3140 & 956 & 2930 & 888 & 1190 & 174 & 112 & 62 & 38 \\
\hline 11 & 273 & 203 & 957 & 3160 & 878 & 2730 & 880 & 955 & 170 & 128 & 57 & 32 \\
\hline 12 & 212 & 318 & 684 & 2460 & 933 & 2390 & 2090 & 764 & 219 & 111 & 54 & 29 \\
\hline 13 & 178 & 244 & 2750 & 1950 & 1320 & 2010 & 2010 & 655 & 188 & 125 & 50 & 27 \\
\hline 14 & 165 & 208 & 4960 & 1820 & 1260 & 2560 & 1490 & 642 & 182 & 128 & 179 & 31 \\
\hline 15 & 157 & 189 & 2440 & 3020 & 1130 & 4500 & 1360 & 598 & 202 & 122 & 243 & 39 \\
\hline 16 & 144 & 177 & 1390 & 3890 & 1100 & 5170 & 1850 & 546 & 175 & 114 & 132 & 35 \\
\hline 17 & 141 & 166 & 1040 & 2960 & 1140 & 4710 & 1720 & 474 & 159 & 110 & 95 & 32 \\
\hline 18 & 140 & 158 & 872 & 2950 & 1250 & 4340 & 1410 & 439 & 150 & 104 & 71 & 26 \\
\hline 19 & 131 & 152 & 727 & 5690 & 1250 & 3400 & 1230 & 506 & 142 & 100 & 58 & 22 \\
\hline 20 & 133 & 148 & 644 & 4130 & 1190 & 2540 & 1160 & 556 & 135 & 102 & 48 & 21 \\
\hline 21 & 164 & 154 & 582 & 3080 & 1110 & 2050 & 1070 & 529 & 127 & e140 & 46 & 21 \\
\hline 22 & 172 & 159 & 812 & 2450 & 1020 & 1770 & 966 & 420 & 118 & e170 & 47 & 30 \\
\hline 23 & 170 & 156 & 1060 & 4330 & 930 & 1520 & 863 & 356 & 107 & 159 & 46 & 33 \\
\hline 24 & 160 & 151 & 947 & 9970 & 880 & 1380 & 828 & 469 & 107 & 121 & 60 & 32 \\
\hline 25 & 158 & 151 & 788 & 6430 & 849 & 1240 & 782 & 546 & 121 & 268 & 1370 & 31 \\
\hline 26 & 157 & 149 & 681 & 3960 & 928 & 1120 & 748 & 463 & 123 & 254 & 455 & 26 \\
\hline 27 & 155 & 160 & 631 & 3000 & 922 & 1050 & 978 & 365 & 123 & 183 & 212 & 23 \\
\hline 28 & 155 & 172 & 623 & 2460 & 1980 & 1020 & 2560 & 314 & 173 & 151 & 198 & 22 \\
\hline 29 & 150 & 165 & 829 & 1860 & --- & 969 & 3910 & 279 & 285 & 174 & 161 & 28 \\
\hline 30 & 148 & 158 & 1080 & 1450 & --- & 909 & 2320 & 259 & 408 & 160 & 127 & 59 \\
\hline 31 & 148 & --- & 1170 & 1270 & --- & 848 & -- & 237 & -- & 130 & 98 & --- \\
\hline TOTAL & 5711 & 5158 & 33002 & 89309 & 34856 & 88296 & 38020 & 23347 & 5580 & 4884 & 4969 & 1124 \\
\hline MEAN & 184 & 172 & 1065 & 2881 & 1245 & 2848 & 1267 & 753 & 186 & 158 & 160 & 37.5 \\
\hline MAX & 455 & 318 & 4960 & 9970 & 2270 & 7950 & 3910 & 1890 & 408 & 293 & 1370 & 79 \\
\hline MIN & 131 & 140 & 122 & 899 & 849 & 848 & 641 & 237 & 107 & 100 & 46 & 21 \\
\hline CFSM & . 17 & . 16 & . 97 & 2.62 & 1.13 & 2.59 & 1.15 & . 68 & . 17 & . 14 & . 15 & . 03 \\
\hline IN. & . 19 & . 17 & 1.12 & 3.02 & 1.18 & 2.98 & 1.28 & . 79 & . 19 & . 17 & . 17 & . 04 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1977 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
\\
MEAN & 509 & 910 & 1626 & 2040 & 2578 & 2771 & 2323 & 1887 & 1051 & 467 & 413 \\
MAX & 4189 & 3019 & 4649 & 5168 & 6392 & 7268 & 5944 & 7189 & 4166 & 1200 & 945 \\
(WY) & 1990 & 1986 & 1992 & 1979 & 1994 & 1994 & 1998 & 1984 & 1989 & 1992 & 1977 \\
MIN & 92.8 & 152 & 196 & 155 & 790 & 541 & 452 & 614 & 136 & 90.2 & 85.6 \\
(WY) & 1981 & 1982 & 1981 & 1981 & 1988 & 1988 & 1986 & 1977 & 1988 & 1988 & 1988
\end{tabular}

KENTUCKY RIVER BASIN
03280000 NORTH FORK KENTUCKY RIVER AT JACKSON, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR & 1998 CALEND & AR YEAR & FOR 1999 WAT & WATER YEAR & WATER YEARS & 1977 & - & 1999 \\
\hline ANNUAL TOTAL & & 567231 & & 334256 & & & & & \\
\hline ANNUAL MEAN & & 1554 & & 916 & & 1400 & & & \\
\hline HIGHEST ANNUAL MEAN & & & & & & 2570 & & & 1994 \\
\hline LOWEST ANNUAL MEAN & & & & & & 477 & & & 1988 \\
\hline HIGHEST DAILY MEAN & & 27100 & Apr 20 & 9970 & Jan 24 & 52200 & May & 8 & 1984 \\
\hline LOWEST DAILY MEAN & & 120 & Sep 18 & 21 & Sep 20 & 21 & Sep & 20 & 1999 \\
\hline ANNUAL SEVEN-DAY MINIMUM & & 126 & Sep 13 & 26 & Sep 17 & 26 & Sep & 17 & 1999 \\
\hline INSTANTANEOUS PEAK FLOW & & & & 10400 & Jan 24 & 53500 & Jan & 30 & 1957 \\
\hline INSTANTANEOUS PEAK STAGE & & & & 15.67 & Jan 24 & 43.10 & Feb & 4 & 1939 \\
\hline INSTANTANEOUS LOW FLOW & & & & & & . 00 & Oct & 16 & 1930 \\
\hline ANNUAL RUNOFF (CFSM) & & 1.41 & & . 83 & & 1.27 & & & \\
\hline ANNUAL RUNOFF (INCHES) & & 19.17 & & 11.29 & & 17.27 & & & \\
\hline 10 PERCENT EXCEEDS & & 3410 & & 2550 & & 3170 & & & \\
\hline 50 PERCENT EXCEEDS & & 892 & & 285 & & 660 & & & \\
\hline 90 PERCENT EXCEEDS & & 152 & & 60 & & 127 & & & \\
\hline
\end{tabular}
e Estimated


LOCATION.--Lat \(37^{\circ} 09^{\prime} 54^{\prime \prime}\), long \(83^{\circ} 18^{\prime} 29 \prime\) ", Leslie County, Hydrologic Unit 05100202 , on right bank 30 ft upstream from bridge on State Highway 80,400 ft upstream from Poundmill Branch, 600 ft upstream from Rockhouse Branch, 0.7 mi downstream from Saw Branch, 1.0 mi southwest of Wooton, and at mile 10.7.
DRAINAGE AREA. \(--61.3 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1957 to current year.
GAGE.--Water-stage recorder. Datum of gage is 869.84 ft above sea level. Prior to Dec. 26 , 1957 , nonrecording gage at same site and datum.
REMARKS.--Records good except for those estimated, which are poor.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of January 1957 reached a stage of 19.43 ft, from floodmarks.
PEAKS ABOVE BASE.--Peak discharges above base of \(1,500 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{rcccccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} \\
Jan. 9 & 0130 & \(* 2380\) & 6.47 & Jan. 9 & 0500 & 2170
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{9}{|l|}{DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
DAILY MEAN VALUES} & & \\
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & e5.3 & 3.4 & 7.2 & 42 & 73 & 305 & 53 & 39 & 8.0 & 11 & 3.9 & 1.1 \\
\hline 2 & 4.0 & 3.2 & 6.5 & 45 & 65 & 190 & 49 & 36 & 10 & 15 & 17 & . 87 \\
\hline 3 & 3.7 & 4.6 & 5.8 & 156 & 64 & 649 & 46 & 32 & 10 & 12 & 5.4 & . 61 \\
\hline 4 & 3.5 & 5.4 & 5.5 & 93 & 59 & 416 & 43 & 29 & 8.3 & 7.8 & 3.2 & . 62 \\
\hline 5 & 3.3 & 3.9 & 11 & 63 & 51 & 270 & 40 & 31 & 7.8 & 5.9 & 2.3 & . 58 \\
\hline 6 & 3.4 & 3.5 & 14 & 68 & 49 & 245 & 38 & 133 & 8.0 & 5.3 & 2.1 & . 68 \\
\hline 7 & 4.8 & 3.4 & 18 & 46 & 48 & 184 & 34 & 109 & 8.0 & 4.8 & 2.0 & . 73 \\
\hline 8 & 17 & 3.7 & 135 & 127 & 42 & 142 & 35 & 217 & 7.1 & 4.2 & 2.4 & . 65 \\
\hline 9 & 7.8 & 3.8 & 72 & 1020 & 39 & 177 & 42 & 118 & 7.8 & 3.8 & 2.9 & . 59 \\
\hline 10 & 3.8 & 6.2 & 27 & 276 & 36 & 160 & 36 & 82 & 47 & 4.4 & 3.0 & . 48 \\
\hline 11 & 2.7 & 21 & 18 & 146 & 34 & 137 & 193 & 60 & 41 & 7.6 & 2.5 & . 40 \\
\hline 12 & 2.5 & 9.0 & 25 & 105 & 58 & 114 & 160 & 46 & 14 & 6.1 & 2.1 & . 37 \\
\hline 13 & 2.4 & 4.2 & 543 & 86 & 58 & 101 & 116 & 40 & 8.9 & 4.5 & 2.1 & . 46 \\
\hline 14 & 2.2 & 3.3 & 128 & 208 & 50 & 171 & 94 & 33 & 8.0 & 3.9 & 2.0 & . 82 \\
\hline 15 & 2.2 & 3.2 & 55 & 454 & 51 & 361 & 168 & 27 & 8.2 & 3.7 & 2.0 & . 80 \\
\hline 16 & 2.3 & 3.1 & 35 & 249 & 51 & 495 & 145 & 23 & 7.4 & 3.5 & 2.1 & . 55 \\
\hline 17 & 2.0 & 3.1 & 32 & 160 & 57 & 538 & 115 & 20 & 6.9 & 4.7 & 1.9 & . 55 \\
\hline 18 & 2.0 & 3.2 & 23 & 722 & 56 & 345 & 93 & 24 & 6.5 & 13 & 1.7 & . 54 \\
\hline 19 & 2.8 & 3.1 & 21 & 347 & 58 & 202 & 81 & 29 & 5.9 & 4.9 & 1.5 & . 47 \\
\hline 20 & 3.1 & 4.6 & 19 & 204 & 57 & 148 & 72 & 17 & 5.6 & 4.1 & 2.4 & . 64 \\
\hline 21 & 2.9 & 5.9 & 18 & 136 & 52 & 130 & 63 & 14 & 5.5 & 4.2 & 3.9 & . 75 \\
\hline 22 & 2.8 & 6.2 & 41 & 103 & 47 & 101 & 55 & 15 & 4.7 & 7.3 & 2.5 & . 81 \\
\hline 23 & 3.1 & 5.5 & 37 & 925 & 45 & 84 & 51 & 14 & 4.6 & 4.4 & 1.9 & . 81 \\
\hline 24 & 3.1 & 5.6 & 34 & 926 & 44 & 78 & 47 & 31 & 5.6 & 3.3 & 1.8 & . 73 \\
\hline 25 & 2.8 & 6.5 & 27 & 331 & 49 & 67 & 39 & 16 & 7.2 & 7.7 & 24 & . 56 \\
\hline 26 & 2.7 & 18 & 26 & 194 & 45 & 65 & 50 & 13 & 7.0 & 4.3 & 6.2 & . 49 \\
\hline 27 & 2.4 & 14 & 26 & 142 & 55 & 61 & 48 & 11 & 11 & 3.1 & 2.8 & . 64 \\
\hline 28 & 2.8 & 8.8 & 32 & 110 & 472 & 58 & 48 & 9.6 & 27 & 3.1 & 1.9 & . 55 \\
\hline 29 & 3.5 & 7.2 & 46 & 87 & --- & 54 & 49 & 8.8 & 58 & 3.4 & 1.5 & 1.4 \\
\hline 30 & 3.4 & 6.1 & 62 & 72 & --- & 50 & 43 & 8.4 & 22 & 2.6 & 1.3 & 8.8 \\
\hline 31 & 3.5 & --- & 54 & 66 & - & 49 & --- & 8.2 & - & 2.3 & 1.1 & --- \\
\hline TOTAL & 113.8 & 182.7 & 1604.0 & 7709 & 1865 & 6147 & 2146 & 1294.0 & 387.0 & 175.9 & 113.4 & 28.05 \\
\hline MEAN & 3.67 & 6.09 & 51.7 & 249 & 66.6 & 198 & 71.5 & 41.7 & 12.9 & 5.67 & 3.66 & . 94 \\
\hline MAX & 17 & 21 & 543 & 1020 & 472 & 649 & 193 & 217 & 58 & 15 & 24 & 8.8 \\
\hline MIN & 2.0 & 3.1 & 5.5 & 42 & 34 & 49 & 34 & 8.2 & 4.6 & 2.3 & 1.1 & . 37 \\
\hline CFSM & . 06 & . 10 & . 84 & 4.06 & 1.09 & 3.23 & 1.17 & . 68 & . 21 & . 09 & . 06 & . 02 \\
\hline IN. & . 07 & . 11 & . 97 & 4.68 & 1.13 & 3.73 & 1.30 & . 79 & . 23 & . 11 & . 07 & . 02 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1958 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrrr} 
MEAN & 27.1 & 62.7 & 109 & 148 & 168 & 202 & 163 & 116 & 57.2 & 31.8 & 23.4 & 17.9 \\
MAX & 287 & 309 & 359 & 597 & 371 & 620 & 471 & 449 & 423 & 144 & 107 & 125 \\
(WY) & 1990 & 1978 & 1973 & 1974 & 1994 & 1975 & 1998 & 1983 & 1989 & 1958 & 1966 & 1974 \\
MIN & .26 & 6.09 & 3.30 & 6.97 & 27.0 & 21.4 & 16.6 & 14.0 & 3.17 & 2.17 & 1.16 & .73 \\
(WY) & 1964 & 1999 & 1966 & 1981 & 1968 & 1988 & 1963 & 1964 & 1988 & 1970 & 1988 & 1969
\end{tabular}

KENTUCKY RIVER BASIN
03280700 CUTSHIN CREEK AT WOOTON, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & R YEAR & \multicolumn{2}{|l|}{FOR 1999 WATER YEAR} & WATER YEARS & 1958 - & 1999 \\
\hline ANNUAL TOTAL & 35051.4 & & 21765.85 & & & & \\
\hline ANNUAL MEAN & 96.0 & & 59.6 & & 93.6 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 212 & & 1974 \\
\hline LOWEST ANNUAL MEAN & & & & & 27.6 & & 1988 \\
\hline HIGHEST DAILY MEAN & 4430 & Apr 19 & 1020 & Jan 9 & 4890 & May 7 & 1984 \\
\hline LOWEST DAILY MEAN & 2.0 & Oct 17 & . 37 & Sep 12 & . 00 & Sep 29 & 1959 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 2.2 & Oct 12 & . 53 & Sep 7 & . 01 & Sep 11 & 1964 \\
\hline INSTANTANEOUS PEAK FLOW & & & 2380 & Jan 24 & 14200 & Mar 12 & 1963 \\
\hline INSTANTANEOUS PEAK STAGE & & & 6.46 & Jan 24 & 16.23 & Mar 12 & 1963 \\
\hline INSTANTANEOUS LOW FLOW & & & & & . 00 & Sep 29 & 1959 \\
\hline ANNUAL RUNOFF (CFSM) & 1.57 & & . 97 & & 1.53 & & \\
\hline ANNUAL RUNOFF (INCHES) & 21.27 & & 13.21 & & 20.74 & & \\
\hline 10 PERCENT EXCEEDS & 210 & & 147 & & 204 & & \\
\hline 50 PERCENT EXCEEDS & 35 & & 14 & & 34 & & \\
\hline 90 PERCENT EXCEEDS & 3.8 & & 1.9 & & 2.9 & & \\
\hline e Estimated & & & & & & & \\
\hline
\end{tabular}


03281000 MIDDLE FORK KENTUCKY RIVER AT TALLEGA, KY
LOCATION.--Lat \(37^{\circ} 33^{\prime} 18^{\prime \prime}\), long \(83^{\circ} 35^{\prime} 38^{\prime \prime}\), Lee County, Hydrologic Unit 05100202, on left bank 100 ft downstream of bridge on State Highway 708, 150 ft upstream from Lynam Creek, 0.5 mi southwest of Tallega, 8.3 mi upstream from confluence with North Fork, and at mile 8.3.
DRAINAGE AREA. \(--537 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1930 to March 1932, October 1939 to current year.
REVISED RECORDS.--WSP 1113: 1931, 1940. WSP 1385: 1931-32, 1948, drainage area. WSP 1505: 1946(M), 1951 (M).
GAGE.--Water-stage recorder. Datum of gage is 642.13 ft above sea level. Prior to Feb. 6, 1940 , nonrecording gage at same site and datum.

REMARKS.--Records good. Flow regulated by Buckhorn Lake beginning December 1960 (station 03280800). DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 78 & 51 & 67 & 493 & 1780 & 1400 & 329 & 610 & 49 & 61 & 48 & 45 \\
\hline 2 & 75 & 51 & 66 & 510 & 1560 & 2230 & 375 & 482 & 49 & 57 & 52 & 43 \\
\hline 3 & 77 & 65 & 64 & 845 & 1290 & 2950 & 419 & 413 & 63 & 91 & 48 & 42 \\
\hline 4 & 82 & 75 & 57 & 1230 & 959 & 3450 & 416 & 355 & 56 & 119 & 45 & 42 \\
\hline 5 & 78 & 202 & 56 & 1130 & 673 & 3500 & 363 & 328 & 50 & 118 & 44 & 41 \\
\hline 6 & 77 & 325 & 79 & 601 & 632 & 3350 & 238 & 505 & 48 & 104 & 44 & 44 \\
\hline 7 & 76 & 322 & 85 & 281 & 508 & 3190 & 141 & 821 & 48 & 77 & 44 & 42 \\
\hline 8 & 82 & 322 & 362 & 420 & 534 & 2660 & 133 & 1100 & 48 & 73 & 44 & 39 \\
\hline 9 & 84 & 320 & 370 & 4990 & 516 & 1860 & 153 & 1930 & 55 & 52 & 46 & 39 \\
\hline 10 & 78 & 322 & 570 & 3220 & 400 & 1820 & 150 & 1300 & 52 & 50 & 46 & 40 \\
\hline 11 & 77 & 339 & 589 & 2790 & 397 & 1760 & 184 & 602 & 54 & 62 & 50 & 40 \\
\hline 12 & 76 & 325 & 395 & 3310 & 453 & 1620 & 264 & 489 & 56 & 51 & 53 & 40 \\
\hline 13 & 76 & 320 & 782 & 3270 & 595 & 1320 & 215 & 391 & 54 & 49 & 54 & 41 \\
\hline 14 & 75 & 318 & 2100 & 3180 & 872 & 1570 & 194 & 358 & 78 & 50 & 56 & 43 \\
\hline 15 & 75 & 316 & 2340 & 2970 & 702 & 2470 & 203 & 334 & 112 & 48 & 56 & 42 \\
\hline 16 & 75 & 312 & 861 & 2840 & 662 & 3080 & 238 & 247 & 90 & 47 & 53 & 47 \\
\hline 17 & 75 & 309 & 494 & 2730 & 671 & 3250 & 212 & 199 & 80 & 47 & 53 & 53 \\
\hline 18 & 74 & 307 & 438 & 2760 & 742 & 3170 & 196 & 196 & 78 & 52 & 52 & 53 \\
\hline 19 & 77 & 231 & 350 & 2930 & 698 & 3010 & 181 & 183 & 72 & 54 & 54 & 54 \\
\hline 20 & 72 & 162 & 317 & 3260 & 654 & 1850 & 303 & 169 & 52 & 61 & 56 & 56 \\
\hline 21 & 38 & 161 & 225 & 3160 & 617 & 1630 & 377 & 197 & 47 & 70 & 58 & 56 \\
\hline 22 & 21 & 157 & 252 & 3020 & 531 & 1150 & 368 & 152 & 46 & 55 & 55 & 55 \\
\hline 23 & 14 & 156 & 344 & 3850 & 489 & 955 & 359 & 116 & 46 & 50 & 54 & 53 \\
\hline 24 & 11 & 156 & 324 & 4660 & 400 & 679 & 360 & 166 & 48 & 48 & 56 & 53 \\
\hline 25 & 11 & 131 & 282 & 3340 & 430 & 637 & 346 & 261 & 51 & 49 & 142 & 51 \\
\hline 26 & 10 & 77 & 269 & 2780 & 398 & 538 & 366 & 211 & 50 & 51 & 81 & 51 \\
\hline 27 & 10 & 74 & 264 & 3280 & 369 & 480 & 367 & 142 & 49 & 47 & 61 & 52 \\
\hline 28 & 9.5 & 69 & 269 & 3360 & 801 & 452 & 1210 & 104 & 70 & 49 & 56 & 52 \\
\hline 29 & 41 & 67 & 327 & 3190 & --- & 396 & 2160 & 98 & 83 & 62 & 55 & 54 \\
\hline 30 & 52 & 66 & 373 & 2010 & --- & 377 & 748 & 62 & 74 & 55 & 54 & 61 \\
\hline 31 & 51 & --- & 354 & 1680 & --- & 372 & --- & 51 & -- & 49 & 53 & -- \\
\hline TOTAL & 1807.5 & 6108 & 13725 & 78090 & 19333 & 57176 & 11568 & 12572 & 1808 & 1908 & 1723 & 1424 \\
\hline MEAN & 58.3 & 204 & 443 & 2519 & 690 & 1844 & 386 & 406 & 60.3 & 61.5 & 55.6 & 47.5 \\
\hline MAX & 84 & 339 & 2340 & 4990 & 1780 & 3500 & 2160 & 1930 & 112 & 119 & 142 & 61 \\
\hline MIN & 9.5 & 51 & 56 & 281 & 369 & 372 & 133 & 51 & 46 & 47 & 44 & 39 \\
\hline CFSM & . 11 & . 38 & . 82 & 4.69 & 1.29 & 3.43 & . 72 & . 76 & . 11 & . 11 & . 10 & . 09 \\
\hline IN. & . 13 & . 42 & . 95 & 5.41 & 1.34 & 3.96 & . 80 & . 87 & . 13 & . 13 & . 12 & . 10 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1961 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 315 & 590 & 945 & 1331 & 1447 & 1703 & 1176 & 951 & 488 & 215 & 173 & 171 \\
MAX & 2225 & 1715 & 2826 & 3320 & 3634 & 3672 & 3280 & 2762 & 2599 & 687 & 198 \\
(WY) & 1990 & 1978 & 1973 & 1974 & 1994 & 1994 & 1994 & 1971 & 1989 & 1992 & 1992 & 1989 \\
MIN & 47.5 & 148 & 45.5 & 56.8 & 270 & 241 & 98.7 & 57.9 & 49.1 & 43.6 & 45.0 & 45.9 \\
(WY) & 1989 & 1961 & 1966 & 1981 & 1968 & 1988 & 1986 & 1986 & 1988 & 1988 & 1988 & 1987
\end{tabular}

\section*{KENTUCKY RIVER BASIN}

03281000 MIDDLE FORK KENTUCKY RIVER AT TALLEGA, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & AR YEAR & FOR 1999 WAT & R YEAR & WATER YEAR & \multicolumn{2}{|l|}{\(1961-1999\)} \\
\hline ANNUAL TOTAL & 318341.5 & & 207242.5 & & & & \\
\hline ANNUAL MEAN & 872 & & 568 & & 789 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 1492 & & 1994 \\
\hline LOWEST ANNUAL MEAN & & & & & 267 & & 1988 \\
\hline HIGHEST DAILY MEAN & 6790 & Apr 19 & 4990 & Jan 9 & 10300 & Feb 27 & 1962 \\
\hline LOWEST DAILY MEAN & 9.5 & Oct 28 & 9.5 & Oct 28 & 9.5 & Oct 28 & 1998 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 12 & Oct 22 & 12 & Oct 22 & 12 & Nov 9 & 1991 \\
\hline INSTANTANEOUS PEAK FLOW & & & 5950 & Jan 9 & 52700 & Jan 30 & 1957 \\
\hline INSTANTANEOUS PEAK STAGE & & & 19.46 & Jan 9 & 43.33 & Jan 30 & 1957 \\
\hline INSTANTANEOUS LOW FLOW & & & 9.5 & Oct 28 & . 10 & Oct 12 & 1953 \\
\hline ANNUAL RUNOFF (CFSM) & 1.62 & & 1.06 & & 1.47 & & \\
\hline ANNUAL RUNOFF (INCHES) & 22.05 & & 14.36 & & 19.96 & & \\
\hline 10 PERCENT EXCEEDS & 2660 & & 2050 & & 2550 & & \\
\hline 50 PERCENT EXCEEDS & 339 & & 156 & & 302 & & \\
\hline 90 PERCENT EXCEEDS & 66 & & 47 & & 64 & & \\
\hline
\end{tabular}


03281040 RED BIRD RIVER NEAR BIG CREEK, KY
LOCATION.--Lat \(37^{\circ} 10^{\prime} 43^{\prime \prime}\), long \(83^{\circ} 35^{\prime} 3^{\prime \prime}\) Clay County, Hydrologic Unit 05100203, on right bank adjacent to State Highway 66 , 0.1 mi upstream from Fish Trap Branch, 0.6 mi downstream from Britton Branch, 1.2 mi downstream from Big \({ }^{\circ} \mathrm{Cr} \mathrm{m}^{\prime}\), 1.7 mi northwest of Big Creek, and at mile 58.9.
DRAINAGE AREA. \(--155 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--August 1972 to current year.
GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 815.74 ft above sea level.
REMARKS.--Records good.
EXTREMES OUTSIDE PERIOD OF RECORD.--Floods of 1947 and 1957 reached a stage of 29.27 ft and 27.60 ft, respectively, from floodmarks.

PEAKS ABOVE BASE.--Peak discharges above base of \(6,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{rcccccc} 
& & Discharge & Gage Height \\
Date & Time & \(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\) & \((\mathrm{ft})\) & Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} \\
Jan. 9 & 0500 & \(* 10800\) & 12.89 & Jan. 23 & 1200 & 6050
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 9.0 & 25 & 11 & 146 & 215 & 895 & 111 & 99 & 20 & 35 & 7.3 & 2.8 \\
\hline 2 & 4.8 & 27 & 9.0 & 174 & 229 & 604 & 105 & 93 & 44 & 46 & 10 & 3.5 \\
\hline 3 & 3.9 & 33 & 8.3 & 696 & 227 & 1650 & 98 & 85 & 46 & 61 & 20 & 3.8 \\
\hline 4 & 4.3 & 32 & 8.3 & 378 & 208 & 1160 & 96 & 78 & 31 & 28 & 9.6 & 3.7 \\
\hline 5 & 5.3 & 29 & 25 & 222 & 178 & 777 & 92 & 88 & 21 & 18 & 6.1 & 3.5 \\
\hline 6 & 4.2 & 24 & 37 & 190 & 169 & 709 & 89 & 612 & 18 & 14 & 4.2 & 3.0 \\
\hline 7 & 5.4 & 23 & 83 & 139 & 177 & 572 & 84 & 427 & 15 & 12 & 3.4 & 2.2 \\
\hline 8 & 25 & 22 & 444 & 931 & 157 & 450 & 84 & 414 & 14 & 9.4 & 3.6 & 1.7 \\
\hline 9 & 31 & 22 & 242 & 5640 & 148 & 597 & 134 & 260 & 14 & 8.9 & 5.0 & 1.4 \\
\hline 10 & 9.4 & 38 & 94 & 953 & 138 & 565 & 122 & 189 & 13 & 7.5 & 4.4 & 1.1 \\
\hline 11 & 4.4 & 56 & 54 & 501 & 131 & 472 & 518 & 146 & 36 & 7.8 & 4.3 & . 93 \\
\hline 12 & 3.3 & 73 & 97 & 330 & 210 & 370 & 422 & 119 & 26 & 15 & 5.1 & . 90 \\
\hline 13 & 2.7 & 38 & 1950 & 265 & 227 & 303 & 297 & 141 & 15 & 13 & 5.4 & . 96 \\
\hline 14 & 2.3 & 22 & 522 & 608 & 207 & 1110 & 235 & 155 & 17 & 9.4 & 6.9 & 1.2 \\
\hline 15 & 2.2 & 14 & 198 & 1340 & 214 & 1910 & 439 & 124 & 25 & 8.8 & 6.8 & 1.2 \\
\hline 16 & 2.2 & 12 & 123 & 728 & 218 & 1180 & 445 & 97 & 20 & 8.2 & 7.9 & 1.1 \\
\hline 17 & 2.7 & 10 & 101 & 490 & 239 & 848 & 350 & 80 & 14 & 6.4 & 12 & . 97 \\
\hline 18 & 4.2 & 9.7 & 73 & 1900 & 229 & 597 & 266 & 75 & 11 & 5.7 & 9.5 & . 86 \\
\hline 19 & 6.1 & 7.3 & 61 & 1000 & 219 & 419 & 218 & 92 & 9.4 & 11 & 7.6 & . 80 \\
\hline 20 & 5.7 & 6.7 & 55 & 590 & 195 & 322 & 192 & 62 & 8.4 & 13 & 7.3 & 1.2 \\
\hline 21 & 4.5 & 8.1 & 48 & 396 & 169 & 268 & 161 & 48 & 7.4 & 40 & 23 & 1.4 \\
\hline 22 & 5.5 & 6.7 & 113 & 282 & 147 & 204 & 142 & 46 & 6.1 & 88 & 9.3 & 1.5 \\
\hline 23 & 6.2 & 9.0 & 136 & 3640 & 137 & 174 & 133 & 50 & 5.8 & 30 & 4.9 & 1.5 \\
\hline 24 & 5.2 & 8.4 & 121 & 2320 & 129 & 164 & 121 & 111 & 6.9 & 30 & 3.9 & 1.6 \\
\hline 25 & 4.7 & 8.7 & 90 & 921 & 129 & 143 & 106 & 67 & 7.6 & 19 & 19 & 1.6 \\
\hline 26 & 4.9 & 23 & 83 & 556 & 120 & 130 & 128 & 46 & 8.6 & 13 & 34 & 1.3 \\
\hline 27 & 5.9 & 29 & 82 & 391 & 146 & 124 & 137 & 36 & 14 & 12 & 15 & 1.2 \\
\hline 28 & 7.9 & 29 & 109 & 282 & 1250 & 113 & 131 & 30 & 51 & 22 & 8.5 & 1.1 \\
\hline 29 & 13 & 18 & 181 & 211 & --- & 104 & 124 & 26 & 195 & 19 & 6.6 & 1.9 \\
\hline 30 & 20 & 14 & 234 & 174 & -- & 94 & 112 & 23 & 81 & 12 & 4.3 & 1.1 \\
\hline 31 & 25 & --- & 198 & 166 & - & 93 & --- & 21 & --- & 8.6 & 3.3 & --- \\
\hline TOTAL & 240.9 & 677.6 & 5590.6 & 26560 & 6162 & 17121 & 5692 & 3940 & 801.2 & 631.7 & 278.2 & 51.02 \\
\hline MEAN & 7.77 & 22.6 & 180 & 857 & 220 & 552 & 190 & 127 & 26.7 & 20.4 & 8.97 & 1.70 \\
\hline MAX & 31 & 73 & 1950 & 5640 & 1250 & 1910 & 518 & 612 & 195 & 88 & 34 & 3.8 \\
\hline MIN & 2.2 & 6.7 & 8.3 & 139 & 120 & 93 & 84 & 21 & 5.8 & 5.7 & 3.3 & . 80 \\
\hline CFSM & . 05 & . 15 & 1.16 & 5.53 & 1.42 & 3.56 & 1.22 & . 82 & . 17 & . 13 & . 06 & . 01 \\
\hline IN. & . 06 & . 16 & 1.34 & 6.37 & 1.48 & 4.11 & 1.37 & . 95 & . 19 & . 15 & . 07 & . 01 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1973 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
MEAN & 83.3 & 226 & 370 & 471 & 498 & 605 & 442 & 339 & 171 & 78.1 & 49.3 \\
MAX & 758 & 796 & 1180 & 1150 & 1244 & 1678 & 1233 & 1176 & 998 & 351 & 192 \\
(WY) & 1990 & 1978 & 1991 & 1974 & 1994 & 1975 & 1998 & 1984 & 1989 & 1992 & 1990 \\
MIN & 3.93 & 7.84 & 37.5 & 19.0 & 164 & 99.6 & 60.8 & 41.2 & 10.3 & 5.28 & 2.51 \\
(WY) & 1979 & 1988 & 1981 & 1981 & 1988 & 1988 & 1986 & 1986 & 1988 & 1988 & 1988
\end{tabular}

KENTUCKY RIVER BASIN
03281040 RED BIRD RIVER NEAR BIG CREEK, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & R YEAR & FOR 1999 WATER YEAR & \multicolumn{2}{|l|}{R YEAR} & WATER YEARS & \multicolumn{3}{|l|}{\(1973-1999\)} \\
\hline ANNUAL TOTAL & 98400.8 & & 67746.22 & & & & & & \\
\hline ANNUAL MEAN & 270 & & 186 & & & 280 & & & \\
\hline HIGHEST ANNUAL MEAN & & & & & & 513 & & & 1994 \\
\hline LOWEST ANNUAL MEAN & & & & & & 92.2 & & & 1988 \\
\hline HIGHEST DAILY MEAN & 9850 & Apr 17 & 5640 & Jan & 9 & 16200 & May & 7 & 1984 \\
\hline LOWEST DAILY MEAN & 2.2 & Oct 15 & . 80 & Sep & & . 20 & Oct & 4 & 1983 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 2.8 & Oct 12 & 1.0 & Sep & & . 52 & Sep & 5 & 1995 \\
\hline INSTANTANEOUS PEAK FLOW & & & 10800 & Jan & 9 & 28500 & Oct & 17 & 1989 \\
\hline INSTANTANEOUS PEAK STAGE & & & 12.89 & Jan & 9 & 21.14 & Oct & 17 & 1989 \\
\hline INSTANTANEOUS LOW FLOW & & & & & & . 20 & Oct & 4 & 1983 \\
\hline ANNUAL RUNOFF (CFSM) & 1.74 & & 1.20 & & & 1.81 & & & \\
\hline ANNUAL RUNOFF (INCHES) & 23.62 & & 16.26 & & & 24.53 & & & \\
\hline 10 PERCENT EXCEEDS & 599 & & 459 & & & 601 & & & \\
\hline 50 PERCENT EXCEEDS & 102 & & 38 & & & 96 & & & \\
\hline 90 PERCENT EXCEEDS & 5.4 & & 3.6 & & & 7.0 & & & \\
\hline
\end{tabular}


03281100 GOOSE CREEK AT MANCHESTER, KY
LOCATION.--Lat \(37^{\circ} 09^{\prime} 07{ }^{\prime \prime}\), long \(83^{\circ} 45^{\prime} \mathbf{3 7}^{\prime \prime}\), Clay County, Hydrologic Unit 05100203, on left bank on downstream side of Second Street bridge at Manchester, 0.9 mi upstream from Little Goose Creek, and at mile 21.7 .
DRAINAGE AREA. \(--163 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1964 to current year.
GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 819.37 ft above sea level. Prior to September 15 , 1975 , nonrecording gage at same site and datum.

REMARKS.-- Records good except for those estimated, which are poor. Slight diversions by City of Manchester.
EXTREMES OUTSIDE PERIOD OF RECORD.---Flood of June 28, 1947, Jan. 29, 1957, and Mar. 12, 1963, reached a stage of 40.6 ft, discharge, \(38,000 \mathrm{ft}^{3} / \mathrm{s}, 37.3 \mathrm{ft}\), discharge, \(29,800 \mathrm{ft}^{3} / \mathrm{s}\), and 33.5 ft , discharge, \(21,500 \mathrm{ft} / \mathrm{s}\), respectively, present site. PEAKS ABOVE BASE.--Peak discharges above base of \(4,500 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{rcccccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} \\
Jan. 9 & 1100 & \(* 7280\) & 21.16 & Jan. 23 & 2200 & 4560
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 3.2 & 5.1 & 8.4 & 162 & 248 & 664 & 118 & 121 & 11 & 37 & 4.7 & e3.5 \\
\hline 2 & 2.5 & 5.7 & 7.3 & 184 & 298 & 456 & 111 & 104 & 43 & 43 & 10 & e3.3 \\
\hline 3 & 2.5 & 25 & 7.4 & 822 & 301 & 1130 & 103 & 88 & 47 & 52 & 8.2 & e3.1 \\
\hline 4 & 3.3 & 22 & 7.5 & 420 & 276 & 1080 & 100 & 75 & 28 & 29 & 7.8 & e2.9 \\
\hline 5 & 4.1 & 21 & 23 & 255 & 233 & 641 & 94 & 94 & 19 & 19 & 5.7 & e2. 8 \\
\hline 6 & 4.7 & 21 & 21 & 183 & 214 & 557 & 91 & 399 & 15 & 13 & 4.4 & e2. 5 \\
\hline 7 & 7.9 & 19 & 74 & 152 & 216 & 455 & 84 & 369 & 12 & 10 & e3.8 & e2.0 \\
\hline 8 & 11 & 20 & 387 & 746 & 191 & 383 & 83 & 284 & 17 & 8.2 & e4.1 & e1.5 \\
\hline 9 & 13 & 21 & 276 & 5560 & 167 & 499 & 125 & 204 & 18 & 6.5 & e5.0 & e1.3 \\
\hline 10 & 13 & 37 & 98 & 1050 & 151 & 499 & 116 & 153 & 12 & 5.7 & e4.3 & e1.1 \\
\hline 11 & 8.4 & 32 & 55 & 462 & 138 & 424 & 529 & 115 & 17 & 6.8 & e4.1 & e. 90 \\
\hline 12 & 6.0 & 22 & 82 & 326 & 221 & 346 & 465 & 89 & 20 & 13 & e4.3 & e. 90 \\
\hline 13 & 5.1 & 27 & 1560 & 277 & 277 & 297 & 337 & 85 & 13 & 14 & e4.5 & e. 95 \\
\hline 14 & 4.4 & 17 & 591 & 529 & 270 & 849 & 274 & 83 & 15 & 12 & e6.0 & e1.4 \\
\hline 15 & 3.7 & 12 & 231 & 1200 & 273 & 2360 & 358 & 70 & 21 & 8.2 & e5.9 & e1.5 \\
\hline 16 & 3.2 & 8.3 & 134 & 679 & 269 & 1200 & 404 & 55 & 18 & 5.8 & e7.0 & e1.3 \\
\hline 17 & 3.1 & 6.7 & 102 & 445 & 290 & 728 & 348 & 45 & 13 & 4.6 & e11 & e1.0 \\
\hline 18 & 3.4 & 4.7 & 74 & 1020 & 286 & 493 & 290 & 52 & 9.6 & 5.6 & e9.0 & e. 90 \\
\hline 19 & 4.2 & 3.2 & 61 & 873 & 268 & 365 & 246 & 53 & 7.6 & 6.5 & e8.0 & e. 85 \\
\hline 20 & 4.6 & 3.9 & 56 & 510 & 231 & 301 & 219 & 39 & 6.1 & 23 & e10 & e1.4 \\
\hline 21 & 3.9 & 4.1 & 51 & 363 & 196 & 264 & 178 & 30 & 5.1 & 35 & e19 & e1.6 \\
\hline 22 & 3.5 & 3.3 & 101 & 281 & 164 & 217 & 146 & 27 & 4.5 & 17 & e10 & e1.4 \\
\hline 23 & 3.2 & 2.8 & 141 & 2660 & 148 & 184 & 124 & 37 & 3.8 & 11 & e6.0 & e1.4 \\
\hline 24 & 3.3 & 2.8 & 128 & 2290 & 135 & 172 & 111 & 81 & 5.1 & 11 & e5.0 & e1.3 \\
\hline 25 & 3.5 & 7.4 & 96 & 777 & 124 & 148 & 92 & 48 & 6.0 & 19 & e22 & e1.3 \\
\hline 26 & 3.7 & 19 & 88 & 457 & 112 & 128 & 124 & 33 & 6.0 & 12 & e12 & e2. 5 \\
\hline 27 & 3.8 & 12 & 89 & 344 & 116 & 115 & 161 & 26 & 8.7 & 8.4 & e8.0 & e3.4 \\
\hline 28 & 4.3 & 11 & 120 & 279 & 751 & 103 & 192 & 21 & 55 & 8.6 & e7.0 & e3. 9 \\
\hline 29 & 5.3 & 11 & 240 & 222 & --- & 95 & 172 & 17 & 247 & 6.6 & e5.2 & e6.5 \\
\hline 30 & 5.4 & 9.5 & 262 & 181 & --- & 87 & 145 & 15 & 73 & 5.3 & e4.3 & 4.9 \\
\hline 31 & 5.6 & --- & 220 & 168 & - & 86 & --- & 13 & --- & 3.7 & e3.8 & --- \\
\hline TOTAL & 156.8 & 416.5 & 5391.6 & 23877 & 6564 & 15326 & 5940 & 2925 & 776.5 & 460.5 & 230.1 & 63.30 \\
\hline MEAN & 5.06 & 13.9 & 174 & 770 & 234 & 494 & 198 & 94.4 & 25.9 & 14.9 & 7.42 & 2.11 \\
\hline MAX & 13 & 37 & 1560 & 5560 & 751 & 2360 & 529 & 399 & 247 & 52 & 22 & 6.5 \\
\hline MIN & 2.5 & 2.8 & 7.3 & 152 & 112 & 86 & 83 & 13 & 3.8 & 3.7 & 3.8 & . 85 \\
\hline CFSM & . 03 & . 09 & 1.07 & 4.73 & 1.44 & 3.03 & 1.21 & . 58 & . 16 & . 09 & . 05 & . 01 \\
\hline IN. & . 04 & . 10 & 1.23 & 5.45 & 1.50 & 3.50 & 1.36 & . 67 & . 18 & . 11 & . 05 & . 01 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1965 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 84.3 & 198 & 367 & 452 & 481 & 540 & 434 & 305 & 154 & 91.6 & 49.8 & 42.5 \\
MAX & 600 & 646 & 1229 & 1205 & 1196 & 1665 & 1308 & 1158 & 975 & 381 & 178 & 185 \\
(WY) & 1990 & 1978 & 1991 & 1974 & 1972 & 1975 & 1998 & 1984 & 1989 & 1965 & 1977 & 1979 \\
MIN & 2.13 & 11.4 & 28.3 & 22.9 & 70.5 & 111 & 50.8 & 29.3 & 6.48 & 2.03 & 3.72 & 2.11 \\
(WY) & 1970 & 1988 & 1966 & 1981 & 1968 & 1969 & 1986 & 1965 & 1988 & 1966 & 1988 & 1965
\end{tabular}

KENTUCKY RIVER BASIN
03281100 GOOSE CREEK AT MANCHESTER, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & AR YEAR & FOR 1999 WAT & R YEAR & WATER YEARS & 1965 & \multicolumn{2}{|l|}{- 1999} \\
\hline ANNUAL TOTAL & 100225.6 & & 62127.30 & & & & & \\
\hline ANNUAL MEAN & 275 & & 170 & & 266 & & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 456 & & & 1994 \\
\hline LOWEST ANNUAL MEAN & & & & & 107 & & & 1988 \\
\hline HIGHEST DAILY MEAN & 12100 & Apr 17 & 5560 & Jan 9 & 13700 & May & 7 & 1984 \\
\hline LOWEST DAILY MEAN & 2.5 & Oct 2 & . 85 & Sep 19 & . 00 & Oct & 8 & 1980 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 3.5 & Sep 30 & 1.1 & Sep 13 & . 16 & Oct & 4 & 1980 \\
\hline INSTANTANEOUS PEAK FLOW & & & 7280 & Jan 9 & 19200 & May & 7 & 1984 \\
\hline INSTANTANEOUS PEAK STAGE & & & 21.16 & Jan 9 & 32.85 & May & 7 & 1984 \\
\hline INSTANTANEOUS LOW FLOW & & & & & . 00 & Oct & 8 & 1980 \\
\hline ANNUAL RUNOFF (CFSM) & 1.68 & & 1.04 & & 1.63 & & & \\
\hline ANNUAL RUNOFF (INCHES) & 22.87 & & 14.18 & & 22.14 & & & \\
\hline 10 PERCENT EXCEEDS & 571 & & 422 & & 573 & & & \\
\hline 50 PERCENT EXCEEDS & 90 & & 28 & & 91 & & & \\
\hline 90 PERCENT EXCEEDS & 4.9 & & 3.3 & & 6.0 & & & \\
\hline
\end{tabular}


03281500 SOUTH FORK KENTUCKY RIVER AT BOONEVILLE, KY
LOCATION.--Lat \(37^{\circ} 28^{\prime} 4^{\prime \prime}\) ", long \(83^{\circ} 40^{\prime} 38^{\prime \prime}\), Owsley County, Hydrologic Unit 05100203, on right bank 600 ft downstream from Buck Creek, 0.2 mi downstream from bridge on State Highway 30 at Booneville, 0.5 mi downstream from Meadow Creek, and at mile 11.5.

DRAINAGE AREA. \(--722 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--March 1925 to September 1931, October 1939 to current year. Monthly discharge only for October 1939,
published in WSP 1305.
REVISED RECORDS.--WSP 893: 1929(M). WSP 1335: WSP 1555: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 642.49 ft above sea level. See WDR KY-92-1 for history of changes prior to Nov. 27, 1929

REMARKS.--Records good.
PEAKS ABOVE BASE.--Peak discharges above base of \(14,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum *.
\begin{tabular}{rcccrrr} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} \\
Jan. 10 & 0200 & \(* 18800\) & 27.73 & Jan. 24 & 1200 & 14100
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 11 & 5.5 & 57 & 755 & 873 & 3050 & 408 & 697 & 99 & 321 & 55 & 15 \\
\hline 2 & 8.8 & 5.5 & 51 & 609 & 1430 & 2370 & 451 & 575 & 93 & 195 & 44 & 11 \\
\hline 3 & 8.5 & 30 & 42 & 1490 & 1430 & 2610 & 448 & 493 & 95 & 148 & 31 & 8.1 \\
\hline 4 & 22 & 16 & 38 & 2480 & 1250 & 5550 & 423 & 435 & 136 & 183 & 24 & 5.7 \\
\hline 5 & 26 & 11 & 45 & 1320 & 1020 & 3620 & 410 & 400 & 166 & 172 & 19 & 4.0 \\
\hline 6 & 19 & 9.2 & 85 & 823 & 855 & 2560 & 392 & 589 & 126 & 116 & 24 & 2.8 \\
\hline 7 & 14 & 7.9 & 106 & 686 & 782 & 2210 & 378 & 1520 & 99 & 89 & 31 & 2.2 \\
\hline 8 & 16 & 7.4 & 857 & 1090 & 745 & 1750 & 368 & 1180 & 82 & 69 & 25 & 1.6 \\
\hline 9 & 15 & 13 & 1760 & 14100 & 657 & 1710 & 411 & 929 & 74 & 55 & 20 & 1.2 \\
\hline 10 & 12 & 25 & 920 & 14600 & 593 & 2200 & 628 & 689 & 76 & 46 & 17 & . 87 \\
\hline 11 & 8.9 & 36 & 464 & 3460 & 545 & 1990 & 725 & 550 & 115 & 41 & 13 & . 65 \\
\hline 12 & 36 & 28 & 332 & 1800 & 632 & 1640 & 1620 & 457 & 92 & 33 & 10 & . 57 \\
\hline 13 & 38 & 24 & 2280 & 1250 & 1150 & 1320 & 1330 & 399 & 70 & 31 & 8.6 & . 39 \\
\hline 14 & 29 & 42 & 4740 & 1130 & 1170 & 1930 & 1010 & 376 & 83 & 30 & 6.5 & . 35 \\
\hline 15 & 26 & 76 & 1650 & 2730 & 1090 & 5940 & 921 & 381 & 125 & 50 & 5.7 & . 28 \\
\hline 16 & 22 & 58 & 764 & 3640 & 1080 & 6490 & 1260 & 350 & 93 & 58 & 5.2 & . 23 \\
\hline 17 & 17 & 60 & 536 & 2310 & 1100 & 3740 & 1260 & 299 & 91 & 49 & 4.7 & . 16 \\
\hline 18 & 15 & 41 & 435 & 2090 & 1150 & 2530 & 1050 & 267 & 82 & 50 & 3.7 & . 13 \\
\hline 19 & 13 & 30 & 366 & 4270 & 1070 & 1760 & 880 & 288 & 69 & 69 & 2.6 & . 12 \\
\hline 20 & 10 & 25 & 315 & 2840 & 947 & 1320 & 781 & 264 & 58 & 57 & 2.3 & . 17 \\
\hline 21 & 9.4 & 25 & 283 & 1870 & 805 & 1090 & 693 & 244 & 47 & 60 & 2.3 & . 22 \\
\hline 22 & 8.9 & 24 & 384 & 1350 & 685 & 922 & 604 & 199 & 40 & 56 & 2.1 & . 17 \\
\hline 23 & 8.3 & 22 & 559 & 4110 & 599 & 772 & 535 & 173 & 35 & 131 & 1.8 & . 16 \\
\hline 24 & 7.2 & 21 & 604 & 13200 & 555 & 686 & 482 & 211 & 32 & 152 & 1.8 & . 14 \\
\hline 25 & 6.1 & 20 & 508 & 6580 & 524 & 634 & 441 & 278 & 35 & 236 & 26 & . 13 \\
\hline 26 & 5.3 & 34 & 427 & 2820 & 500 & 563 & 423 & 291 & 32 & 124 & 7.0 & . 13 \\
\hline 27 & 5.1 & 34 & 389 & 1820 & 470 & 510 & 525 & 208 & 28 & 87 & 10 & . 11 \\
\hline 28 & 5.0 & 33 & 390 & 1350 & 1020 & 476 & 828 & 167 & 29 & 71 & 12 & . 10 \\
\hline 29 & 5.5 & 32 & 517 & 1030 & --- & 444 & 1160 & 143 & 79 & 70 & 22 & . 16 \\
\hline 30 & 5.7 & 44 & 856 & 812 & --- & 418 & 905 & 124 & 311 & 66 & 29 & . 23 \\
\hline 31 & 5.7 & --- & 929 & 686 & --- & 393 & --- & 110 & --- & 68 & 20 & --- \\
\hline TOTAL & 439.4 & 839.5 & 21689 & 99101 & 24727 & 63198 & 21750 & 13286 & 2592 & 2983 & 486.3 & 57.07 \\
\hline MEAN & 14.2 & 28.0 & 700 & 3197 & 883 & 2039 & 725 & 429 & 86.4 & 96.2 & 15.7 & 1.90 \\
\hline MAX & 38 & 76 & 4740 & 14600 & 1430 & 6490 & 1620 & 1520 & 311 & 321 & 55 & 15 \\
\hline MIN & 5.0 & 5.5 & 38 & 609 & 470 & 393 & 368 & 110 & 28 & 30 & 1.8 & . 10 \\
\hline CFSM & . 02 & . 04 & . 97 & 4.43 & 1.22 & 2.82 & 1.00 & . 59 & . 12 & . 13 & . 02 & . 00 \\
\hline IN. & . 02 & . 04 & 1.12 & 5.11 & 1.27 & 3.26 & 1.12 & . 68 & . 13 & . 15 & . 03 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1925 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 215 & 664 & 1346 & 1844 & 2103 & 2333 & 1713 & 1111 & 596 & 390 & 252 & 144 \\
MAX & 2843 & 2380 & 4935 & 5461 & 5905 & 7400 & 4703 & 5130 & 2710 & 2666 & 1700 & 827 \\
(WY) & 1990 & 1974 & 1991 & 1974 & 1956 & 1975 & 1998 & 1984 & 1989 & 1941 & 1942 & 1989 \\
MIN & .084 & .32 & 12.1 & 104 & 178 & 568 & 222 & 119 & 36.7 & 3.67 & 4.56 & .68 \\
(WY) & 1954 & 1954 & 1954 & 1981 & 1941 & 1988 & 1963 & 1941 & 1966 & 1944 & 1930 & 1930
\end{tabular}

KENTUCKY RIVER BASIN
03281500 SOUTH FORK KENTUCKY RIVER AT BOONEVILLE, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 50 PERCENT EXCEEDS

FOR 1998 CALENDAR YEAR
\begin{tabular}{lll}
398173.8 \\
1091 & & \\
& & \\
22300 & Apr & 18 \\
5.0 & Oct & 28 \\
5.4 & Oct 26 \\
& & \\
1.51 & & \\
20.52 & \\
2550 & \\
441 & & \\
12 &
\end{tabular}

FOR 1999 WATER YEAR
\begin{tabular}{ccc}
251148.27 \\
688 & & \\
& & \\
14600 & Jan 10 \\
.10 & Sep 28 \\
.13 & Sep 23 \\
18800 & Jan 10 \\
27.73 & Jan 10 \\
.10 & Sep 27 \\
.95 & & \\
12.94 & & \\
1730 & & \\
136 & & \\
5.2 &
\end{tabular}

WATER YEARS 1925 - 1999
\begin{tabular}{rlll}
1059 & & & \\
1808 & & & \\
413 & & & 1994 \\
51300 & & Jan 30 & 1988 \\
.00 & Oct 11 & 1953 \\
.00 & Oct 11 & 1953 \\
66100 & Jan 30 & 1957 \\
43.40 & Jan 30 & 1957 \\
.00 & Oct 11 & 1953 \\
1.47 & & & \\
19.92 & & & \\
2420 & & & \\
358 & & & \\
26 & & &
\end{tabular}


LOCATION.--Lat \(37^{\circ} 33^{\prime} 19^{\prime \prime}\), long \(83^{\circ} 46^{\prime} 06^{\prime \prime}\), Lee County, Hydrologic Unit 05100204, on right bank 200 ft upstream from lock 14 at Heidelberg, 0.3 mi upstream from Sturgeon Creek, and at mile 249.2.
DRAINAGE AREA. \(--2,657 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1925 to September 1931, December 1936 to February 1937, July 1938 to current year. Gage-height records collected in this vicinity since 1902 are published in reports of National Weather Service.

REVISED RECORDS.--WSP 1385: 1926-27, 1928 (M), 1929, 1931 (M), 1937, 1939 (M), drainage area.
GAGE.--Water-stage recorder. Datum of gage is 626.66 ft above sea level, Ohio River datum. Prior to September 2 , 1939 , nonrecording gage at lock 14 at same datum.

REMARKS.--Records good above \(1,000 \mathrm{ft}^{3} / \mathrm{s}\), fair between \(1,000 \mathrm{ft}^{3} / \mathrm{s}\) and \(150 \mathrm{ft} / \mathrm{s}\), and poor below \(150 \mathrm{ft} 3 / \mathrm{s}\). Flow regul ated Buckhorn Lake beginning December 1960 (station 03280800), and by Carr Fork Lake beginning January 1976 (station 03277446). Small diversions by City of Lexington waterworks.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 230 & 223 & 319 & 2600 & 4420 & 8350 & 1890 & 4360 & 387 & 869 & 275 & 157 \\
\hline 2 & 211 & 224 & 308 & 2320 & 6040 & 10000 & 1980 & 3230 & 358 & 587 & 229 & 119 \\
\hline 3 & 258 & 289 & 286 & 3470 & 6120 & 10300 & 2070 & 2580 & 368 & 470 & 297 & 99 \\
\hline 4 & 322 & 364 & 261 & 6060 & 5120 & 19600 & 1970 & 2170 & 473 & 474 & 342 & 87 \\
\hline 5 & 310 & 386 & 257 & 4880 & 4180 & 18200 & 1820 & 1890 & 501 & 511 & 245 & 80 \\
\hline 6 & 285 & 520 & 300 & 3250 & 3520 & 12900 & 1640 & 2220 & 430 & 465 & 200 & 74 \\
\hline 7 & 269 & 500 & 485 & 2510 & 3050 & 10800 & 1410 & 4010 & 363 & 363 & 179 & 72 \\
\hline 8 & 312 & 480 & 1670 & 2820 & 2840 & 8720 & 1320 & 4330 & 319 & 286 & 155 & 66 \\
\hline 9 & 440 & 479 & 4650 & 28900 & 2610 & 7090 & 1380 & 5010 & 293 & 234 & 135 & 60 \\
\hline 10 & 571 & 484 & 4470 & 35500 & 2340 & 7870 & 1660 & 3970 & 299 & 201 & 110 & 57 \\
\hline 11 & 417 & 520 & 2750 & 18100 & 2150 & 7860 & 2030 & 2730 & 314 & 190 & 105 & 54 \\
\hline 12 & 378 & 547 & 1790 & 9540 & 2260 & 6920 & 3130 & 2150 & 311 & 192 & 108 & 52 \\
\hline 13 & 341 & 649 & 2980 & 7610 & 3270 & 5760 & 4520 & 1840 & 325 & 173 & 105 & 51 \\
\hline 14 & 293 & 607 & 12800 & 6790 & 3870 & 6870 & 3510 & 1550 & 332 & 170 & 105 & 51 \\
\hline 15 & 265 & 586 & 9220 & 8450 & 3590 & 15400 & 2960 & 1510 & 420 & 184 & 148 & 49 \\
\hline 16 & 247 & 560 & 4430 & 12200 & 3410 & 19000 & 3350 & 1350 & 418 & 204 & 336 & 48 \\
\hline 17 & 224 & 538 & 2600 & 10000 & 3380 & 15200 & 3950 & 1130 & 353 & 191 & 268 & 53 \\
\hline 18 & 208 & 523 & 2030 & 8420 & 3590 & 12700 & 3350 & 992 & 315 & 199 & 180 & 57 \\
\hline 19 & 207 & 480 & 1690 & 12800 & 3530 & 10400 & 2840 & 989 & 285 & 221 & 125 & 59 \\
\hline 20 & 203 & 366 & 1420 & 13600 & 3290 & 7480 & 2660 & 960 & 257 & 204 & 98 & 75 \\
\hline 21 & 182 & 351 & 1240 & 10100 & 2970 & 5720 & 2630 & 1040 & 215 & 245 & 88 & 74 \\
\hline 22 & 163 & 374 & 1440 & 8050 & 2640 & 4740 & 2400 & 936 & 192 & 285 & 77 & 65 \\
\hline 23 & 165 & 397 & 2130 & 11700 & 2360 & 3990 & 2180 & 739 & 179 & 372 & 73 & 59 \\
\hline 24 & 155 & 401 & 2250 & 30600 & 2150 & 3450 & 1990 & 840 & 177 & 393 & 71 & 58 \\
\hline 25 & 146 & 384 & 1900 & 25200 & 2060 & 3070 & 1840 & 1010 & 169 & 427 & 540 & 63 \\
\hline 26 & 142 & 342 & 1580 & 13800 & 2090 & 2750 & 1790 & 1150 & 178 & 435 & 1640 & 67 \\
\hline 27 & 145 & 322 & 1450 & 9950 & 2060 & 2480 & 2080 & 881 & 184 & 471 & 610 & 67 \\
\hline 28 & 156 & 314 & 1440 & 8530 & 2950 & 2330 & 3960 & 662 & 237 & 366 & 311 & 67 \\
\hline 29 & 170 & 314 & 1700 & 7270 & --- & 2180 & 11600 & 570 & 382 & 303 & 261 & 76 \\
\hline 30 & 206 & 297 & 2390 & 5190 & --- & 2050 & 6720 & 501 & 584 & 314 & 250 & 86 \\
\hline 31 & 213 & --- & 2710 & 4040 & --- & 1930 & --- & 440 & --- & 318 & 200 & --- \\
\hline TOTAL & 7834 & 12821 & 74946 & 334250 & 91860 & 256110 & 86630 & 57740 & 9618 & 10317 & 7866 & 2102 \\
\hline MEAN & 253 & 427 & 2418 & 10780 & 3281 & 8262 & 2888 & 1863 & 321 & 333 & 254 & 70.1 \\
\hline MAX & 571 & 649 & 12800 & 35500 & 6120 & 19600 & 11600 & 5010 & 584 & 869 & 1640 & 157 \\
\hline MIN & 142 & 223 & 257 & 2320 & 2060 & 1930 & 1320 & 440 & 169 & 170 & 71 & 48 \\
\hline CFSM & . 10 & . 16 & . 91 & 4.06 & 1.23 & 3.11 & 1.09 & . 70 & . 12 & . 13 & . 10 & . 03 \\
\hline IN. & . 11 & . 18 & 1.05 & 4.68 & 1.29 & 3.59 & 1.21 & . 81 & . 13 & . 14 & . 11 & . 03 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1977 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrr} 
MEAN & 1373 & 2749 & 4894 & 6095 & 7182 & 7851 & 6079 & 4982 & 2675 & 1111 \\
MAX & 10380 & 7006 & 14850 & 14010 & 16710 & 18260 & 15260 & 16010 & 10380 & 3320 \\
(WY) & 1990 & 1978 & 1991 & 1994 & 1994 & 1994 & 1998 & 1984 & 1989 & 1992 \\
MIN & 242 & 427 & 582 & 362 & 2345 & 1791 & 855 & 910 & 247 & 206 \\
(WY) & 1989 & 1999 & 1981 & 1981 & 1988 & 1988 & 1986 & 1986 & 1988 & 1988
\end{tabular}

KENTUCKY RIVER BASIN
03282000 KENTUCKY RIVER AT LOCK 14, AT HEIDELBERG, KY--Continued



03282040 STURGEON CREEK AT CRESSMONT, KY
LOCATION.--Lat \(37^{\circ} 30^{\prime} 02^{\prime \prime}\), long \(83^{\circ} 48^{\prime} 3^{\prime \prime \prime}\), Lee County, Hydrologic Unit 05100204, on right bank 30 ft downstream \(f\) bridge on State Highway \(597,0.2 \mathrm{mi}\) southeast of Cressmont, 0.2 mi upstream from Elkhorn Branch, and 0.5 mi downstream from Granny Dismal Creek.
DRAINAGE AREA.-- \(77.3 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1992 to current year.
GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 704.53 ft above sea level.
REMARKS.--Records fair.
PEAKS ABOVE BASE.--Peak discharges above base of \(2,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{rcccccc} 
\\
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & \begin{tabular}{c} 
Time
\end{tabular} & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} \\
Jan. 9 & 0145 & \(* 8340\) & 14.84 & Jan. 23 & 1600 & 2330
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 2.2 & 3.7 & 10 & 73 & 248 & 208 & 49 & 84 & 2.9 & 3.6 & . 98 & . 00 \\
\hline 2 & 1.7 & 3.9 & 6.4 & 129 & 291 & 161 & 47 & 69 & 2.9 & 3.1 & . 66 & . 00 \\
\hline 3 & 1.5 & 15 & 4.1 & 377 & 228 & 453 & 42 & 55 & 3.4 & 2.9 & . 39 & . 00 \\
\hline 4 & 2.9 & 10 & 3.5 & 178 & 174 & 367 & 40 & 44 & 3.2 & 2.5 & . 25 & . 00 \\
\hline 5 & 2.5 & 5.7 & 19 & 116 & 132 & 248 & 37 & 44 & 2.7 & 2.1 & . 17 & . 00 \\
\hline 6 & 2.1 & 4.9 & 61 & e95 & 115 & 262 & 35 & 152 & 2.2 & 1.5 & . 12 & . 00 \\
\hline 7 & 2.6 & 4.5 & 143 & 76 & 106 & 195 & 32 & 126 & 1.9 & 1.2 & . 10 & . 00 \\
\hline 8 & 7.1 & 3.7 & 368 & 1630 & 82 & 164 & 30 & 91 & 1.8 & . 86 & . 08 & . 00 \\
\hline 9 & 5.0 & 3.5 & 158 & 3020 & 70 & 264 & 46 & 65 & 1.5 & . 75 & . 08 & . 00 \\
\hline 10 & 3.1 & 6.1 & 78 & 427 & 58 & 251 & 45 & 49 & 1.5 & . 68 & . 07 & . 00 \\
\hline 11 & 2.4 & 28 & 48 & 237 & 51 & 201 & 79 & 37 & 1.3 & . 65 & . 06 & . 00 \\
\hline 12 & 1.8 & 28 & 49 & 166 & 139 & 158 & 89 & 28 & 1.2 & . 56 & . 05 & . 00 \\
\hline 13 & 1.5 & 19 & 635 & 132 & 156 & 134 & 71 & 45 & 1.0 & . 50 & . 04 & . 00 \\
\hline 14 & 1.4 & 15 & 217 & 198 & 137 & 793 & 61 & 32 & 1.3 & . 45 & . 03 & . 00 \\
\hline 15 & 1.3 & 8.9 & 113 & 333 & 131 & 555 & 84 & 23 & 3.9 & . 39 & . 03 & . 00 \\
\hline 16 & 1.2 & 3.7 & 77 & 237 & 122 & 319 & 116 & 17 & 2.6 & . 34 & . 02 & . 00 \\
\hline 17 & 1.3 & 3.1 & 62 & 180 & 130 & 228 & 97 & 13 & 1.7 & . 29 & . 01 & . 00 \\
\hline 18 & 1.8 & 2.7 & 45 & 214 & 117 & 168 & 83 & 11 & 1.2 & . 89 & . 00 & . 00 \\
\hline 19 & 2.5 & 2.9 & 38 & 175 & 105 & 131 & 73 & 18 & 1.0 & 1.9 & . 00 & . 00 \\
\hline 20 & 2.0 & 3.0 & 34 & 161 & 88 & 112 & 72 & 13 & . 85 & 3.0 & . 00 & . 00 \\
\hline 21 & 2.2 & 3.0 & 31 & 137 & 73 & 104 & 60 & 8.9 & . 78 & 2.7 & . 00 & . 00 \\
\hline 22 & 2.5 & 3.0 & 95 & 116 & 60 & 87 & 50 & 7.5 & . 78 & 2.2 & . 00 & . 00 \\
\hline 23 & 2.4 & 2.7 & 90 & 1450 & 55 & 71 & 44 & 7.8 & . 75 & 1.3 & . 00 & . 00 \\
\hline 24 & 2.0 & 2.2 & 73 & 713 & 51 & 61 & 39 & 16 & 1.3 & . 75 & . 00 & . 00 \\
\hline 25 & 2.3 & 2.5 & 55 & 321 & 49 & 57 & 32 & 5.2 & 2.1 & . 53 & . 04 & . 00 \\
\hline 26 & 2.3 & 12 & 49 & 209 & 43 & 54 & 59 & 8.9 & 2.7 & . 36 & . 03 & . 00 \\
\hline 27 & 2.5 & 16 & 48 & 157 & 51 & 49 & 112 & 6.3 & 2.9 & . 28 & . 03 & . 01 \\
\hline 28 & 2.6 & 13 & 62 & 123 & 262 & 45 & 147 & 4.8 & 3.2 & . 20 & . 02 & . 96 \\
\hline 29 & 2.8 & 7.5 & 95 & 97 & --- & 41 & 129 & 3.9 & 6.4 & . 18 & . 02 & 2.8 \\
\hline 30 & 3.2 & 6.1 & 108 & 78 & --- & 38 & 104 & 3.4 & 4.9 & . 15 & . 01 & 5.2 \\
\hline 31 & 3.6 & --- & 93 & 86 & --- & 35 & --- & 3.1 & --- & 1.0 & . 00 & --- \\
\hline TOTAL & 76.3 & 243.3 & 2968.0 & 11641 & 3324 & 6014 & 2004 & 1091.8 & 65.86 & 37.81 & 3.29 & 8.97 \\
\hline MEAN & 2.46 & 8.11 & 95.7 & 376 & 119 & 194 & 66.8 & 35.2 & 2.20 & 1.22 & . 11 & . 30 \\
\hline MAX & 7.1 & 28 & 635 & 3020 & 291 & 793 & 147 & 152 & 6.4 & 3.6 & . 98 & 5.2 \\
\hline MIN & 1.2 & 2.2 & 3.5 & 73 & 43 & 35 & 30 & 3.1 & . 75 & . 15 & . 00 & . 00 \\
\hline CFSM & . 03 & . 10 & 1.24 & 4.86 & 1.54 & 2.51 & . 86 & . 46 & . 03 & . 02 & . 00 & . 00 \\
\hline IN. & . 04 & . 12 & 1.43 & 5.60 & 1.60 & 2.89 & . 96 & . 53 & . 03 & . 02 & . 00 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1993 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 34.1 & 86.0 & 120 & 264 & 201 & 298 & 194 & 149 & 109 & 17.4 & 14.3 & 15.7 \\
MAX & 108 & 246 & 193 & 403 & 484 & 540 & 441 & 345 & 304 & 42.7 & 29.3 & 59.5 \\
(WY) & 1997 & 1997 & 1994 & 1994 & 1994 & 1994 & 1998 & 1995 & 1997 & 1998 \\
MIN & 2.46 & 8.11 & 50.8 & 139 & 92.0 & 122 & 49.6 & 26.1 & 2.20 & 1.22 & 1994 \\
(WY) & 1999 & 1999 & 1998 & 1993 & 1997 & 1995 & 1997 & 1993 & 1999 & 1999 & 1999 & 1999
\end{tabular}

KENTUCKY RIVER BASIN
03282040 STURGEON CREEK AT CRESSMONT, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS
e Estimated


WATER YEARS 1993 - 1999
\begin{tabular}{cllr} 
& & & \\
125 & & & \\
195 & & & 1994 \\
75.3 & & 1999 \\
4230 & & Mar & 3 \\
\hline
\end{tabular}


\section*{KENTUCKY RIVER BASIN \\ 03282500 RED RIVER NEAR HAZEL GREEN, KY}

LOCATION.--Lat \(37^{\circ} 48^{\prime} 44^{\prime \prime}\), long \(83^{\circ} 27^{\prime} 50^{\prime \prime}\), Wolfe County, Hydrologic Unit 05100204 , on right bank 600 ft upstream from Buck Creek, 0.3 mi downstream from Chapel Branch, 2.7 mi northwest of Hazel Green, and at mile 72.7 .

DRAINAGE AREA. \(--65.8 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--April 1954 to current year.
REVISED RECORDS.--WRD KY 72-1: 1971.
GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 870.11 ft above sea level.
REMARKS.--Records fair except for daily discharges below \(2.0 \mathrm{ft} 3 / \mathrm{s}\) and periods of estimated record, which are poor.
PEAKS ABOVE BASE.--Peak discharges above base of \(1,100 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 9 & 1130 & 1830 & 7.57
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{9}{|l|}{DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
DAILY MEAN VALUES} & \multirow[b]{2}{*}{AUG} & \multirow[b]{2}{*}{SEP} \\
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & & \\
\hline 1 & e. 95 & . 43 & 2.9 & e18 & 59 & 115 & e52 & 148 & 3.6 & 1.8 & . 34 & . 50 \\
\hline 2 & e. 90 & . 46 & 2.8 & 26 & 163 & 117 & e48 & 108 & 3.5 & 1.9 & . 32 & . 36 \\
\hline 3 & 2.2 & . 91 & 2.9 & 126 & 152 & 306 & e46 & 81 & 3.5 & 1.5 & . 74 & . 28 \\
\hline 4 & 1.7 & 5.9 & 2.7 & 81 & 118 & 421 & e44 & 64 & 3.5 & 1.5 & 1.4 & . 19 \\
\hline 5 & 1.3 & 5.7 & 3.1 & 57 & 89 & 203 & e43 & 56 & 2.9 & 1.7 & . 77 & . 08 \\
\hline 6 & e1.1 & 2.7 & 4.3 & 41 & 79 & 156 & e41 & 72 & 2.5 & 1.6 & . 53 & . 03 \\
\hline 7 & e. 90 & 2.0 & 8.8 & 33 & 72 & 129 & e39 & 65 & 2.4 & . 72 & . 39 & . 01 \\
\hline 8 & 2.1 & 1.7 & 63 & 236 & 64 & 105 & e38 & 51 & 2.0 & . 60 & . 33 & . 00 \\
\hline 9 & e1.6 & 1.7 & 56 & 1670 & 55 & 115 & e49 & 41 & 4.9 & . 41 & . 32 & . 00 \\
\hline 10 & e1.3 & 1.8 & 31 & 614 & 49 & 172 & e46 & 35 & 5.1 & . 35 & . 27 & . 00 \\
\hline 11 & e. 90 & 4.6 & 19 & 203 & 44 & 149 & e47 & 28 & 3.2 & . 34 & . 26 & . 00 \\
\hline 12 & e. 80 & 6.8 & 15 & 127 & 50 & 120 & e52 & 24 & 2.4 & . 31 & . 23 & . 00 \\
\hline 13 & e. 70 & 6.3 & 47 & 94 & 66 & 100 & e41 & 41 & 2.1 & . 27 & . 22 & . 00 \\
\hline 14 & e. 64 & 4.0 & 93 & 93 & 58 & 331 & 39 & 32 & 1.9 & . 22 & . 26 & . 00 \\
\hline 15 & e. 58 & 3.1 & 43 & 197 & 61 & 513 & 40 & 29 & 11 & . 18 & . 23 & . 00 \\
\hline 16 & e. 55 & 2.7 & 28 & 168 & 68 & 203 & 45 & 22 & 6.0 & . 08 & . 20 & . 00 \\
\hline 17 & e. 51 & 2.3 & 22 & 136 & 73 & 118 & 39 & 19 & 3.4 & . 03 & . 15 & . 00 \\
\hline 18 & e. 49 & 2.1 & 18 & 149 & 74 & 104 & 35 & 17 & 2.5 & . 01 & . 02 & . 00 \\
\hline 19 & e. 48 & 1.9 & 15 & 147 & 65 & 85 & 33 & 19 & 2.0 & . 00 & . 00 & . 00 \\
\hline 20 & e. 56 & 2.1 & 14 & 125 & 58 & 77 & 39 & 15 & 1.9 & . 00 & . 00 & . 00 \\
\hline 21 & e. 47 & 2.2 & 12 & 103 & e50 & 74 & 42 & 12 & 1.7 & . 00 & . 00 & . 00 \\
\hline 22 & e. 36 & 2.4 & 49 & 85 & e43 & 65 & 41 & 11 & 1.2 & . 00 & . 00 & . 00 \\
\hline 23 & e. 34 & 2.4 & 48 & 434 & e41 & 60 & 41 & 10 & . 84 & 2.7 & . 00 & . 00 \\
\hline 24 & e. 31 & 2.4 & 34 & 770 & e40 & 66 & 39 & 14 & . 73 & 5.8 & . 00 & . 00 \\
\hline 25 & e. 28 & 2.3 & e20 & 324 & e41 & e63 & 33 & 17 & 1.0 & 4.0 & 71 & . 00 \\
\hline 26 & e. 26 & 4.8 & e16 & 158 & e56 & e60 & 33 & 11 & . 88 & 1.9 & 30 & . 00 \\
\hline 27 & . 25 & 4.6 & e13 & 93 & e54 & e58 & 42 & 8.7 & . 72 & 1.1 & 11 & . 00 \\
\hline 28 & . 40 & 3.9 & 18 & 66 & e68 & e56 & 73 & 7.1 & . 72 & . 64 & 4.9 & . 00 \\
\hline 29 & . 66 & 3.4 & 25 & 54 & -68 & e52 & 657 & 5.4 & 1.5 & . 41 & 2.4 & . 00 \\
\hline 30 & . 52 & 2.7 & 32 & 48 & --- & e50 & 264 & 4.4 & 2.1 & . 35 & 1.8 & . 00 \\
\hline 31 & . 50 & - & e25 & 43 & --- & e48 & --- & 4.2 & 2.1 & . 33 & . 98 & . \\
\hline TOTAL & 24.61 & 90.30 & 783.5 & 6519 & 1910 & 4291 & 2121 & 1071.8 & 81.69 & 30.75 & 129.06 & 1.45 \\
\hline MEAN & . 79 & 3.01 & 25.3 & 210 & 68.2 & 138 & 70.7 & 34.6 & 2.72 & . 99 & 4.16 & . 048 \\
\hline MAX & 2.2 & 6.8 & 93 & 1670 & 163 & 513 & 657 & 148 & 11 & 5.8 & 71 & . 50 \\
\hline MIN & . 25 & . 43 & 2.7 & 18 & 40 & 48 & 33 & 4.2 & . 72 & . 00 & . 00 & . 00 \\
\hline CFSM & . 01 & . 05 & . 38 & 3.20 & 1.04 & 2.10 & 1.07 & . 53 & . 04 & . 02 & . 06 & . 00 \\
\hline IN. & . 01 & . 05 & . 44 & 3.69 & 1.08 & 2.43 & 1.20 & . 61 & . 05 & . 02 & . 07 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1954 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrrr} 
MEAN & 16.5 & 50.8 & 113 & 134 & 177 & 195 & 155 & 98.8 & 46.3 & 29.7 & 24.2 \\
MAX & 138 & 227 & 555 & 357 & 555 & 523 & 472 & 318 & 351 & 157 & 141 & 180 \\
(WY) & 1990 & 1986 & 1979 & 1974 & 1989 & 1955 & 1972 & 1983 & 1997 & 1981 & 1974 & 1974 \\
MIN & .22 & .54 & 2.76 & 17.5 & 27.6 & 49.1 & 16.6 & 13.9 & 1.19 & .99 & .27 & .048 \\
(WY) & 1964 & 1956 & 1964 & 1981 & 1968 & 1969 & 1986 & 1986 & 1988 & 1999 & 1957 & 1999
\end{tabular}

KENTUCKY RIVER BASIN
03282500 RED RIVER NEAR HAZEL GREEN, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS
e Estimated

FOR 1998 CALENDAR YEAR FOR 1999 WATER YEAR
\begin{tabular}{rrr}
31025.18 \\
85.0 & & \\
& & \\
1070 & Apr & 19 \\
.20 & Sep & 19 \\
.28 & Sep & 14 \\
& & \\
1.29 & & \\
17.54 & \\
212 & & \\
35 & \\
.90 &
\end{tabular}

WATER YEARS 1954 - 1999



\section*{KENTUCKY RIVER BASIN}

03283500 RED RIVER AT CLAY CITY, KY
LOCATION.--Lat \(37^{\circ} 51^{\prime} 53^{\prime \prime}\), long \(83^{\circ} 56^{\prime} 01^{\prime \prime}\), Powell County, Hydrologic Unit 05100204 , on right bank 25 ft upstream from bridge on State Highway \(15,0.1^{\prime} \mathrm{mi}\) downstream from Skinner Branch, 0.4 mi upstream from Brush Creek, 0.5 mi west of \({ }^{\circ} \mathrm{Cl} \mathrm{m}^{\circ} \mathrm{City}\), and at mile 21.6.
DRAINAGE AREA. \(--362 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1930 to March 1932, April 1938 to current year. Monthly discharge only for October 1930, published in WSP 1305.

REVISED RECORDS.--WSP 1275: 1931-32. WSP 1385: Drainage area.
GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 600.47 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Aug. 14, 1939, nonrecording gages, Aug. 14, 1939, to Aug. 13, 1975, water-stage recorder at site 50 ft downstream at same datum.

REMARKS.--Records good except for periods of estimated record, which are poor. Flow diversions by Clay City Water Plant, which can be significant during low-flow periods.

Peak discharges above base of \(5000 \mathrm{ft}^{3} / \mathrm{s}\) and misimun *.
\begin{tabular}{rccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 10 & 0700 & \(* 9400\) & 18.20
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 16 & 27 & 35 & e100 & 935 & e700 & 287 & 723 & 37 & 33 & 15 & 16 \\
\hline 2 & 16 & 24 & 33 & e105 & 1330 & 625 & 286 & 506 & 35 & 28 & 16 & 13 \\
\hline 3 & 21 & 23 & 34 & 489 & 1040 & 1220 & 267 & 402 & 34 & 23 & 21 & 11 \\
\hline 4 & 27 & 26 & 32 & e420 & 801 & 1920 & 248 & 335 & 33 & 20 & 30 & 10 \\
\hline 5 & 34 & 25 & 31 & e300 & 616 & 1320 & 230 & 289 & 32 & 19 & 23 & 9.2 \\
\hline 6 & 31 & 26 & 32 & e240 & 501 & 968 & 214 & 312 & 30 & 18 & 17 & 8.7 \\
\hline 7 & 28 & 30 & 87 & e210 & 458 & 858 & 200 & 345 & 29 & 17 & 13 & 8.0 \\
\hline 8 & 37 & 32 & 438 & 899 & 442 & 659 & 189 & 270 & 28 & 16 & 12 & 7.5 \\
\hline 9 & 56 & 33 & 430 & 4910 & 379 & 704 & 244 & 213 & 26 & 15 & 11 & 6.8 \\
\hline 10 & 57 & 31 & 277 & 8150 & 341 & 1250 & 231 & 179 & 25 & 15 & 11 & 6.4 \\
\hline 11 & 38 & 49 & 166 & 2520 & 310 & 1110 & 208 & 153 & 29 & 15 & 12 & 6.5 \\
\hline 12 & 29 & 86 & 115 & 807 & 700 & 843 & 191 & 132 & 25 & 14 & 12 & 6.2 \\
\hline 13 & 25 & 67 & 229 & 596 & 949 & 668 & 184 & 123 & 29 & 16 & 13 & 6.2 \\
\hline 14 & 22 & 45 & 518 & 621 & 662 & 1410 & 178 & 131 & 31 & 15 & 13 & 6.3 \\
\hline 15 & 20 & 35 & 385 & 1040 & 555 & 3270 & 184 & 142 & 30 & 14 & 12 & 6.6 \\
\hline 16 & 19 & 32 & 231 & 955 & 537 & 1850 & 288 & 116 & 44 & 14 & 11 & 5.7 \\
\hline 17 & 18 & 31 & 169 & 816 & e580 & 1100 & 282 & 102 & 40 & 13 & 13 & 5.6 \\
\hline 18 & 18 & 30 & 143 & 1080 & e600 & 804 & 229 & 88 & 36 & 13 & 15 & 5.6 \\
\hline 19 & 18 & 26 & 115 & 1040 & 475 & 611 & 208 & 109 & 29 & 13 & 14 & 5.4 \\
\hline 20 & 17 & 24 & 103 & 769 & e430 & 498 & 219 & 128 & 25 & 12 & 14 & 7.7 \\
\hline 21 & 17 & 24 & 98 & 638 & e380 & 445 & 234 & 91 & 23 & 11 & 14 & 9.7 \\
\hline 22 & 16 & 27 & 297 & 556 & e330 & 405 & 230 & 72 & 21 & 26 & 13 & 8.7 \\
\hline 23 & 16 & 27 & 405 & 1450 & e310 & 388 & 214 & 64 & 19 & 32 & 13 & 10 \\
\hline 24 & 16 & 26 & 292 & 2720 & e300 & 547 & 198 & 89 & 19 & 35 & 13 & 15 \\
\hline 25 & 15 & 25 & 204 & 1870 & e295 & 545 & 178 & 94 & 19 & 152 & 16 & 13 \\
\hline 26 & 15 & 36 & 140 & 1010 & 368 & 441 & 177 & 80 & 20 & 75 & 16 & 11 \\
\hline 27 & 16 & 53 & e120 & 703 & e360 & 403 & 232 & 65 & 23 & 43 & 95 & 9.4 \\
\hline 28 & 17 & 55 & e105 & 558 & e450 & 371 & 401 & 53 & 29 & 30 & 56 & 8.4 \\
\hline 29 & 18 & 45 & e100 & 461 & --- & 344 & 2090 & 47 & 38 & 23 & 35 & 8.3 \\
\hline 30 & 23 & 39 & 119 & 386 & --- & 316 & 1410 & 43 & 40 & 19 & 25 & 8.8 \\
\hline 31 & 29 & - & 138 & 366 & - & 288 & --- & 40 & --- & 16 & 19 & --- \\
\hline TOTAL & 745 & 1059 & 5621 & 36785 & 15434 & 26881 & 9931 & 5536 & 878 & 805 & 613 & 260.7 \\
\hline MEAN & 24.0 & 35.3 & 181 & 1187 & 551 & 867 & 331 & 179 & 29.3 & 26.0 & 19.8 & 8.69 \\
\hline MAX & 57 & 86 & 518 & 8150 & 1330 & 3270 & 2090 & 723 & 44 & 152 & 95 & 16 \\
\hline MIN & 15 & 23 & 31 & 100 & 295 & 288 & 177 & 40 & 19 & 11 & 11 & 5.4 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrrr} 
MEAN & 86.7 & 272 & 607 & 793 & 1007 & 1086 & 826 & 539 & 304 & 176 & 105 \\
MAX & 928 & 1220 & 3036 & 2634 & 3564 & 3048 & 2406 & 1943 & 2246 & 1845 & 1179 & 1185 \\
(WY) & 1990 & 1987 & 1979 & 1950 & 1989 & 1955 & 1972 & 1995 & 1997 & 1938 & 1938 \\
MIN & 4.41 & 9.75 & 19.7 & 43.2 & 127 & 258 & 1974 \\
(WY) & 1964 & 1954 & 1954 & 1931 & 1954 & 1969 & 1986 & 54.6 & 23.9 & 5.01 & 18.2 & 6.15 \\
& & & & & 1941 & 1988 & 1944 & 1957 & 1984
\end{tabular}

KENTUCKY RIVER BASIN
03283500 RED RIVER AT CLAY CITY, KY--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALENDAR YEAR & FOR 1999 WATER YEAR & WATER YEARS & 1931-1999 \\
\hline ANNUAL TOTAL & 192410 & 104548.7 & & \\
\hline ANNUAL MEAN & 527 & 286 & 498 & \\
\hline HIGHEST ANNUAL MEAN & & & 884 & 1989 \\
\hline LOWEST ANNUAL MEAN & & & 158 & 1941 \\
\hline HIGHEST DAILY MEAN & 5700 Jan 8 & 8150 Jan 10 & 26100 & Dec 91978 \\
\hline LOWEST DAILY MEAN & 15 Oct 25 & 5.4 Sep 19 & 1.2 & Aug 101944 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 16 Oct 21 & 5.9 Sep 13 & 2.0 & Oct 21930 \\
\hline INSTANTANEOUS PEAK FLOW & & 9400 Jan 10 & 28800 & Dec 91978 \\
\hline INSTANTANEOUS PEAK STAGE & & 18.20 Jan 10 & 26.75 & Dec 91978 \\
\hline INSTANTANEOUS LOW FLOW & & & 1.2 & Aug 101944 \\
\hline 10 PERCENT EXCEEDS & 1320 & 712 & 1190 & \\
\hline 50 PERCENT EXCEEDS & 250 & 53 & 182 & \\
\hline 90 PERCENT EXCEEDS & 21 & 13 & 22 & \\
\hline
\end{tabular}


03285000 DIX RIVER NEAR DANVILLE, KY
LOCATION.--Lat \(37^{\circ} 38^{\prime} 31^{\prime \prime}\), long \(84^{\circ} 39^{\prime} 3^{\prime \prime \prime}\), Garrard County, Hydrologic Unit 05100205, on right bank 50 ft downstream from bridge on State Highway \(52,1.4 \mathrm{mi}\) downstream from Hanging Fork, 6 mi east of Danville, and mile 34.6 .
DRAINAGE AREA. \(--318 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--May to August 1905 (gage heights only), October 1942 to current year. Published as "Dicks River," 1905.
REVISED RECORDS.--WSP 1555: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 750.10 ft above sea level. Prior to Dec. 21 , 1942 , nonrecording gage at same site and datum. May to August 1905, nonrecording gage at site 6 mi downstream at different datum.

REMARKS.--Records good except for periods of estimated record, which are poor.

PEAKS ABOVE BASE.--Peak discharges above base of \(8,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{lcccccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & \begin{tabular}{c} 
Time
\end{tabular} \\
Jan. 9 & 1000 & \(* 18800\) & 12.57 & Jan. 23 & 1700 & 9900 \\
Mar. 14 & 2000 & 10600 & 9.48 & & &
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 1.8 & 1.3 & 14 & e90 & 1810 & 428 & 178 & 410 & 11 & 133 & 1.8 & 4.8 \\
\hline 2 & 1.2 & 1.3 & 14 & 110 & 1860 & 362 & 184 & 278 & 10 & 78 & 1.7 & 3.4 \\
\hline 3 & 2.0 & 1.3 & 14 & 2930 & 948 & 1740 & 168 & 209 & 9.6 & 51 & 3.4 & 2.8 \\
\hline 4 & 4.7 & 1.3 & 13 & 991 & 657 & 2310 & 162 & 162 & 9.1 & 38 & 2.8 & 2.3 \\
\hline 5 & 7.0 & 1.2 & 13 & e450 & 471 & 960 & 154 & 142 & 9.0 & 27 & 2.3 & 2.0 \\
\hline 6 & 5.4 & 1.1 & 13 & e300 & 376 & 845 & 141 & 492 & 13 & 21 & 2.2 & 1.6 \\
\hline 7 & 8.7 & 1.1 & 26 & 262 & 333 & 918 & 135 & 775 & 22 & 16 & 2.0 & e1.2 \\
\hline 8 & 18 & 1.2 & 494 & 2450 & 323 & 616 & 123 & 340 & 17 & 13 & 1.7 & e. 92 \\
\hline 9 & 40 & 1.3 & 520 & 14900 & 272 & 683 & 116 & 226 & 13 & 10 & e1.5 & e. 68 \\
\hline 10 & 28 & 1.6 & 238 & 5590 & 242 & 914 & 111 & 165 & 11 & 8.6 & e1.2 & e. 52 \\
\hline 11 & 20 & 2.4 & 130 & 1030 & 216 & 674 & 106 & 129 & 16 & 7.7 & e1.0 & e. 39 \\
\hline 12 & 14 & 6.5 & 91 & 693 & 712 & 516 & 100 & 104 & 11 & 6.8 & e. 86 & e. 29 \\
\hline 13 & 12 & 5.0 & 436 & 528 & 1270 & 417 & 93 & 87 & 13 & 5.7 & e. 72 & e. 22 \\
\hline 14 & 11 & 4.6 & 924 & e1250 & 690 & 4210 & 85 & 217 & 15 & 4.8 & e. 60 & e. 20 \\
\hline 15 & 8.6 & 5.9 & 340 & e970 & 505 & 5510 & 95 & 234 & 13 & 4.2 & e. 51 & e. 17 \\
\hline 16 & 7.1 & 7.9 & 200 & 743 & 408 & 1340 & 193 & 130 & 12 & 3.4 & e. 42 & e. 15 \\
\hline 17 & 6.1 & 6.0 & 149 & 555 & 368 & 833 & 182 & 92 & 16 & 3.0 & e. 35 & e. 13 \\
\hline 18 & 4.8 & 5.0 & 120 & 1480 & 410 & 615 & 136 & 70 & 11 & 2.5 & e. 30 & e. 11 \\
\hline 19 & 3.7 & 6.0 & 100 & 1080 & 338 & 472 & 114 & 54 & 7.6 & 2.2 & e. 25 & e. 10 \\
\hline 20 & 3.0 & 6.7 & 86 & 672 & 279 & 388 & 104 & 44 & 6.0 & 1.9 & e. 21 & . 92 \\
\hline 21 & 2.4 & 6.8 & 80 & 531 & 232 & 339 & 97 & 41 & 4.8 & 2.7 & e. 18 & e46 \\
\hline 22 & 2.4 & 6.3 & 557 & 445 & 199 & 290 & 89 & 34 & 4.1 & 3.1 & e. 15 & e26 \\
\hline 23 & 2.4 & 5.8 & 734 & 5490 & 175 & 295 & 80 & 28 & 3.6 & 26 & e. 13 & 17 \\
\hline 24 & 2.2 & 5.2 & 340 & 5240 & 171 & 439 & 70 & 85 & 3.7 & 29 & e. 35 & 9.8 \\
\hline 25 & 1.8 & 5.7 & 223 & 1190 & 165 & 449 & 60 & 85 & 4.0 & 19 & 1.9 & 6.5 \\
\hline 26 & 1.6 & 7.5 & 164 & 743 & 154 & 346 & 64 & 59 & 4.1 & 10 & 176 & 5.5 \\
\hline 27 & 1.5 & 8.5 & 138 & 551 & 143 & 283 & 254 & 40 & 4.0 & 6.4 & 64 & 4.9 \\
\hline 28 & 1.6 & 17 & 124 & 428 & 254 & 246 & 349 & 28 & 7.7 & 4.6 & 28 & 4.5 \\
\hline 29 & 1.6 & 22 & e115 & 336 & - & 220 & 1390 & 20 & 680 & 3.4 & 17 & 3.9 \\
\hline 30 & 1.5 & 16 & e105 & 269 & --- & 194 & 823 & 16 & 289 & 2.6 & 10 & 4.6 \\
\hline 31 & 1.4 & --- & e97 & 236 & --- & 177 & --- & 14 & --- & 2.0 & 6.9 & --- \\
\hline TOTAL & 227.5 & 169.5 & 6612 & 52533 & 13981 & 28029 & 5956 & 4810 & 1250.3 & 546.6 & 330.43 & 151.60 \\
\hline MEAN & 7.34 & 5.65 & 213 & 1695 & 499 & 904 & 199 & 155 & 41.7 & 17.6 & 10.7 & 5.05 \\
\hline MAX & 40 & 22 & 924 & 14900 & 1860 & 5510 & 1390 & 775 & 680 & 133 & 176 & 46 \\
\hline MIN & 1.2 & 1.1 & 13 & 90 & 143 & 177 & 60 & 14 & 3.6 & 1.9 & . 13 & . 10 \\
\hline CFSM & . 02 & . 02 & . 67 & 5.33 & 1.57 & 2.84 & . 62 & . 49 & . 13 & . 06 & . 03 & . 02 \\
\hline IN. & . 03 & . 02 & . 77 & 6.15 & 1.64 & 3.28 & . 70 & . 56 & . 15 & . 06 & . 04 & . 02 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1943 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
MEAN & 99.2 & 305 & 667 & 815 & 984 & 1019 & 672 & 462 & 281 & 175 & 91.8 \\
MAX & 1323 & 1471 & 3656 & 3140 & 4129 & 3059 & 2736 & 2618 & 1732 & 1692 & 527 \\
(WY) & 1980 & 1987 & 1979 & 1950 & 1989 & 1997 & 1972 & 1983 & 1997 & 1996 & 1958 \\
MIN & .000 & .030 & .69 & 17.0 & 72.1 & 174 & 57.1 & 51.8 & 8.83 & .31 & .93 \\
(WY) & 1953 & 1954 & 1954 & 1981 & 1954 & 1983 & 1986 & 1976 & 1988 & 1944 & 1952
\end{tabular}

KENTUCKY RIVER BASIN
03285000 DIX RIVER NEAR DANVILLE, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & AR YEAR & \multicolumn{3}{|l|}{FOR 1999 WATER YEAR} & \multicolumn{3}{|l|}{WATER YEARS 1943-1999} \\
\hline ANNUAL TOTAL & 191772.54 & & 114596.93 & & & & & \\
\hline ANNUAL MEAN & 525 & & 314 & & & 475 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & & 1184 & & 1979 \\
\hline LOWEST ANNUAL MEAN & & & & & & 119 & & 1954 \\
\hline HIGHEST DAILY MEAN & 10900 & Jan 8 & 14900 & Jan & 9 & 35100 & Jul 20 & 1996 \\
\hline LOWEST DAILY MEAN & . 72 & Sep 17 & . 10 & Sep & & . 00 & Jul 21 & 1944 \\
\hline ANNUAL SEVEN-DAY MINIMUM & . 93 & Sep 12 & . 15 & Sep & & . 00 & Jul 29 & 1944 \\
\hline INSTANTANEOUS PEAK FLOW & & & 18800 & Jan & 9 & 52400 & Jul 20 & 1996 \\
\hline INSTANTANEOUS PEAK STAGE & & & 12.57 & Jan & 9 & 21.81 & Dec 9 & 1978 \\
\hline INSTANTANEOUS LOW FLOW & & & & & & 1.3 & Oct 12 & 1994 \\
\hline ANNUAL RUNOFF (CFSM) & 1.65 & & . 99 & & & 1.49 & & \\
\hline ANNUAL RUNOFF (INCHES) & 22.43 & & 13.41 & & & 20.29 & & \\
\hline 10 PERCENT EXCEEDS & 1100 & & 691 & & & 1070 & & \\
\hline 50 PERCENT EXCEEDS & 164 & & 28 & & & 124 & & \\
\hline 90 PERCENT EXCEEDS & 2.2 & & 1.3 & & & 2.9 & & \\
\hline
\end{tabular}
e Estimated


03285280 SPEARS CREEK @ RAILROAD CULVERT NEAR DANVILLE, KY
LOCATION.-- Lat \(37^{\circ} 40^{\prime} 14^{\prime \prime}\), long \(84^{\circ} 46^{\prime} 51^{\prime \prime}\), Boyle County, Hydrologic Unit 05100205, at rail- road culvert and at mile 4.46 . DRAINAGE AREA. \(--2.81 \mathrm{mi}^{2}\)
WATER-STAGE RECORDS

PERIOD OF RECORD.--June 3, 1998 to November 20, 1998.
COOPERATION.--The Kentucky Heritage Resource Conservation and Development Council.
GAGE.--Water-stage recorder.
REMARKS.--1998: Records good, except those for periods of estimated gage heights, which are fair. 1999: Records good, except those for periods of estimated gage heights, which are fair.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & --- & --- & -- & -- & -- & --- & -- & -- & -- & 1.17 & . 88 & . 80 \\
\hline 2 & --- & --- & --- & --- & - & - & --- & - & - & 1.04 & . 87 & . 80 \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & -- & e. 90 & . 97 & . 86 & . 80 \\
\hline 4 & - & -- & -- & --- & - & --- & --- & --- & e1.12 & 1.13 & . 86 & . 79 \\
\hline 5 & -- & --- & -- & --- & --- & - & --- & --- & e1.47 & 1.02 & . 86 & . 78 \\
\hline 6 & --- & --- & --- & --- & -- & -- & - & -- & e1.19 & . 93 & . 84 & . 77 \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & e. 93 & . 90 & . 84 & . 75 \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & e. 76 & 1.81 & . 84 & . 75 \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & e1.21 & 1.41 & . 88 & . 74 \\
\hline 10 & --- & --- & -- & --- & --- & --- & --- & --- & e1.98 & 1.19 & . 85 & . 73 \\
\hline 11 & --- & --- & --- & --- & --- & --- & --- & -- & 1.83 & 1.06 & . 82 & . 72 \\
\hline 12 & -- & --- & --- & - & - & - & - & --- & 1.61 & . 98 & . 80 & . 71 \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & 2.08 & . 93 & . 79 & . 70 \\
\hline 14 & --- & --- & -- & --- & - & - & --- & - & 1.72 & 1.06 & 1.68 & . 69 \\
\hline 15 & -- & --- & -- & --- & --- & - & --- & --- & 1.94 & . 97 & 1.24 & . 67 \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & -- & 1.58 & 1.46 & 1.01 & . 69 \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & 1.39 & 1.36 & . 92 & . 70 \\
\hline 18 & --- & --- & -- & --- & --- & --- & --- & --- & 1.24 & 1.16 & e. 84 & . 71 \\
\hline 19 & -- & --- & --- & --- & --- & --- & --- & --- & 1.20 & 1.05 & e. 80 & . 76 \\
\hline 20 & --- & --- & -- & --- & -- & - & --- & -- & 1.07 & 1.49 & e. 80 & . 78 \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & -- & 1.18 & 1.37 & e. 80 & . 88 \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & 1.60 & 1.20 & e. 79 & . 85 \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & 1.80 & 1.09 & e. 79 & . 82 \\
\hline 24 & - & --- & --- & --- & --- & --- & --- & --- & 1.49 & 1.02 & . 79 & . 82 \\
\hline 25 & -- & --- & - & --- & --- & - & --- & - & 1.31 & . 97 & . 79 & . 81 \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & -- & 1.17 & . 94 & . 79 & . 80 \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & 1.06 & . 91 & . 79 & . 79 \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & -- & . 98 & . 90 & . 79 & . 79 \\
\hline 29 & -- & --- & --- & --- & --- & --- & --- & --- & 1.16 & . 88 & . 79 & . 79 \\
\hline 30 & -- & --- & -- & -- & -- & --- & --- & - & 1.49 & . 90 & . 79 & . 78 \\
\hline 31 & --- & --- & --- & -- & -- & -- & - & --- & --- & . 93 & . 79 & - \\
\hline MEAN & --- & --- & --- & --- & --- & --- & --- & --- & -- & 1.10 & . 87 & . 77 \\
\hline MAX & --- & --- & - & --- & --- & --- & --- & --- & --- & 1.81 & 1.68 & . 88 \\
\hline MIN & --- & --- & --- & --- & --- & --- & --- & --- & --- & . 88 & . 79 & . 67 \\
\hline
\end{tabular}
e Estimated

KENTUCKY RIVER BASIN
03285280 SPEARS CREEK @ RAILROAD CULVERT NEAR DANVILLE, KY--Continued


KENTUCKY RIVER BASIN
03285280 SPEARS CREEK @ RAILROAD CULVERT NEAR DANVILLE, KY--Continued
GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 77 & . 86 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 2 & . 76 & . 85 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & 1.00 & . 85 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & 1.30 & . 85 & --- & --- & --- & -- & --- & --- & --- & --- & --- & --- \\
\hline 5 & . 96 & . 85 & --- & --- & -- & -- & -- & - & --- & -- & --- & --- \\
\hline 6 & . 88 & . 85 & - & - & --- & - & --- & - & --- & --- & --- & --- \\
\hline 7 & . 92 & . 84 & - & --- & - & -- & --- & -- & --- & --- & --- & --- \\
\hline 8 & . 98 & . 84 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & . 88 & . 85 & - & --- & --- & - & --- & - & --- & --- & --- & --- \\
\hline 10 & . 85 & . 95 & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 11 & . 84 & 1.00 & - & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 12 & . 84 & . 89 & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 13 & . 84 & . 86 & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & . 84 & . 84 & --- & --- & -- & -- & --- & -- & --- & --- & --- & --- \\
\hline 15 & . 84 & . 83 & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 16 & . 83 & . 82 & --- & --- & --- & --- & --- & --- & - & -- & --- & - \\
\hline 17 & . 83 & . 82 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & . 83 & . 83 & --- & - & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & . 88 & . 84 & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 20 & . 86 & . 86 & --- & --- & --- & --- & --- & - & --- & --- & --- & --- \\
\hline 21 & . 85 & --- & - & --- & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 22 & . 85 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & . 84 & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 24 & . 84 & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 25 & . 84 & --- & --- & --- & --- & --- & --- & - & --- & - & --- & --- \\
\hline 26 & . 84 & --- & --- & --- & -- & -- & --- & --- & --- & --- & --- & --- \\
\hline 27 & . 84 & --- & --- & --- & --- & -- & --- & - & --- & --- & --- & --- \\
\hline 28 & . 84 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & . 84 & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 30 & . 85 & --- & - & --- & --- & --- & - & --- & --- & - & --- & --- \\
\hline 31 & . 86 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline MEAN & . 87 & -- & - & - & - & -- & --- & --- & --- & --- & --- & --- \\
\hline MAX & 1.30 & --- & --- & --- & --- & - & --- & --- & - & - & - & - \\
\hline MIN & . 76 & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285280 SPEARS CREEK @ RAILROAD CULVERT NEAR DANVILLE, KY--Continued


\section*{KENTUCKY RIVER BASIN}

03285280 SPEARS CREEK @ RAILROAD CULVERT NEAR DANVILLE, KY WATER-QUALITY RECORDS

PERIOD OF RECORD.--June 1998 to November 1998.
COOPERATION.--The Kentucky Heritage Resource Conservation and Development Council.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: June 1998 to November 1998.
pH: June 1998 to November 1998.
WATER TEMPERATURE: June 1998 to November 1998.
DISSOLVED OXYGEN: June 1998 to November 1998.
EXTREMES FOR PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 694 microsiemens, Sept. 9, 1998; minimum, 56 microsiemens, June 22, 1998. \(\mathrm{pH}: ~ M a x i m u m, ~ 8.2\) units, October 2, 1998; minimum, 7.1 units, June 11-13, 22, 23, July 8, and Aug. 14, 1998.

WATER TEMPERATURE: Maximum, 24.7 C, Aug. 25, 1998; minimum, 5.0 C, Nov. 18, 1998.
DISSOLVED OXYGEN: Maximum, \(11.2 \mathrm{mg} / \mathrm{L}\), Oct. 23, 1998 ; minimum, \(0.7 \mathrm{mg} / \mathrm{L}, \mathrm{Nov}. \mathrm{8} 1998.\),

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & NOVEMBER & & & DECEMBER & & & JANUARY & \\
\hline 1 & --- & --- & --- & -- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & -- & -- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & -- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & --- & --- & --- & --- & --- & --- & -- & - & --- & --- & - & - \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285280 SPEARS CREEK @ RAILROAD CULVERT NEAR DANVILLE, KY--Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998


03285280 SPEARS CREEK @ RAILROAD CULVERT NEAR DANVILLE, KY--Continued PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998


KENTUCKY RIVER BASIN
03285280 SPEARS CREEK＠RAILROAD CULVERT NEAR DANVILLE，KY－－Continued
PH，WATER，WHOLE，FIELD，STANDARD UNITS，WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & \multicolumn{2}{|r|}{JULY} & \multicolumn{4}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & －－－ & －－－ & －－－ & 7.7 & 7.5 & 7.6 & 7.9 & 7.8 & 7.8 & 7.8 & 7.8 & 7.8 \\
\hline 2 & －－－ & －－－ & －－－ & 7.8 & 7.6 & 7.7 & 7.9 & 7.8 & 7.8 & 7.9 & 7.8 & 7.8 \\
\hline 3 & －－－ & －－－ & －－－ & 7.8 & 7.7 & 7.7 & 7.9 & 7.8 & 7.9 & 7.9 & 7.8 & 7.9 \\
\hline 4 & －－－ & －－－ & －－－ & 7.7 & 7.4 & 7.6 & 7.9 & 7.8 & 7.8 & 8.0 & 7.8 & 7.9 \\
\hline 5 & －－－ & －－－ & －－－ & 7.8 & 7.5 & 7.6 & 7.9 & 7.6 & 7.8 & 7.9 & 7.8 & 7.8 \\
\hline 6 & －－－ & －－－ & －－－ & 7.8 & 7.7 & 7.7 & 7.8 & 7.5 & 7.7 & 7.9 & 7.7 & 7.8 \\
\hline 7 & －－－ & －－－ & －－ & 7.8 & 7.7 & 7.7 & 7.8 & 7.6 & 7.7 & 8.0 & 7.8 & 7.9 \\
\hline 8 & －－－ & －－－ & －－－ & 7.7 & 7.1 & 7.3 & 7.8 & 7.5 & 7.7 & 7.9 & 7.8 & 7.9 \\
\hline 9 & －－－ & －－－ & －－－ & 7.5 & 7.3 & 7.4 & 7.8 & 7.5 & 7.7 & 8.0 & 7.9 & 7.9 \\
\hline 10 & － & －－－ & －－－ & 7.6 & 7.4 & 7.5 & 7.8 & 7.7 & 7.8 & 7.9 & 7.9 & 7.9 \\
\hline 11 & 7.2 & 7.1 & 7.2 & 7.7 & 7.5 & 7.6 & 7.8 & 7.6 & 7.7 & 7.9 & 7.9 & 7.9 \\
\hline 12 & 7.3 & 7.1 & 7.2 & 7.8 & 7.6 & 7.7 & 7.7 & 7.6 & 7.6 & 7.9 & 7.9 & 7.9 \\
\hline 13 & 7.4 & 7.1 & 7.3 & 7.7 & 7.6 & 7.7 & 7.8 & 7.6 & 7.7 & 8.0 & 7.9 & 7.9 \\
\hline 14 & 7.5 & 7.4 & 7.4 & 7.7 & 7.5 & 7.6 & 7.8 & 7.1 & 7.4 & 7.9 & 7.8 & 7.9 \\
\hline 15 & 7.4 & 7.2 & 7.3 & 7.8 & 7.6 & 7.7 & 7.6 & 7.3 & 7.5 & 8.0 & 7.8 & 7.9 \\
\hline 16 & 7.6 & 7.3 & 7.4 & 7.7 & 7.2 & 7.4 & 7.7 & 7.6 & 7.6 & 7.9 & 7.8 & 7.9 \\
\hline 17 & 7.7 & 7.6 & 7.7 & 7.5 & 7.2 & 7.4 & 7.7 & 7.6 & 7.7 & 7.9 & 7.8 & 7.9 \\
\hline 18 & 7.8 & 7.6 & 7.7 & 7.7 & 7.5 & 7.6 & 7.7 & 7.6 & 7.7 & 7.9 & 7.8 & 7.9 \\
\hline 19 & 7.8 & 7.6 & 7.7 & 7.7 & 7.6 & 7.6 & －－－ & －－－ & －－－ & 7.9 & 7.8 & 7.8 \\
\hline 20 & 7.7 & 7.6 & 7.7 & 7.7 & 7.3 & 7.5 & －－－ & －－－ & －－－ & 7.9 & 7.8 & 7.8 \\
\hline 21 & 7.7 & 7.5 & 7.6 & 7.5 & 7.3 & 7.5 & －－－ & － & － & 7.9 & 7.8 & 7.8 \\
\hline 22 & 7.7 & 7.1 & 7.5 & 7.6 & 7.5 & 7.6 & －－－ & －－－ & －－－ & 8.0 & 7.8 & 7.9 \\
\hline 23 & 7.3 & 7.1 & 7.2 & 7.7 & 7.6 & 7.6 & 7.9 & 7.7 & 7.8 & 8.0 & 7.9 & 7.9 \\
\hline 24 & 7.4 & 7.3 & 7.4 & 7.7 & 7.6 & 7.7 & 8.0 & 7.7 & 7.9 & 8.0 & 7.9 & 7.9 \\
\hline 25 & 7.6 & 7.4 & 7.5 & 7.8 & 7.7 & 7.7 & 7.9 & 7.6 & 7.8 & 8.0 & 7.9 & 7.9 \\
\hline 26 & 7.6 & 7.4 & 7.5 & 7.8 & 7.7 & 7.8 & 7.8 & 7.6 & 7.7 & 7.9 & 7.8 & 7.9 \\
\hline 27 & 7.7 & 7.4 & 7.6 & 7.8 & 7.7 & 7.8 & 7.8 & 7.6 & 7.7 & 8.0 & 7.9 & 7.9 \\
\hline 28 & 7.5 & 7.3 & 7.4 & 7.8 & 7.7 & 7.8 & 7.8 & 7.5 & 7.7 & 7.9 & 7.8 & 7.9 \\
\hline 29 & 7.7 & 7.2 & 7.3 & 7.8 & 7.7 & 7.7 & 7.8 & 7.6 & 7.7 & 8.0 & 7.9 & 7.9 \\
\hline 30 & 7.5 & 7.2 & 7.4 & 7.8 & 7.7 & 7.8 & 7.8 & 7.7 & 7.8 & 8.0 & 7.9 & 8.0 \\
\hline 31 & －－－ & －－－ & －－－ & 7.9 & 7.7 & 7.8 & 7.8 & 7.7 & 7.8 & －－－ & －－－ & －－－ \\
\hline MONTH & －－－ & －－－ & －－－ & 7.9 & 7.1 & 7.6 & －－－ & －－－ & －－－ & 8.0 & 7.7 & 7.9 \\
\hline
\end{tabular}

TEMPERATURE，WATER（DEG．C），WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 杀
离 & & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} &  & 111111 & 1 \begin{tabular}{ll|l|l|l}
1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|ll}
1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \(\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}\) \\
\hline \[
\stackrel{\text { 名 }}{2}
\] & \[
\begin{aligned}
& \text { H } \\
& \text { 崔 } \\
& \text { 岑 }
\end{aligned}
\] & \begin{tabular}{ll|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\underset{\sum}{x}
\] & & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} &  &  & \(\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}\) & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline  & & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} &  & \begin{tabular}{l|l|l|l}
1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\stackrel{\text { 岁 }}{2}
\] &  &  & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{ll|ll|l|l|}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\underset{\Sigma}{x}
\] & & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { z } \\
& \text { 茳 }
\end{aligned}
\] & & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} &  &  & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\underset{\Sigma}{\text { z }}
\] & \[
\begin{aligned}
& \frac{\alpha}{1 / 1} \\
& \sum_{19}^{0} \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} &  & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} \\
\hline \[
\underset{\sum}{x}
\] & & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { Z } \\
& \text { 采 }
\end{aligned}
\] & & \begin{tabular}{l|l|l|l}
1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} &  &  & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|llll|l|l}
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\stackrel{\text { z }}{\stackrel{y}{c}}
\] & \[
\begin{aligned}
& \text { 畕 } \\
& 0 \\
& 0 \\
& \text { H } \\
& 0
\end{aligned}
\] & \[
\begin{array}{l|l|l|l|}
\hline & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}
\] & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} &  & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\underset{\sum}{x}
\] & & 11111 & 11111 & 1111 & 11111 & 1111 & 1 \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} \\
\hline 若 & & 「Nのサー & ம「めのO &  &  & \[
\underset{\sim}{\sim} \underset{\sim}{N} \underset{N}{\sim} \underset{\sim}{n}
\] &  \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285280 SPEARS CREEK @ RAILROAD CULVERT NEAR DANVILLE, KY--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & FEBRUARY & & & MARCH & & & APRIL & & & MAY & \\
\hline 1 & --- & -- & - & --- & --- & --- & - & - & --- & --- & --- & - \\
\hline 2 & - & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & - & --- & --- & --- & --- & --- & --- & - & --- & --- & --- & - \\
\hline 4 & --- & --- & --- & - & --- & --- & --- & - & - & --- & - & --- \\
\hline 5 & - & --- & --- & - & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & -- & - & -- & --- \\
\hline 8 & --- & --- & --- & --- & --- & - & -- & -- & --- & --- & --- & --- \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & - & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & - & - & --- & --- & --- & --- & - & - & -- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & -- & - \\
\hline 19 & - & --- & --- & -- & -- & --- & - & - & - & --- & - & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & - & --- & --- & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & -- & --- & --- & --- & --- & --- & - & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & -- & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & -- & --- \\
\hline 29 & --- & --- & - & -- & --- & --- & --- & -- & --- & -- & -- & --- \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & JULY & & & AUGUST & & & PTEMB & \\
\hline 1 & --- & --- & --- & 21.1 & 17.8 & 19.1 & 21.7 & 17.6 & 19.6 & 21.0 & 18.2 & 19.7 \\
\hline 2 & - & --- & - & 21.4 & 17.3 & 19.1 & 22.0 & 18.0 & 20.0 & 21.4 & 18.8 & 19.9 \\
\hline 3 & --- & --- & --- & 22.1 & 17.0 & 19.5 & 22.1 & 18.9 & 20.7 & 20.3 & 17.5 & 18.9 \\
\hline 4 & --- & --- & --- & 23.3 & 18.6 & 20.6 & 22.8 & 18.3 & 20.5 & 21.3 & 17.5 & 19.2 \\
\hline 5 & --- & --- & - & 21.7 & 18.4 & 19.9 & 23.0 & 19.5 & 21.2 & 22.1 & 20.1 & 21.0 \\
\hline 6 & --- & --- & --- & 22.8 & 17.2 & 19.7 & 23.7 & 20.5 & 22.0 & 22.4 & 20.5 & 21.4 \\
\hline 7 & --- & --- & --- & 21.2 & 18.3 & 19.7 & 23.9 & 21.1 & 22.5 & 22.1 & 19.9 & 21.1 \\
\hline 8 & --- & --- & --- & 22.5 & 18.5 & 20.4 & 24.1 & 20.8 & 22.4 & 21.6 & 17.7 & 19.3 \\
\hline 9 & --- & --- & --- & 21.4 & 17.8 & 19.3 & 23.1 & 21.1 & 21.9 & 17.7 & 14.6 & 15.8 \\
\hline 10 & --- & --- & --- & 21.6 & 17.8 & 19.4 & 23.5 & 20.0 & 21.7 & 16.4 & 13.5 & 14.9 \\
\hline 11 & 18.4 & 16.1 & 17.3 & 21.9 & 18.0 & 19.6 & 23.9 & 21.0 & 22.3 & 16.9 & 13.9 & 15.3 \\
\hline 12 & 20.4 & 17.0 & 18.4 & 22.1 & 16.5 & 19.1 & 23.2 & 19.8 & 21.6 & 17.5 & 14.6 & 16.1 \\
\hline 13 & 20.2 & 16.8 & 18.5 & 21.6 & 17.6 & 19.2 & 22.7 & 19.1 & 21.0 & 18.4 & 15.5 & 17.0 \\
\hline 14 & 19.6 & 16.0 & 16.9 & 20.1 & 18.3 & 19.0 & 22.3 & 19.4 & 20.8 & 19.6 & 17.3 & 18.5 \\
\hline 15 & 19.6 & 16.6 & 17.8 & 19.6 & 17.9 & 18.7 & 21.2 & 18.5 & 19.7 & 20.7 & 18.6 & 19.6 \\
\hline 16 & 19.0 & 16.3 & 17.3 & 21.3 & 18.1 & 19.5 & 20.6 & 18.6 & 19.6 & 20.1 & 18.2 & 19.3 \\
\hline 17 & 20.5 & 15.7 & 17.7 & 21.2 & 17.5 & 19.0 & 22.3 & 19.0 & 20.6 & 20.5 & 19.3 & 19.9 \\
\hline 18 & 22.2 & 16.5 & 18.9 & 21.8 & 17.7 & 19.5 & 20.7 & 18.8 & 19.9 & 21.2 & 19.8 & 20.4 \\
\hline 19 & 21.4 & 17.3 & 19.2 & 24.2 & 19.0 & 21.2 & --- & --- & --- & 22.8 & 19.8 & 21.1 \\
\hline 20 & 21.7 & 17.0 & 19.1 & 22.6 & 19.5 & 20.9 & -- & -- & --- & 22.0 & 20.6 & 21.4 \\
\hline 21 & 21.7 & 17.9 & 19.3 & 23.4 & 18.7 & 20.7 & --- & --- & --- & 22.0 & 19.9 & 21.2 \\
\hline 22 & 24.3 & 17.6 & 19.7 & 23.4 & 19.3 & 21.0 & -- & --- & -- & 22.0 & 19.4 & 20.4 \\
\hline 23 & 20.9 & 17.3 & 18.8 & 22.8 & 19.4 & 20.8 & 24.0 & 22.4 & 22.8 & 20.4 & 16.7 & 18.2 \\
\hline 24 & 21.6 & 17.3 & 19.2 & 22.3 & 19.1 & 20.5 & 23.7 & 19.6 & 21.7 & 18.7 & 13.9 & 16.2 \\
\hline 25 & 21.9 & 17.8 & 19.6 & 22.4 & 18.0 & 20.0 & 24.7 & 20.6 & 22.6 & 20.6 & 17.7 & 19.1 \\
\hline 26 & 23.3 & 18.3 & 20.5 & 20.5 & 17.7 & 19.3 & 24.0 & 21.8 & 22.8 & 20.8 & 18.7 & 19.8 \\
\hline 27 & 24.5 & 18.6 & 21.2 & 22.4 & 18.6 & 20.3 & 22.4 & 19.0 & 20.8 & 22.3 & 19.2 & 20.7 \\
\hline 28 & 24.6 & 19.2 & 21.6 & 23.0 & 18.9 & 20.9 & 22.4 & 18.7 & 20.5 & 21.1 & 19.6 & 20.5 \\
\hline 29 & 23.7 & 19.7 & 21.7 & 23.3 & 18.6 & 21.1 & 22.5 & 20.9 & 21.6 & 20.4 & 18.0 & 19.4 \\
\hline 30 & 21.9 & 18.4 & 19.7 & 22.8 & 20.9 & 21.7 & 22.4 & 19.4 & 20.8 & 21.0 & 19.0 & 20.2 \\
\hline 31 & --- & --- & --- & 22.4 & 19.5 & 20.9 & 22.4 & 19.5 & 20.8 & --- & -- & \\
\hline MONTH & --- & - & --- & 24.2 & 16.5 & 20.0 & --- & --- & --- & 22.8 & 13.5 & 19.2 \\
\hline
\end{tabular}

03285280 SPEARS CREEK @ RAILROAD CULVERT NEAR DANVILLE, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998


KENTUCKY RIVER BASIN
03285280 SPEARS CREEK @ RAILROAD CULVERT NEAR DANVILLE, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & \multicolumn{2}{|r|}{JULY} & \multicolumn{4}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & --- & --- & --- & 8.0 & 6.8 & 7.5 & 9.1 & 7.7 & 8.3 & 8.3 & 6.8 & 7.7 \\
\hline 2 & --- & --- & --- & 8.1 & 6.8 & 7.5 & 8.9 & 7.7 & 8.3 & 8.3 & 7.4 & 7.9 \\
\hline 3 & --- & --- & --- & 8.0 & 5.8 & 7.2 & 9.1 & 7.7 & 8.3 & 8.4 & 7.1 & 7.8 \\
\hline 4 & --- & --- & --- & 7.5 & 6.5 & 6.9 & 9.1 & 6.8 & 8.2 & 7.9 & 6.0 & 7.2 \\
\hline 5 & --- & --- & --- & 7.7 & 6.6 & 7.2 & 8.4 & 4.7 & 7.3 & 6.9 & 5.4 & 6.5 \\
\hline 6 & --- & --- & --- & 7.9 & 6.5 & 7.2 & 7.5 & 4.3 & 6.5 & 7.2 & 5.0 & 6.4 \\
\hline 7 & - & --- & --- & 7.6 & 6.4 & 6.9 & 7.3 & 4.4 & 6.1 & 8.0 & 5.4 & 6.8 \\
\hline 8 & --- & --- & --- & 8.1 & 6.3 & 7.5 & 6.7 & 2.4 & 5.1 & 7.6 & 5.3 & 6.6 \\
\hline 9 & --- & --- & --- & 8.4 & 7.8 & 8.2 & 6.2 & 2.5 & 5.2 & 7.9 & 6.4 & 7.6 \\
\hline 10 & --- & --- & --- & 8.5 & 7.6 & 8.1 & 6.7 & 5.4 & 6.3 & 8.0 & 7.3 & 7.9 \\
\hline 11 & 6.6 & 1.7 & 4.5 & 8.6 & 7.5 & 8.1 & 6.5 & 2.4 & 5.4 & 8.1 & 7.0 & 7.8 \\
\hline 12 & 7.2 & 4.6 & 6.0 & 8.8 & 7.5 & 8.2 & 6.8 & 3.5 & 5.4 & 8.0 & 6.8 & 7.6 \\
\hline 13 & 7.2 & 4.9 & 5.8 & 8.6 & 6.8 & 8.0 & 7.3 & 4.0 & 5.8 & 7.9 & 6.2 & 7.4 \\
\hline 14 & 6.8 & 5.5 & 6.1 & 8.5 & 7.6 & 8.1 & 8.9 & 4.5 & 7.0 & 7.7 & 5.6 & 6.9 \\
\hline 15 & 8.2 & 6.8 & 7.6 & 8.6 & 7.9 & 8.3 & 7.3 & 6.4 & 6.9 & 7.8 & 5.5 & 6.6 \\
\hline 16 & 9.1 & 8.2 & 8.8 & 8.9 & 7.8 & 8.3 & 8.8 & 6.8 & 7.8 & 6.9 & 4.2 & 6.1 \\
\hline 17 & 4.6 & 3.8 & 4.3 & 9.2 & 8.3 & 8.9 & 8.8 & 7.2 & 8.2 & 6.6 & 4.2 & 5.8 \\
\hline 18 & 4.2 & 3.0 & 3.7 & 9.0 & 8.0 & 8.6 & 8.6 & 7.8 & 8.3 & 6.5 & 4.4 & 5.7 \\
\hline 19 & 7.0 & 3.7 & 5.6 & 8.5 & 6.6 & 7.9 & --- & --- & --- & 6.6 & 4.1 & 5.0 \\
\hline 20 & 7.6 & 2.8 & 5.9 & 8.0 & 7.3 & 7.6 & --- & --- & --- & 5.8 & 4.9 & 5.4 \\
\hline 21 & 6.9 & 6.3 & 6.6 & 8.1 & 6.7 & 7.6 & --- & --- & --- & 7.0 & 4.7 & 5.9 \\
\hline 22 & 7.3 & 2.3 & 6.4 & 7.6 & 6.1 & 7.1 & --- & --- & --- & 7.2 & 6.2 & 6.7 \\
\hline 23 & 6.9 & 5.4 & 6.2 & 8.0 & 7.0 & 7.5 & 7.3 & 5.2 & 6.7 & 7.8 & 6.2 & 7.1 \\
\hline 24 & 6.8 & 5.2 & 6.1 & 8.3 & 7.2 & 7.8 & 7.6 & 6.2 & 7.1 & 8.3 & 6.9 & 7.6 \\
\hline 25 & 6.7 & 4.9 & 5.9 & 8.4 & 7.6 & 8.0 & 7.5 & 4.5 & 6.4 & 7.5 & 6.3 & 6.8 \\
\hline 26 & 7.0 & 4.9 & 6.1 & 8.6 & 7.7 & 8.2 & 6.9 & 4.8 & 6.0 & 6.8 & 5.7 & 6.3 \\
\hline 27 & 6.9 & 4.7 & 6.0 & 8.2 & 6.3 & 7.7 & 7.4 & 4.9 & 6.5 & 7.0 & 5.2 & 6.2 \\
\hline 28 & 6.4 & 3.8 & 5.4 & 8.4 & 6.6 & 7.6 & 7.3 & 5.2 & 6.5 & 6.4 & 5.3 & 5.9 \\
\hline 29 & 7.2 & 5.1 & 5.6 & 8.3 & 6.0 & 7.3 & 7.1 & 4.5 & 6.4 & 7.1 & 5.5 & 6.2 \\
\hline 30 & 7.3 & 5.7 & 6.5 & 7.9 & 7.0 & 7.4 & 7.7 & 6.0 & 7.2 & 7.1 & 5.4 & 6.2 \\
\hline 31 & --- & --- & --- & 8.8 & 7.5 & 7.9 & 7.8 & 6.4 & 7.3 & --- & --- & --- \\
\hline MONTH & --- & --- & --- & 9.2 & 5.8 & 7.8 & --- & -- & --- & 8.4 & 4.1 & 6.7 \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285280 SPEARS CREEK @ RAILROAD CULVERT NEAR DANVILLE, KY--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & NOVEMBER & & & DECEMBER & & & JANUARY & \\
\hline 1 & 654 & 634 & 652 & 643 & 536 & 635 & --- & -- & - & - & - & - \\
\hline 2 & 652 & 634 & 649 & 651 & 562 & 643 & - & --- & --- & --- & -- & - \\
\hline 3 & 652 & 267 & 509 & 656 & 613 & 646 & --- & --- & --- & --- & --- & - \\
\hline 4 & 542 & 301 & 463 & 644 & 636 & 638 & --- & -- & -- & - & --- & - \\
\hline 5 & 577 & 529 & 554 & 642 & 627 & 636 & --- & --- & --- & --- & -- & - \\
\hline 6 & 596 & 576 & 587 & 647 & 637 & 642 & --- & --- & --- & --- & --- & --- \\
\hline 7 & 600 & 478 & 577 & 642 & 635 & 638 & --- & --- & --- & --- & --- & - \\
\hline 8 & 570 & 499 & 543 & 645 & 624 & 640 & --- & --- & --- & --- & --- & --- \\
\hline 9 & 597 & 570 & 585 & 638 & 628 & 633 & --- & --- & -- & --- & -- & -- \\
\hline 10 & 611 & 597 & 602 & 679 & 404 & 579 & --- & --- & - & --- & --- & --- \\
\hline 11 & 619 & 607 & 612 & 576 & 445 & 532 & - & --- & --- & - & --- & - \\
\hline 12 & 624 & 593 & 618 & 613 & 576 & 598 & --- & --- & - & --- & -- & --- \\
\hline 13 & 629 & 617 & 625 & 632 & 613 & 622 & -- & --- & -- & --- & --- & -- \\
\hline 14 & 626 & 614 & 618 & 638 & 630 & 634 & --- & --- & --- & --- & --- & --- \\
\hline 15 & 622 & 618 & 621 & 640 & 635 & 637 & --- & --- & --- & -- & --- & --- \\
\hline 16 & 624 & 621 & 622 & 640 & 623 & 630 & --- & --- & --- & --- & --- & --- \\
\hline 17 & 635 & 612 & 624 & 641 & 633 & 636 & --- & -- & -- & --- & --- & --- \\
\hline 18 & 627 & 608 & 625 & 636 & 624 & 629 & --- & --- & --- & --- & --- & --- \\
\hline 19 & 631 & 593 & 615 & 637 & 629 & 633 & --- & --- & --- & --- & --- & - \\
\hline 20 & 639 & 622 & 635 & --- & --- & -- & --- & --- & -- & --- & --- & -- \\
\hline 21 & 631 & 623 & 627 & --- & - & -- & - & --- & -- & - & --- & --- \\
\hline 22 & 628 & 622 & 624 & --- & --- & -- & - & - & -- & - & --- & --- \\
\hline 23 & 627 & 618 & 624 & - & -- & - & --- & --- & --- & --- & -- & --- \\
\hline 24 & 626 & 613 & 621 & --- & - & --- & --- & --- & --- & --- & - & -- \\
\hline 25 & 630 & 619 & 622 & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 26 & 637 & 625 & 630 & --- & --- & - & --- & --- & -- & & --- & -- \\
\hline 27 & 648 & 632 & 635 & --- & --- & --- & - & - & - & --- & - & --- \\
\hline 28 & 666 & 586 & 632 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & 644 & 508 & 629 & --- & --- & --- & --- & - & - & --- & - & - \\
\hline 30 & 657 & 613 & 650 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & 657 & 612 & 644 & --- & --- & --- & - & - & --- & - & --- & -- \\
\hline MONTH & 666 & 267 & 609 & --- & --- & -- & --- & --- & --- & --- & - & --- \\
\hline
\end{tabular}

03285280 SPEARS CREEK @ RAILROAD CULVERT NEAR DANVILLE, KY--Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


KENTUCKY RIVER BASIN
03285280 SPEARS CREEK @ RAILROAD CULVERT NEAR DANVILLE, KY--Continued
PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


KENTUCKY RIVER BASIN
03285280 SPEARS CREEK @ RAILROAD CULVERT NEAR DANVILLE, KY--Continued PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & JULY & & & AUGUST & & & SEPTEMBER & \\
\hline 1 & - & - & - & --- & --- & --- & - & --- & --- & - & --- & --- \\
\hline 2 & --- & - & --- & -- & --- & --- & -- & --- & --- & -- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & -- & -- & --- & --- & -- & -- \\
\hline 5 & --- & --- & -- & --- & -- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & - & -- & --- & --- & --- & --- & --- & -- & - & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & -- & -- & - & --- & --- & -- & --- & --- \\
\hline 9 & --- & -- & --- & --- & --- & -- & -- & --- & --- & --- & --- & - \\
\hline 10 & --- & --- & - & -- & --- & --- & - & --- & --- & -- & --- & -- \\
\hline 11 & --- & -- & - & - & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 12 & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & -- & --- & --- & --- & --- & --- & --- & -- & --- & -- \\
\hline 15 & --- & - & -- & --- & --- & - & --- & --- & --- & -- & --- & -- \\
\hline 16 & --- & --- & -- & --- & --- & --- & - & --- & --- & --- & --- & --- \\
\hline 17 & --- & -- & -- & -- & - & -- & -- & -- & --- & - & --- & -- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 19 & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 20 & --- & --- & -- & --- & --- & - & -- & --- & --- & -- & --- & -- \\
\hline 21 & -- & --- & -- & --- & --- & -- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 24 & --- & --- & --- & --- & --- & -- & -- & --- & --- & --- & --- & -- \\
\hline 25 & --- & --- & --- & - & --- & -- & - & --- & --- & --- & --- & -- \\
\hline 26 & -- & -- & -- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & --- & --- & -- & --- & -- & -- & -- & --- & --- & --- & --- & -- \\
\hline 29 & - & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & - \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & - & --- & - & -- & --- & --- & --- & --- & --- & --- & - \\
\hline MONTH & --- & --- & -- & --- & -- & - & --- & - & --- & --- & -- & --- \\
\hline
\end{tabular}

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & VEMBER & & & MBER & & & JANUARY & \\
\hline 1 & 20.4 & 15.0 & 18.3 & 13.9 & 11.8 & 12.9 & - & --- & --- & -- & --- & - \\
\hline 2 & 15.1 & 12.8 & 14.2 & 13.2 & 11.9 & 12.4 & --- & --- & _-- & --- & --- & --- \\
\hline 3 & 17.4 & 14.1 & 15.6 & 12.2 & 10.1 & 11.3 & --- & --- & --- & --- & --- & --- \\
\hline 4 & 19.6 & 17.0 & 18.5 & 10.1 & 7.7 & 9.2 & - & - & --- & --- & -- & --- \\
\hline 5 & 21.5 & 17.9 & 19.4 & 7.7 & 5.3 & 6.4 & --- & --- & --- & --- & --- & - \\
\hline 6 & 21.2 & 18.6 & 19.8 & 7.9 & 6.5 & 7.1 & --- & -- & - & -- & --- & --- \\
\hline 7 & 19.9 & 17.4 & 19.0 & 8.1 & 6.1 & 7.3 & --- & --- & --- & --- & --- & --- \\
\hline 8 & 17.4 & 15.7 & 16.4 & 8.9 & 7.9 & 8.3 & --- & --- & --- & --- & --- & --- \\
\hline 9 & 16.5 & 14.4 & 15.6 & 10.8 & 8.1 & 9.2 & --- & --- & --- & --- & --- & - \\
\hline 10 & 16.9 & 12.3 & 14.5 & 14.2 & 10.8 & 12.4 & --- & --- & --- & --- & --- & --- \\
\hline 11 & 17.1 & 12.1 & 14.4 & 12.2 & 8.0 & 10.3 & --- & --- & --- & --- & --- & - \\
\hline 12 & 17.2 & 11.9 & 14.3 & 10.4 & 5.7 & 7.8 & --- & --- & --- & --- & --- & --- \\
\hline 13 & 16.0 & 13.5 & 14.6 & 10.9 & 7.6 & 9.0 & --- & -- & --- & --- & --- & - \\
\hline 14 & 15.0 & 11.1 & 12.9 & 11.4 & 8.7 & 10.0 & --- & --- & --- & --- & --- & --- \\
\hline 15 & 15.4 & 10.4 & 12.6 & 11.9 & 9.2 & 10.7 & --- & - & --- & --- & --- & --- \\
\hline 16 & 16.3 & 11.9 & 13.8 & 10.8 & 6.3 & 8.5 & --- & --- & --- & --- & --- & --- \\
\hline 17 & 16.5 & 13.1 & 14.6 & 9.9 & 7.4 & 8.6 & --- & - & -- & -- & --- & -- \\
\hline 18 & 17.3 & 15.1 & 16.1 & 9.4 & 5.0 & 7.1 & --- & --- & --- & --- & --- & --- \\
\hline 19 & 16.7 & 14.2 & 15.6 & 12.4 & 9.0 & 10.9 & --- & --- & --- & --- & --- & --- \\
\hline 20 & 14.4 & 11.1 & 12.7 & . & --- & -- & --- & --- & --- & --- & - & -- \\
\hline 21 & 12.5 & 11.1 & 11.7 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & 11.2 & 8.8 & 9.8 & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 23 & 10.8 & 7.1 & 8.8 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & 11.6 & 7.4 & 9.2 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & 12.0 & 8.7 & 10.2 & -- & --- & --- & - & --- & - & --- & --- & - \\
\hline 26 & 11.4 & 8.9 & 10.1 & - & - & --- & --- & --- & --- & - & -- & - \\
\hline 27 & 11.6 & 8.5 & 9.9 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & 13.2 & 8.6 & 11.8 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & 14.2 & 11.9 & 13.0 & --- & --- & -- & --- & --- & --- & --- & --- & - \\
\hline 30 & 16.3 & 13.6 & 14.8 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & 14.8 & 13.4 & 13.9 & - & -- & - & - & - & - & --- & --- & - \\
\hline MONTH & 21.5 & 7.1 & 14.1 & -- & --- & --- & - & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285280 SPEARS CREEK @ RAILROAD CULVERT NEAR DANVILLE, KY--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


KENTUCKY RIVER BASIN
03285280 SPEARS CREEK @ RAILROAD CULVERT NEAR DANVILLE, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


\section*{KENTUCKY RIVER BASIN}

03285280 SPEARS CREEK @ RAILROAD CULVERT NEAR DANVILLE, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & JULY & & & AUGUST & & & SEPTEMBER & \\
\hline 1 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & --- & - \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & --- & --- & --- & --- & _-- & --- & --- & -- & --- & --- & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & --- & -- & --- & -- & --- & --- & --- & --- & --- & - & --- & --- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & --- & -- & --- & -- & -- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & --- & - & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & -- & -- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & --- & --- & -- & - & --- & - & --- & --- & -- & --- & --- & --- \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & --- & --- & - & --- & -- & --- & - & --- & - & --- & --- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline
\end{tabular}

\section*{kENTUCKY RIVER BASIN}

03285290 SPEARS CREEK @ STREAMLAND DRIVE NEAR DANVILLE, KY
LOCATION.-- Lat \(37^{\circ} 40^{\prime} 1^{\prime \prime \prime}\), long \(84^{\circ} 46^{\prime} 33^{\prime \prime}\), Boyle County, Hydrologic Unit 05100205, at bridge on Streamland Drive and at mile 4.05 .

DRAINAGE AREA. \(--3.07 \mathrm{mi}^{2}\)
WATER-STAGE RECORDS

PERIOD OF RECORD.--May 28, 1998 to September 22, 1998.
COOPERATION.--The Kentucky Heritage Resource Conservation and Development Council.
GAGE.--Water-stage recorder.
REMARKS.--1998: Records good, except those for periods of estimated gage heights, which are fair. Gage removed early so bridge could be replaced.
1998: Records good, except those for periods of estimated gage heights, which are fair.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & --- & --- & --- & --- & --- & --- & --- & --- & . 71 & . 65 & . 42 & . 29 \\
\hline 2 & --- & -- & --- & --- & --- & --- & - & --- & . 50 & . 57 & . 40 & . 28 \\
\hline 3 & -- & -- & -- & -- & -- & --- & -- & --- & . 45 & . 51 & . 40 & . 29 \\
\hline 4 & -- & --- & --- & --- & --- & --- & --- & --- & . 94 & . 64 & . 39 & . 29 \\
\hline 5 & -- & -- & -- & --- & - & - & --- & --- & 1.15 & . 56 & . 39 & . 30 \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & . 87 & . 49 & . 39 & . 29 \\
\hline 7 & --- & --- & --- & - & --- & --- & --- & --- & . 69 & . 47 & . 39 & . 29 \\
\hline 8 & -- & -- & -- & --- & -- & --- & -- & --- & . 59 & 1.45 & . 40 & . 29 \\
\hline 9 & -- & -- & --- & --- & - & --- & --- & --- & . 94 & . 87 & . 44 & . 29 \\
\hline 10 & -- & --- & --- & --- & - & --- & -- & --- & 1.56 & . 70 & . 42 & . 28 \\
\hline 11 & -- & -- & -- & --- & -- & -- & --- & --- & 1.45 & . 62 & . 41 & . 28 \\
\hline 12 & -- & -- & --- & --- & --- & -- & -- & --- & 1.12 & . 56 & . 41 & . 28 \\
\hline 13 & --- & --- & -- & - & --- & --- & --- & --- & 1.86 & . 52 & . 41 & . 27 \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & 1.28 & . 62 & 1.37 & . 26 \\
\hline 15 & --- & --- & --- & -- & --- & --- & --- & --- & 1.65 & . 55 & . 73 & . 26 \\
\hline 16 & --- & - & --- & --- & --- & --- & - & -- & 1.07 & 1.01 & . 57 & . 27 \\
\hline 17 & -- & --- & -- & -- & --- & --- & -- & --- & . 85 & . 86 & e. 44 & . 28 \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & -- & . 73 & . 69 & e. 39 & . 28 \\
\hline 19 & -- & -- & --- & --- & --- & --- & - & -- & . 70 & . 60 & e. 37 & . 32 \\
\hline 20 & --- & --- & --- & -- & --- & --- & --- & --- & . 60 & 1.02 & e. 36 & . 34 \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & -- & . 70 & . 82 & e. 35 & . 42 \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & -- & 1.30 & . 66 & e. 34 & . 48 \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & 1.38 & . 59 & e. 33 & --- \\
\hline 24 & --- & --- & --- & --- & --- & - & -- & -- & . 94 & . 55 & . 32 & - \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & . 75 & . 50 & . 31 & - \\
\hline 26 & --- & -- & - & -- & --- & --- & --- & --- & . 63 & . 46 & . 31 & - \\
\hline 27 & -- & -- & - & --- & --- & --- & - & --- & . 56 & . 44 & . 29 & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & - & . 54 & . 50 & . 42 & . 29 & -- \\
\hline 29 & --- & -- & -- & -- & -- & -- & --- & . 43 & . 70 & . 40 & . 30 & --- \\
\hline 30 & --- & -- & -- & --- & -- & -- & -- & . 41 & . 92 & . 43 & . 29 & --- \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & . 53 & --- & . 47 & . 29 & --- \\
\hline MEAN & --- & --- & --- & --- & --- & --- & --- & -- & . 94 & . 64 & . 42 & - \\
\hline MAX & --- & --- & --- & --- & --- & --- & --- & --- & 1.86 & 1.45 & 1.37 & --- \\
\hline MIN & --- & --- & --- & --- & --- & --- & --- & --- & . 45 & . 40 & . 29 & --- \\
\hline
\end{tabular}
e Estimated

KENTUCKY RIVER BASIN
03285290 SPEARS CREEK @ STREAMLAND DRIVE NEAR DANVILLE, KY--Continued


\section*{KENTUCKY RIVER BASIN}

03285290 SPEARS CREEK @ STREAMLAND DRIVE NEAR DANVILLE, KY WATER-QUALITY RECORDS

PERIOD OF RECORD.--June 1998 to September 1998
COOPERATION.--The Kentucky Heritage Resource Conservation and Development Council.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: June 1998 to September 1998.
pH: June 1998 to September 1998.
WATER TEMPERATURE: June 1998 to September 1998.
DISSOLVED OXYGEN: June 1998 to September 1998.
EXTREMES FOR PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 715 microsiemens, Sept. 18, 1998; minimum, 46 microsiemens, July 8 , 1998.
pH: Maximum, 8.6 units, July 17, and Oct. 23-25, 1998; minimum, 6.7 units, July 8, 1998.
WATER TEMPERATURE: Maximum, 27.0 C, Aug. 25, 1998; minimum, 12.5 C, Sept. 10, 1998.
DISSOLVED OXYGEN: Maximum, \(10.4 \mathrm{mg} / \mathrm{L}, \mathrm{July} 17,1998 ;\) minimum, \(1.4 \mathrm{mg} / \mathrm{L}\), Aug. \(13,1998\).


KENTUCKY RIVER BASIN
03285290 SPEARS CREEK @ STREAMLAND DRIVE NEAR DANVILLE, KY--Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{FEBRUARY} & \multicolumn{3}{|c|}{MARCH} & \multicolumn{3}{|c|}{APRIL} & \multicolumn{3}{|c|}{MAY} \\
\hline 1 & --- & - & - & --- & - & - & --- & --- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & --- \\
\hline 3 & --- & --- & --- & -- & --- & -- & --- & --- & --- & --- & -- & --- \\
\hline 4 & --- & --- & - & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & -- & --- & --- & --- & - & --- & --- & --- & -- & - & --- & --- \\
\hline 6 & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & -- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & --- & --- \\
\hline 9 & - & --- & --- & --- & --- & --- & --- & --- & --- & -- & -- & - \\
\hline 10 & -- & --- & --- & - & -- & - & --- & --- & - & --- & --- & - \\
\hline 11 & - & --- & --- & --- & --- & --- & --- & - & --- & -- & -- & - \\
\hline 12 & --- & - & --- & --- & --- & --- & --- & -- & --- & -- & -- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & --- & --- \\
\hline 15 & --- & --- & - & --- & --- & --- & --- & -- & --- & --- & -- & -- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & - & --- & -- & -- & - \\
\hline 17 & --- & --- & -- & -- & --- & -- & --- & --- & --- & --- & --- & --- \\
\hline 18 & --- & - & - & --- & - & - & - & --- & --- & --- & -- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & --- & --- \\
\hline 20 & -- & --- & - & --- & --- & --- & --- & - & --- & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & -- & --- \\
\hline 22 & -- & --- & - & -- & --- & -- & --- & --- & - & --- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & - & --- & --- & - & --- & - & - & --- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & --- & --- \\
\hline 26 & - & --- & --- & --- & - & - & - & --- & - & --- & -- & -- \\
\hline 27 & - & --- & --- & --- & --- & --- & -- & --- & --- & --- & -- & --- \\
\hline 28 & --- & --- & - & -- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 29 & --- & - & --- & --- & --- & --- & - & --- & -- & 520 & 482 & 503 \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 536 & 500 & 513 \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 534 & 119 & 476 \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & JULY & & & AUGUST & & & TEMB & \\
\hline 1 & 480 & 261 & 424 & 327 & 290 & 302 & 434 & 414 & 426 & 645 & 595 & 618 \\
\hline 2 & 526 & 480 & 499 & 320 & 293 & 304 & 451 & 398 & 428 & 619 & 597 & 609 \\
\hline 3 & 530 & 505 & 514 & 347 & 310 & 324 & 440 & 403 & 424 & 631 & 591 & 609 \\
\hline 4 & 513 & 143 & 396 & 328 & 165 & 275 & 446 & 388 & 418 & 665 & 593 & 621 \\
\hline 5 & 422 & 337 & 393 & 353 & 289 & 332 & 455 & 405 & 431 & 667 & 616 & 637 \\
\hline 6 & 442 & 422 & 435 & 389 & 353 & 369 & 461 & 407 & 436 & 686 & 621 & 648 \\
\hline 7 & 455 & 441 & 447 & 408 & 380 & 393 & 500 & 439 & 469 & 663 & 627 & 644 \\
\hline 8 & 460 & 445 & 455 & 384 & 46 & 261 & 511 & 449 & 481 & 647 & 620 & 635 \\
\hline 9 & 463 & 233 & 383 & 356 & 321 & 341 & 492 & 407 & 445 & 648 & 613 & 626 \\
\hline 10 & 432 & 95 & 344 & 373 & 356 & 364 & 514 & 479 & 496 & 654 & 631 & 638 \\
\hline 11 & 381 & 284 & 358 & 391 & 372 & 382 & 537 & 505 & 515 & 667 & 636 & 646 \\
\hline 12 & 395 & 357 & 380 & 406 & 388 & 397 & 544 & 508 & 526 & 675 & 641 & 653 \\
\hline 13 & 395 & 136 & 310 & 432 & 405 & 417 & 565 & 511 & 536 & 703 & 640 & 662 \\
\hline 14 & 377 & 167 & 356 & 424 & 367 & 403 & 543 & 59 & 359 & 682 & 644 & 660 \\
\hline 15 & 372 & 167 & 331 & 452 & 422 & 439 & 422 & 369 & 402 & 686 & 645 & 664 \\
\hline 16 & 385 & 370 & 380 & 457 & 230 & 381 & 441 & 422 & 431 & 708 & 637 & 663 \\
\hline 17 & 394 & 384 & 390 & 434 & 411 & 427 & 460 & 441 & 450 & 680 & 636 & 654 \\
\hline 18 & 405 & 380 & 397 & 450 & 434 & 442 & --- & --- & --- & 715 & 633 & 663 \\
\hline 19 & 405 & 358 & 393 & 474 & 447 & 458 & --- & --- & --- & 662 & 615 & 635 \\
\hline 20 & 422 & 400 & 413 & 464 & 182 & 378 & --- & --- & --- & 644 & 624 & 635 \\
\hline 21 & 423 & 321 & 389 & 443 & 412 & 432 & --- & --- & --- & 625 & 547 & 593 \\
\hline 22 & 441 & 61 & 355 & 463 & 438 & 449 & --- & --- & --- & --- & -- & --- \\
\hline 23 & 387 & 282 & 351 & 481 & 451 & 464 & 599 & 558 & 587 & --- & --- & --- \\
\hline 24 & 401 & 387 & 394 & 470 & 459 & 465 & 585 & 562 & 576 & --- & -_- & -- \\
\hline 25 & 410 & 401 & 405 & 465 & 456 & 461 & 611 & 566 & 583 & -- & --- & --- \\
\hline 26 & 420 & 408 & 415 & 458 & 448 & 454 & 619 & 574 & 597 & --- & --- & --- \\
\hline 27 & 425 & 417 & 422 & 467 & 432 & 457 & 616 & 575 & 595 & --- & --- & -- \\
\hline 28 & 440 & 414 & 426 & 463 & 444 & 453 & 638 & 574 & 604 & --- & --- & --- \\
\hline 29 & 450 & 132 & 391 & 479 & 433 & 457 & 655 & 590 & 618 & --- & --- & --- \\
\hline 30 & 341 & 234 & 312 & 464 & 400 & 438 & 670 & 626 & 641 & - & --- & --- \\
\hline 31 & --- & --- & --- & 447 & 410 & 429 & 658 & 601 & 627 & --- & --- & --- \\
\hline MONTH & 530 & 61 & 395 & 481 & 46 & 398 & - & --- & --- & - & --- & --- \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285290 SPEARS CREEK @ STREAMLAND DRIVE NEAR DANVILLE, KY--Continued
PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & NOVEMBER & & & DECEMBER & & & JANUARY & \\
\hline 1 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 5 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & --- & -- & -- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & -- & -- & - & --- & --- & --- & --- & - & --- & --- & - & --- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & -- & -- & -- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 14 & -- & --- & --- & - & - & - & --- & - & - & --- & - & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- & - \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & -- & -- & --- & - & --- & - & --- & - & --- & - & - & -- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & -- & -- & --- & -- & -- & --- & - & --- & -- & --- & --- & - \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & -- & - & -- & - & - & --- & - & - & --- & - & --- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & --- & --- & -- & -- & --- & - & --- & --- & --- & --- & --- & - \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & --- & --- & -- & -- & --- & - & --- & --- & --- & -- & - & --- \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline MONTH & --- & -- & --- & - & -- & - & --- & --- & -- & - & --- & --- \\
\hline & & & & & & & & & & & & \\
\hline DAY & MAX & MIN & MEAN \\
\hline & & FEBRUARY & & & MARCH & & & APRIL & & & MAY & \\
\hline 1 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & --- & --- & --- & --- & - & - & --- & --- & --- & -- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 5 & --- & --- & --- & --- & --- & --- & -- & --- & --- & - & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 8 & --- & --- & -- & - & --- & - & --- & --- & - & --- & --- & - \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 11 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & - & --- & -- & --- & --- & --- & -- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & -- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & --- & -- & --- & --- & --- & --- & - & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & -- & - & --- & -- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & --- & --- & -- & - & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 8.5 & 7.7 & 8.0 \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 8.3 & 7.7 & 7.9 \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 8.1 & 7.4 & 7.8 \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285290 SPEARS CREEK＠STREAMLAND DRIVE NEAR DANVILLE，KY－－Continued
PH，WATER，WHOLE，FIELD，STANDARD UNITS，WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & \multicolumn{2}{|r|}{JUNE} & & \multicolumn{2}{|r|}{JULY} & \multicolumn{4}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & 7.7 & 7.4 & 7.6 & 7.8 & 7.3 & 7.6 & 8.1 & 7.9 & 8.0 & 7.8 & 7.6 & 7.7 \\
\hline 2 & 7.8 & 7.7 & 7.7 & 7.3 & 7.2 & 7.3 & 8.0 & 7.8 & 7.9 & 7.7 & 7.5 & 7.6 \\
\hline 3 & 7.9 & 7.8 & 7.8 & 7.3 & 7.0 & 7.2 & 7.9 & 7.7 & 7.8 & 7.6 & 7.5 & 7.5 \\
\hline 4 & 8.1 & 7.4 & 7.7 & 7.3 & 6.9 & 7.1 & 8.0 & 7.6 & 7.8 & 7.6 & 7.5 & 7.6 \\
\hline 5 & 7.7 & 7.6 & 7.6 & 7.3 & 7.1 & 7.2 & 8.3 & 7.8 & 8.1 & 7.5 & 7.4 & 7.5 \\
\hline 6 & 7.9 & 7.7 & 7.8 & 7.3 & 7.1 & 7.2 & 8.4 & 8.2 & 8.3 & 7.5 & 7.4 & 7.5 \\
\hline 7 & 8.0 & 7.9 & 7.9 & 7.2 & 7.0 & 7.1 & 8.4 & 8.2 & 8.3 & 7.5 & 7.4 & 7.4 \\
\hline 8 & 8.0 & 7.9 & 8.0 & 7.1 & 6.7 & 6.9 & 8.4 & 8.2 & 8.3 & 7.5 & 7.4 & 7.4 \\
\hline 9 & 8.0 & 7.6 & 7.8 & 7.3 & 7.0 & 7.1 & 8.4 & 8.2 & 8.3 & 7.7 & 7.5 & 7.6 \\
\hline 10 & 8.0 & 7.5 & 7.7 & 7.3 & 7.2 & 7.3 & 8.4 & 8.1 & 8.2 & 7.7 & 7.5 & 7.6 \\
\hline 11 & 7.8 & 7.5 & 7.7 & 7.3 & 7.2 & 7.3 & 8.2 & 8.0 & 8.1 & 7.7 & 7.5 & 7.6 \\
\hline 12 & 7.9 & 7.7 & 7.8 & 7.3 & 7.2 & 7.3 & 8.1 & 7.8 & 8.0 & 7.7 & 7.5 & 7.6 \\
\hline 13 & 7.9 & 7.4 & 7.7 & 7.3 & 7.1 & 7.2 & 8.0 & 7.8 & 7.9 & 7.7 & 7.5 & 7.6 \\
\hline 14 & 7.9 & 7.6 & 7.8 & 7.4 & 7.2 & 7.3 & 8.0 & 7.6 & 7.8 & 7.6 & 7.4 & 7.5 \\
\hline 15 & 7.8 & 7.5 & 7.7 & 7.5 & 7.3 & 7.4 & 8.1 & 7.9 & 8.0 & 7.7 & 7.5 & 7.5 \\
\hline 16 & 8.0 & 7.8 & 7.9 & 8.2 & 6.9 & 7.4 & 8.0 & 7.9 & 8.0 & 7.7 & 7.5 & 7.6 \\
\hline 17 & 8.1 & 8.0 & 8.0 & 8.6 & 8.2 & 8.5 & 8.0 & 7.8 & 7.9 & 7.6 & 7.5 & 7.6 \\
\hline 18 & 8.0 & 7.9 & 8.0 & 8.5 & 8.3 & 8.4 & －－－ & －－－ & －－－ & 7.7 & 7.5 & 7.6 \\
\hline 19 & 8.0 & 7.9 & 8.0 & 8.4 & 8.1 & 8.3 & －－－ & －－－ & －－－ & 7.5 & 7.4 & 7.4 \\
\hline 20 & 8.0 & 7.9 & 8.0 & 8.2 & 7.8 & 8.0 & －－－ & －－－ & －－－ & 7.5 & 7.4 & 7.5 \\
\hline 21 & 8.0 & 7.8 & 7.9 & 8.0 & 7.9 & 7.9 & －－－ & －－－ & －－－ & 7.8 & 7.4 & 7.6 \\
\hline 22 & 8.0 & 7.3 & 7.8 & 8.0 & 7.8 & 7.9 & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ \\
\hline 23 & 7.7 & 7.3 & 7.5 & 7.8 & 7.7 & 7.8 & 8.6 & 8.5 & 8.6 & －－－ & －－－ & －－－ \\
\hline 24 & 7.8 & 7.5 & 7.6 & 7.8 & 7.7 & 7.7 & 8.6 & 8.4 & 8.5 & －－－ & －－－ & －－－ \\
\hline 25 & 7.9 & 7.6 & 7.8 & 7.8 & 7.8 & 7.8 & 8.6 & 8.4 & 8.5 & －－－ & －－－ & －－－ \\
\hline 26 & 8.0 & 7.8 & 7.9 & 7.9 & 7.8 & 7.8 & 8.4 & 8.2 & 8.3 & －－－ & －－－ & －－－ \\
\hline 27 & 8.0 & 7.7 & 7.8 & 7.9 & 7.7 & 7.8 & 8.3 & 8.1 & 8.2 & －－－ & －－－ & －－－ \\
\hline 28 & 8.0 & 7.8 & 7.9 & 7.8 & 7.7 & 7.8 & 8.2 & 8.0 & 8.1 & －－－ & －－－ & －－－ \\
\hline 29 & 7.9 & 7.5 & 7.8 & 7.9 & 7.7 & 7.8 & 8.1 & 7.9 & 8.0 & －－－ & －－－ & －－－ \\
\hline 30 & 7.7 & 7.3 & 7.6 & 8.0 & 7.7 & 7.9 & 8.1 & 7.8 & 7.9 & －－－ & －－－ & －－－ \\
\hline 31 & －－－ & －－－ & －－－ & 8.1 & 7.9 & 8.0 & 7.9 & 7.7 & 7.8 & －－－ & －－－ & －－－ \\
\hline MONTH & 8.1 & 7.3 & 7.8 & 8.6 & 6.7 & 7.6 & －－ & － & －－－ & － & －－－ & －－－ \\
\hline
\end{tabular}

TEMPERATURE，WATER（DEG．C），WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { 华 } \\
& \text { 夏 }
\end{aligned}
\] & & \begin{tabular}{ll|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\stackrel{Z}{z}
\] & \[
\begin{aligned}
& \text { H } \\
& \text { 崔 } \\
& \text { 汕 }
\end{aligned}
\] & \begin{tabular}{ll|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{ll|l|l|l|l}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\underset{\sum}{x}
\] & & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|l|l|ll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 岂 } \\
& \text { 爯 }
\end{aligned}
\] & & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|l}
1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1
\end{tabular} & 1111 & \begin{tabular}{ll|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\stackrel{y}{z}
\] &  & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|llll|l|l}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\underset{\Sigma}{x}
\] & & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & 11.1111 & 1 \begin{tabular}{l|l|l|l}
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { z } \\
& \text { 寝 }
\end{aligned}
\] & & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} &  &  & 11111 & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1
\end{tabular} & \begin{tabular}{lllll|l|l}
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\stackrel{\text { k }}{2}
\] &  & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & 111111 & 1 \begin{tabular}{l|l|l|l}
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} \\
\hline \[
\underset{\Sigma}{x}
\] & & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{lllll|l|l}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline  & &  & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} &  &  \\
\hline \[
\underset{\Sigma}{\text { Z }}
\] & \[
\begin{aligned}
& \text { 菌 } \\
& \text { (1) } \\
& \text { H } \\
& 0
\end{aligned}
\] & \begin{tabular}{ll|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 &
\end{tabular} & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\stackrel{x}{X}
\] & & 11111 & 11111 & 11111 & 11111 & 11111 & 1 \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 究 } \\
& \hline
\end{aligned}
\] & & 「Nのサー & மイめのO &  &  & \[
\underset{N}{\sim} \underset{N}{N} \underset{N}{\sim}
\] &  NNNNMM \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285290 SPEARS CREEK @ STREAMLAND DRIVE NEAR DANVILLE, KY--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998


KENTUCKY RIVER BASIN
03285290 SPEARS CREEK @ STREAMLAND DRIVE NEAR DANVILLE, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & NOVEMBER & & & DECEMBER & & & JANUARY & \\
\hline 1 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & --- & --- & --- & --- & --- & --- & -- & -- & --- & -- & -- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & -- & --- & -- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 10 & --- & --- & - & -- & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 11 & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & -- & --- & --- & - & - & --- & - & -- & -- & --- & --- & -- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & -- & --- & -- & - & --- & - & -- & -- & - & --- & --- \\
\hline 16 & --- & --- & - & -- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & -- & -- & -- & - & - & --- & - & -- & -- & --- & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & -- & -- & --- & - & --- & -- & --- & -- & --- & -- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & -- & --- & --- & --- & --- & -- & -- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 25 & --- & --- & -- & -- & --- & --- & -- & -- & -- & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & --- & -- & --- & -- & --- & --- & --- & -- & --- & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 30 & --- & --- & --- & -- & --- & -- & -- & --- & -- & --- & --- & --- \\
\hline 31 & --- & --- & --- & -- & --- & - & --- & --- & -- & -- & --- & -- \\
\hline MONTH & --- & -- & --- & - & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline DAY & MAX & MIN & MEAN \\
\hline & & FEBRUARY & & & MARCH & & & APRIL & & & MAY & \\
\hline 1 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 5 & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 9 & --- & --- & - & --- & - & --- & --- & - & --- & --- & --- & -- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & -- & - & --- & --- \\
\hline 11 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & -- & -- & -- & -- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & --- & --- & --- & - & -- & --- & -- & --- & --- & -- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & -- & --- & - & --- & -- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & -- & - & - & --- & - & -- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & -- & --- & - & -- & -- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & -- & -- & --- & --- & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 134 & 34.8 & 81.0 \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 121 & 22.8 & 68.4 \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 96.8 & 31.5 & 57.1 \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285290 SPEARS CREEK @ STREAMLAND DRIVE NEAR DANVILLE, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{JUNE} & \multicolumn{3}{|c|}{JULY} & \multicolumn{3}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & -- & -- & -- & 8.2 & 7.4 & 7.8 & 9.7 & 6.6 & 8.4 & 6.2 & 2.9 & 4.1 \\
\hline 2 & --- & --- & --- & 8.9 & 6.1 & 7.7 & 9.7 & 5.0 & 7.8 & 5.9 & 3.5 & 4.4 \\
\hline 3 & --- & --- & --- & 8.5 & 4.1 & 7.0 & 9.2 & 5.5 & 7.1 & 7.5 & 2.9 & 5.0 \\
\hline 4 & 8.6 & 6.1 & 7.4 & 7.6 & 6.0 & 7.0 & 9.4 & 4.1 & 6.9 & 6.1 & 2.0 & 4.4 \\
\hline 5 & 8.6 & 8.0 & 8.2 & 8.1 & 5.5 & 7.0 & 7.3 & 4.5 & 5.8 & 4.7 & 1.9 & 3.4 \\
\hline 6 & 9.2 & 8.6 & 8.8 & 8.3 & 3.3 & 6.3 & 7.8 & 4.5 & 5.9 & 4.8 & 2.0 & 3.4 \\
\hline 7 & 9.6 & 8.2 & 8.9 & 7.0 & 3.6 & 5.2 & 5.9 & 3.5 & 5.0 & 5.0 & 2.6 & 3.8 \\
\hline 8 & 9.2 & 8.5 & 8.8 & 8.9 & 4.3 & 7.8 & 6.1 & 3.6 & 4.9 & 5.8 & 3.7 & 4.6 \\
\hline 9 & 8.8 & 8.1 & 8.5 & 9.1 & 8.0 & 8.7 & 8.0 & 4.6 & 6.1 & 7.0 & 3.9 & 5.7 \\
\hline 10 & 8.6 & 3.7 & 7.1 & 9.3 & 7.6 & 8.5 & 7.3 & 3.5 & 5.8 & 7.1 & 3.8 & 5.7 \\
\hline 11 & 4.8 & 3.7 & 4.3 & 9.3 & 7.2 & 8.5 & 6.5 & 2.5 & 4.6 & 7.0 & 3.1 & 5.5 \\
\hline 12 & 4.8 & 3.6 & 4.2 & 10.1 & 7.6 & 8.8 & 5.2 & 1.8 & 3.8 & 6.6 & 3.0 & 5.0 \\
\hline 13 & 5.5 & 4.2 & 5.0 & 9.1 & 6.6 & 8.2 & 5.9 & 1.4 & 3.8 & 6.4 & 2.7 & 4.6 \\
\hline 14 & 8.9 & 5.2 & 7.1 & 9.4 & 7.5 & 8.9 & 8.7 & 3.8 & 6.6 & 5.5 & 3.1 & 4.3 \\
\hline 15 & 8.6 & 7.4 & 8.3 & 9.6 & 8.8 & 9.2 & 9.8 & 7.6 & 8.7 & 5.4 & 3.0 & 4.1 \\
\hline 16 & 8.9 & 8.3 & 8.6 & 10.1 & 8.7 & 9.3 & 9.7 & 8.4 & 9.0 & 5.8 & 2.5 & 4.3 \\
\hline 17 & 9.0 & 8.0 & 8.6 & 10.4 & 9.2 & 9.9 & 9.5 & 7.3 & 8.3 & 4.8 & 2.8 & 3.9 \\
\hline 18 & 9.0 & 7.2 & 8.2 & 10.2 & 8.5 & 9.4 & --- & --- & --- & 4.3 & 2.0 & 3.3 \\
\hline 19 & 8.4 & 7.1 & 7.9 & 9.4 & 6.1 & 8.3 & --- & --- & --- & 3.8 & 2.5 & 3.2 \\
\hline 20 & 8.6 & 5.5 & 7.6 & 8.7 & 7.4 & 8.3 & --- & --- & --- & 3.8 & 2.8 & 3.4 \\
\hline 21 & 8.2 & 7.3 & 7.8 & 9.0 & 6.8 & 8.2 & --- & --- & --- & 5.5 & 3.4 & 4.5 \\
\hline 22 & 8.3 & 6.2 & 7.4 & 8.3 & 6.1 & 7.6 & --- & - & --- & --- & --- & --- \\
\hline 23 & 7.5 & 6.8 & 7.3 & 7.9 & 5.5 & 7.2 & 6.1 & 3.4 & 4.7 & --- & --- & --- \\
\hline 24 & 7.9 & 6.6 & 7.3 & 7.7 & 5.7 & 6.8 & 8.4 & 3.3 & 5.8 & --- & --- & --- \\
\hline 25 & 7.7 & 5.7 & 6.9 & 8.1 & 6.0 & 7.2 & 8.0 & 3.1 & 5.3 & --- & --- & --- \\
\hline 26 & 7.7 & 6.0 & 7.0 & 8.4 & 7.1 & 7.7 & 6.0 & 2.9 & 4.5 & --- & - & - \\
\hline 27 & 7.6 & 5.6 & 6.9 & 8.1 & 4.9 & 7.1 & 6.6 & 2.9 & 4.8 & --- & --- & --- \\
\hline 28 & 7.8 & 5.6 & 6.7 & 8.1 & 5.2 & 6.7 & 7.2 & 2.5 & 4.8 & --- & --- & --- \\
\hline 29 & 7.2 & 4.8 & 6.4 & 8.2 & 3.8 & 6.2 & 5.4 & 3.0 & 4.2 & --- & --- & --- \\
\hline 30 & 8.1 & 6.6 & 7.5 & 7.7 & 4.8 & 6.6 & 4.7 & 2.6 & 3.7 & --- & --- & --- \\
\hline 31 & --- & --- & --- & 8.9 & 6.8 & 7.9 & 4.8 & 2.7 & 3.7 & --- & --- & -- \\
\hline MONTH & --- & --- & --- & 10.4 & 3.3 & 7.8 & --- & --- & --- & --- & --- & -- \\
\hline
\end{tabular}


\section*{KENTUCKY RIVER BASIN}

03285320 MOCKS BRANCH @ BLUEGRASS PIKE NEAR DANVILLE, KY
LOCATION.-- Lat \(37^{\circ} 39^{\prime} 47^{\prime \prime}\), long \(84^{\circ} 49^{\prime} 21^{\prime \prime}\), Boyle County, Hydrologic Unit 05100205, at bridge on Bluegrass Pike and at mile 10.2 . DRAINAGE AREA. \(--1.74 \mathrm{mi}^{2}\)

WATER-STAGE RECORDS
PERIOD OF RECORD.--May 27, 1998 to September 3, 1998.
COOPERATION.--The Kentucky Heritage Resource Conservation and Development Council.
GAGE.--Water-stage recorder.
REMARKS.--Records good, except those for periods of estimated gage heights, which are rated fair. The periods of no flow are May 27-30, July 27 to August 13, and August 19 to September 3.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & --- & -- & --- & -- & -- & --- & --- & --- & 1.95 & 2.03 & . 91 & . 42 \\
\hline 2 & --- & --- & --- & --- & -- & --- & - & --- & 1.60 & 1.90 & . 84 & . 42 \\
\hline 3 & --- & --- & --- & --- & --- & --- & - & --- & 1.35 & 1.80 & . 76 & . 42 \\
\hline 4 & -- & -- & - & - & -- & --- & --- & --- & 1.83 & 1.87 & . 68 & -- \\
\hline 5 & --- & --- & --- & -- & --- & --- & --- & --- & 2.48 & 1.79 & . 59 & --- \\
\hline 6 & --- & --- & --- & -- & --- & --- & --- & --- & 2.21 & 1.57 & . 49 & - \\
\hline 7 & --- & --- & --- & --- & - & --- & --- & --- & 2.00 & 1.37 & . 44 & - \\
\hline 8 & -- & --- & --- & --- & -- & --- & -- & --- & 1.84 & 2.24 & . 43 & --- \\
\hline 9 & --- & --- & --- & --- & -- & --- & -- & --- & 2.10 & 2.04 & . 43 & -- \\
\hline 10 & --- & - & --- & --- & --- & --- & -- & --- & 2.42 & e1.89 & . 43 & --- \\
\hline 11 & -- & - & --- & --- & -- & --- & -- & --- & 2.40 & e1.71 & . 43 & --- \\
\hline 12 & --- & --- & - & --- & -- & --- & -- & --- & 2.32 & e1. 58 & . 43 & - \\
\hline 13 & --- & --- & -- & --- & --- & -- & --- & --- & 2.79 & 1.49 & . 43 & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & 2.45 & 1.40 & 1.32 & --- \\
\hline 15 & --- & --- & -- & -- & --- & -- & --- & --- & 2.73 & 1.34 & 1.50 & --- \\
\hline 16 & -- & --- & --- & --- & - & --- & - & - & 2.28 & 1.87 & 1.36 & --- \\
\hline 17 & - & --- & --- & --- & --- & --- & - & --- & 2.11 & 2.02 & 1.31 & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & -- & --- & 1.96 & 1.85 & 1.28 & --- \\
\hline 19 & -- & -- & --- & --- & - & --- & - & - & 1.90 & 1.71 & e1.22 & -- \\
\hline 20 & --- & --- & - & --- & --- & --- & --- & --- & 1.73 & 2.16 & e1.16 & -- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & -- & 1.74 & 2.02 & e1.08 & - \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & 2.15 & 1.88 & e. 99 & - \\
\hline 23 & - & --- & --- & --- & --- & --- & --- & --- & 2.49 & 1.76 & e. 91 & - \\
\hline 24 & --- & --- & --- & --- & - & --- & --- & -- & 2.14 & 1.61 & . 83 & - \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & 1.95 & 1.43 & . 75 & -- \\
\hline 26 & --- & --- & - & -- & --- & -- & --- & --- & 1.82 & 1.32 & . 66 & --- \\
\hline 27 & - & - & --- & --- & --- & --- & --- & 1.18 & 1.71 & 1.25 & . 56 & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & - & 1.10 & 1.57 & 1.19 & . 47 & - \\
\hline 29 & --- & --- & --- & --- & -- & -- & --- & 1.00 & 1.89 & 1.11 & . 44 & --- \\
\hline 30 & -- & --- & --- & --- & -- & - & --- & . 92 & 2.43 & 1.03 & . 43 & --- \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & . 94 & --- & . 98 & . 42 & --- \\
\hline MEAN & --- & --- & --- & --- & --- & --- & --- & --- & 2.08 & 1.65 & . 77 & - \\
\hline MAX & --- & --- & - & -- & --- & --- & --- & --- & 2.79 & 2.24 & 1.50 & --- \\
\hline MIN & -- & - & --- & --- & --- & --- & --- & --- & 1.35 & . 98 & . 42 & - \\
\hline
\end{tabular}
e Estimated

KENTUCKY RIVER BASIN
03285320 MOCKS BRANCH @ BLUEGRASS PIKE NEAR DANVILLE, KY--Continued


\section*{KENTUCKY RIVER BASIN}

03285320 MOCKS BRANCH @ BLUEGRASS PIKE NEAR DANVILLE, KY WATER-QUALITY RECORDS

PERIOD OF RECORD.--May 1998 to September 1998.
COOPERATION.--The Kentucky Heritage Resource Conservation and Development Council.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: May 1998 to August 1998.
pH: May 1998 to September 1998.
WATER TEMPERATURE: May 1998 to August 1998.
DISSOLVED OXYGEN: May 1998 to September 1998.
EXTREMES FOR PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 440 microsiemens, Aug. 18, 1998; minimum, 167 microsiemens, July 8 , 1998.
pH: Maximum, 9.0 units, July 18 and August 28, 1998; minimum 5.3 units, Aug. 31, 1998.
WATER TEMPERATURE: Maximum, 31.6 C, June 27, 1998; minimum, 13.8 C, June 7, 1998.
DISSOLVED OXYGEN: Maximum, \(17.2 \mathrm{mg} / \mathrm{L}\), Aug. \(14 ;\) minimum, \(0.1 \mathrm{mg} / \mathrm{L}, \mathrm{May} 28,1998\).


\section*{KENTUCKY RIVER BASIN}

03285320 MOCKS BRANCH @ BLUEGRASS PIKE NEAR DANVILLE, KY--Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998


03285320 MOCKS BRANCH @ BLUEGRASS PIKE NEAR DANVILLE, KY--Continued
PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & NOVEMBER & & & DECEMBER & & & JANUARY & \\
\hline 1 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- & -_- \\
\hline 11 & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 12 & -- & --- & --- & - & -- & - & -- & - & - & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & --- & - & - & -- & --- & - & - & - & --- & --- & -- \\
\hline 16 & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & - & - & -- & --- & --- & - & -- & -- & - & --- & -- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & - \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & --- & --- & -- & -- & --- & -- & -- & -- & -- & -- & --- & -- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline MONTH & --- & -- & --- & --- & -- & -- & --- & --- & --- & --- & --- & --- \\
\hline DAY & MAX & MIN & MEAN \\
\hline & & FEBRUARY & & & MARCH & & & APRIL & & & MAY & \\
\hline 1 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & --- & --- & --- & --- & -- & -- & --- & --- & --- & --- & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & --- & --- & --- & - & --- & --- & --- & --- & --- & --- \\
\hline 11 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & -- & -- & --- & --- & --- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & --- & --- & --- & - & --- & --- & --- & --- & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & - & --- & - & -- & - & --- & - & --- & -- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & --- & --- & --- & -- & --- & -- & --- & --- & --- & -- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 7.6 & 7.4 & 7.5 \\
\hline 29 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 7.6 & 7.4 & 7.4 \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 7.6 & 7.3 & 7.4 \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 7.8 & 7.4 & 7.5 \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285320 MOCKS BRANCH＠BLUEGRASS PIKE NEAR DANVILLE，KY－－Continued
PH，WATER，WHOLE，FIELD，STANDARD UNITS，WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & JULY & & & GUST & & & TEMB & \\
\hline 1 & 8.2 & 7.3 & 7.7 & 7.6 & 7.2 & 7.4 & 7.6 & 6.7 & 7.1 & 7.2 & 5.5 & 6.3 \\
\hline 2 & 8.3 & 7.6 & 7.9 & 7.9 & 7.3 & 7.6 & 7.5 & 6.6 & 7.0 & －－－ & －－－ & －－－ \\
\hline 3 & 8.4 & 7.7 & 7.9 & 8.3 & 7.4 & 7.8 & 7.7 & 6.6 & 7.0 & －－－ & －－－ & － \\
\hline 4 & 8.0 & 7.3 & 7.5 & 8.4 & 7.4 & 7.8 & 8.2 & 6.4 & 7.1 & －－－ & －－－ & －－－ \\
\hline 5 & 7.6 & 7.4 & 7.5 & 8.8 & 7.5 & 8.1 & 8.9 & 6.4 & 7.3 & －－－ & －－－ & －－－ \\
\hline 6 & 7.9 & 7.5 & 7.7 & 8.6 & 7.5 & 8.0 & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ \\
\hline 7 & 8.3 & 7.6 & 7.9 & 8.0 & 7.2 & 7.4 & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ \\
\hline 8 & 8.6 & 7.7 & 8.1 & 7.5 & 6.9 & 7.3 & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ \\
\hline 9 & 7.9 & 7.6 & 7.7 & 8.1 & 7.3 & 7.7 & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ \\
\hline 10 & 8.4 & 7.3 & 7.7 & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ \\
\hline 11 & 8.0 & 7.4 & 7.7 & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ \\
\hline 12 & 8.6 & 7.5 & 7.9 & －－－ & － & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ \\
\hline 13 & 7.8 & 7.2 & 7.5 & 8.0 & 7.4 & 7.6 & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ \\
\hline 14 & 7.8 & 7.4 & 7.6 & 7.7 & 7.5 & 7.6 & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ \\
\hline 15 & 7.9 & 7.3 & 7.6 & 7.8 & 7.5 & 7.6 & －－－ & －－－ & －－－ & －－－ & －－－ & －－ \\
\hline 16 & 8.6 & 7.6 & 7.9 & 8.0 & 7.5 & 7.6 & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ \\
\hline 17 & 8.9 & 7.5 & 8.2 & 8.8 & 7.7 & 8.2 & － & －－－ & －－－ & －－－ & －－－ & －－ \\
\hline 18 & 8.9 & 7.5 & 8.2 & 9.0 & 7.8 & 8.3 & 7.2 & 7.0 & 7.1 & －－－ & －－－ & －－－ \\
\hline 19 & 8.9 & 7.5 & 8.1 & 8.9 & 7.7 & 8.3 & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ \\
\hline 20 & 8.9 & 7.5 & 8.1 & 8.0 & 7.3 & 7.6 & －－－ & －－－ & －－－ & －－－ & －－－ & －－ \\
\hline 21 & 8.9 & 7.3 & 7.9 & 8.3 & 7.5 & 7.8 & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ \\
\hline 22 & 8.4 & 7.0 & 7.5 & 8.6 & 7.6 & 8.0 & －－－ & －－－ & －－－ & －－－ & －－－ & － \\
\hline 23 & 7.5 & 7.2 & 7.3 & 8.5 & 7.4 & 7.9 & －－－ & －－－ & －－－ & －－－ & ＿－－ & －－－ \\
\hline 24 & 7.6 & 7.2 & 7.4 & 8.2 & 7.2 & 7.7 & 7.9 & 7.2 & 7.5 & －－－ & －－－ & －－－ \\
\hline 25 & 7.8 & 7.4 & 7.6 & 7.8 & 7.0 & 7.3 & 8.1 & 7.3 & 7.5 & －－－ & －－－ & －－－ \\
\hline 26 & 7.9 & 7.4 & 7.7 & 7.5 & 7.0 & 7.2 & 7.7 & 7.2 & 7.4 & －－－ & －－－ & － \\
\hline 27 & 7.9 & 7.3 & 7.5 & 7.4 & 6.9 & 7.1 & 7.8 & 7.2 & 7.4 & －－－ & －－－ & －－－ \\
\hline 28 & 7.7 & 7.0 & 7.4 & 7.3 & 6.8 & 7.0 & 9.0 & 7.3 & 7.9 & －－ & －－－ & － \\
\hline 29 & 7.6 & 6.7 & 7.1 & 7.4 & 6.7 & 7.0 & 8.1 & 7.5 & 7.9 & －－－ & －－－ & －－－ \\
\hline 30 & 7.3 & 6.9 & 7.1 & 7.0 & 6.7 & 6.8 & 7.8 & 6.8 & 7.5 & －－－ & －－－ & －－－ \\
\hline 31 & －－－ & －－－ & －－－ & 7.7 & 6.6 & 7.0 & 7.6 & 5.3 & 6.5 & －－－ & － & － \\
\hline MONTH & 8.9 & 6.7 & 7.7 & －－－ & －－－ & －－－ & －－－ & －－－ & －－ & －－－ & －－－ & － \\
\hline
\end{tabular}

TEMPERATURE，WATER（DEG．C），WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 爻 & & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} &  & 111111 & 11111 & 111111 & 1 \begin{tabular}{llllll|}
1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\stackrel{\text { 㣻 }}{2}
\] & \[
\begin{aligned}
& \text { H } \\
& \text { 葆 } \\
& \text { 岑 }
\end{aligned}
\] & \begin{tabular}{ll|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} &  & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
{ }_{\Sigma}^{x}
\] & & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 学 } \\
& \text { 公 }
\end{aligned}
\] & & 1 \begin{tabular}{l|l|l|l}
1 & 1 & 1
\end{tabular} &  & 1 \begin{tabular}{l|l|l|l|}
1 & 1 & 1
\end{tabular} & 1111 & 111111 & 1 \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\stackrel{\text { 㣻 }}{2}
\] &  & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\underset{~ N ~}{x}
\] & & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{ll|l|l|}
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & 111111 & 111111 & \begin{tabular}{lllll|l|l}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { z } \\
& \text { 罟 }
\end{aligned}
\] & & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} &  & \(1111 \mid\) & 1111 &  &  \\
\hline \[
\stackrel{\text { Z }}{2}
\] &  & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} &  & 111111 & 11111 & 111111 & 1 \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
{ }_{i}^{x}
\] & & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} &  & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & 11111 & 1111 & \begin{tabular}{ll|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { z } \\
& \text { 息 }
\end{aligned}
\] & & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} &  & 1 \begin{tabular}{l|l|l|l|}
1 & 1 & 1
\end{tabular} & \(1111 \mid\) &  & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\stackrel{\text { 㣻 }}{2}
\] & 0
（1）
0
0
0
0 & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} &  & 1 \begin{tabular}{l|l|l}
1 & 1 & 1
\end{tabular} & 1111 & \begin{tabular}{l|l|l|l}
1 & 1 & 1
\end{tabular} &  \\
\hline \[
\underset{\Sigma}{x}
\] & & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1
\end{tabular} & 11111 & 1111 & 11111 & 11111 &  \\
\hline 学 & & －Nのが & ¢ &  &  & \[
\underset{N}{N} N \underset{N}{N} \underset{N}{N}
\] & \[
\stackrel{6}{N} \stackrel{\infty}{N} \stackrel{\sim}{N}
\] \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285320 MOCKS BRANCH @ BLUEGRASS PIKE NEAR DANVILLE, KY--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998



\section*{KENTUCKY RIVER BASIN}

03285325 MOCKS BRANCH @ HWY 1915 (Gentry Lane) NEAR DANVILLE, KY
LOCATION.-- Lat \(37^{\circ} 40^{\prime} 56^{\prime \prime}\), long \(84^{\circ} 48^{\prime} 57{ }^{\prime \prime}\), Boyle County, Hydrologic Unit 05100205, at bridge on Hwy 1915 (Gentry Lane) and at mile 8.69 .

DRAINAGE AREA. \(--4.22 \mathrm{mi}^{2}\)
WATER-STAGE RECORDS
PERIOD OF RECORD.--May 27, 1998 to November 20, 1998.
COOPERATION.--The Kentucky Heritage Resource Conservation and Development Council.
GAGE.--Water-stage recorder.
REMARKS.--1998: Records good, except those for periods of estimated gage heights, which are fair.
1999: Records good, except those for periods of estimated gage heights, which are fair.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & --- & --- & --- & - & -- & --- & -- & --- & . 83 & 1.16 & . 52 & . 55 \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & -- & . 74 & . 95 & . 52 & . 55 \\
\hline 3 & --- & --- & --- & --- & --- & - & --- & --- & . 63 & . 83 & . 51 & . 55 \\
\hline 4 & --- & - & --- & -- & --- & --- & --- & --- & . 87 & . 76 & . 51 & . 54 \\
\hline 5 & --- & --- & --- & - & --- & --- & --- & --- & 1.48 & . 68 & . 51 & . 54 \\
\hline 6 & --- & --- & -- & - & - & --- & - & --- & 1.46 & . 61 & . 51 & . 54 \\
\hline 7 & -- & - & --- & --- & --- & - & --- & -- & 1.19 & . 56 & . 51 & . 54 \\
\hline 8 & - & -- & - & --- & --- & - & - & --- & 1.04 & 1.42 & . 52 & . 53 \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & 1.14 & 1.29 & . 53 & . 53 \\
\hline 10 & --- & -- & --- & --- & --- & --- & --- & --- & 1.96 & 1.00 & . 53 & . 53 \\
\hline 11 & - & --- & --- & - & - & -- & - & -- & 2.21 & . 86 & . 53 & . 53 \\
\hline 12 & --- & --- & --- & - & - & - & -- & --- & 1.79 & . 76 & . 53 & . 53 \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & 2.42 & . 68 & . 52 & . 54 \\
\hline 14 & -- & --- & -- & --- & --- & - & --- & -- & 1.95 & . 64 & 1.55 & . 53 \\
\hline 15 & - & --- & -- & --- & --- & - & --- & - & 2.32 & . 56 & 1.29 & . 52 \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & -- & 1.74 & . 66 & 1.00 & . 51 \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & 1.40 & . 69 & e. 80 & . 52 \\
\hline 18 & --- & --- & -- & --- & --- & --- & --- & - & 1.19 & . 63 & e. 62 & . 53 \\
\hline 19 & -- & --- & --- & --- & --- & --- & --- & --- & 1.07 & . 58 & e. 56 & . 55 \\
\hline 20 & --- & -- & --- & -- & -- & --- & - & -- & . 95 & 1.17 & e. 56 & . 54 \\
\hline 21 & - & --- & -- & --- & --- & - & - & --- & . 90 & 1.30 & e. 56 & . 61 \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & 1.32 & 1.06 & e. 56 & . 59 \\
\hline 23 & -- & --- & - & --- & --- & --- & --- & --- & 2.01 & . 92 & e. 56 & . 56 \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & - & 1.55 & . 81 & . 56 & . 54 \\
\hline 25 & -- & --- & -- & --- & --- & - & - & --- & 1.25 & . 72 & . 56 & . 54 \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & 1.07 & e. 65 & . 56 & . 54 \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & . 71 & . 93 & e. 59 & . 56 & . 53 \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & . 67 & . 83 & e. 52 & . 56 & . 52 \\
\hline 29 & - & --- & -- & - & --- & --- & --- & . 67 & 1.06 & e. 53 & . 56 & . 51 \\
\hline 30 & -- & - & -- & -- & --- & --- & --- & . 66 & 1.62 & e. 52 & . 55 & . 50 \\
\hline 31 & --- & --- & --- & --- & - & --- & - & . 71 & -- & e. 52 & . 56 & - \\
\hline MEAN & -- & --- & --- & --- & --- & --- & --- & --- & 1.36 & . 79 & . 62 & . 54 \\
\hline MAX & --- & --- & --- & - & --- & --- & --- & --- & 2.42 & 1.42 & 1.55 & . 61 \\
\hline MIN & --- & --- & --- & --- & --- & --- & --- & --- & . 63 & . 52 & . 51 & . 50 \\
\hline
\end{tabular}
e Estimated


\section*{KENTUCKY RIVER BASIN}

03285325 MOCKS BRANCH＠HWY 1915 （Gentry Lane）NEAR DANVILLE，KY－－Continued GAGE HEIGHT，FEET，WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 号 & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1 \\
1 & 1 & 1 \\
1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} &  & \begin{tabular}{lllll|l|l}
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} & 111 \\
\hline 兄 &  &  & 11111 & 11111 &  & \begin{tabular}{llll|l|l|l|lll}
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} & 111 \\
\hline \[
\stackrel{4}{5}
\] &  &  & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1
\end{tabular} & 1111 &  & \begin{tabular}{l|ll|l|l|l}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} & 111 \\
\hline \[
\begin{gathered}
\stackrel{3}{5} \\
\hline
\end{gathered}
\] & \begin{tabular}{llllll|}
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1
\end{tabular} & 111111 &  &  & \begin{tabular}{lllll|l|l}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} & 111 \\
\hline 空 & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{ll|l|l|l|l}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} & 111 \\
\hline \[
\stackrel{\text { 只 }}{\substack{4 \\ \hline}}
\] & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|l}
1 & 1 & 1
\end{tabular} & 11111 & 1111 &  &  & 11 \\
\hline  &  & 1111 & 11111 & 1111 &  & \begin{tabular}{ll|l|l|l|l|l|lll}
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} & 111 \\
\hline  &  & \(1111 \mid\) & 11111 & 1111 &  &  & 111 \\
\hline \[
\begin{aligned}
& \text { 㞫 }
\end{aligned}
\] &  & \begin{tabular}{l|l|l|l}
1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} &  &  & 111 \\
\hline \[
\begin{aligned}
& \text { U } \\
& \text { [1 }
\end{aligned}
\] & \(\begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}\) &  & 11111 &  &  & \(\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}\) & 111 \\
\hline B & M M の ロ サ ก！！！？ก！！ & \(m \sim N m \infty\) ！！！！！！！？ &  &  &  &  & 111 \\
\hline \[
\begin{aligned}
& \text { H } \\
& \text { O }
\end{aligned}
\] &  & \[
\stackrel{\infty}{n} \text { ! }
\] &  & にながが กセกำกำ． & に ザ
! ! ! ! ! ! ! ! ! &  ก！？！？！？ & \(\stackrel{6}{\bullet}\) \\
\hline 究 & \(\neg N\) のサー & \(\cdots\) rono &  &  & \(\cdots \sim \sim \sim N \sim N\) &  \(\mathrm{N} N \mathrm{~N}\) Mm &  \\
\hline
\end{tabular}

03285325 MOCKS BRANCH @ HWY 1915 (Gentry Lane) NEAR DANVILLE, KY--Continued
 WATER-QUALITY RECORDS

PERIOD OF RECORD.--May 1998 to November 1998.
COOPERATION.--The Kentucky Heritage Resource Conservation and Development Council.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: May 1998 to November 1998.
pH: May 1998 to November 1998.
WATER TEMPERATURE: May 1998 to November 1998.
DISSOLVED OXYGEN: May 1998 to November 1998
EXTREMES FOR PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 502 microsiemens, Aug. 14, 1998; minimum, 54 microsiemens, Aug. 14, 1998.
pH: Maximum, 9.1 units, Sept. 20, 1998; minimum, 6.9 units, Aug. 14 and Nov. 19, 1998.
WATER TEMPERATURE: Maximum, 33.9 C, July 19, 1998; minimum, 4.0 C, November 18, 1998.
DISSOLVED OXYGEN: Maximum, \(17.8 \mathrm{mg} / \mathrm{L}\), Aug. 8, \(1998 ;\) minimum, \(0.5 \mathrm{mg} / \mathrm{L}\), Oct. 31, 1998.

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & NOVEMBER & & & DECEMBER & & & JANUARY & \\
\hline 1 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & --- & - & --- & --- & --- & - & --- & --- & --- & - & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & --- & --- & --- & --- & --- & -- & --- & --- & --- & - & --- & --- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & -- & --- & --- & - & --- & --- & --- & --- & -- & - & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & -- & -- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 30 & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285325 MOCKS BRANCH @ HWY 1915 (Gentry Lane) NEAR DANVILLE, KY--Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998


03285325 MOCKS BRANCH @ HWY 1915 (Gentry Lane) NEAR DANVILLE, KY--Continued
PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & NOVEMBER & & & DECEMBER & & & JANUARY & \\
\hline 1 & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- & - & - \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & -- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 5 & -- & --- & --- & -- & --- & - & -- & -- & --- & - & -- & -- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & --- & -- & --- & --- & - & -- & -- & --- & --- & --- \\
\hline 11 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 15 & --- & --- & - & - & - & --- & --- & -- & -- & --- & --- & -- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 20 & --- & --- & --- & - & --- & - & --- & --- & --- & - & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & -- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 25 & --- & --- & -- & - & - & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & --- & -- & --- & --- & --- & --- & --- & -- & --- & -- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & --- & --- & --- & --- & - & --- & --- & --- & - & --- & - \\
\hline MONTH & --- & -- & --- & -- & --- & --- & --- & --- & --- & - & --- & - \\
\hline DAY & MAX & MIN & MEAN \\
\hline & & FEBRUARY & & & MARCH & & & APRIL & & & MAY & \\
\hline 1 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 5 & --- & --- & --- & --- & -- & -- & --- & --- & --- & - & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- \\
\hline 11 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & - & --- & --- & -- & --- & --- & --- & --- & --- & -- \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & -- & - & - & - \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & --- & --- & --- & --- & --- & - & --- & -- & --- & - & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & -- & -- & - & - & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 8.9 & 7.3 & 8.0 \\
\hline 29 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 8.8 & 7.2 & 7.9 \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 9.0 & 7.2 & 7.9 \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 8.8 & 7.2 & 7.8 \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285325 MOCKS BRANCH＠HWY 1915 （Gentry Lane）NEAR DANVILLE，KY－－Continued
PH，WATER，WHOLE，FIELD，STANDARD UNITS，WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{JUNE} & \multicolumn{3}{|c|}{JULY} & \multicolumn{3}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & 7.8 & 7.2 & 7.4 & 7.7 & 7.4 & 7.5 & 8.2 & 7.6 & 7.9 & 8.1 & 7.4 & 7.6 \\
\hline 2 & 7.9 & 7.3 & 7.6 & 8.2 & 7.2 & 7.7 & 8.7 & 7.8 & 8.1 & 8.0 & 7.4 & 7.6 \\
\hline 3 & 8.0 & 7.4 & 7.5 & 8.3 & 7.8 & 8.1 & 8.8 & 7.7 & 8.1 & 8.4 & 7.5 & 7.8 \\
\hline 4 & 7.6 & 7.3 & 7.4 & 8.2 & 7.8 & 8.0 & 8.5 & 7.6 & 8.0 & 8.2 & 7.5 & 7.8 \\
\hline 5 & 7.5 & 7.4 & 7.4 & 8.1 & 7.9 & 8.0 & 8.7 & 7.6 & 8.0 & 8.1 & 7.5 & 7.7 \\
\hline 6 & 7.7 & 7.4 & 7.6 & 8.1 & 7.9 & 8.0 & 8.8 & 7.6 & 8.1 & 7.9 & 7.5 & 7.6 \\
\hline 7 & 7.8 & 7.6 & 7.7 & 8.0 & 7.8 & 7.9 & 8.3 & 7.5 & 7.8 & 8.0 & 7.5 & 7.6 \\
\hline 8 & 7.8 & 7.6 & 7.7 & 8.0 & 7.5 & 7.7 & 8.3 & 7.5 & 7.8 & 8.2 & 7.4 & 7.7 \\
\hline 9 & 7.8 & 7.5 & 7.6 & 7.9 & 7.7 & 7.8 & 8.1 & 7.5 & 7.7 & 8.5 & 7.6 & 8.0 \\
\hline 10 & 7.7 & 7.1 & 7.4 & 7.9 & 7.7 & 7.8 & 8.2 & 7.6 & 7.8 & 8.5 & 7.8 & 8.1 \\
\hline 11 & 7.2 & 7.2 & 7.2 & 7.9 & 7.7 & 7.8 & 8.3 & 7.5 & 7.8 & 8.2 & 7.7 & 7.9 \\
\hline 12 & 7.3 & 7.1 & 7.2 & 8.0 & 7.7 & 7.8 & 8.6 & 7.5 & 7.8 & 8.3 & 7.7 & 7.9 \\
\hline 13 & 7.2 & 7.0 & 7.1 & 7.9 & 7.7 & 7.7 & 8.5 & 7.6 & 7.9 & 8.3 & 7.7 & 7.9 \\
\hline 14 & 7.3 & 7.1 & 7.2 & 7.9 & 7.6 & 7.7 & 7.7 & 6.9 & 7.3 & 8.4 & 7.7 & 8.0 \\
\hline 15 & 7.3 & 7.0 & 7.2 & 7.9 & 7.6 & 7.7 & 7.3 & 7.2 & 7.2 & 8.6 & 7.7 & 8.1 \\
\hline 16 & 7.6 & 7.2 & 7.3 & 7.7 & 7.5 & 7.6 & 7.5 & 7.3 & 7.4 & 8.5 & 7.7 & 8.1 \\
\hline 17 & 7.6 & 7.2 & 7.4 & 7.7 & 7.5 & 7.6 & －－－ & －－－ & －－－ & 8.5 & 7.7 & 8.0 \\
\hline 18 & 7.6 & 7.2 & 7.4 & 7.7 & 7.5 & 7.6 & －－－ & －－－ & －－－ & 8.8 & 7.7 & 8.2 \\
\hline 19 & 7.9 & 7.3 & 7.5 & 7.8 & 7.5 & 7.6 & －－－ & －－－ & －－ & 9.0 & 7.7 & 8.3 \\
\hline 20 & 7.7 & 7.3 & 7.5 & 7.6 & 7.2 & 7.4 & －－ & －－－ & －－－ & 9.1 & 7.8 & 8.5 \\
\hline 21 & 7.8 & 7.3 & 7.5 & 7.4 & 7.2 & 7.3 & －－－ & －－－ & －－－ & 8.7 & 7.7 & 8.0 \\
\hline 22 & 7.8 & 7.0 & 7.4 & 7.4 & 7.3 & 7.4 & － & －－ & －－ & 8.4 & 7.6 & 7.9 \\
\hline 23 & 7.3 & 7.0 & 7.1 & 7.6 & 7.4 & 7.5 & －－－ & －－－ & －－－ & 8.1 & 7.7 & 7.9 \\
\hline 24 & 7.4 & 7.0 & 7.2 & 7.6 & 7.4 & 7.5 & 8.2 & 7.4 & 7.7 & 8.8 & 7.7 & 8.1 \\
\hline 25 & 7.4 & 7.0 & 7.2 & 7.7 & 7.4 & 7.5 & 8.2 & 7.5 & 7.7 & 8.1 & 7.7 & 7.9 \\
\hline 26 & 7.6 & 7.1 & 7.3 & 7.8 & 7.4 & 7.6 & 8.1 & 7.4 & 7.6 & 7.9 & 7.7 & 7.8 \\
\hline 27 & 7.7 & 7.0 & 7.3 & 7.8 & 7.6 & 7.7 & 8.3 & 7.4 & 7.7 & 7.8 & 7.6 & 7.7 \\
\hline 28 & 7.7 & 7.1 & 7.4 & 7.8 & 7.6 & 7.7 & 8.3 & 7.4 & 7.6 & 7.8 & 7.6 & 7.7 \\
\hline 29 & 7.7 & 7.3 & 7.5 & 7.9 & 7.6 & 7.7 & 7.9 & 7.4 & 7.6 & 7.8 & 7.7 & 7.7 \\
\hline 30 & 7.7 & 7.3 & 7.5 & 8.1 & 7.6 & 7.8 & 8.0 & 7.4 & 7.6 & 8.4 & 7.7 & 7.9 \\
\hline 31 & －－－ & －－－ & －－－ & 8.2 & 7.7 & 7.9 & 7.7 & 7.4 & 7.5 & －－－ & －－－ & －－－ \\
\hline MONTH & 8.0 & 7.0 & 7.4 & 8.3 & 7.2 & 7.7 & －－－ & －－－ & －－ & 9.1 & 7.4 & 7.9 \\
\hline
\end{tabular}

TEMPERATURE，WATER（DEG．C），WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { z } \\
& \text { 岕 } \\
& \text { 菏 }
\end{aligned}
\] & &  &  & 1111 & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1
\end{tabular} & 111 &  \\
\hline \[
\stackrel{\text { 怘 }}{2}
\] &  & \begin{tabular}{ll|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{ll|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{ll|l|l|l|l}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\underset{\Sigma}{X}
\] & & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} &  & \begin{tabular}{lllll|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{llll|l}
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|l|l|lll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline  & & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|l}
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1
\end{tabular} & 111111 & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\stackrel{y}{2}
\] &  & \begin{tabular}{ll|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{ll|l|l|l|l}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\underset{\Sigma}{x}
\] & & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} &  & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 学 } \\
& \text { 至 }
\end{aligned}
\] & & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} &  &  & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline 号 & \[
\begin{aligned}
& \begin{array}{c}
\text { d } \\
11 \\
\sum_{\text {1 }}^{1} \\
0 \\
0
\end{array}
\end{aligned}
\] & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} &  & 1 \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\underset{\Sigma}{x}
\] & & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{ll|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{lllll|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|l}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 采 } \\
& \text { 寽 }
\end{aligned}
\] & & 1 \begin{tabular}{l|l|l|l}
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} &  & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\stackrel{y}{\mathrm{z}}
\] & 足
0
0
0
0
0 & \[
\begin{array}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}
\] & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} &  & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 &
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\underset{\sum}{x}
\] & & 1111 & 11111 & 11111 & 11111 & 111111 & 1 \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 䒘 } \\
& \hline
\end{aligned}
\] & & rNmび & மトゥのO &  &  & \[
\underset{N}{-1} N \underset{N}{N}
\] &  \\
\hline
\end{tabular}

03285325 MOCKS BRANCH @ HWY 1915 (Gentry Lane) NEAR DANVILLE, KY--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & FEBRUARY & & & MARCH & & & APRIL & & & MAY & \\
\hline 1 & --- & --- & --- & --- & -- & --- & -- & --- & - & - & - & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & -- & --- & -- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & -- & -- & --- & - & -- & -- & --- & - & --- \\
\hline 5 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & -- & -- & --- & -- & --- & - \\
\hline 8 & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & --- & --- & --- & --- & - & --- & --- & --- & --- & --- & -- & --- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -_- \\
\hline 13 & - & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & -- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & -- & --- & -- & --- & --- \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & --- & --- & --- & - & - & --- & --- & --- & --- & --- & --- & - \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & - & --- & --- & -- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & - & --- & -- & --- & -- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & -- & - & -- & -- & --- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & --- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & -- & 30.9 & 19.2 & 24.6 \\
\hline 29 & --- & --- & --- & --- & --- & --- & --- & --- & -- & 32.4 & 20.6 & 25.9 \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 32.7 & 21.7 & 26.9 \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 30.7 & 23.0 & 26.3 \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & JULY & & & AUGUST & & & PTEMB & \\
\hline 1 & 31.3 & 20.7 & 25.6 & 24.5 & 17.7 & 20.3 & 29.0 & 19.2 & 23.3 & 29.8 & 18.8 & 24.1 \\
\hline 2 & 31.5 & 21.0 & 25.9 & 25.5 & 15.6 & 19.9 & 31.7 & 19.5 & 24.9 & 30.1 & 19.9 & 24.5 \\
\hline 3 & 28.6 & 21.0 & 24.2 & 28.2 & 15.2 & 21.3 & 32.0 & 20.8 & 25.7 & 29.1 & 18.1 & 23.3 \\
\hline 4 & 21.9 & 16.1 & 18.6 & 27.4 & 18.1 & 22.2 & 32.7 & 19.8 & 25.7 & 28.9 & 18.5 & 23.5 \\
\hline 5 & 20.1 & 15.6 & 17.1 & 27.7 & 19.5 & 23.3 & 32.3 & 21.6 & 26.1 & 31.8 & 21.8 & 26.2 \\
\hline 6 & 18.9 & 14.3 & 16.1 & 31.2 & 19.3 & 25.0 & 32.5 & 22.3 & 26.4 & 31.3 & 22.4 & 26.5 \\
\hline 7 & 20.0 & 12.7 & 15.9 & 27.7 & 21.9 & 24.6 & 32.9 & 23.1 & 27.2 & 29.1 & 21.8 & 25.2 \\
\hline 8 & 17.7 & 13.4 & 15.3 & 25.0 & 20.5 & 22.9 & 33.1 & 22.4 & 26.7 & 25.5 & 19.0 & 22.1 \\
\hline 9 & 20.1 & 14.1 & 16.2 & 24.4 & 18.1 & 20.7 & 29.4 & 23.5 & 25.3 & 24.5 & 14.7 & 19.1 \\
\hline 10 & 21.1 & 15.9 & 17.8 & 26.1 & 16.8 & 20.8 & 31.2 & 21.7 & 25.7 & 24.8 & 14.0 & 19.0 \\
\hline 11 & 18.4 & 15.2 & 16.8 & 27.5 & 17.1 & 21.5 & 33.0 & 22.8 & 26.9 & 25.8 & 15.0 & 20.1 \\
\hline 12 & 20.7 & 15.9 & 17.8 & 28.5 & 15.6 & 21.8 & 31.5 & 21.2 & 25.6 & 27.0 & 16.5 & 21.4 \\
\hline 13 & 19.6 & 15.9 & 17.9 & 26.7 & 18.8 & 22.3 & 31.4 & 20.1 & 25.2 & 27.7 & 17.9 & 22.4 \\
\hline 14 & 17.2 & 14.7 & 15.7 & 23.7 & 20.9 & 21.7 & 24.5 & 17.7 & 21.0 & 27.9 & 19.6 & 23.5 \\
\hline 15 & 18.4 & 15.6 & 17.0 & 24.6 & 20.1 & 21.8 & 22.1 & 17.0 & 18.8 & 27.0 & 20.8 & 23.8 \\
\hline 16 & 19.6 & 14.6 & 16.6 & 25.0 & 20.7 & 22.5 & 21.2 & 16.8 & 18.9 & 27.7 & 20.0 & 23.8 \\
\hline 17 & 21.5 & 14.5 & 17.3 & 29.9 & 19.6 & 24.3 & --- & --- & --- & 26.9 & 21.8 & 23.9 \\
\hline 18 & 23.8 & 14.4 & 18.3 & 30.5 & 20.8 & 25.6 & -- & -- & -- & 27.8 & 21.6 & 24.2 \\
\hline 19 & 24.7 & 15.8 & 19.5 & 33.9 & 23.2 & 28.2 & --- & --- & -- & 26.6 & 21.5 & 23.9 \\
\hline 20 & 25.7 & 14.7 & 19.9 & 28.0 & 19.9 & 23.3 & --- & --- & --- & 25.5 & 21.5 & 23.6 \\
\hline 21 & 25.4 & 17.4 & 20.6 & 24.6 & 18.0 & 20.7 & --- & --- & -- & 25.7 & 21.9 & 23.5 \\
\hline 22 & 29.2 & 17.8 & 21.6 & 24.7 & 17.0 & 20.1 & --- & --- & --- & 24.9 & 21.5 & 22.9 \\
\hline 23 & 22.2 & 17.0 & 19.2 & 25.1 & 17.3 & 20.6 & --- & --- & --- & 21.7 & 17.4 & 19.5 \\
\hline 24 & 22.3 & 16.6 & 19.0 & 26.0 & 17.1 & 21.1 & 32.3 & 21.6 & 26.5 & 20.7 & 14.1 & 17.4 \\
\hline 25 & 23.5 & 16.0 & 19.3 & 26.7 & 16.9 & 21.6 & 33.3 & 22.6 & 27.2 & 22.8 & 18.2 & 20.1 \\
\hline 26 & 26.1 & 15.7 & 20.2 & 24.0 & 18.0 & 21.4 & 31.3 & 23.7 & 26.7 & 24.2 & 18.8 & 21.2 \\
\hline 27 & 28.5 & 15.9 & 21.7 & 28.0 & 19.8 & 23.4 & 31.3 & 19.8 & 24.9 & 24.8 & 19.4 & 21.7 \\
\hline 28 & 29.1 & 17.1 & 23.0 & 30.9 & 20.4 & 25.3 & 31.9 & 20.0 & 25.3 & 24.9 & 20.4 & 22.3 \\
\hline 29 & 28.6 & 19.9 & 23.4 & 30.6 & 20.3 & 25.3 & 29.4 & 23.4 & 25.4 & 24.9 & 18.8 & 21.6 \\
\hline 30 & 23.0 & 19.3 & 21.0 & 27.9 & 23.3 & 25.3 & 31.4 & 20.3 & 25.3 & 25.2 & 20.0 & 22.3 \\
\hline 31 & --- & --- & --- & 29.9 & 21.8 & 24.9 & 31.1 & 20.9 & 25.2 & --- & --- & \\
\hline MONTH & 31.5 & 12.7 & 19.3 & 33.9 & 15.2 & 22.7 & --- & --- & --- & 31.8 & 14.0 & 22.6 \\
\hline
\end{tabular}

\section*{KENTUCKY RIVER BASIN}

03285325 MOCKS BRANCH @ HWY 1915 (Gentry Lane) NEAR DANVILLE, KY--Continued OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998


03285325 MOCKS BRANCH @ HWY 1915 (Gentry Lane) NEAR DANVILLE, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{JUNE} & \multicolumn{3}{|c|}{JULY} & \multicolumn{3}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & 7.9 & 1.5 & 4.1 & 8.3 & 7.7 & 8.0 & 13.2 & 5.5 & 8.8 & 12.8 & 3.6 & 7.0 \\
\hline 2 & 9.1 & 1.5 & 4.9 & 9.6 & 5.7 & 8.1 & 17.5 & 5.9 & 10.6 & 11.5 & 3.6 & 6.9 \\
\hline 3 & 10.6 & 1.3 & 3.8 & 10.2 & 3.6 & 7.8 & 17.5 & 5.8 & 10.7 & 16.0 & 3.9 & 8.8 \\
\hline 4 & 5.8 & 1.3 & 4.1 & 8.3 & 3.2 & 6.1 & 15.4 & 3.3 & 9.8 & 13.7 & 3.4 & 7.7 \\
\hline 5 & 6.8 & 5.8 & 6.4 & 8.2 & 4.3 & 6.1 & 16.9 & 2.9 & 8.8 & 12.4 & 2.9 & 6.7 \\
\hline 6 & 8.5 & 6.6 & 7.6 & 8.0 & 3.7 & 5.9 & 17.5 & 2.7 & 8.9 & 10.3 & 2.5 & 5.5 \\
\hline 7 & 8.8 & 7.1 & 7.8 & 6.9 & 3.4 & 4.7 & 17.4 & 2.3 & 8.9 & 11.4 & 2.6 & 6.3 \\
\hline 8 & 8.9 & 7.1 & 7.8 & 7.1 & 3.5 & 5.6 & 17.8 & 1.8 & 8.6 & 12.1 & 3.3 & 7.1 \\
\hline 9 & 7.8 & 6.4 & 7.0 & 8.4 & 6.4 & 7.4 & 16.6 & 1.8 & 7.0 & 11.8 & 4.5 & 7.6 \\
\hline 10 & 8.3 & 2.7 & 6.4 & 8.7 & 5.1 & 7.1 & 14.4 & 2.1 & 7.2 & 11.1 & 5.2 & 7.7 \\
\hline 11 & 2.7 & 1.4 & 1.6 & 9.1 & 4.7 & 7.0 & 17.6 & 2.0 & 7.9 & 9.5 & 4.6 & 6.7 \\
\hline 12 & 1.5 & 1.4 & 1.4 & 9.6 & 4.7 & 7.3 & 16.4 & 1.3 & 5.8 & 9.5 & 4.0 & 6.2 \\
\hline 13 & 1.6 & 1.0 & 1.3 & 9.1 & 4.8 & 6.5 & 17.1 & 1.4 & 7.9 & 9.8 & 3.7 & 6.1 \\
\hline 14 & 1.8 & 1.5 & 1.7 & 8.6 & 4.4 & 6.0 & 7.2 & 1.9 & 5.0 & 10.5 & 3.7 & 6.6 \\
\hline 15 & 1.9 & 1.3 & 1.6 & 9.8 & 2.9 & 6.0 & 8.6 & 6.9 & 7.7 & 11.9 & 2.3 & 7.1 \\
\hline 16 & 2.0 & 1.9 & 2.0 & 8.0 & 1.8 & 4.8 & 8.9 & 5.0 & 7.5 & 11.3 & 3.7 & 7.1 \\
\hline 17 & - & , & --- & 8.4 & 3.7 & 5.9 & -- & --- & --- & 13.2 & 2.9 & 7.0 \\
\hline 18 & --- & --- & --- & 8.3 & 3.6 & 5.6 & --- & --- & - & 15.9 & 2.9 & 8.7 \\
\hline 19 & --- & --- & --- & 7.2 & 3.2 & 5.2 & - & --- & - & 15.0 & 3.5 & 9.1 \\
\hline 20 & --- & --- & --- & 7.7 & 3.2 & 5.6 & --- & --- & - & 14.6 & 4.2 & 9.5 \\
\hline 21 & - & --- & - & 8.5 & 5.9 & 7.7 & -- & -- & -- & 12.8 & 4.2 & 7.5 \\
\hline 22 & --- & - & --- & 8.9 & 6.5 & 8.0 & --- & --- & --- & 13.5 & 2.8 & 7.8 \\
\hline 23 & --- & --- & --- & 8.9 & 6.4 & 8.1 & -- & - & --- & 13.8 & 3.3 & 9.2 \\
\hline 24 & --- & --- & --- & 9.4 & 5.7 & 7.7 & 14.3 & 3.4 & 7.6 & 16.8 & 6.8 & 10.6 \\
\hline 25 & --- & --- & --- & 9.6 & 5.6 & 7.6 & 12.5 & 3.5 & 7.1 & 8.2 & 1.8 & 4.7 \\
\hline 26 & --- & -- & --- & 9.8 & 5.4 & 7.2 & 13.6 & 3.1 & 6.9 & 7.5 & 1.0 & 3.8 \\
\hline 27 & --- & - & --- & 9.0 & 5.8 & 7.1 & 14.6 & 3.3 & 7.8 & 4.6 & 1.2 & 2.8 \\
\hline 28 & --- & --- & --- & 9.4 & 4.7 & 6.7 & 14.3 & 3.6 & 7.6 & 5.5 & 1.2 & 3.1 \\
\hline 29 & --- & - & - & 10.3 & 4.3 & 6.9 & 13.0 & 3.3 & 6.9 & 4.9 & 1.0 & 2.7 \\
\hline 30 & --- & --- & --- & 11.2 & 4.3 & 7.1 & 13.8 & 3.9 & 7.6 & 3.3 & 1.1 & 1.8 \\
\hline 31 & --- & --- & --- & 12.3 & 5.5 & 8.0 & 10.7 & 3.3 & 5.4 & --- & --- & --- \\
\hline MONTH & --- & --- & --- & 12.3 & 1.8 & 6.7 & --- & --- & --- & 16.8 & 1.0 & 6.6 \\
\hline
\end{tabular}

\section*{KENTUCKY RIVER BASIN}

03285325 MOCKS BRANCH @ HWY 1915 (Gentry Lane) NEAR DANVILLE, KY--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


KENTUCKY RIVER BASIN
03285325 MOCKS BRANCH @ HWY 1915 (Gentry Lane) NEAR DANVILLE, KY--Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


KENTUCKY RIVER BASIN
03285325 MOCKS BRANCH @ HWY 1915 (Gentry Lane) NEAR DANVILLE, KY--Continued
PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & NOVEMBER & & & DECEMBER & & & JANUARY & \\
\hline 1 & 8.5 & 8.2 & 8.3 & 7.6 & 7.3 & 7.4 & --- & --- & --- & --- & --- & - \\
\hline 2 & 8.4 & 8.1 & 8.2 & 7.8 & 7.4 & 7.5 & --- & -- & --- & --- & --- & --- \\
\hline 3 & 8.3 & 7.5 & 7.9 & 7.6 & 7.5 & 7.5 & --- & - & - & --- & -- & - \\
\hline 4 & 7.6 & 7.5 & 7.6 & 7.9 & 7.5 & 7.7 & --- & --- & --- & --- & --- & --- \\
\hline 5 & 7.6 & 7.5 & 7.5 & 7.9 & 7.6 & 7.7 & --- & --- & --- & --- & -- & -- \\
\hline 6 & 7.6 & 7.5 & 7.5 & 7.9 & 7.7 & 7.7 & - & --- & --- & --- & - & - \\
\hline 7 & 7.6 & 7.4 & 7.5 & 7.9 & 7.7 & 7.7 & --- & -- & --- & --- & - & - \\
\hline 8 & 8.4 & 7.4 & 7.8 & 7.8 & 7.6 & 7.7 & --- & --- & --- & --- & - & - \\
\hline 9 & 8.1 & 7.4 & 7.7 & 7.7 & 7.6 & 7.6 & -- & - & --- & --- & - & --- \\
\hline 10 & 8.1 & 7.4 & 7.7 & 7.7 & 7.5 & 7.6 & --- & --- & --- & --- & - & -- \\
\hline 11 & 8.0 & 7.5 & 7.7 & 7.6 & 7.5 & 7.6 & --- & --- & --- & --- & --- & - \\
\hline 12 & 7.8 & 7.4 & 7.6 & 7.5 & 7.4 & 7.5 & -- & --- & --- & --- & --- & --- \\
\hline 13 & 7.8 & 7.4 & 7.5 & 7.5 & 7.3 & 7.4 & --- & --- & --- & --- & --- & --- \\
\hline 14 & 7.8 & 7.4 & 7.6 & 7.3 & 7.2 & 7.3 & - & - & --- & --- & --- & - \\
\hline 15 & 7.7 & 7.5 & 7.6 & 7.3 & 7.2 & 7.2 & - & --- & --- & --- & -- & -- \\
\hline 16 & 7.7 & 7.4 & 7.5 & 7.3 & 7.1 & 7.2 & -- & --- & --- & --- & --- & - \\
\hline 17 & 7.7 & 7.3 & 7.5 & 7.2 & 7.1 & 7.2 & --- & --- & --- & --- & --- & --- \\
\hline 18 & 7.6 & 7.4 & 7.4 & 7.2 & 7.0 & 7.1 & --- & --- & --- & --- & --- & --- \\
\hline 19 & 7.7 & 7.3 & 7.4 & 7.1 & 6.9 & 7.0 & --- & --- & --- & --- & --- & -- \\
\hline 20 & 7.5 & 7.3 & 7.4 & --- & --- & --- & -- & --- & -- & -- & --- & --- \\
\hline 21 & 7.5 & 7.3 & 7.4 & -- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 22 & 7.5 & 7.3 & 7.4 & -- & --- & --- & --- & - & --- & --- & --- & --- \\
\hline 23 & 7.5 & 7.4 & 7.5 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & 7.5 & 7.4 & 7.4 & -- & --- & --- & --- & --- & -- & -- & --- & -- \\
\hline 25 & 7.4 & 7.3 & 7.4 & -- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & 7.4 & 7.3 & 7.3 & -- & --- & -- & -- & --- & --- & -- & --- & -- \\
\hline 27 & 7.3 & 7.3 & 7.3 & --- & --- & -- & --- & --- & - & - & --- & -- \\
\hline 28 & 7.3 & 7.3 & 7.3 & --- & - & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & 7.4 & 7.3 & 7.3 & --- & --- & --- & --- & --- & -- & -- & --- & --- \\
\hline 30 & 7.5 & 7.3 & 7.4 & --- & --- & -- & -- & -- & -- & -- & --- & --- \\
\hline 31 & 7.4 & 7.3 & 7.4 & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline MONTH & 8.5 & 7.3 & 7.5 & -- & --- & - & --- & - & --- & --- & --- & --- \\
\hline DAY & MAX & MIN & MEAN \\
\hline & & FEBRUARY & & & MARCH & & & APRIL & & & MAY & \\
\hline 1 & -- & - & - & --- & -- & --- & - & - & - & --- & -- & - \\
\hline 2 & --- & --- & - & --- & --- & -- & --- & --- & --- & --- & --- & -- \\
\hline 3 & --- & --- & -- & --- & - & --- & -- & --- & -- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & --- & --- & --- & - & --- & -- & --- & -- & --- & --- & -- & -- \\
\hline 6 & --- & - & --- & --- & -- & --- & - & --- & --- & - & --- & --- \\
\hline 7 & --- & --- & --- & - & --- & -- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & - & --- & --- & --- & -- & - & - & --- & -- & -- \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & --- & --- & -- & - & - & --- & --- & --- & -- & --- \\
\hline 11 & --- & --- & --- & --- & -- & -- & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & - & --- & --- & --- & - & -- & --- & -- & -- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & -- & - & --- & --- \\
\hline 18 & -- & --- & --- & - & --- & --- & --- & --- & --- & --- & - & -- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & -- & --- & --- & -- & --- & --- \\
\hline 23 & - & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 24 & --- & --- & --- & --- & --- & --- & - & -- & - & - & - & -- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & -- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 28 & - & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & - \\
\hline 29 & --- & --- & --- & --- & --- & --- & - & -- & --- & --- & - & -- \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & --- & --- & --- & --- & - & --- & --- & --- & --- & --- & --- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

03285325 MOCKS BRANCH @ HWY 1915 (Gentry Lane) NEAR DANVILLE, KY--Continued PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & JULY & & & AUGUST & & & SEPTEMBER & \\
\hline 1 & --- & --- & - & -- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & --- & --- & --- & -- & --- & --- & --- & --- & --- & - & --- & --- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & --- & -- & - & -- & -- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & -- & --- & --- & --- & -- & -- & - & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & - & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & --- & --- & -- & - & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & --- & -- & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & --- & --- & --- & -- & --- & --- & --- & --- & -- & --- & -- & --- \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & -- & -- & - & --- & --- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline
\end{tabular}

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & VEMBER & & & MBER & & & JANUARY & \\
\hline 1 & 23.2 & 18.4 & 21.4 & 17.5 & 11.6 & 14.0 & --- & - & --- & --- & --- & - \\
\hline 2 & 19.6 & 14.4 & 17.1 & 14.6 & 11.2 & 12.8 & --- & --- & --- & --- & --- & --- \\
\hline 3 & 18.9 & 14.5 & 16.9 & 12.1 & 9.2 & 11.1 & - & -- & --- & --- & --- & - \\
\hline 4 & 23.0 & 17.9 & 19.9 & 11.2 & 6.1 & 8.7 & --- & --- & --- & --- & - & -- \\
\hline 5 & 23.9 & 19.0 & 21.0 & 9.3 & 4.1 & 6.4 & --- & --- & --- & --- & --- & -- \\
\hline 6 & 22.5 & 20.0 & 21.3 & 10.1 & 5.5 & 7.5 & --- & --- & --- & --- & --- & --- \\
\hline 7 & 21.2 & 18.1 & 19.9 & 10.1 & 5.0 & 7.6 & --- & --- & --- & --- & - & --- \\
\hline 8 & 18.1 & 15.4 & 16.8 & 9.4 & 7.3 & 8.3 & --- & --- & --- & --- & --- & --- \\
\hline 9 & 16.9 & 15.0 & 15.9 & 11.9 & 7.4 & 9.7 & --- & --- & --- & --- & --- & - \\
\hline 10 & 15.9 & 12.6 & 14.4 & 16.4 & 10.7 & 13.3 & --- & - & - & -- & --- & --- \\
\hline 11 & 15.8 & 12.6 & 14.4 & 11.0 & 6.5 & 8.7 & --- & --- & --- & --- & --- & --- \\
\hline 12 & 16.2 & 12.5 & 14.3 & 9.3 & 4.4 & 6.9 & --- & --- & - & --- & - & -- \\
\hline 13 & 16.8 & 13.6 & 15.0 & 11.3 & 6.9 & 8.8 & --- & --- & --- & --- & --- & --- \\
\hline 14 & 15.1 & 11.5 & 13.1 & 11.3 & 8.2 & 9.8 & --- & --- & --- & --- & --- & --- \\
\hline 15 & 14.9 & 10.5 & 12.5 & 13.0 & 7.7 & 10.5 & --- & --- & --- & --- & - & - \\
\hline 16 & 17.2 & 11.8 & 14.0 & 11.8 & 5.2 & 8.2 & --- & --- & --- & --- & --- & --- \\
\hline 17 & 17.2 & 12.0 & 14.3 & 10.4 & 5.8 & 8.3 & --- & --- & --- & --- & --- & --- \\
\hline 18 & 18.2 & 13.8 & 15.8 & 10.0 & 4.0 & 6.8 & --- & --- & --- & --- & --- & --- \\
\hline 19 & 17.4 & 15.2 & 16.3 & 14.2 & 7.9 & 11.1 & --- & --- & --- & --- & --- & -- \\
\hline 20 & 15.2 & 11.4 & 13.3 & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 21 & 13.7 & 10.7 & 12.2 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & 13.2 & 7.7 & 10.1 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & 12.1 & 5.9 & 8.9 & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 24 & 13.3 & 5.7 & 9.3 & -- & - & --- & --- & --- & --- & --- & - & - \\
\hline 25 & 14.1 & 7.6 & 10.7 & --- & --- & --- & --- & --- & - & --- & --- & --- \\
\hline 26 & 14.9 & 7.9 & 11.2 & - & - & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & 15.6 & 8.3 & 11.8 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & 15.7 & 9.9 & 12.8 & --- & --- & --- & --- & --- & - & --- & - & - \\
\hline 29 & 18.1 & 12.1 & 14.8 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 30 & 19.3 & 14.4 & 16.2 & --- & - & --- & --- & --- & --- & --- & - & -- \\
\hline 31 & 17.4 & 13.6 & 15.1 & - & - & --- & --- & - & - & --- & --- & - \\
\hline MONTH & 23.9 & 5.7 & 14.9 & -- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

\section*{KENTUCKY RIVER BASIN}

03285325 MOCKS BRANCH @ HWY 1915 (Gentry Lane) NEAR DANVILLE, KY--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


03285325 MOCKS BRANCH @ HWY 1915 (Gentry Lane) NEAR DANVILLE, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{OCTOBER} & \multicolumn{3}{|c|}{NOVEMBER} & \multicolumn{3}{|c|}{DECEMBER} & \multicolumn{3}{|c|}{JANUARY} \\
\hline 1 & 4.3 & 1.1 & 1.6 & 7.8 & . 7 & 3.4 & --- & --- & --- & --- & --- & --- \\
\hline 2 & 1.6 & 1.1 & 1.2 & 8.1 & 1.0 & 4.0 & --- & - & --- & --- & --- & --- \\
\hline 3 & 7.7 & 1.1 & 3.8 & 5.4 & 1.6 & 3.1 & --- & --- & --- & --- & --- & --- \\
\hline 4 & 8.6 & 2.1 & 4.7 & 9.2 & 1.6 & 4.9 & - & --- & --- & - & -- & - \\
\hline 5 & 7.6 & 1.3 & 3.8 & 9.6 & 3.2 & 6.2 & --- & --- & --- & --- & --- & -- \\
\hline 6 & 7.0 & 1.3 & 3.9 & 9.7 & 4.4 & 6.3 & --- & --- & --- & --- & --- & --- \\
\hline 7 & 5.3 & 1.6 & 3.2 & 10.9 & 4.0 & 6.4 & --- & --- & --- & --- & --- & --- \\
\hline 8 & 13.5 & 2.0 & 7.0 & 8.1 & 3.1 & 5.3 & -- & --- & --- & -- & - & --- \\
\hline 9 & 12.3 & 2.0 & 6.9 & 7.6 & 2.0 & 4.1 & - & --- & --- & --- & - & --- \\
\hline 10 & 11.7 & 4.5 & 8.2 & 7.5 & 2.1 & 4.6 & --- & --- & --- & --- & --- & --- \\
\hline 11 & 11.0 & 4.8 & 7.7 & 8.2 & 3.7 & 5.4 & - & --- & --- & --- & - & --- \\
\hline 12 & 9.9 & 5.6 & 7.5 & 8.9 & 3.2 & 5.4 & --- & --- & --- & --- & --- & --- \\
\hline 13 & 9.4 & 4.1 & 6.7 & 8.6 & 1.1 & 4.8 & - & --- & --- & -- & --- & -- \\
\hline 14 & 10.1 & 5.4 & 7.4 & 5.6 & 3.1 & 4.1 & - & -- & --- & --- & - & -- \\
\hline 15 & 9.3 & 5.9 & 7.5 & 7.4 & 2.4 & 4.5 & --- & - & --- & --- & - & - \\
\hline 16 & 8.8 & 5.0 & 6.7 & 7.5 & 3.9 & 5.2 & --- & --- & --- & --- & --- & --- \\
\hline 17 & 7.5 & 2.9 & 5.4 & 7.8 & 3.6 & 5.1 & --- & --- & --- & --- & - & --- \\
\hline 18 & 6.5 & 2.0 & 4.1 & 7.4 & 3.8 & 5.4 & -- & - & - & --- & --- & -- \\
\hline 19 & 8.5 & 1.8 & 4.4 & 7.6 & 3.5 & 5.0 & --- & --- & -- & -- & --- & --- \\
\hline 20 & 7.4 & 2.5 & 5.2 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & 7.1 & 3.5 & 4.8 & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 22 & 7.0 & 3.8 & 5.4 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & 7.1 & 5.8 & 6.6 & -- & -- & --- & --- & -- & --- & --- & - & --- \\
\hline 24 & 6.7 & 4.7 & 5.8 & --- & --- & - & --- & - & --- & --- & - & --- \\
\hline 25 & 5.4 & 3.5 & 4.3 & --- & --- & --- & --- & --- & --- & --- & - & - \\
\hline 26 & 3.9 & 2.5 & 3.2 & --- & --- & --- & -- & --- & -- & -- & --- & --- \\
\hline 27 & 3.6 & 1.9 & 2.6 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & 3.9 & 1.5 & 2.3 & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 29 & 5.7 & 1.0 & 2.5 & --- & --- & --- & --- & --- & - & -- & --- & -- \\
\hline 30 & 4.0 & . 6 & 1.8 & --- & --- & -- & --- & -- & --- & --- & -- & --- \\
\hline 31 & 4.9 & . 5 & 2.2 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline MONTH & 13.5 & . 5 & 4.8 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{FEBRUARY} & \multicolumn{3}{|c|}{MARCH} & \multicolumn{3}{|c|}{APRIL} & \multicolumn{3}{|c|}{MAY} \\
\hline 1 & --- & --- & - & - & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 2 & --- & --- & --- & --- & --- & --- & -- & --- & --- & -- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & -- & --- & --- & -- & --- & --- \\
\hline 4 & -- & --- & --- & - & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 5 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 6 & --- & --- & --- & --- & --- & --- & - & --- & --- & --- & --- & - \\
\hline 7 & -- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & - & -- & -- & --- & --- & --- & --- & --- & --- \\
\hline 9 & --- & --- & --- & - & --- & --- & --- & --- & --- & -- & --- & -- \\
\hline 10 & - & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & --- & --- & --- & --- & --- & --- & --- & --- & - & -- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 13 & -- & - & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 14 & - & --- & --- & --- & --- & --- & --- & - & --- & --- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & - & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & - & - & --- & --- & --- & --- & --- & - & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & - & --- & -- & --- & --- & --- \\
\hline 22 & --- & - & --- & --- & - & --- & - & --- & --- & --- & --- & --- \\
\hline 23 & - & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & - & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & - & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & - & --- \\
\hline 27 & --- & --- & --- & --- & --- & -- & - & --- & -- & -- & - & -- \\
\hline 28 & --- & --- & --- & --- & --- & --- & -- & --- & -- & -- & --- & -- \\
\hline 29 & --- & --- & --- & --- & -- & --- & - & --- & -- & - & - & -- \\
\hline 30 & --- & --- & --- & - & - & --- & - & --- & -- & - & - & --- \\
\hline 31 & --- & - & - & --- & --- & --- & --- & -- & -- & --- & -- & -- \\
\hline MONTH & -- & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

03285325 MOCKS BRANCH @ HWY 1915 (Gentry Lane) NEAR DANVILLE, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & JULY & & & AUGUST & & & SEPTEMBER & \\
\hline 1 & --- & --- & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & --- & --- & --- & - & --- & --- & - & --- & --- & --- & --- & --- \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline
\end{tabular}

\section*{KENTUCKY RIVER BASIN}

03285330 MOCKS BRANCH @ HWY 127 NEAR DANVILLE, KY
LOCATION.-- Lat \(37^{\circ} 42^{\prime} 1^{\prime \prime \prime}\), long \(84^{\circ} 48^{\prime} 2^{\prime \prime \prime}\), Boyle County, Hydrologic Unit 05100205 , at bridge on Hwy 127 and at mile 6.17. DRAINAGE AREA. \(--7.70 \mathrm{mi}^{2}\)

WATER-STAGE RECORDS
PERIOD OF RECORD.--May 27, 1998 to November 20, 1998.
COOPERATION.--The Kentucky Heritage Resource Conservation and Development Council.
GAGE.--Water-stage recorder.
REMARKS.--1998: Records good, except those for periods of estimated gage heights, which are fair.
1999: Records good, except those for periods of estimated gage heights, which are fair.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & --- & --- & -- & --- & -- & -- & --- & --- & e. 99 & 1.44 & . 92 & . 76 \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & e. 87 & 1.26 & . 90 & . 75 \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & -- & e. 79 & 1.15 & . 88 & . 74 \\
\hline 4 & --- & -- & - & --- & -- & --- & --- & --- & e1.11 & 1.14 & . 86 & . 73 \\
\hline 5 & --- & -- & -- & --- & -- & -- & --- & --- & 1.88 & 1.08 & . 85 & . 71 \\
\hline 6 & - & -- & -- & --- & -- & - & -- & --- & 1.80 & 1.01 & . 83 & . 70 \\
\hline 7 & --- & -- & --- & --- & - & --- & --- & -- & 1.53 & . 98 & . 82 & . 69 \\
\hline 8 & --- & -- & --- & --- & -- & --- & --- & --- & 1.38 & 1.53 & 1.66 & . 68 \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & 1.59 & 1.48 & 2.61 & . 69 \\
\hline 10 & --- & --- & --- & -- & --- & --- & --- & --- & 2.41 & 1.27 & 3.12 & . 70 \\
\hline 11 & -- & --- & --- & --- & - & - & - & - & 2.71 & 1.17 & 3.21 & . 69 \\
\hline 12 & --- & --- & --- & - & -- & - & --- & --- & 2.13 & 1.10 & 3.16 & . 69 \\
\hline 13 & - & --- & --- & --- & --- & --- & --- & --- & 3.08 & 1.10 & 3.16 & . 68 \\
\hline 14 & --- & -- & --- & --- & -- & --- & --- & -- & 2.25 & 1.08 & 3.25 & . 68 \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & 2.75 & 1.02 & 1.69 & . 69 \\
\hline 16 & -- & --- & --- & --- & --- & --- & --- & -- & 2.06 & 1.26 & 1.38 & . 69 \\
\hline 17 & -- & --- & --- & --- & --- & --- & --- & --- & 1.73 & e1.31 & 1.25 & . 70 \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & 1.53 & e1.08 & 1.17 & . 71 \\
\hline 19 & -- & --- & --- & --- & --- & --- & --- & --- & 1.40 & e. 91 & 1.08 & . 74 \\
\hline 20 & --- & --- & - & - & -- & -- & --- & -- & 1.30 & e1.98 & 1.03 & . 73 \\
\hline 21 & -- & --- & --- & --- & -- & --- & --- & - & 1.27 & e2.19 & . 98 & . 80 \\
\hline 22 & - & --- & --- & --- & --- & --- & --- & --- & 1.89 & e1. 67 & . 95 & . 77 \\
\hline 23 & -- & - & --- & --- & --- & --- & --- & --- & 2.47 & e1.36 & . 92 & . 71 \\
\hline 24 & --- & - & --- & --- & -- & -- & --- & --- & 1.87 & e1.13 & . 89 & . 68 \\
\hline 25 & -- & --- & - & --- & - & - & --- & --- & 1.57 & e1.07 & . 87 & . 69 \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & 1.39 & e1.05 & . 85 & . 69 \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & e. 80 & 1.26 & 1.04 & . 83 & . 68 \\
\hline 28 & --- & -- & --- & --- & --- & --- & -- & e. 80 & 1.17 & 1.01 & . 81 & . 67 \\
\hline 29 & -- & -- & --- & --- & --- & --- & --- & e. 80 & 1.24 & . 98 & . 80 & . 67 \\
\hline 30 & --- & -- & -- & --- & -- & --- & --- & e. 79 & 1.82 & . 97 & . 79 & . 67 \\
\hline 31 & --- & --- & --- & --- & --- & - & --- & e. 85 & -- & . 96 & . 79 & --- \\
\hline MEAN & --- & --- & --- & --- & --- & --- & --- & - & 1.71 & 1.22 & 1.40 & . 71 \\
\hline MAX & - & --- & --- & --- & --- & --- & --- & --- & 3.08 & 2.19 & 3.25 & . 80 \\
\hline MIN & --- & --- & --- & --- & --- & --- & --- & --- & . 79 & . 91 & . 79 & . 67 \\
\hline
\end{tabular}
e Estimated


KENTUCKY RIVER BASIN
03285330 MOCKS BRANCH @ HWY 127 NEAR DANVILLE, KY--Continued

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 68 & . 75 & --- & --- & - & -- & -- & --- & --- & --- & --- & --- \\
\hline 2 & . 65 & . 75 & -- & --- & --- & --- & -- & --- & --- & --- & --- & --- \\
\hline 3 & . 77 & . 75 & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & . 85 & . 75 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 5 & . 78 & . 75 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & . 73 & . 76 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 7 & . 74 & . 76 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & . 77 & . 76 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & . 73 & . 77 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 10 & . 73 & . 82 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & . 72 & . 84 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 12 & . 72 & . 81 & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & . 72 & . 78 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & . 71 & . 78 & -- & -- & --- & - & --- & --- & --- & --- & --- & --- \\
\hline 15 & . 71 & . 79 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & . 71 & . 78 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 17 & . 70 & . 78 & -- & --- & --- & --- & --- & --- & --- & --- & - & --- \\
\hline 18 & . 70 & . 78 & -- & - & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & . 74 & . 78 & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & . 73 & . 79 & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & . 73 & --- & --- & --- & --- & --- & --- & --- & --- & - & -- & --- \\
\hline 22 & . 74 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 23 & . 75 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- \\
\hline 24 & . 74 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & . 75 & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 26 & . 74 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 27 & . 74 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 28 & . 74 & -- & - & -- & --- & --- & --- & --- & --- & -- & -- & --- \\
\hline 29 & . 75 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 30 & . 75 & --- & - & --- & -- & - & -- & --- & --- & --- & -- & --- \\
\hline 31 & . 75 & --- & --- & - & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline MEAN & . 73 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline MAX & . 85 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline MIN & . 65 & --- & - & --- & --- & - & - & --- & --- & -- & --- & --- \\
\hline
\end{tabular}


\section*{KENTUCKY RIVER BASIN}

03285330 MOCKS BRANCH @ HWY 127 NEAR DANVILLE, KY WATER-QUALITY RECORDS

PERIOD OF RECORD.--June 1998 to November 1998.
COOPERATION.--The Kentucky Heritage Resource Conservation and Development Council.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: June 1998 to November 1998.
pH: June 1998 to November 1998.
WATER TEMPERATURE: June 1998 to November 1998.
DISSOLVED OXYGEN: June 1998 to November 1998.
EXTREMES FOR PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 579 microsiemens, November 7, 1998; minimum, 66 microsiemens, Aug. 14 , 1998.
\(\mathrm{pH}: ~ M a x i m u m, ~ 8.2\) units, Aug. 1, 3, 5, 6, 23, 24-26, 30, 31, Sept. 1, 2, 3, 11, 12, 14, and Oct. 1, 1998; minimum, 7.0 units, June 22, 23 and Aug. 14, 1998.

WATER TEMPERATURE: Maximum, 30.0 C, Aug. 25, 1998; minimum, 4.1 C, Nov. 12, 1998.
DISSOLVED OXYGEN: Maximum, \(12.5 \mathrm{mg} / \mathrm{L}, \mathrm{July} 27,1998 ;\) minimum, \(2.0 \mathrm{mg} / \mathrm{L}, \mathrm{Nov}\). , 1998.

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & NOVEMBER & & & DECEMBER & & & JANUARY & \\
\hline 1 & --- & -- & -- & --- & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & -- & -- & --- & -- & --- & --- & --- & --- \\
\hline 5 & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & --- & --- & -- & - & --- & - & - & - & --- & - & - & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & - & -- & --- & -- & --- & - & --- & --- \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & -- & - & - & --- & --- & -- & --- & --- & --- & --- \\
\hline 11 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & -- & --- & -- & -- & --- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 29 & --- & --- & - & --- & --- & - & --- & --- & -- & --- & --- & --- \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & --- & --- & -- & --- & - & --- & --- & --- & --- & -- & --- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285330 MOCKS BRANCH @ HWY 127 NEAR DANVILLE, KY--Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & FEBRUARY & & & MARCH & & & APRIL & & & MAY & \\
\hline 1 & --- & - & - & - & --- & - & --- & --- & --- & --- & -- & --- \\
\hline 2 & -- & -- & - & -- & -- & - & -- & -- & --- & -- & -- & - \\
\hline 3 & --- & --- & --- & --- & --- & - & -- & -- & --- & --- & --- & -- \\
\hline 4 & --- & --- & --- & - & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 5 & - & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & -- \\
\hline 8 & --- & - & - & --- & --- & - & -- & -- & -- & - & --- & -- \\
\hline 9 & --- & --- & --- & --- & - & --- & -- & --- & -- & -- & -- & --- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & -- & -- & - & --- & -- & --- & --- & --- & --- & --- & --- & -- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & - & --- & --- & --- & --- & - & -- & --- & - & -- & --- \\
\hline 14 & --- & --- & --- & --- & -- & --- & --- & --- & --- & - & -- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & - & - & --- & -- & - & --- & --- & --- & --- & --- & - \\
\hline 17 & - & - & - & - & --- & - & - & --- & --- & --- & -- & --- \\
\hline 18 & --- & --- & -- & -- & --- & --- & - & --- & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & -- & -- & -- & -- & -- & -- & -- & --- \\
\hline 21 & --- & - & --- & --- & - & - & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & - & - & --- & --- & --- & --- & --- & --- & --- & -- & --- \\
\hline 23 & --- & --- & - & -- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 24 & --- & - & - & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 25 & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & --- & - & --- & --- & --- & - & -- & --- & -- & --- & --- & --- \\
\hline 27 & - & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & --- & - & - & -- & - & -- & --- & --- & --- & --- & --- & --- \\
\hline 29 & --- & -- & -- & -- & --- & --- & --- & --- & -- & -- & --- & -- \\
\hline 30 & --- & --- & --- & --- & --- & - & --- & -- & -- & -- & -- & --- \\
\hline 31 & --- & --- & --- & --- & --- & --- & - & --- & --- & --- & -- & --- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & JULY & & & AUGUST & & & TEMB & \\
\hline 1 & --- & --- & --- & 433 & 369 & 390 & 460 & 433 & 449 & 450 & 410 & 427 \\
\hline 2 & --- & --- & --- & 425 & 408 & 418 & 459 & 420 & 443 & 450 & 407 & 426 \\
\hline 3 & --- & --- & --- & 434 & 415 & 428 & 469 & 401 & 441 & 450 & 392 & 424 \\
\hline 4 & 431 & 169 & 362 & 439 & 387 & 420 & 469 & 399 & 440 & 441 & 407 & 422 \\
\hline 5 & 394 & 360 & 382 & 436 & 383 & 421 & 457 & 382 & 426 & 433 & 413 & 425 \\
\hline 6 & 409 & 394 & 403 & 452 & 436 & 446 & 467 & 380 & 428 & 441 & 420 & 431 \\
\hline 7 & 418 & 393 & 411 & 460 & 446 & 453 & 458 & 352 & 424 & 444 & 416 & 432 \\
\hline 8 & 424 & 417 & 420 & 453 & 252 & 351 & 472 & 423 & 461 & 455 & 421 & 441 \\
\hline 9 & 426 & 288 & 385 & 421 & 356 & 402 & 472 & 448 & 461 & 465 & 433 & 450 \\
\hline 10 & 407 & 218 & 356 & 441 & 421 & 434 & 495 & 453 & 463 & 468 & 440 & 454 \\
\hline 11 & 372 & 283 & 350 & 447 & 439 & 443 & 500 & 454 & 486 & 477 & 443 & 460 \\
\hline 12 & 402 & 371 & 375 & 456 & 443 & 450 & 499 & 494 & 497 & 476 & 448 & 463 \\
\hline 13 & 383 & 229 & 319 & 461 & 450 & 457 & 510 & 499 & 502 & 474 & 454 & 464 \\
\hline 14 & 369 & 343 & 364 & 463 & 435 & 452 & 502 & 66 & 314 & 476 & 456 & 468 \\
\hline 15 & 363 & 267 & 328 & 471 & 459 & 466 & 457 & 326 & 374 & 484 & 457 & 473 \\
\hline 16 & 376 & 363 & 370 & 474 & 313 & 417 & 524 & 402 & 415 & 494 & 458 & 476 \\
\hline 17 & 383 & 376 & 379 & 487 & 449 & 476 & 432 & 386 & 419 & 486 & 461 & 473 \\
\hline 18 & 391 & 383 & 387 & --- & --- & --- & 428 & 400 & 420 & 502 & 460 & 481 \\
\hline 19 & 396 & 384 & 390 & --- & --- & --- & & - & --- & 487 & 462 & 476 \\
\hline 20 & 407 & 395 & 399 & --- & --- & --- & --- & --- & --- & 497 & 461 & 479 \\
\hline 21 & 407 & 386 & 397 & --- & --- & - & --- & --- & --- & 481 & 423 & 454 \\
\hline 22 & 417 & 139 & 356 & --- & - & - & --- & --- & --- & 482 & 458 & 471 \\
\hline 23 & 373 & 234 & 332 & --- & --- & --- & 441 & 418 & 422 & 476 & 457 & 469 \\
\hline 24 & 402 & 373 & 384 & --- & --- & --- & 461 & 415 & 439 & 469 & 444 & 459 \\
\hline 25 & 409 & 392 & 397 & - & - & - & 463 & 407 & 433 & 465 & 439 & 455 \\
\hline 26 & 412 & 399 & 404 & 473 & 463 & 465 & 460 & 411 & 438 & --- & --- & --- \\
\hline 27 & 418 & 405 & 410 & 478 & 458 & 469 & 458 & 407 & 435 & -- & -- & --- \\
\hline 28 & 422 & 413 & 418 & 489 & 449 & 466 & 460 & 403 & 431 & --- & --- & --- \\
\hline 29 & 426 & 212 & 414 & 480 & 444 & 464 & 457 & 394 & 437 & --- & --- & --- \\
\hline 30 & 369 & 205 & 305 & 477 & 446 & 460 & 458 & 373 & 428 & - & - & --- \\
\hline 31 & --- & --- & --- & 470 & 428 & 448 & 462 & 406 & 426 & --- & --- & --- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998


\section*{KENTUCKY RIVER BASIN}

03285330 MOCKS BRANCH＠HWY 127 NEAR DANVILLE，KY－－Continued
PH，WATER，WHOLE，FIELD，STANDARD UNITS，WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{JUNE} & \multicolumn{3}{|c|}{JULY} & \multicolumn{3}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & －－ & －－ & －－ & 7.7 & 7.5 & 7.6 & 8.2 & 7.8 & 7.9 & 8.2 & 7.7 & 7.9 \\
\hline 2 & －－－ & －－ & －－－ & 7.7 & 7.5 & 7.6 & 8.1 & 7.6 & 7.9 & 8.1 & 7.7 & 7.9 \\
\hline 3 & －－－ & －－－ & －－－ & 7.9 & 7.5 & 7.7 & 8.2 & 7.6 & 7.8 & 8.2 & 7.8 & 7.9 \\
\hline 4 & 8.0 & 7.3 & 7.6 & 7.8 & 7.6 & 7.7 & 8.1 & 7.5 & 7.8 & 8.2 & 7.8 & 7.9 \\
\hline 5 & 7.6 & 7.4 & 7.5 & 7.8 & 7.6 & 7.7 & 8.2 & 7.6 & 7.8 & 8.1 & 7.7 & 7.8 \\
\hline 6 & 7.9 & 7.6 & 7.7 & 7.9 & 7.5 & 7.7 & 8.2 & 7.6 & 7.8 & 8.1 & 7.6 & 7.8 \\
\hline 7 & 7.9 & 7.6 & 7.8 & 7.9 & 7.6 & 7.7 & 7.9 & 7.6 & 7.7 & 8.1 & 7.7 & 7.8 \\
\hline 8 & 8.0 & 7.7 & 7.8 & 7.8 & 7.4 & 7.6 & 7.6 & 7.4 & 7.5 & 8.1 & 7.7 & 7.8 \\
\hline 9 & 7.8 & 7.4 & 7.6 & 7.8 & 7.5 & 7.7 & 7.5 & 7.4 & 7.4 & 8.1 & 7.7 & 7.9 \\
\hline 10 & 7.8 & 7.1 & 7.5 & 7.8 & 7.6 & 7.7 & 7.4 & 7.4 & 7.4 & 8.1 & 7.8 & 7.9 \\
\hline 11 & 7.5 & 7.1 & 7.3 & 7.9 & 7.6 & 7.7 & 7.4 & 7.3 & 7.4 & 8.2 & 7.8 & 8.0 \\
\hline 12 & 7.7 & 7.4 & 7.6 & 7.9 & 7.6 & 7.7 & 7.4 & 7.3 & 7.3 & 8.2 & 7.8 & 7.9 \\
\hline 13 & 7.7 & 7.1 & 7.3 & 7.9 & 7.6 & 7.7 & 7.3 & 7.3 & 7.3 & 8.1 & 7.8 & 7.9 \\
\hline 14 & 7.5 & 7.3 & 7.4 & 7.9 & 7.6 & 7.8 & 7.8 & 7.0 & 7.2 & 8.2 & 7.7 & 7.9 \\
\hline 15 & 7.4 & 7.1 & 7.3 & 8.0 & 7.8 & 7.9 & 7.6 & 7.1 & 7.4 & 8.1 & 7.6 & 7.9 \\
\hline 16 & 7.7 & 7.4 & 7.5 & 7.8 & 7.4 & 7.6 & 7.7 & 7.5 & 7.6 & 7.8 & 7.5 & 7.6 \\
\hline 17 & 7.8 & 7.5 & 7.6 & 7.7 & 7.5 & 7.7 & 7.9 & 7.6 & 7.7 & 7.9 & 7.5 & 7.7 \\
\hline 18 & 7.8 & 7.5 & 7.7 & －－－ & －－－ & －－－ & 7.9 & 7.6 & 7.8 & 7.9 & 7.6 & 7.7 \\
\hline 19 & 7.8 & 7.5 & 7.7 & － & －－－ & －－－ & －－－ & －－ & －－－ & 7.8 & 7.6 & 7.7 \\
\hline 20 & 7.9 & 7.6 & 7.7 & －－ & －－ & －－ & －－－ & － & －－－ & 7.9 & 7.5 & 7.7 \\
\hline 21 & 7.8 & 7.6 & 7.7 & －－－ & －－－ & －－－ & －－－ & －－ & －－－ & 7.8 & 7.6 & 7.7 \\
\hline 22 & 7.8 & 7.0 & 7.5 & －－－ & －－－ & －－ & －－－ & －－ & －－－ & 7.9 & 7.6 & 7.7 \\
\hline 23 & 7.4 & 7.0 & 7.2 & －－－ & －－－ & －－－ & 8.2 & 7.8 & 8.1 & 8.1 & 7.7 & 7.9 \\
\hline 24 & 7.5 & 7.3 & 7.4 & －－－ & －－－ & － & 8.2 & 7.7 & 7.9 & 8.1 & 7.8 & 7.9 \\
\hline 25 & 7.6 & 7.4 & 7.5 & －－－ & －－－ & －－－ & 8.2 & 7.8 & 8.0 & 8.1 & 7.8 & 7.9 \\
\hline 26 & 7.6 & 7.4 & 7.5 & 8.1 & 7.7 & 8.0 & 8.2 & 7.8 & 7.9 & 8.1 & 7.8 & 7.9 \\
\hline 27 & 7.6 & 7.4 & 7.5 & 8.1 & 7.7 & 7.9 & 8.1 & 7.8 & 7.9 & 8.1 & 7.8 & 7.9 \\
\hline 28 & 7.6 & 7.4 & 7.5 & 8.0 & 7.7 & 7.8 & 8.1 & 7.8 & 7.9 & 8.1 & 7.8 & 7.9 \\
\hline 29 & 7.6 & 7.3 & 7.5 & 8.0 & 7.6 & 7.8 & 8.1 & 7.7 & 7.9 & 8.0 & 7.7 & 7.8 \\
\hline 30 & 7.7 & 7.2 & 7.4 & 8.0 & 7.7 & 7.8 & 8.2 & 7.7 & 7.9 & 8.0 & 7.7 & 7.8 \\
\hline 31 & － & －－ & －－－ & 8.1 & 7.7 & 7.9 & 8.2 & 7.8 & 7.9 & －－－ & －－－ & －－－ \\
\hline MONTH & －－－ & －－ & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ & 8.2 & 7.5 & 7.8 \\
\hline
\end{tabular}

TEMPERATURE，WATER（DEG．C），WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 㿥 & &  & \begin{tabular}{ll|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & 11111 & 1111 & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{ll|l|l|l|l}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { Z } \\
& \stackrel{y}{2}
\end{aligned}
\] & \[
\begin{aligned}
& \text { ry } \\
& \text { 岀 } \\
& \text { 岕 } \\
& \text { 号 }
\end{aligned}
\] & \begin{tabular}{ll|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} &  \\
\hline \[
\sum_{\sum}^{x}
\] & &  & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} &  &  & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{ll|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { z } \\
& \text { 岕 }
\end{aligned}
\] & &  & 111111 &  & 1 \begin{tabular}{ll|l|l}
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{ll|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\stackrel{\text { z }}{2}
\] &  & \begin{tabular}{ll|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{ll|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{ll|l|l|l|l}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\sum_{\Sigma}^{x}
\] & & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} &  & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { z } \\
& \text { 屆 }
\end{aligned}
\] & & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1
\end{tabular} &  & 11111 & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} &  \\
\hline \(\stackrel{z}{z}\) &  &  & 1 \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} &  & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\sum_{\Sigma}^{x}
\] & & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} &  & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|lllll|l}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\begin{aligned}
& \underset{4}{z} \\
& \text { 㐭 }
\end{aligned}
\] & & \begin{tabular}{l|l|l|l}
1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} &  & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\underset{\Sigma}{z}
\] & 足
0
0
0
H
0 &  & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 &
\end{tabular} &  &  & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|l}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \(\underset{\Sigma}{x}\) & & 111111 & 11111 & 11111 & 11111 & 111111 & 1 \begin{tabular}{l|l|l|l|}
1 \\
1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 岩 }
\end{aligned}
\] & & 「Nのサー & மイmのo &  &  & \[
\underset{\sim}{\sim} \underset{\sim}{N} \underset{\sim}{\sim}
\] &  \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285330 MOCKS BRANCH @ HWY 127 NEAR DANVILLE, KY--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{FEBRUARY} & \multicolumn{3}{|c|}{MARCH} & \multicolumn{3}{|c|}{APRIL} & \multicolumn{3}{|c|}{MAY} \\
\hline 1 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & & - & \\
\hline 3 & --- & --- & --- & - & --- & --- & --- & - & - & - & - & - \\
\hline & --- & - & - & - & - & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & --- & --- & --- & - & - & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & -- & -- & - & --- & - \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & - & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & - & --- & --- & --- & --- & - & --- & --- & --- & - & --- & -- \\
\hline 12 & --- & - & -- & --- & - & --- & - & - & --- & --- & --- & --- \\
\hline 13 & - & --- & --- & - & - & --- & - & - & --- & --- & --- & --- \\
\hline 14 & --- & --- & --- & - & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & - & --- & --- & - & --- & --- & - & --- & --- & --- & --- \\
\hline 18 & --- & --- & --- & - & --- & --- & --- & --- & - & --- & - & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & -- & - & - & -- & -- \\
\hline 20 & -- & --- & --- & -- & - & --- & - & - & --- & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & --- & - & - & - & - & --- & -- & - & - & - & --- & -- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & -- & -- & --- & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & -- & -- & -- & --- & -- \\
\hline 29 & --- & --- & --- & --- & --- & --- & --- & -- & -- & -- & --- & -- \\
\hline 30 & - & - & --- & - & --- & --- & -- & - & --- & --- & - & --- \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{JUNE} & \multicolumn{3}{|c|}{JULY} & \multicolumn{3}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & --- & - & --- & 23.4 & 18.5 & 20.9 & 26.0 & 19.5 & 22.3 & 27.3 & 19.1 & 22.9 \\
\hline 2 & - & - & - & 24.1 & 18.3 & 21.2 & 27.0 & 19.5 & 23.1 & 27.9 & 19.9 & 23.2 \\
\hline 3 & --- & --- & --- & 25.7 & 18.7 & 22.0 & 28.8 & 20.8 & 24.4 & 26.7 & 18.4 & 22.2 \\
\hline 4 & 20.0 & 16.0 & 17.3 & 25.2 & 20.2 & 22.3 & 29.1 & 20.5 & 24.6 & 26.8 & 18.4 & 22.4 \\
\hline 5 & 18.7 & 15.6 & 16.8 & 24.8 & 20.1 & 22.4 & 28.8 & 21.6 & 25.0 & 29.3 & 21.6 & 24.9 \\
\hline 6 & 17.2 & 14.0 & 15.5 & 26.7 & 18.9 & 22.8 & 29.6 & 22.3 & 25.5 & 29.5 & 22.0 & 25.4 \\
\hline 7 & 17.6 & 12.8 & 15.3 & 24.2 & 20.8 & 22.5 & 29.5 & 23.2 & 26.1 & 27.5 & 21.2 & 24.2 \\
\hline 8 & 16.3 & 14.3 & 15.4 & 24.4 & 20.3 & 22.6 & 26.4 & 22.8 & 24.0 & 24.4 & 18.6 & 21.8 \\
\hline 9 & 18.1 & 14.6 & 16.0 & 23.9 & 19.3 & 21.6 & 24.2 & 23.9 & 24.1 & 23.3 & 14.8 & 18.6 \\
\hline 10 & 20.9 & 16.0 & 17.9 & 24.5 & 19.0 & 21.7 & 23.9 & 23.3 & 23.6 & 23.5 & 13.9 & 18.2 \\
\hline 11 & 18.2 & 15.3 & 16.8 & 25.2 & 19.6 & 22.2 & 23.5 & 23.2 & 23.3 & 24.3 & 14.7 & 19.1 \\
\hline 12 & 20.5 & 16.0 & 18.1 & 25.5 & 18.1 & 21.7 & 23.4 & 23.2 & 23.3 & 25.2 & 16.0 & 20.2 \\
\hline 13 & 19.3 & 16.3 & 18.1 & 24.6 & 19.3 & 21.6 & 23.3 & 23.1 & 23.2 & 26.0 & 17.2 & 21.3 \\
\hline 14 & 17.0 & 14.7 & 15.7 & 22.5 & 20.5 & 21.0 & 23.1 & 18.5 & 21.4 & 26.3 & 19.1 & 22.5 \\
\hline 15 & 18.2 & 15.9 & 17.1 & 22.1 & 19.8 & 20.7 & 20.8 & 17.4 & 19.0 & 24.7 & 20.8 & 22.8 \\
\hline 16 & 19.6 & 14.9 & 17.1 & 21.8 & 20.0 & 20.8 & 20.2 & 17.8 & 19.1 & 26.0 & 19.9 & 22.9 \\
\hline 17 & 21.0 & 15.0 & 17.8 & 21.7 & 18.7 & 20.6 & 23.3 & 18.3 & 20.6 & 24.9 & 21.5 & 23.1 \\
\hline 18 & 22.6 & 15.8 & 19.2 & - & - & - & 24.6 & 19.4 & 21.9 & 26.7 & 21.4 & 23.6 \\
\hline 19 & 23.1 & 18.0 & 20.5 & --- & --- & --- & 26.1 & 20.4 & 22.8 & 26.6 & 21.3 & 23.7 \\
\hline 20 & 23.6 & 17.8 & 20.6 & - & --- & --- & 25.8 & 17.6 & 21.6 & 25.1 & 21.2 & 23.2 \\
\hline 21 & 23.2 & 18.9 & 20.8 & --- & -- & -- & 27.2 & 18.7 & 22.7 & 24.8 & 21.6 & 23.0 \\
\hline 22 & 25.4 & 19.1 & 21.3 & --- & --- & --- & 28.5 & 20.5 & 24.2 & 26.2 & 21.1 & 22.9 \\
\hline 23 & 21.2 & 17.1 & 19.1 & --- & --- & --- & 29.0 & 21.3 & 24.9 & 22.9 & 16.9 & 19.7 \\
\hline 24 & 21.9 & 16.6 & 19.1 & --- & --- & --- & 28.8 & 21.1 & 24.8 & 22.9 & 14.1 & 18.2 \\
\hline 25 & 22.6 & 16.7 & 19.6 & --- & --- & --- & 30.0 & 22.1 & 25.7 & 24.6 & 19.0 & 21.2 \\
\hline 26 & 24.4 & 17.6 & 21.0 & 22.3 & 20.7 & 22.1 & 28.7 & 23.4 & 25.6 & 25.8 & 19.2 & 22.2 \\
\hline 27 & 25.8 & 19.0 & 22.3 & 24.4 & 19.5 & 21.7 & 28.4 & 20.0 & 23.9 & 25.9 & 20.2 & 22.7 \\
\hline 28 & 26.7 & 20.0 & 23.2 & 26.8 & 20.0 & 23.2 & 28.8 & 20.0 & 24.0 & 25.3 & 20.9 & 22.8 \\
\hline 29 & 26.2 & 21.1 & 23.2 & 27.4 & 20.2 & 23.8 & 26.8 & 22.7 & 24.2 & 24.8 & 18.9 & 21.7 \\
\hline 30 & 22.1 & 20.0 & 21.1 & 25.1 & 22.7 & 24.0 & 28.6 & 20.4 & 24.0 & 24.3 & 20.5 & 22.4 \\
\hline 31 & & & & 27.5 & 21.7 & 23.9 & 28.7 & 20.7 & 24.1 & & & \\
\hline MONTH & --- & --- & --- & --- & --- & --- & 30.0 & 17.4 & 23.5 & 29.5 & 13.9 & 22.1 \\
\hline
\end{tabular}

\section*{KENTUCKY RIVER BASIN}

03285330 MOCKS BRANCH @ HWY 127 NEAR DANVILLE, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & NOVEMBER & & & DECEMBER & & & JANUARY & \\
\hline 1 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & -- & --- & --- & --- & -- & - & --- & -- & --- & -- & --- & -- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & -- & -- & --- & --- & -- & --- & -- & --- & --- & --- & --- \\
\hline 16 & -- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 17 & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & -- & --- & -- & -- & --- & --- & -- & --- & -- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & --- & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & - \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 30 & --- & -- & - & -- & -- & - & --- & -- & --- & - & --- & -- \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline MONTH & -- & -- & --- & --- & --- & - & --- & --- & --- & --- & --- & -- \\
\hline DAY & MAX & MIN & MEAN \\
\hline & & FEBRUARY & & & MARCH & & & APRIL & & & MAY & \\
\hline 1 & --- & -- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & -- & --- & --- & --- & --- & - & -- & -- & - & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- & -- \\
\hline 29 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

03285330 MOCKS BRANCH @ HWY 127 NEAR DANVILLE, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & \multicolumn{2}{|r|}{JULY} & \multicolumn{4}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & --- & --- & --- & 8.9 & 5.3 & 7.6 & 11.4 & 7.2 & 9.1 & 10.4 & 6.7 & 8.2 \\
\hline 2 & --- & --- & --- & 8.9 & 5.0 & 7.1 & 11.4 & 6.0 & 9.1 & 10.4 & 6.6 & 8.0 \\
\hline 3 & -- & --- & --- & 8.7 & 3.5 & 6.7 & 11.2 & 6.0 & 8.2 & 10.5 & 6.6 & 8.1 \\
\hline 4 & --- & --- & --- & 7.4 & 4.9 & 6.1 & 11.0 & 5.0 & 7.7 & 10.3 & 5.7 & 7.8 \\
\hline 5 & 6.6 & 5.1 & 5.7 & 7.6 & 3.2 & 5.9 & 11.7 & 5.8 & 8.2 & 9.2 & 5.3 & 6.8 \\
\hline 6 & 7.2 & 5.3 & 6.4 & 7.0 & 2.1 & 5.0 & 11.4 & 5.6 & 7.9 & 8.8 & 5.2 & 6.5 \\
\hline 7 & 8.0 & 5.4 & 6.6 & 5.2 & 2.4 & 4.1 & 10.2 & 5.3 & 7.3 & 8.8 & 4.9 & 6.6 \\
\hline 8 & 8.4 & 5.7 & 7.2 & 6.7 & 4.0 & 5.4 & 5.5 & 3.7 & 4.8 & 8.8 & 4.8 & 6.6 \\
\hline 9 & 8.1 & 6.3 & 7.3 & 8.1 & 4.6 & 7.0 & 4.2 & 3.0 & 3.5 & 9.7 & 6.3 & 7.8 \\
\hline 10 & 8.6 & 5.8 & 7.4 & 7.7 & 3.1 & 5.5 & 5.4 & 3.1 & 3.8 & 10.0 & 6.6 & 8.2 \\
\hline 11 & 8.7 & 6.7 & 7.9 & 7.1 & 2.6 & 5.0 & 3.7 & 3.2 & 3.3 & 10.1 & 6.6 & 8.2 \\
\hline 12 & 8.5 & 6.9 & 7.7 & 6.3 & 3.5 & 4.9 & 3.7 & 3.2 & 3.3 & 9.5 & 6.1 & 7.7 \\
\hline 13 & 7.9 & 6.2 & 7.2 & 6.4 & 3.0 & 4.6 & 3.9 & 3.3 & 3.5 & 9.2 & 5.7 & 7.4 \\
\hline 14 & 8.7 & 7.2 & 8.1 & 6.5 & 2.9 & 4.9 & 9.4 & 3.4 & 6.6 & 8.6 & 5.6 & 6.9 \\
\hline 15 & 8.1 & 6.4 & 7.4 & 7.5 & 5.2 & 6.0 & 10.6 & 9.2 & 9.8 & 8.2 & 4.8 & 6.6 \\
\hline 16 & 8.7 & 7.3 & 8.0 & 6.5 & 4.8 & 5.7 & 10.7 & 8.5 & 9.7 & 8.1 & 5.4 & 6.6 \\
\hline 17 & 9.2 & 6.9 & 8.0 & 7.6 & 5.9 & 6.8 & 10.0 & 7.3 & 8.9 & 7.9 & 4.4 & 6.1 \\
\hline 18 & 9.1 & 5.6 & 7.5 & --- & --- & --- & 9.8 & 7.8 & 9.1 & 8.1 & 4.3 & 5.9 \\
\hline 19 & 8.2 & 6.0 & 6.8 & --- & --- & --- & --- & --- & --- & 7.4 & 4.1 & 5.5 \\
\hline 20 & 7.9 & 4.9 & 6.3 & --- & --- & --- & --- & --- & --- & 7.2 & 3.2 & 5.3 \\
\hline 21 & 7.3 & 4.2 & 5.9 & --- & --- & --- & --- & --- & --- & 6.5 & 3.4 & 5.0 \\
\hline 22 & 6.7 & 4.1 & 5.7 & --- & --- & --- & --- & --- & --- & 8.1 & 3.3 & 5.6 \\
\hline 23 & 8.6 & 6.0 & 7.6 & --- & --- & --- & 11.5 & 8.0 & 10.8 & 9.0 & 5.1 & 6.9 \\
\hline 24 & 8.7 & 6.6 & 7.7 & --- & --- & --- & 11.4 & 7.8 & 9.2 & 8.9 & 6.0 & 7.1 \\
\hline 25 & 8.6 & 5.0 & 7.0 & --- & --- & --- & 11.1 & 7.3 & 8.9 & 7.5 & 5.1 & 6.2 \\
\hline 26 & 8.1 & 4.8 & 6.6 & 11.7 & 9.1 & 11.2 & 10.5 & 7.3 & 8.5 & 7.2 & 4.8 & 5.8 \\
\hline 27 & 7.7 & 3.5 & 6.1 & 12.5 & 8.4 & 10.6 & 11.3 & 7.5 & 9.0 & 6.7 & 4.8 & 5.5 \\
\hline 28 & 7.1 & 2.3 & 4.9 & 11.6 & 7.7 & 9.8 & 11.5 & 7.2 & 9.0 & 6.7 & 4.9 & 5.7 \\
\hline 29 & 6.4 & 2.2 & 4.4 & 11.6 & 6.5 & 9.3 & 10.8 & 7.2 & 8.4 & 6.8 & 4.5 & 5.7 \\
\hline 30 & 8.3 & 5.7 & 7.2 & 10.7 & 7.6 & 8.8 & 11.1 & 6.8 & 8.7 & 6.8 & 4.1 & 5.4 \\
\hline 31 & --- & --- & --- & 11.4 & 5.9 & 8.7 & 10.6 & 6.3 & 8.3 & --- & --- & --- \\
\hline MONTH & --- & -- & - & --- & --- & --- & --- & --- & --- & 10.5 & 3.2 & 6.7 \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285330 MOCKS BRANCH @ HWY 127 NEAR DANVILLE, KY--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & NOVEMBER & & & DECEMBER & & & JANUARY & \\
\hline 1 & 472 & 444 & 462 & 559 & 538 & 549 & --- & --- & -- & -- & --- & - \\
\hline 2 & 466 & 444 & 457 & 566 & 550 & 557 & -- & --- & --- & - & - & -- \\
\hline 3 & 465 & 278 & 427 & 563 & 545 & 555 & --- & --- & --- & --- & --- & - \\
\hline 4 & 483 & 393 & 467 & 547 & 531 & 540 & --- & --- & -- & -- & --- & --- \\
\hline 5 & 473 & 458 & 466 & 558 & 534 & 540 & --- & --- & --- & --- & - & - \\
\hline 6 & 460 & 440 & 452 & 575 & 558 & 569 & --- & --- & --- & - & --- & --- \\
\hline 7 & 456 & 337 & 441 & 579 & 565 & 573 & - & --- & --- & --- & --- & - \\
\hline 8 & 463 & 445 & 453 & 576 & 568 & 572 & --- & - & --- & --- & --- & --- \\
\hline 9 & 458 & 447 & 453 & 575 & 565 & 571 & --- & -- & --- & --- & - & - \\
\hline 10 & 462 & 442 & 453 & 574 & 512 & 557 & - & --- & --- & - & -- & -- \\
\hline 11 & 456 & 441 & 447 & 551 & 508 & 547 & --- & --- & -- & -- & --- & --- \\
\hline 12 & 452 & 440 & 444 & 560 & 543 & 555 & -- & - & --- & --- & --- & --- \\
\hline 13 & 450 & 440 & 444 & 553 & 517 & 550 & --- & -- & --- & --- & -- & - \\
\hline 14 & 468 & 445 & 456 & 555 & 546 & 550 & --- & --- & --- & --- & --- & --- \\
\hline 15 & 468 & 449 & 456 & 570 & 543 & 560 & --- & --- & --- & --- & --- & --- \\
\hline 16 & 455 & 447 & 451 & 570 & 534 & 562 & --- & --- & --- & --- & -- & --- \\
\hline 17 & 459 & 442 & 452 & 565 & 529 & 556 & -- & --- & --- & -- & --- & -- \\
\hline 18 & 466 & 446 & 458 & 568 & 557 & 561 & - & --- & --- & - & --- & --- \\
\hline 19 & 464 & 427 & 459 & 571 & 553 & 565 & --- & --- & --- & --- & --- & --- \\
\hline 20 & 469 & 446 & 463 & --- & --- & --- & --- & --- & --- & - & --- & -- \\
\hline 21 & 483 & 466 & 472 & --- & -- & --- & --- & --- & --- & --- & --- & -- \\
\hline 22 & 484 & 473 & 480 & --- & --- & --- & -- & --- & --- & - & --- & -- \\
\hline 23 & 486 & 478 & 481 & -- & - & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & 494 & 479 & 487 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & 495 & 483 & 490 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & 500 & 488 & 495 & --- & --- & --- & - & --- & --- & -- & --- & -- \\
\hline 27 & 505 & 492 & 500 & --- & -- & -- & - & --- & --- & --- & --- & --- \\
\hline 28 & 514 & 501 & 507 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & 529 & 509 & 518 & --- & --- & --- & --- & - & - & --- & --- & -- \\
\hline 30 & 541 & 452 & 533 & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 31 & 549 & 530 & 541 & --- & --- & --- & --- & --- & - & - & --- & - \\
\hline MONTH & 549 & 278 & 470 & --- & --- & - & -- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

03285330 MOCKS BRANCH @ HWY 127 NEAR DANVILLE, KY--Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


\section*{KENTUCKY RIVER BASIN}

03285330 MOCKS BRANCH @ HWY 127 NEAR DANVILLE, KY--Continued


03285330 MOCKS BRANCH @ HWY 127 NEAR DANVILLE, KY--Continued
PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & JULY & & & AUGUST & & & SEPTEMBER & \\
\hline 1 & - & - & - & --- & --- & --- & - & --- & --- & - & --- & --- \\
\hline 2 & --- & - & --- & -- & --- & --- & -- & --- & --- & -- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & -- & -- & --- & --- & -- & -- \\
\hline 5 & --- & --- & -- & --- & -- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & - & -- & --- & --- & --- & --- & --- & -- & - & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & -- & -- & - & --- & --- & -- & --- & --- \\
\hline 9 & --- & -- & --- & --- & --- & -- & -- & --- & --- & --- & --- & - \\
\hline 10 & --- & --- & - & -- & --- & --- & - & --- & --- & -- & --- & -- \\
\hline 11 & --- & -- & - & - & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 12 & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & -- & --- & --- & --- & --- & --- & --- & -- & --- & -- \\
\hline 15 & --- & - & -- & --- & --- & - & --- & --- & --- & -- & --- & -- \\
\hline 16 & --- & --- & -- & --- & --- & --- & - & --- & --- & --- & --- & --- \\
\hline 17 & --- & -- & -- & -- & - & -- & -- & -- & --- & - & --- & -- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 19 & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 20 & --- & --- & -- & --- & --- & - & -- & --- & --- & -- & --- & -- \\
\hline 21 & -- & --- & -- & --- & --- & -- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 24 & --- & --- & --- & --- & --- & -- & -- & --- & --- & --- & --- & -- \\
\hline 25 & --- & --- & --- & - & --- & -- & - & --- & --- & --- & --- & -- \\
\hline 26 & -- & -- & -- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & --- & --- & -- & --- & -- & -- & -- & --- & --- & --- & --- & -- \\
\hline 29 & - & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & - \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & - & --- & - & -- & --- & --- & --- & --- & --- & --- & - \\
\hline MONTH & --- & --- & -- & --- & -- & - & --- & - & --- & --- & -- & --- \\
\hline
\end{tabular}

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & VEMBER & & & EMBER & & & JANUARY & \\
\hline 1 & 22.8 & 17.9 & 20.7 & 16.9 & 11.7 & 14.1 & -- & - & --- & -- & --- & --- \\
\hline 2 & 18.1 & 14.1 & 16.4 & 14.5 & 12.3 & 13.3 & -- & --- & --- & --- & --- & --- \\
\hline 3 & 17.8 & 15.1 & 16.5 & 12.8 & 10.1 & 11.7 & --- & --- & --- & --- & --- & --- \\
\hline 4 & 22.0 & 17.5 & 19.3 & 11.5 & 7.3 & 9.5 & --- & --- & --- & --- & --- & --- \\
\hline 5 & 25.1 & 18.9 & 21.5 & 9.4 & 4.3 & 6.9 & - & --- & --- & --- & --- & --- \\
\hline 6 & 24.1 & 19.8 & 21.7 & 10.2 & 6.1 & 8.0 & --- & -- & - & - & -- & - \\
\hline 7 & 21.4 & 17.6 & 20.0 & 11.3 & 5.7 & 8.4 & --- & --- & --- & --- & --- & - \\
\hline 8 & 18.6 & 15.5 & 16.9 & 9.1 & 7.9 & 8.5 & --- & --- & --- & --- & --- & --- \\
\hline 9 & 18.0 & 14.8 & 16.1 & 11.2 & 7.4 & 9.4 & --- & --- & --- & --- & --- & - \\
\hline 10 & 19.8 & 11.7 & 15.3 & 15.1 & 11.1 & 12.8 & --- & --- & --- & --- & --- & --- \\
\hline 11 & 20.0 & 12.0 & 15.5 & 12.2 & 7.4 & 9.6 & --- & --- & --- & --- & - & --- \\
\hline 12 & 20.3 & 11.9 & 15.7 & 10.4 & 4.1 & 7.3 & --- & --- & --- & --- & --- & --- \\
\hline 13 & 19.4 & 13.9 & 16.0 & 10.9 & 7.2 & 8.7 & --- & --- & -- & --- & -- & - \\
\hline 14 & 17.8 & 10.8 & 13.9 & 11.0 & 8.3 & 9.6 & --- & --- & --- & --- & --- & --- \\
\hline 15 & 18.3 & 10.2 & 13.8 & 13.4 & 8.9 & 10.8 & --- & --- & --- & --- & --- & - \\
\hline 16 & 19.9 & 12.1 & 15.4 & 12.7 & 5.9 & 9.1 & --- & --- & --- & --- & --- & --- \\
\hline 17 & 19.8 & 12.9 & 15.9 & 9.9 & 6.8 & 8.6 & --- & --- & - & -- & -- & --- \\
\hline 18 & 18.9 & 15.1 & 17.1 & 11.4 & 4.5 & 7.7 & --- & --- & --- & --- & --- & --- \\
\hline 19 & 17.8 & 14.5 & 16.5 & 14.2 & 9.1 & 11.7 & --- & --- & --- & --- & --- & --- \\
\hline 20 & 17.2 & 10.8 & 13.6 & , & -- & - & --- & --- & --- & --- & - & - \\
\hline 21 & 13.4 & 10.7 & 12.1 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & 13.6 & 7.8 & 10.3 & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 23 & 13.7 & 6.1 & 9.5 & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 24 & 14.7 & 6.6 & 10.2 & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 25 & 15.1 & 8.4 & 11.5 & --- & --- & - & --- & - & - & --- & --- & --- \\
\hline 26 & 15.6 & 8.7 & 11.8 & - & --- & --- & --- & --- & --- & --- & - & -- \\
\hline 27 & 16.4 & 8.9 & 12.3 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & 15.5 & 10.7 & 13.0 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & 18.0 & 12.2 & 14.7 & --- & -- & -- & --- & --- & --- & --- & --- & --- \\
\hline 30 & 19.7 & 14.3 & 16.3 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & 16.8 & 14.1 & 15.1 & - & --- & --- & - & - & - & --- & --- & --- \\
\hline MONTH & 25.1 & 6.1 & 15.3 & -- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

\section*{KENTUCKY RIVER BASIN}

03285330 MOCKS BRANCH @ HWY 127 NEAR DANVILLE, KY--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


03285330 MOCKS BRANCH @ HWY 127 NEAR DANVILLE, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{OCTOBER} & \multicolumn{3}{|c|}{NOVEMBER} & \multicolumn{3}{|c|}{DECEMBER} & \multicolumn{3}{|c|}{JANUARY} \\
\hline 1 & 7.4 & 4.6 & 5.9 & 7.8 & 4.6 & 5.8 & --- & --- & --- & --- & --- & --- \\
\hline 2 & 8.7 & 6.5 & 7.5 & 6.6 & 3.7 & 5.2 & --- & -- & --- & --- & --- & --- \\
\hline 3 & 8.8 & 5.5 & 7.1 & 6.1 & 4.2 & 5.2 & --- & -- & -- & --- & -- & - \\
\hline 4 & 7.5 & 5.1 & 6.1 & 9.0 & 5.1 & 7.0 & --- & --- & --- & --- & --- & --- \\
\hline 5 & 8.0 & 5.1 & 6.3 & 9.4 & 5.7 & 7.8 & --- & - & - & --- & --- & - \\
\hline 6 & 8.2 & 5.2 & 6.5 & 7.0 & 3.9 & 5.7 & - & --- & --- & --- & --- & -- \\
\hline 7 & 7.7 & 5.0 & 6.2 & 7.1 & 3.9 & 5.6 & --- & - & --- & --- & -- & --- \\
\hline 8 & 9.9 & 6.2 & 7.9 & 6.0 & 2.0 & 4.7 & --- & --- & --- & --- & --- & --- \\
\hline 9 & 9.5 & 7.1 & 8.0 & 8.4 & 4.7 & 6.0 & -- & - & --- & --- & - & --- \\
\hline 10 & 9.8 & 7.0 & 8.4 & 7.1 & 3.4 & 5.1 & --- & --- & --- & --- & - & --- \\
\hline 11 & 9.8 & 7.0 & 8.4 & 7.8 & 3.4 & 5.6 & - & --- & --- & --- & --- & -- \\
\hline 12 & 9.9 & 7.4 & 8.8 & 8.7 & 5.7 & 7.3 & --- & -- & -- & -- & --- & -- \\
\hline 13 & 9.9 & 6.7 & 8.3 & 8.2 & 6.3 & 7.0 & --- & --- & --- & --- & --- & --- \\
\hline 14 & 9.1 & 6.2 & 7.5 & 7.5 & 5.2 & 6.4 & -- & --- & --- & --- & --- & -- \\
\hline 15 & 9.3 & 6.5 & 7.8 & 8.1 & 5.0 & 6.3 & - & --- & --- & --- & --- & --- \\
\hline 16 & 9.3 & 6.2 & 7.6 & 8.6 & 5.6 & 6.8 & -- & --- & --- & --- & --- & - \\
\hline 17 & 9.2 & 6.1 & 7.4 & 9.1 & 5.6 & 7.2 & --- & --- & --- & --- & --- & --- \\
\hline 18 & 8.9 & 5.7 & 7.0 & 8.9 & 6.2 & 7.4 & --- & --- & --- & --- & --- & --- \\
\hline 19 & 8.5 & 5.2 & 6.5 & 8.0 & 4.8 & 6.4 & --- & --- & --- & -- & --- & --- \\
\hline 20 & 9.8 & 5.8 & 7.5 & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 21 & 9.2 & 6.0 & 7.8 & --- & --- & --- & -- & -- & --- & --- & --- & -- \\
\hline 22 & 10.6 & 7.2 & 8.9 & --- & --- & -- & -- & - & -- & --- & --- & --- \\
\hline 23 & 10.7 & 8.1 & 9.3 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & 10.2 & 7.6 & 8.8 & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 25 & 10.0 & 6.4 & 8.4 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & 9.9 & 6.8 & 8.1 & --- & --- & --- & -- & -- & --- & - & --- & --- \\
\hline 27 & 9.3 & 6.8 & 7.8 & --- & --- & -- & --- & - & - & --- & --- & -- \\
\hline 28 & 8.4 & 5.0 & 6.9 & - & - & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & 8.3 & 4.9 & 6.3 & --- & --- & --- & --- & -- & -- & -- & --- & --- \\
\hline 30 & 7.5 & 3.9 & 5.5 & --- & --- & -- & - & -- & - & - & --- & --- \\
\hline 31 & 7.2 & 4.4 & 5.5 & -- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline MONTH & 10.7 & 3.9 & 7.4 & -- & --- & --- & -- & --- & - & --- & --- & --- \\
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{FEBRUARY} & \multicolumn{3}{|c|}{MARCH} & \multicolumn{3}{|c|}{APRIL} & \multicolumn{3}{|c|}{MAY} \\
\hline 1 & - & --- & - & - & --- & --- & - & --- & --- & --- & -- & -- \\
\hline 2 & --- & --- & --- & --- & -- & --- & - & --- & --- & --- & --- & --- \\
\hline 3 & --- & --- & --- & - & - & --- & -- & -- & -- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & --- & --- & --- & --- & --- & - & -- & -- & --- & --- & --- & -- \\
\hline 6 & --- & - & - & --- & -- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & -- & --- & --- & -- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & -- & --- \\
\hline 9 & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & -- & --- & --- & -- & --- & --- & -- & --- & -- & -- \\
\hline 11 & --- & --- & -- & --- & -- & --- & --- & -- & --- & - & --- & --- \\
\hline 12 & --- & --- & -- & - & --- & --- & --- & --- & --- & - & --- & --- \\
\hline 13 & -- & - & --- & - & --- & --- & --- & --- & --- & --- & -- & -- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & - & - & --- & --- & --- & - & --- & --- & --- & --- & - & - \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 24 & --- & --- & --- & --- & --- & --- & - & - & - & --- & - & -- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & -- & -- & --- & --- & -- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 28 & -- & - & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 29 & --- & --- & --- & --- & --- & --- & - & - & -- & --- & - & -- \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 31 & --- & --- & --- & - & --- & -- & - & --- & -- & --- & --- & --- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

\section*{KENTUCKY RIVER BASIN}

03285330 MOCKS BRANCH @ HWY 127 NEAR DANVILLE, KY--Continued OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & JULY & & & AUGUST & & & SEPTEMBER & \\
\hline 1 & --- & --- & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & --- & --- & --- & - & --- & --- & - & --- & --- & --- & --- & --- \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline
\end{tabular}

03285335 MOCKS BRANCH @ HWY 1896 NEAR DANVILLE, KY
LOCATION.-- Lat \(37^{\circ} 42^{\prime} 18^{\prime \prime}\), long \(84^{\circ} 48^{\prime} 11^{\prime \prime}\), Boyle County, Hydrologic Unit 05100205 , at culvert on Hwy 1896 and at mile 5.85. DRAINAGE AREA. \(--8.16 \mathrm{mi}^{2}\)

WATER-STAGE RECORDS
PERIOD OF RECORD.--June 9, 1998 to November 20, 1998.
COOPERATION.--The Kentucky Heritage Resource Conservation and Development Council.
GAGE.--Water-stage recorder.
REMARKS.--1998: Records good, except those for periods of estimated gage heights, which are fair.
1999: Records good, except those for periods of estimated gage heights, which are fair.
GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & --- & --- & --- & --- & -- & --- & --- & -- & -- & 1.58 & e1.35 & 1.15 \\
\hline 2 & -- & - & -- & --- & - & --- & --- & --- & --- & 1.49 & e1.31 & 1.14 \\
\hline 3 & --- & -- & --- & --- & -- & -- & --- & -- & -- & 1.39 & e1.29 & 1.12 \\
\hline 4 & --- & --- & --- & --- & --- & - & --- & -- & --- & 1.42 & e1.26 & 1.12 \\
\hline 5 & --- & - & --- & --- & --- & --- & --- & -- & -- & 1.37 & e1.23 & 1.10 \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & - & 1.32 & 1.19 & 1.11 \\
\hline 7 & --- & --- & --- & --- & - & --- & --- & - & -- & 1.30 & 1.14 & 1.09 \\
\hline 8 & --- & --- & -- & -- & --- & --- & --- & --- & --- & 1.69 & . 82 & 1.07 \\
\hline 9 & - & --- & --- & --- & --- & --- & _-- & --- & 2.24 & 1.66 & . 84 & 1.08 \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & 2.66 & 1.52 & . 92 & 1.10 \\
\hline 11 & -- & -- & --- & --- & - & --- & - & -- & 2.79 & 1.44 & . 98 & 1.09 \\
\hline 12 & --- & --- & -- & - & --- & --- & --- & --- & 2.17 & 1.38 & . 98 & 1.09 \\
\hline 13 & --- & -- & --- & --- & --- & --- & --- & -- & 3.35 & 1.35 & . 99 & 1.08 \\
\hline 14 & --- & --- & - & --- & -- & --- & --- & -- & 2.31 & 1.36 & 2.51 & 1.05 \\
\hline 15 & --- & -- & --- & --- & --- & --- & - & --- & 2.90 & 1.33 & 1.80 & 1.02 \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & -- & 2.10 & 1.54 & 1.55 & 1.02 \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & -- & 1.83 & e1.68 & 1.46 & 1.04 \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & -- & 1.66 & e1.43 & e1.36 & 1.06 \\
\hline 19 & --- & -- & --- & --- & - & --- & --- & --- & 1.59 & e1.18 & e1.30 & 1.09 \\
\hline 20 & -- & --- & --- & --- & - & --- & - & -- & 1.51 & e2.52 & e1.28 & 1.11 \\
\hline 21 & -- & --- & --- & --- & --- & --- & --- & -- & 1.51 & e2. 82 & e1. 24 & 1.19 \\
\hline 22 & -- & --- & --- & --- & --- & --- & --- & --- & 2.22 & e2. 27 & e1.23 & 1.23 \\
\hline 23 & -- & -- & --- & --- & --- & --- & --- & -- & 2.64 & e1.86 & e1.21 & 1.16 \\
\hline 24 & --- & - & --- & --- & - & --- & --- & - & 1.98 & e1.65 & 1.20 & 1.11 \\
\hline 25 & --- & - & --- & --- & - & --- & --- & - & 1.75 & e1.61 & 1.19 & 1.10 \\
\hline 26 & - & --- & --- & --- & --- & --- & --- & -- & 1.60 & e1.58 & 1.20 & 1.08 \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & 1.51 & e1.53 & 1.19 & 1.07 \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & -- & 1.43 & e1.49 & 1.17 & 1.07 \\
\hline 29 & --- & -- & --- & --- & --- & --- & --- & -- & 1.45 & e1.45 & 1.17 & 1.06 \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & - & 1.86 & e1.42 & 1.17 & 1.06 \\
\hline 31 & --- & --- & --- & --- & -- & --- & --- & --- & --- & e1.39 & 1.16 & --- \\
\hline MEAN & --- & - & - & --- & -- & --- & --- & -- & --- & 1.58 & 1.25 & 1.10 \\
\hline MAX & - & --- & - & --- & --- & --- & --- & - & -- & 2.82 & 2.51 & 1.23 \\
\hline MIN & - & --- & -- & --- & --- & --- & --- & --- & --- & 1.18 & . 82 & 1.02 \\
\hline
\end{tabular}
e Estimated


KENTUCKY RIVER BASIN
03285335 MOCKS BRANCH @ HWY 1896 NEAR DANVILLE, KY--Continued
GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 1.06 & 1.20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 2 & 1.03 & 1.20 & -- & - & -- & --- & -- & --- & --- & --- & -- & - \\
\hline 3 & 1.17 & 1.21 & --- & - & -- & - & --- & - & --- & --- & --- & - \\
\hline 4 & 1.35 & 1.22 & --- & -- & -- & --- & -- & - & --- & - & --- & --- \\
\hline 5 & 1.26 & 1.21 & -- & - & --- & --- & -- & --- & --- & --- & --- & -- \\
\hline 6 & 1.20 & 1.20 & --- & --- & - & --- & --- & - & --- & -- & --- & --- \\
\hline 7 & 1.22 & 1.19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 8 & 1.33 & 1.20 & --- & -- & - & -- & --- & -- & -- & -- & -- & --- \\
\hline 9 & 1.26 & 1.21 & --- & --- & --- & --- & - & --- & --- & --- & --- & - \\
\hline 10 & 1.23 & 1.26 & - & --- & --- & --- & - & --- & --- & --- & - & --- \\
\hline 11 & 1.20 & 1.32 & --- & --- & - & --- & -- & -- & --- & -- & - & --- \\
\hline 12 & 1.18 & 1.30 & -- & --- & --- & - & - & -- & -- & --- & --- & -- \\
\hline 13 & 1.16 & 1.28 & -- & -- & - & - & --- & --- & - & -- & --- & -- \\
\hline 14 & 1.15 & 1.29 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & 1.15 & 1.31 & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 16 & 1.14 & 1.31 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & 1.11 & 1.31 & -- & -- & -- & - & -- & - & --- & -- & - & -- \\
\hline 18 & 1.09 & 1.32 & -- & - & --- & --- & - & -- & --- & --- & --- & -- \\
\hline 19 & 1.18 & 1.33 & - & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & 1.20 & 1.34 & --- & --- & --- & - & --- & -- & --- & --- & --- & -- \\
\hline 21 & 1.17 & --- & --- & --- & --- & -- & -- & - & -- & -- & -- & -- \\
\hline 22 & 1.17 & - & --- & --- & -- & -- & - & -- & -- & - & --- & -- \\
\hline 23 & 1.15 & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 24 & 1.15 & --- & --- & --- & --- & --- & --- & - & --- & --- & --- & --- \\
\hline 25 & 1.15 & -- & --- & -- & -- & --- & -- & -- & --- & --- & --- & -- \\
\hline 26 & 1.14 & - & --- & --- & --- & --- & --- & --- & --- & -- & -- & -- \\
\hline 27 & 1.14 & -- & --- & --- & --- & --- & --- & -- & --- & - & - & - \\
\hline 28 & 1.13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 29 & 1.15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 30 & 1.17 & --- & --- & --- & - & --- & --- & --- & --- & --- & --- & \\
\hline 31 & 1.18 & - & -- & -- & -- & --- & --- & --- & --- & --- & --- & - \\
\hline MEAN & 1.17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline MAX & 1.35 & --- & --- & --- & --- & --- & - & - & --- & --- & -- & --- \\
\hline MIN & 1.03 & -- & - & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285335 MOCKS BRANCH @ HWY 1896 NEAR DANVILLE, KY--Continued


KENTUCKY RIVER BASIN
03285335 MOCKS BRANCH @ HWY 1896 NEAR DANVILLE, KY WATER-QUALITY RECORDS
PERIOD OF RECORD.--June 1998 to November 1998.
COOPERATION.--The Kentucky Heritage Resource Conservation and Development Council.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: June 1998 to November 1998.
pH: June 1998 to November 1998.
WATER TEMPERATURE: June 1998 to November 1998.
DISSOLVED OXYGEN: June 1998 to November 1998.
EXTREMES FOR PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 598 microsiemens, Nov. 10, 15, 1998; minimum, 68 microsiemens, Aug. 14, 1998.
pH: Maximum, 8.3 units, July 3, 1998; minimum, 7.0 units, Aug. 14, 1998.
WATER TEMPERATURE: Maximum, 26.6 C, Aug. 23, 25, 1998; minimum, 5.2 C, Nov. 5, 1998.
DISSOLVED OXYGEN: Maximum, \(10.2 \mathrm{mg} / \mathrm{L}\), June 10 , 1998 ; minimum, \(0.3 \mathrm{mg} / \mathrm{L}\), Oct. 6, 1998.

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & NOVEMBER & & & DECEMBER & & & JANUARY & \\
\hline 1 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & -- & -- & --- & - & -- & -- & --- & - & --- & --- \\
\hline 5 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & --- & - & --- & - & -- & - & - & -- & -- & - & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & --- & --- \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & - & -- & -- & --- & --- & --- & -- & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & --- & --- & --- & - & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- \\
\hline 27 & --- & --- & -- & -- & --- & --- & --- & --- & -- & --- & --- & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- \\
\hline 29 & -- & -- & --- & --- & --- & - & - & - & - & --- & - & -- \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & --- & --- & - & --- & - & - & - & --- & - & --- & --- \\
\hline MONTH & --- & --- & --- & --- & --- & -- & --- & --- & - & --- & --- & --- \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285335 MOCKS BRANCH @ HWY 1896 NEAR DANVILLE, KY--Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & FEBRUARY & & & MARCH & & & APRIL & & & MAY & \\
\hline 1 & --- & -- & -- & -- & --- & -- & -- & --- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & -- & -- & - & -- & -- & --- & --- & -- & -- \\
\hline 3 & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & -- & --- & -- & --- & --- \\
\hline 5 & - & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & - & --- & - & - & -- & -- & --- & --- & --- & -- \\
\hline 9 & --- & --- & --- & -- & --- & -- & --- & --- & --- & --- & -- & --- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & --- & -- & - & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & - & --- & --- & --- & -- & -- & --- & -- & --- & --- \\
\hline 14 & --- & --- & - & -- & -- & -- & --- & -- & --- & -- & -- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & - & --- & --- & - & --- & --- & --- & --- & --- & -- \\
\hline 17 & --- & --- & - & - & --- & --- & -- & -- & - & - & -- & --- \\
\hline 18 & --- & --- & --- & -- & -- & -- & -- & - & - & --- & --- & -- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & -- & -- & -- & -- & -- & --- & -- & --- & --- \\
\hline 21 & --- & -- & --- & --- & -- & -- & --- & --- & --- & --- & --- & - \\
\hline 22 & --- & --- & - & --- & -- & -- & -- & -- & --- & --- & -- & --- \\
\hline 23 & --- & --- & -- & -- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & -- & -- & --- & -- & -- & -- & -- & -- & -- & -- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- \\
\hline 26 & --- & - & --- & --- & - & - & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & - & - & --- & --- & - & --- & --- & --- & --- & & --- \\
\hline 28 & --- & --- & - & -- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & --- & --- & -- & -- & --- & --- & --- & --- & -- & -- & --- & -- \\
\hline 30 & -- & --- & --- & --- & - & -- & -- & -- & -- & -- & --- & --- \\
\hline 31 & --- & --- & --- & --- & --- & --- & - & --- & --- & --- & -- & --- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & JULY & & & AUGUST & & & TEMB & \\
\hline 1 & --- & --- & --- & 411 & 380 & 397 & -- & -- & --- & 455 & 438 & 445 \\
\hline 2 & --- & --- & --- & 429 & 411 & 419 & -- & -- & --- & 454 & 442 & 447 \\
\hline 3 & --- & --- & --- & 438 & 427 & 431 & --- & -- & --- & 452 & 443 & 447 \\
\hline 4 & --- & - & -- & 442 & 411 & 430 & --- & --- & --- & 463 & 443 & 454 \\
\hline 5 & --- & --- & --- & 454 & 395 & 435 & 467 & 424 & 458 & 471 & 459 & 465 \\
\hline 6 & --- & --- & --- & 467 & 452 & 459 & 476 & 419 & 452 & 473 & 463 & 468 \\
\hline 7 & --- & --- & --- & 472 & 461 & 467 & 471 & 418 & 450 & 487 & 467 & 478 \\
\hline 8 & --- & --- & --- & 463 & 237 & 358 & 448 & 434 & 442 & 495 & 479 & 485 \\
\hline 9 & --- & --- & --- & 427 & 354 & 405 & 475 & 436 & 448 & 497 & 493 & 495 \\
\hline 10 & 406 & 157 & 341 & 447 & 426 & 438 & 496 & 474 & 491 & 494 & 486 & 490 \\
\hline 11 & 366 & 248 & 335 & 455 & 438 & 450 & 495 & 478 & 489 & 493 & 482 & 487 \\
\hline 12 & 382 & 351 & 372 & 462 & 453 & 457 & 490 & 479 & 484 & 499 & 490 & 494 \\
\hline 13 & 382 & 152 & 288 & 471 & 458 & 464 & 482 & 477 & 480 & 505 & 495 & 499 \\
\hline 14 & 359 & 270 & 349 & 475 & 455 & 463 & 478 & 68 & 309 & 511 & 501 & 505 \\
\hline 15 & 360 & 158 & 283 & 489 & 475 & 483 & 398 & 322 & 370 & 519 & 511 & 515 \\
\hline 16 & 376 & 360 & 369 & 490 & 404 & 454 & 422 & 398 & 411 & 523 & 515 & 519 \\
\hline 17 & 387 & 376 & 381 & 490 & 454 & 484 & 431 & 402 & 421 & 525 & 521 & 523 \\
\hline 18 & 396 & 386 & 392 & --- & --- & --- & 437 & 406 & 430 & 528 & 519 & 521 \\
\hline 19 & 404 & 391 & 397 & --- & --- & --- & - & & --- & 527 & 506 & 513 \\
\hline 20 & 414 & 404 & 409 & - & --- & --- & - & --- & --- & 519 & 501 & 508 \\
\hline 21 & 425 & 384 & 411 & --- & - & - & --- & --- & --- & 523 & 468 & 496 \\
\hline 22 & 436 & 90 & 359 & --- & --- & - & --- & --- & --- & 482 & 466 & 477 \\
\hline 23 & 370 & 201 & 314 & --- & --- & --- & 454 & 432 & 448 & --- & --- & --- \\
\hline 24 & 394 & 370 & 384 & --- & --- & --- & 460 & 432 & 448 & --- & --- & --- \\
\hline 25 & 407 & 381 & 400 & --- & --- & --- & 455 & 429 & 444 & --- & --- & -- \\
\hline 26 & 415 & 406 & 410 & --- & --- & --- & 462 & 430 & 448 & --- & --- & --- \\
\hline 27 & 425 & 414 & 418 & --- & --- & --- & 458 & 432 & 446 & -- & --- & -- \\
\hline 28 & 434 & 416 & 428 & --- & --- & --- & 460 & 431 & 446 & --- & --- & --- \\
\hline 29 & 439 & 176 & 425 & --- & --- & --- & 462 & 435 & 448 & --- & --- & --- \\
\hline 30 & 380 & 153 & 301 & --- & --- & --- & 460 & 442 & 450 & -- & -- & - \\
\hline 31 & , & , & --- & --- & --- & --- & 455 & 436 & 444 & --- & --- & --- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

03285335 MOCKS BRANCH @ HWY 1896 NEAR DANVILLE, KY--Continued
PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998


KENTUCKY RIVER BASIN
03285335 MOCKS BRANCH＠HWY 1896 NEAR DANVILLE，KY－－Continued
PH，WATER，WHOLE，FIELD，STANDARD UNITS，WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & \multicolumn{2}{|r|}{JULY} & \multicolumn{4}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & －－－ & －－－ & －－－ & 7.8 & 7.6 & 7.7 & －－－ & －－－ & －－－ & 7.9 & 7.7 & 7.8 \\
\hline 2 & －－－ & －－－ & －－－ & 8.2 & 7.6 & 7.9 & －－－ & －－－ & －－－ & 7.9 & 7.7 & 7.8 \\
\hline 3 & －－－ & －－－ & －－－ & 8.3 & 8.0 & 8.1 & －－－ & －－－ & －－－ & 7.9 & 7.7 & 7.8 \\
\hline 4 & －－－ & －－－ & －－－ & 8.1 & 7.9 & 8.0 & －－－ & －－－ & －－－ & 7.9 & 7.8 & 7.8 \\
\hline 5 & －－－ & －－－ & －－－ & 8.1 & 7.8 & 8.0 & 7.8 & 7.7 & 7.8 & 7.9 & 7.8 & 7.8 \\
\hline 6 & －－－ & －－－ & －－－ & 8.2 & 7.9 & 8.0 & 7.8 & 7.7 & 7.7 & 7.9 & 7.7 & 7.8 \\
\hline 7 & －－－ & －－－ & －－－ & 8.1 & 7.9 & 8.0 & 7.8 & 7.7 & 7.7 & 7.9 & 7.8 & 7.8 \\
\hline 8 & －－－ & －－－ & －－－ & 8.0 & 7.5 & 7.7 & 7.8 & 7.7 & 7.7 & 7.9 & 7.8 & 7.9 \\
\hline 9 & －－－ & －－－ & －－－ & 8.0 & 7.7 & 7.9 & 7.7 & 7.5 & 7.6 & 7.9 & 7.9 & 7.9 \\
\hline 10 & 7.8 & 7.3 & 7.6 & 8.0 & 7.9 & 7.9 & 7.5 & 7.4 & 7.5 & 7.9 & 7.7 & 7.8 \\
\hline 11 & 7.7 & 7.3 & 7.5 & 8.1 & 7.8 & 7.9 & 7.5 & 7.4 & 7.5 & 7.8 & 7.7 & 7.7 \\
\hline 12 & 7.8 & 7.6 & 7.7 & 8.1 & 7.8 & 8.0 & 7.7 & 7.5 & 7.6 & 7.8 & 7.6 & 7.7 \\
\hline 13 & 7.7 & 7.3 & 7.4 & 8.1 & 7.8 & 7.9 & 7.7 & 7.6 & 7.6 & 7.7 & 7.6 & 7.7 \\
\hline 14 & 7.5 & 7.3 & 7.4 & 8.0 & 7.8 & 7.9 & 7.9 & 7.0 & 7.3 & 7.7 & 7.6 & 7.7 \\
\hline 15 & 7.4 & 7.1 & 7.3 & 8.1 & 7.9 & 8.0 & 7.7 & 7.3 & 7.5 & 7.7 & 7.6 & 7.6 \\
\hline 16 & 7.6 & 7.3 & 7.4 & 7.9 & 7.2 & 7.6 & 7.8 & 7.6 & 7.7 & 7.7 & 7.6 & 7.6 \\
\hline 17 & 7.7 & 7.3 & 7.5 & 7.6 & 7.4 & 7.6 & 7.9 & 7.7 & 7.8 & 7.6 & 7.6 & 7.6 \\
\hline 18 & 7.8 & 7.4 & 7.6 & －－－ & －－－ & －－－ & 7.8 & 7.7 & 7.8 & 7.7 & 7.6 & 7.6 \\
\hline 19 & 7.8 & 7.5 & 7.6 & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ & 7.8 & 7.6 & 7.7 \\
\hline 20 & 7.8 & 7.5 & 7.6 & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ & 7.9 & 7.7 & 7.7 \\
\hline 21 & 7.7 & 7.6 & 7.6 & －－－ & －－－ & －－－ & －－－ & － & － & 7.9 & 7.7 & 7.8 \\
\hline 22 & 7.8 & 7.1 & 7.5 & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ & 7.7 & 7.6 & 7.7 \\
\hline 23 & 7.4 & 7.1 & 7.2 & －－－ & －－－ & －－－ & 8.1 & 7.9 & 8.0 & 7.7 & 7.6 & 7.7 \\
\hline 24 & 7.6 & 7.2 & 7.4 & －－－ & －－－ & －－－ & 8.0 & 7.8 & 7.9 & 7.7 & 7.6 & 7.7 \\
\hline 25 & 7.7 & 7.3 & 7.5 & －－－ & －－－ & －－－ & 8.0 & 7.9 & 7.9 & 7.7 & 7.6 & 7.7 \\
\hline 26 & 7.8 & 7.4 & 7.6 & －－－ & －－－ & －－－ & 8.0 & 7.9 & 7.9 & 7.7 & 7.6 & 7.6 \\
\hline 27 & 7.8 & 7.5 & 7.7 & －－－ & －－－ & －－－ & 7.9 & 7.8 & 7.9 & 7.8 & 7.6 & 7.7 \\
\hline 28 & 7.8 & 7.6 & 7.7 & －－－ & －－－ & － & 7.9 & 7.8 & 7.9 & 7.8 & 7.7 & 7.7 \\
\hline 29 & 7.8 & 7.4 & 7.7 & －－－ & －－－ & －－－ & 7.9 & 7.8 & 7.8 & 7.7 & 7.6 & 7.6 \\
\hline 30 & 7.7 & 7.3 & 7.5 & －－－ & －－－ & － & 7.9 & 7.8 & 7.8 & 7.7 & 7.6 & 7.6 \\
\hline 31 & －－－ & －－－ & －－－ & －－－ & －－－ & －－－ & 7.9 & 7.8 & 7.8 & －－－ & －－－ & －－－ \\
\hline MONTH & －－－ & － & －－－ & －－ & － & －－ & －－ & －－ & －－－ & 7.9 & 7.6 & 7.7 \\
\hline
\end{tabular}

TEMPERATURE，WATER（DEG．C），WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { z } \\
& \text { 泣 }
\end{aligned}
\] & & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|l}
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} &  & 1 \begin{tabular}{ll|l|l|}
1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|l|ll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\stackrel{Z}{z}
\] & \[
\begin{aligned}
& \text { H } \\
& \text { 湺 } \\
& \text { 苮 }
\end{aligned}
\] & \begin{tabular}{ll|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} &  & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\sum_{\Sigma}^{x}
\] & &  &  &  & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} &  &  \\
\hline \[
\begin{aligned}
& \text { 岂 } \\
& \text { 爯 }
\end{aligned}
\] & & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1
\end{tabular} & 111111 & 1 \begin{tabular}{ll|l|l}
1 & 1 & 1
\end{tabular} & 111111 & 1111 & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\stackrel{\text { Z }}{\mathrm{Z}}
\] &  & \begin{tabular}{ll|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{ll|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\underset{\Sigma}{X}
\] & & \begin{tabular}{ll|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{ll|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular} \\
\hline  & & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} &  & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} & 11111 & 1 \begin{tabular}{l|l|l|}
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\stackrel{\text { Z }}{\mathrm{Z}}
\] &  & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|l}
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} &  & 11111 & 1 \begin{tabular}{l|l|l|l}
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\underset{\Sigma}{x}
\] & & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|l}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 杂 } \\
& \text { 㡙 }
\end{aligned}
\] & & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} &  &  & 1 \begin{tabular}{l|l|l|l}
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|l|l|ll}
1 & 1 & 1 & 1 & 1 & 1
\end{tabular} \\
\hline \[
\stackrel{\text { 岁 }}{2}
\] & 足
0
0
0
H
0 & \[
\left.\begin{array}{l|l|l|l|}
1 & 1 & 1 & 1 \\
& 1 & 1 & 1
\end{array} \right\rvert\,
\] & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l|}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{tabular} &  \\
\hline \[
\underset{\sum}{x}
\] & & 1111 & 11111 & 11111 & 1111 & 11111 & 1111 \\
\hline \[
\begin{aligned}
& \text { 䒘 } \\
& \hline
\end{aligned}
\] & & rNmび & மイツのO &  &  & \[
\underset{N}{-1} N \underset{N}{N}
\] &  \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285335 MOCKS BRANCH @ HWY 1896 NEAR DANVILLE, KY--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{FEBRUARY} & \multicolumn{3}{|c|}{MARCH} & \multicolumn{3}{|c|}{APRIL} & \multicolumn{3}{|c|}{MAY} \\
\hline 1 & -- & --- & --- & - & -- & -- & -- & --- & --- & -- & - & --- \\
\hline 2 & --- & --- & - & --- & - & --- & --- & --- & --- & - & --- & --- \\
\hline 3 & - & --- & --- & -- & --- & --- & -- & --- & --- & --- & --- & --- \\
\hline 4 & --- & -- & --- & -- & --- & -- & --- & --- & --- & --- & --- & --- \\
\hline 5 & --- & --- & - & - & - & --- & - & --- & - & --- & --- & --- \\
\hline 6 & -- & - & --- & - & --- & - & - & --- & --- & - & - & --- \\
\hline 7 & -- & --- & - & - & --- & --- & - & - & --- & - & --- & -- \\
\hline 8 & - & - & - & -- & --- & --- & --- & -- & -- & --- & --- & -- \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 11 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & - & - \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & - & --- & - & - \\
\hline 13 & --- & -- & - & -- & -- & -- & -- & --- & --- & --- & --- & -- \\
\hline 14 & --- & - & - & --- & - & - & --- & --- & --- & -- & -- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & - & --- & --- & -- \\
\hline 18 & --- & - & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & - & -- & -- & -- & -- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 21 & --- & --- & --- & --- & - & - & --- & --- & --- & --- & --- & -- \\
\hline 22 & -- & - & - & -- & --- & --- & -- & --- & -- & -- & - & --- \\
\hline 23 & --- & - & - & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & -- & -- & -- & -- & -- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 26 & - & --- & - & - & --- & - & --- & --- & --- & --- & -- & -- \\
\hline 27 & --- & - & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & - & - & - & --- & - & - & --- & --- & --- & --- & --- & --- \\
\hline 29 & --- & --- & --- & --- & --- & - & --- & --- & --- & -- & -- & --- \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & --- & --- \\
\hline 31 & - & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & JULY & & & AUGUST & & & PTEMB & \\
\hline 1 & -- & - & --- & 23.1 & 18.5 & 20.7 & --- & -- & --- & 23.0 & 19.8 & 21.1 \\
\hline 2 & --- & --- & - & 23.7 & 18.4 & 21.0 & --- & --- & --- & 22.1 & 20.2 & 21.2 \\
\hline 3 & -- & - & -- & 25.0 & 18.7 & 21.7 & --- & --- & - & 21.8 & 19.1 & 20.3 \\
\hline 4 & --- & --- & - & 24.1 & 20.0 & 21.9 & --- & & --- & 21.8 & 18.9 & 20.0 \\
\hline 5 & - & --- & -- & 23.9 & 20.0 & 21.9 & 24.9 & 21.6 & 22.6 & 23.2 & 21.2 & 21.9 \\
\hline 6 & --- & --- & - & 25.4 & 18.9 & 22.0 & 25.6 & 22.3 & 23.8 & 23.4 & 21.9 & 22.7 \\
\hline 7 & --- & --- & --- & 23.7 & 20.8 & 22.1 & 25.7 & 23.1 & 24.3 & 23.0 & 21.2 & 22.2 \\
\hline 8 & -- & - & - & 24.2 & 20.3 & 22.4 & 25.3 & 22.8 & 24.0 & 23.0 & 17.9 & 20.1 \\
\hline 9 & --- & - & - & 23.8 & 19.4 & 21.6 & 23.9 & 22.5 & 23.0 & 17.9 & 15.6 & 16.6 \\
\hline 10 & 20.7 & 16.0 & 17.7 & 24.3 & 19.1 & 21.7 & 22.9 & 21.3 & 22.2 & 16.6 & 14.4 & 15.6 \\
\hline 11 & 18.0 & 15.3 & 16.8 & 24.7 & 19.6 & 22.0 & 23.2 & 21.8 & 22.4 & 17.1 & 14.8 & 15.9 \\
\hline 12 & 20.2 & 16.1 & 17.9 & 24.8 & 18.2 & 21.3 & 22.9 & 20.9 & 21.9 & 18.1 & 15.8 & 16.8 \\
\hline 13 & 19.4 & 16.4 & 18.1 & 24.0 & 19.4 & 21.3 & 22.0 & 20.1 & 21.2 & 19.3 & 16.7 & 17.7 \\
\hline 14 & 18.1 & 14.8 & 15.8 & 22.6 & 20.4 & 21.0 & 22.0 & 19.0 & 20.6 & 20.4 & 18.1 & 19.0 \\
\hline 15 & 18.3 & 16.0 & 17.1 & 21.5 & 19.8 & 20.5 & 20.7 & 17.7 & 19.0 & 21.2 & 19.6 & 20.3 \\
\hline 16 & 19.4 & 14.9 & 17.0 & 21.3 & 18.9 & 20.2 & 20.1 & 17.9 & 19.1 & 21.3 & 19.3 & 20.2 \\
\hline 17 & 20.6 & 15.1 & 17.7 & 19.6 & 18.5 & 18.9 & 22.6 & 18.4 & 20.2 & 21.6 & 20.3 & 20.9 \\
\hline 18 & 22.3 & 15.9 & 19.0 & --- & -- & --- & 20.9 & 19.3 & 20.4 & 22.0 & 20.6 & 21.3 \\
\hline 19 & 22.6 & 18.0 & 20.3 & --- & --- & --- & --- & --- & --- & 21.7 & 20.6 & 21.2 \\
\hline 20 & 23.1 & 17.8 & 20.4 & --- & --- & -- & --- & -- & --- & 21.8 & 20.6 & 21.2 \\
\hline 21 & 22.1 & 18.8 & 20.3 & --- & --- & --- & --- & --- & --- & 22.1 & 21.1 & 21.5 \\
\hline 22 & 24.2 & 18.9 & 20.7 & --- & --- & --- & --- & --- & --- & 22.2 & 20.9 & 21.7 \\
\hline 23 & 20.8 & 17.6 & 19.1 & --- & --- & --- & 26.6 & 23.3 & 24.2 & 20.9 & 17.3 & 18.7 \\
\hline 24 & 21.7 & 16.8 & 19.1 & --- & --- & --- & 26.1 & 21.2 & 23.5 & 17.3 & 14.8 & 16.2 \\
\hline 25 & 22.3 & 16.8 & 19.5 & --- & --- & --- & 26.6 & 22.1 & 24.1 & 19.6 & 17.1 & 18.0 \\
\hline 26 & 24.0 & 17.8 & 20.8 & --- & --- & --- & 25.8 & 23.2 & 24.3 & 20.2 & 18.4 & 19.3 \\
\hline 27 & 25.3 & 19.1 & 22.1 & & & & 24.2 & 20.6 & 22.3 & 21.2 & 18.7 & 19.9 \\
\hline 28 & 26.0 & 20.1 & 22.9 & -- & -- & --- & 24.1 & 20.3 & 22.1 & 21.2 & 19.9 & 20.6 \\
\hline 29 & 25.3 & 21.1 & 22.9 & --- & --- & --- & 23.9 & 22.3 & 23.1 & 20.6 & 18.8 & 19.6 \\
\hline 30 & 21.9 & 19.8 & 20.8 & --- & -- & - & 23.6 & 20.8 & 22.1 & 20.9 & 19.6 & 20.3 \\
\hline 31 & --- & & --- & --- & --- & --- & 23.4 & 21.1 & 22.3 & --- & , & --- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & 23.4 & 14.4 & 19.7 \\
\hline
\end{tabular}

\section*{KENTUCKY RIVER BASIN}

03285335 MOCKS BRANCH @ HWY 1896 NEAR DANVILLE, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & NOVEMBER & & & DECEMBER & & & JANUARY & \\
\hline 1 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- & --- & --- \\
\hline 5 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & --- & -- & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & --- & -- & - & - & - & --- & --- & -- & -- & -- & --- & --- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 11 & --- & --- & -- & --- & --- & -- & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & - & -- & --- & --- & --- & --- \\
\hline 16 & --- & --- & --- & -- & -- & --- & --- & --- & - & --- & --- & --- \\
\hline 17 & --- & --- & --- & --- & -- & -- & --- & --- & --- & --- & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & -- & --- & - & --- & --- & --- & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & --- & --- & -- & -- & --- & --- & --- & --- & -- & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & --- & -- & --- & -- & --- & --- & --- & --- & --- & -- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 30 & --- & - & --- & - & --- & --- & --- & -- & --- & --- & --- & - \\
\hline 31 & --- & --- & --- & --- & --- & - & --- & --- & --- & --- & --- & -- \\
\hline MONTH & --- & - & --- & - & --- & --- & --- & --- & - & --- & --- & -- \\
\hline DAY & MAX & MIN & MEAN \\
\hline & & FEBRUARY & & & MARCH & & & APRIL & & & MAY & \\
\hline 1 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & - & -- & --- & --- & --- & --- & -- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & --- & --- & --- & - & --- & --- & --- & --- & --- & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- & -- \\
\hline 29 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & --- & --- & - & , & & --- & --- & --- & --- & . & --- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285335 MOCKS BRANCH @ HWY 1896 NEAR DANVILLE, KY--Continued OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & ULY & \multicolumn{4}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & --- & --- & --- & 7.4 & 5.8 & 7.1 & - & - & -- & 6.8 & 5.6 & 6.2 \\
\hline 2 & --- & --- & --- & 9.0 & 6.5 & 7.2 & - & --- & --- & 6.7 & 5.7 & 6.1 \\
\hline 3 & --- & --- & --- & 8.9 & 5.9 & 7.6 & --- & --- & --- & 6.8 & 5.5 & 6.2 \\
\hline 4 & --- & --- & --- & 7.7 & 6.0 & 7.0 & --- & --- & --- & 6.8 & 2.9 & 5.5 \\
\hline 5 & --- & --- & --- & 8.3 & 5.5 & 6.9 & 7.6 & 6.0 & 6.6 & 5.4 & 3.2 & 4.3 \\
\hline 6 & -- & --- & --- & 8.2 & 4.3 & 6.7 & 6.8 & 5.3 & 5.9 & 4.7 & 2.8 & 3.9 \\
\hline 7 & --- & --- & --- & 6.6 & 4.2 & 5.8 & 6.5 & 5.0 & 5.7 & 4.6 & 2.5 & 3.7 \\
\hline 8 & --- & --- & --- & 6.5 & 4.8 & 5.9 & 6.0 & 3.8 & 4.8 & 5.6 & 2.0 & 4.6 \\
\hline 9 & -- & --- & --- & 7.5 & 5.4 & 6.7 & 4.5 & 2.6 & 3.3 & 5.9 & 3.9 & 4.9 \\
\hline 10 & 10.2 & 7.0 & 8.7 & 7.2 & 5.0 & 6.2 & 4.0 & 2.8 & 3.2 & 6.2 & 3.7 & 4.9 \\
\hline 11 & 9.5 & 7.6 & 8.8 & 7.4 & 4.9 & 6.0 & 4.4 & 2.8 & 3.9 & 6.2 & 3.0 & 4.9 \\
\hline 12 & 9.6 & 7.6 & 8.8 & 7.3 & 4.8 & 6.1 & 5.7 & 3.9 & 4.8 & 5.6 & 2.2 & 4.3 \\
\hline 13 & 7.6 & . 8 & 2.0 & 7.3 & 4.0 & 5.6 & 5.4 & 4.3 & 5.0 & 4.9 & 1.5 & 3.8 \\
\hline 14 & 1.1 & . 7 & . 9 & 6.3 & 4.2 & 5.5 & 8.1 & 4.7 & 6.4 & 4.2 & 1.4 & 2.6 \\
\hline 15 & 2.9 & 1.0 & 1.9 & 6.8 & 5.0 & 6.0 & 9.0 & 7.8 & 8.4 & 3.1 & 1.5 & 2.2 \\
\hline 16 & 3.9 & 1.4 & 2.1 & 6.1 & 4.8 & 5.6 & 9.0 & 8.0 & 8.5 & 2.9 & 1.0 & 1.9 \\
\hline 17 & 5.2 & 2.2 & 3.5 & 6.6 & 5.7 & 6.2 & 9.0 & 7.3 & 8.2 & 2.2 & 1.1 & 1.4 \\
\hline 18 & 4.6 & 3.7 & 4.1 & --- & --- & --- & 8.7 & 7.3 & 8.2 & 1.6 & . 8 & 1.2 \\
\hline 19 & 4.3 & 3.8 & 4.1 & --- & --- & --- & --- & --- & - & 1.7 & . 7 & 1.1 \\
\hline 20 & 4.9 & 4.1 & 4.5 & --- & --- & --- & --- & --- & -- & . 8 & . 6 & . 7 \\
\hline 21 & 5.1 & 4.5 & 4.8 & --- & --- & --- & --- & --- & -- & 1.7 & . 6 & . 8 \\
\hline 22 & 5.7 & 3.2 & 4.8 & --- & --- & --- & --- & --- & --- & 1.8 & . 6 & 1.3 \\
\hline 23 & 5.2 & 3.8 & 4.8 & --- & - & -- & 8.3 & 5.8 & 7.9 & - & -- & --- \\
\hline 24 & 5.8 & 5.1 & 5.5 & --- & --- & --- & 8.0 & 6.0 & 6.8 & 2.3 & 1.0 & 1.8 \\
\hline 25 & 6.0 & 5.4 & 5.7 & --- & -- & --- & 7.7 & 5.9 & 6.6 & 2.2 & . 6 & 1.3 \\
\hline 26 & 6.3 & 5.6 & 5.9 & --- & --- & --- & 7.3 & 4.6 & 6.4 & 1.9 & . 5 & 1.1 \\
\hline 27 & 6.5 & 5.8 & 6.1 & --- & -- & --- & 7.6 & 6.0 & 6.7 & 1.3 & . 4 & . 7 \\
\hline 28 & 6.7 & 5.9 & 6.3 & --- & -- & --- & 7.5 & 5.8 & 6.6 & . 6 & . 4 & . 4 \\
\hline 29 & 6.9 & 5.5 & 6.5 & --- & --- & --- & 6.8 & 5.4 & 6.0 & . 5 & . 4 & . 4 \\
\hline 30 & 6.8 & 5.3 & 6.3 & - & --- & --- & 7.0 & 5.8 & 6.3 & . 5 & . 4 & . 4 \\
\hline 31 & --- & --- & --- & - & -- & - & 6.4 & 5.5 & 5.9 & - & --- & --- \\
\hline MONTH & -- & - & --- & - & -- & --- & --- & - & --- & --- & --- & --- \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03285335 MOCKS BRANCH @ HWY 1896 NEAR DANVILLE, KY--Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{OCTOBER} & \multicolumn{3}{|c|}{NOVEMBER} & \multicolumn{3}{|c|}{DECEMBER} & & JANUARY & \\
\hline 1 & --- & --- & --- & 579 & 566 & 574 & --- & --- & - & --- & --- & --- \\
\hline 2 & - & --- & - & 582 & 576 & 580 & - & --- & --- & --- & --- & --- \\
\hline 3 & --- & --- & - & 583 & 578 & 581 & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & 584 & 580 & 582 & -- & - & --- & --- & --- & --- \\
\hline 5 & - & --- & --- & 587 & 582 & 585 & --- & --- & --- & --- & --- & - \\
\hline 6 & -- & --- & --- & 587 & 576 & 580 & --- & --- & --- & --- & --- & - \\
\hline 7 & -- & --- & --- & 578 & 572 & 575 & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & -- & -- & 589 & 574 & 582 & --- & -- & -- & --- & --- & -- \\
\hline 9 & --- & --- & - & 595 & 588 & 591 & -- & --- & --- & --- & --- & -- \\
\hline 10 & --- & -- & --- & 598 & 568 & 592 & --- & --- & --- & --- & --- & --- \\
\hline 11 & --- & --- & --- & 582 & 552 & 565 & --- & -- & --- & - & --- & - \\
\hline 12 & --- & --- & --- & 582 & 578 & 580 & --- & --- & -- & -- & --- & -- \\
\hline 13 & 515 & 508 & 510 & 591 & 579 & 584 & --- & --- & --- & --- & --- & -- \\
\hline 14 & 515 & 502 & 507 & 597 & 590 & 593 & --- & --- & --- & --- & --- & - \\
\hline 15 & 511 & 507 & 509 & 598 & 587 & 591 & --- & --- & --- & --- & --- & -- \\
\hline 16 & 515 & 509 & 512 & 588 & 582 & 584 & - & --- & --- & --- & --- & - \\
\hline 17 & 511 & 502 & 506 & 586 & 582 & 584 & --- & --- & --- & --- & --- & --- \\
\hline 18 & 509 & 503 & 505 & 587 & 584 & 585 & --- & -- & --- & --- & --- & - \\
\hline 19 & 508 & 495 & 499 & 590 & 585 & 587 & --- & --- & --- & --- & --- & -- \\
\hline 20 & 511 & 498 & 505 & --- & --- & - & --- & --- & --- & --- & -- & -- \\
\hline 21 & 512 & 506 & 508 & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 22 & 512 & 505 & 510 & -- & -- & -- & -- & --- & --- & --- & --- & --- \\
\hline 23 & 519 & 511 & 515 & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 24 & 521 & 517 & 519 & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 25 & 526 & 515 & 521 & --- & --- & --- & --- & --- & --- & - & --- & --- \\
\hline 26 & 525 & 518 & 521 & --- & --- & --- & --- & --- & --- & - & --- & - \\
\hline 27 & 524 & 518 & 520 & -- & -- & --- & --- & - & --- & --- & --- & - \\
\hline 28 & 533 & 522 & 526 & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 29 & 544 & 520 & 536 & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 30 & 558 & 543 & 550 & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 31 & 567 & 556 & 562 & --- & --- & --- & - & --- & - & --- & --- & - \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & -- & -- & --- & --- \\
\hline
\end{tabular}

03285335 MOCKS BRANCH @ HWY 1896 NEAR DANVILLE, KY--Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


\section*{KENTUCKY RIVER BASIN}

03285335 MOCKS BRANCH @ HWY 1896 NEAR DANVILLE, KY--Continued


03285335 MOCKS BRANCH @ HWY 1896 NEAR DANVILLE, KY--Continued
PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & JULY & & & AUGUST & & & SEPTEMBER & \\
\hline 1 & - & - & - & --- & --- & --- & - & --- & --- & - & --- & --- \\
\hline 2 & --- & - & --- & -- & --- & --- & -- & --- & --- & -- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & -- & -- & --- & --- & -- & -- \\
\hline 5 & --- & --- & -- & --- & -- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & - & -- & --- & --- & --- & --- & --- & -- & - & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & -- & -- & - & --- & --- & -- & --- & --- \\
\hline 9 & --- & -- & --- & --- & --- & -- & -- & --- & --- & --- & --- & - \\
\hline 10 & --- & --- & - & -- & --- & --- & - & --- & --- & -- & --- & -- \\
\hline 11 & --- & -- & - & - & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 12 & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & -- & --- & --- & --- & --- & --- & --- & -- & --- & -- \\
\hline 15 & --- & - & -- & --- & --- & - & --- & --- & --- & -- & --- & -- \\
\hline 16 & --- & --- & -- & --- & --- & --- & - & --- & --- & --- & --- & --- \\
\hline 17 & --- & -- & -- & -- & - & -- & -- & -- & --- & - & --- & -- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 19 & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 20 & --- & --- & -- & --- & --- & - & -- & --- & --- & -- & --- & -- \\
\hline 21 & -- & --- & -- & --- & --- & -- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 24 & --- & --- & --- & --- & --- & -- & -- & --- & --- & --- & --- & -- \\
\hline 25 & --- & --- & --- & - & --- & -- & - & --- & --- & --- & --- & -- \\
\hline 26 & -- & -- & -- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & --- & --- & -- & --- & -- & -- & -- & --- & --- & --- & --- & -- \\
\hline 29 & - & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & - \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & - & --- & - & -- & --- & --- & --- & --- & --- & --- & - \\
\hline MONTH & --- & --- & -- & --- & -- & - & --- & - & --- & --- & -- & --- \\
\hline
\end{tabular}

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & VEMBER & & & MBER & & & JANUARY & \\
\hline 1 & 20.9 & 16.9 & 19.1 & 13.5 & 12.0 & 12.6 & - & --- & - & -- & -- & - \\
\hline 2 & 16.9 & 14.7 & 15.4 & 12.6 & 11.7 & 12.1 & --- & --- & _-- & --- & --- & --- \\
\hline 3 & 16.8 & 14.3 & 15.4 & 12.0 & 10.0 & 11.1 & --- & --- & --- & --- & --- & --- \\
\hline 4 & 19.6 & 16.8 & 18.0 & 10.0 & 7.7 & 8.7 & - & - & --- & --- & -- & --- \\
\hline 5 & 20.3 & 18.8 & 19.3 & 7.7 & 5.2 & 6.2 & --- & --- & --- & --- & --- & - \\
\hline 6 & 20.6 & 19.6 & 20.0 & 7.0 & 5.6 & 6.3 & --- & -- & - & -- & --- & --- \\
\hline 7 & 20.6 & 18.7 & 19.9 & 7.0 & 5.8 & 6.5 & --- & --- & --- & --- & --- & - \\
\hline 8 & 18.7 & 16.1 & 16.7 & 7.8 & 6.7 & 7.2 & --- & --- & --- & --- & --- & --- \\
\hline 9 & 16.1 & 14.8 & 15.4 & 8.7 & 7.1 & 7.8 & -- & --- & --- & --- & --- & - \\
\hline 10 & 14.8 & 13.0 & 13.9 & 11.7 & 8.7 & 10.0 & --- & --- & --- & --- & --- & --- \\
\hline 11 & 14.4 & 12.4 & 13.5 & 11.6 & 7.7 & 9.4 & --- & --- & --- & --- & --- & - \\
\hline 12 & 14.2 & 12.1 & 13.1 & 7.7 & 5.4 & 6.3 & --- & --- & --- & --- & --- & --- \\
\hline 13 & 14.4 & 13.2 & 13.9 & 7.9 & 6.2 & 6.9 & --- & - & --- & --- & --- & -- \\
\hline 14 & 13.8 & 11.4 & 12.4 & 8.9 & 7.7 & 8.1 & --- & --- & --- & --- & --- & --- \\
\hline 15 & 12.6 & 10.3 & 11.5 & 9.7 & 8.8 & 9.2 & - & - & --- & --- & --- & --- \\
\hline 16 & 13.7 & 11.5 & 12.4 & 8.8 & 6.7 & 7.5 & --- & --- & --- & --- & --- & --- \\
\hline 17 & 14.5 & 12.3 & 13.2 & 8.3 & 7.3 & 7.9 & --- & --- & -- & -- & --- & -- \\
\hline 18 & 16.0 & 14.3 & 14.8 & 7.3 & 5.3 & 6.2 & --- & --- & --- & --- & --- & --- \\
\hline 19 & 16.0 & 14.7 & 15.3 & 9.0 & 7.0 & 7.9 & --- & --- & --- & --- & --- & --- \\
\hline 20 & 14.7 & 12.1 & 12.9 & -- & --- & -- & --- & --- & --- & --- & - & -- \\
\hline 21 & 12.2 & 11.0 & 11.5 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & 11.1 & 9.1 & 9.6 & --- & - & --- & --- & --- & --- & --- & -- & - \\
\hline 23 & 9.2 & 6.9 & 8.0 & - & - & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & 8.9 & 6.6 & 7.6 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & 9.9 & 7.7 & 8.6 & --- & --- & --- & --- & - & - & --- & --- & - \\
\hline 26 & 10.4 & 8.2 & 9.3 & - & - & --- & --- & - & - & - & --- & - \\
\hline 27 & 10.6 & 8.7 & 9.5 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & 12.0 & 9.6 & 10.5 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & 12.9 & 11.5 & 12.0 & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 30 & 14.1 & 12.8 & 13.2 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & 14.1 & 13.3 & 13.6 & -- & -- & -- & - & - & - & --- & --- & - \\
\hline MONTH & 20.9 & 6.6 & 13.5 & -- & -- & --- & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

\section*{KENTUCKY RIVER BASIN}

03285335 MOCKS BRANCH @ HWY 1896 NEAR DANVILLE, KY--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


03285335 MOCKS BRANCH @ HWY 1896 NEAR DANVILLE, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & NOVEMBER & & & DECEMBER & & & JANUARY & \\
\hline 1 & 1.1 & . 4 & . 5 & 1.4 & 1.0 & 1.1 & --- & --- & --- & --- & --- & --- \\
\hline 2 & 1.2 & . 5 & . 6 & 2.1 & 1.2 & 1.6 & --- & --- & --- & --- & --- & -- \\
\hline 3 & 5.4 & . 5 & 3.2 & 2.4 & 1.6 & 1.9 & -- & -- & -- & --- & -- & - \\
\hline 4 & 4.2 & 2.4 & 3.5 & 3.8 & 2.0 & 2.7 & --- & --- & --- & --- & --- & --- \\
\hline 5 & 3.8 & 1.2 & 2.3 & 5.0 & 2.4 & 3.5 & --- & -- & - & --- & - & - \\
\hline 6 & 2.3 & . 3 & 1.3 & 4.2 & 2.6 & 3.3 & -- & --- & --- & --- & --- & - \\
\hline 7 & 2.9 & . 6 & 1.5 & 3.5 & 1.7 & 2.9 & --- & - & --- & --- & - & --- \\
\hline 8 & 4.6 & 2.8 & 3.7 & 3.2 & . 7 & 2.2 & --- & --- & --- & --- & --- & --- \\
\hline 9 & 4.5 & 3.7 & 4.1 & 2.9 & . 6 & 1.8 & -- & --- & --- & --- & --- & - \\
\hline 10 & 4.8 & 3.9 & 4.3 & 1.3 & . 6 & . 8 & --- & --- & --- & --- & -- & --- \\
\hline 11 & 5.0 & 2.8 & 4.2 & 3.7 & 1.3 & 2.1 & -- & --- & --- & --- & --- & -- \\
\hline 12 & 4.7 & 2.0 & 3.8 & 4.8 & 2.6 & 3.7 & --- & --- & --- & -- & --- & -- \\
\hline 13 & 4.3 & 1.9 & 3.5 & 4.9 & 1.4 & 3.4 & --- & --- & --- & --- & --- & --- \\
\hline 14 & 4.5 & 3.2 & 4.1 & 3.6 & 1.1 & 2.2 & -- & --- & --- & --- & --- & -- \\
\hline 15 & 4.8 & 2.8 & 4.1 & 2.7 & 1.2 & 1.8 & - & -- & - & -- & --- & --- \\
\hline 16 & 5.1 & 2.1 & 3.9 & 2.4 & 1.3 & 1.9 & -- & --- & --- & --- & --- & - \\
\hline 17 & 4.5 & 1.7 & 3.3 & 2.8 & 1.2 & 1.8 & -- & -- & --- & --- & --- & --- \\
\hline 18 & 3.6 & 1.1 & 2.2 & 3.5 & 1.5 & 2.6 & --- & --- & --- & --- & --- & --- \\
\hline 19 & 2.8 & 1.3 & 2.1 & 3.2 & 1.5 & 2.0 & --- & --- & --- & -- & --- & --- \\
\hline 20 & 3.7 & 2.6 & 3.2 & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 21 & 4.2 & 2.9 & 3.7 & --- & --- & --- & -- & -- & - & - & -- & --- \\
\hline 22 & 6.0 & 4.1 & 5.1 & --- & --- & - & -- & --- & - & --- & --- & --- \\
\hline 23 & 6.4 & 5.0 & 5.8 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & 6.5 & 3.7 & 5.5 & --- & --- & --- & -- & -- & -- & -- & --- & --- \\
\hline 25 & 6.1 & 3.2 & 5.0 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & 6.2 & 3.4 & 4.9 & --- & --- & --- & -- & -- & - & - & --- & --- \\
\hline 27 & 6.2 & 2.6 & 4.7 & --- & --- & -- & --- & - & - & - & --- & --- \\
\hline 28 & 5.4 & 2.2 & 3.8 & - & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & 3.4 & 1.4 & 2.3 & --- & --- & --- & -- & -- & -- & -- & --- & --- \\
\hline 30 & 2.3 & 1.1 & 1.4 & --- & --- & -- & -- & -- & - & - & --- & --- \\
\hline 31 & 1.4 & 1.0 & 1.1 & - & --- & --- & --- & --- & --- & --- & -- & -- \\
\hline MONTH & 6.5 & . 3 & 3.3 & --- & --- & --- & -- & --- & - & - & --- & --- \\
\hline DAY & MAX & MIN & MEAN \\
\hline & & FEBRUARY & & & MARCH & & & APRIL & & & MAY & \\
\hline 1 & - & --- & - & --- & -- & -- & -- & --- & -- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & --- & --- \\
\hline 3 & --- & --- & --- & - & - & --- & -- & -- & -- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & --- & -- & - & --- & --- & - & --- & - & --- & --- & --- & --- \\
\hline 6 & --- & --- & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & -- & --- & -- & --- & --- & -- & --- & --- & --- \\
\hline 8 & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- \\
\hline 9 & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & --- & --- & --- & -- & -- & -- & -- & --- & -- & --- \\
\hline 11 & --- & --- & -- & --- & - & --- & --- & -- & --- & -- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & -- & - & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & -- & --- & --- & -- & --- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 18 & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & -- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & -- & --- & -- & - & --- & --- \\
\hline 23 & - & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 24 & --- & --- & --- & --- & --- & -- & - & - & - & --- & - & -- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & -- & -- & --- & --- & -- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 28 & -- & --- & --- & --- & --- & --- & --- & --- & --- & --- & - & - \\
\hline 29 & --- & --- & --- & --- & --- & --- & - & - & -- & --- & - & -- \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & --- & --- & -- & --- & -- & - & --- & -- & --- & --- & --- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

\section*{KENTUCKY RIVER BASIN}

03285335 MOCKS BRANCH @ HWY 1896 NEAR DANVILLE, KY--Continued OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & JULY & & & AUGUST & & & SEPTEMBER & \\
\hline 1 & --- & --- & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & --- & --- & --- & - & --- & --- & - & --- & --- & --- & --- & --- \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- \\
\hline MONTH & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline
\end{tabular}

03286500 KENTUCKY RIVER AT LOCK 7 NEAR HIGH BRIDGE, KY
LOCATION.--Lat \(37^{\circ} 48^{\prime} 53^{\prime \prime}\), long \(84^{\circ} 43^{\prime} \mathbf{2 6 "}^{\prime \prime}\), Jessamine County, Hydrologic Unit 05100205, on right bank at Lock 7 , 0.45 mi northwest of High Bridge, 1.2 mi downstream from Dix River, 3.8 mi upstream of U.S. Highway 68 bridge, and at mile 117 .
DRAINAGE AREA. \(--5,036 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1901 to September 1924 (gage-heights only), monthly discharge October 1924 to September 1927, December 1992 to current year.

GAGE.--Water-stage recorder. Datum of gage is 503.92 ft above sea level, Kentucky River datum.
REMARKS.--Estimated daily discharges: Oct. 1 to Sept. 30. Record fair above 1,000 ft \(3 / \mathrm{s}\) and poor below.
Daily discharges determined by drainage area factors to Lock 6 and Lock 10 records. Flow regulated since November 1925 by Herrington Lake, since December 1960 by Buckhorn Lake, since January 1976 by Carr Fork Lake, and by hydroelectric plant at lock 7 .

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 342 & 273 & 473 & 3340 & 11200 & 5850 & 3420 & 10400 & 620 & 690 & 360 & 339 \\
\hline 2 & 321 & 282 & 560 & 3280 & 14400 & 10200 & 3010 & 6850 & 394 & 805 & 343 & 296 \\
\hline 3 & 357 & 288 & 384 & 5800 & 13100 & 14400 & 2980 & 4980 & 460 & 810 & 319 & 263 \\
\hline 4 & 550 & 296 & 505 & 8300 & 11400 & 21100 & 2960 & 3940 & 477 & 700 & 316 & 209 \\
\hline 5 & 482 & 321 & 360 & 8650 & 9500 & 24200 & 2850 & 3290 & 488 & 590 & 325 & 174 \\
\hline 6 & 455 & 359 & 312 & 7200 & 7900 & 22000 & 2770 & 3040 & 505 & 570 & 318 & 146 \\
\hline 7 & 444 & 437 & 500 & 5450 & 6800 & 17900 & 2520 & 3590 & 550 & 540 & 294 & 134 \\
\hline 8 & 515 & 515 & 1850 & 6450 & 6100 & 14900 & 2300 & 4640 & 580 & 496 & 270 & 128 \\
\hline 9 & 565 & 580 & 3730 & 35800 & 5550 & 13000 & 2200 & 5200 & 358 & 432 & 259 & 126 \\
\hline 10 & 585 & 630 & 5300 & 50500 & 5000 & 13200 & 2220 & 5350 & 384 & 378 & 242 & 118 \\
\hline 11 & 645 & 685 & 5200 & 48700 & 4570 & 13200 & 2360 & 4700 & 412 & 336 & 221 & 114 \\
\hline 12 & 650 & 750 & 3800 & 30400 & 4720 & 12000 & 2630 & 3560 & 376 & 308 & 206 & 106 \\
\hline 13 & 615 & 770 & 3180 & 15000 & 7300 & 10400 & 3590 & 2900 & 352 & 293 & 190 & 114 \\
\hline 14 & 545 & 805 & 6950 & 11600 & 8100 & 12200 & 4490 & 2920 & 398 & 283 & 170 & 142 \\
\hline 15 & 486 & 825 & 12400 & 12400 & 7600 & 25400 & 4390 & 2630 & 422 & 271 & 138 & 139 \\
\hline 16 & 437 & 805 & 10300 & 14400 & 7250 & 26000 & 4000 & 2220 & 441 & 265 & 154 & 128 \\
\hline 17 & 396 & 760 & 6150 & 15700 & 6800 & 23800 & 4320 & 1920 & 458 & 257 & 196 & 128 \\
\hline 18 & 360 & 730 & 3780 & 16200 & 6250 & 19300 & 4620 & 1590 & 448 & 248 & 222 & 124 \\
\hline 19 & 360 & 685 & 2870 & 16000 & 5700 & 16000 & 4260 & 1540 & 413 & 260 & 212 & 114 \\
\hline 20 & 352 & 660 & 2380 & 17000 & 5350 & 13400 & 3850 & 1300 & 367 & 296 & 192 & 142 \\
\hline 21 & 378 & 600 & 2060 & 16400 & 4940 & 10600 & 3580 & 1180 & 345 & 334 & 174 & 126 \\
\hline 22 & 325 & 535 & 2520 & 13700 & 4560 & 8650 & 3370 & 1340 & 320 & 339 & 154 & 127 \\
\hline 23 & 304 & 475 & 3720 & 16800 & 4510 & 7500 & 3220 & 1210 & 290 & 350 & 145 & 126 \\
\hline 24 & 274 & 456 & 3900 & 29100 & 3690 & 7200 & 2910 & 1220 & 292 & 400 & 147 & 129 \\
\hline 25 & 254 & 444 & 3540 & 35400 & 3320 & 7250 & 2740 & 1360 & 294 & 448 & 178 & 125 \\
\hline 26 & 246 & 492 & 2960 & 30300 & 3330 & 6200 & 2600 & 1380 & 273 & 500 & 366 & 130 \\
\hline 27 & 240 & 525 & 2400 & 19000 & 3380 & 4960 & 2740 & 1350 & 268 & 510 & 860 & 143 \\
\hline 28 & 248 & 520 & 2200 & 13800 & 3860 & 4180 & 3700 & 1210 & 336 & 510 & 880 & 158 \\
\hline 29 & 254 & 499 & 2360 & 11800 & --- & 3760 & 8400 & 995 & 560 & 473 & 740 & 172 \\
\hline 30 & 258 & 484 & 2550 & 10000 & --- & 3540 & 12900 & 825 & 615 & 425 & 510 & 168 \\
\hline 31 & 262 & --- & 3220 & 8100 & - & 3520 & --- & 730 & --- & 383 & 398 & --- \\
\hline TOTAL & 12505 & 16486 & 102414 & 536570 & 186180 & 395810 & 111900 & 89360 & 12496 & 13500 & 9499 & 4588 \\
\hline MEAN & 403 & 550 & 3304 & 17310 & 6649 & 12770 & 3730 & 2883 & 417 & 435 & 306 & 153 \\
\hline MAX & 650 & 825 & 12400 & 50500 & 14400 & 26000 & 12900 & 10400 & 620 & 810 & 880 & 339 \\
\hline MIN & 240 & 273 & 312 & 3280 & 3320 & 3520 & 2200 & 730 & 268 & 248 & 138 & 106 \\
\hline \multicolumn{2}{|l|}{STATISTICS OF} & \multicolumn{2}{|l|}{MONTHLY MEAN DATA} & FOR WATER & \multicolumn{2}{|l|}{YEARS 1993 - 1999} & \multicolumn{3}{|l|}{BY WATER YEAR (WY)} & & & \\
\hline MEAN & 1392 & 3518 & 6376 & 13280 & 12240 & 18350 & 11290 & 9924 & 6463 & 2011 & 1353 & 832 \\
\hline MAX & 3052 & 9309 & 12670 & 22370 & 26380 & 29500 & 21390 & 22020 & 18360 & 4867 & 2946 & 2020 \\
\hline (WY) & 1994 & 1997 & 1994 & 1994 & 1994 & 1997 & 1994 & 1995 & 1997 & 1998 & 1993 & 1996 \\
\hline MIN & 324 & 550 & 1803 & 7605 & 6649 & 9065 & 3730 & 2835 & 417 & 435 & 306 & 153 \\
\hline (WY) & 1998 & 1999 & 1998 & 1998 & 1999 & 1998 & 1999 & 1993 & 1999 & 1999 & 1999 & 1999 \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03286500 KENTUCKY RIVER AT LOCK 7 NEAR HIGH BRIDGE, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CAL & R YEAR & \multicolumn{2}{|l|}{FOR 1999 WATER YEAR} & \multicolumn{4}{|l|}{WATER YEARS 1993-1999} \\
\hline ANNUAL TOTAL & 2546663 & & 1491308 & & & & & \\
\hline ANNUAL MEAN & 6977 & & 4086 & & 7232 & & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 11250 & & & 1994 \\
\hline LOWEST ANNUAL MEAN & & & & & 4086 & & & 1999 \\
\hline HIGHEST DAILY MEAN & 59000 & Apr 20 & 50500 & Jan 10 & 87900 & Mar & 2 & 1997 \\
\hline LOWEST DAILY MEAN & 224 & Sep 9 & 106 & Sep 12 & 106 & Sep & 12 & 1999 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 252 & Oct 25 & 120 & Sep 7 & 120 & Sep & 7 & 1999 \\
\hline INSTANTANEOUS PEAK FLOW & & & 51400 & Jan 11 & 92800 & Mar & 10 & 1994 \\
\hline INSTANTANEOUS PEAK STAGE & & & 22.52 & Jan 11 & 37.90 & Mar & 10 & 1994 \\
\hline 10 PERCENT EXCEEDS & 17200 & & 12600 & & 18700 & & & \\
\hline 50 PERCENT EXCEEDS & 3800 & & 760 & & 3100 & & & \\
\hline 90 PERCENT EXCEEDS & 364 & & 194 & & 460 & & & \\
\hline
\end{tabular}


LOCATION.--Lat \(37^{\circ} 55^{\prime} 32^{\prime \prime}\), long \(84^{\circ} 49^{\prime} 17^{\prime \prime}\), Woodford County, Hydrologic Unit 05100205, on right bank at lock 6 , 1.5 mi upstream from Clear Creek, \(2.1^{\prime} \mathrm{mi}\) east of Salvisa, and at mile 96.2.
DRAINAGE AREA. \(-5,102 \mathrm{mi}^{2}\), of which about \(101 \mathrm{mi}^{2}\) does not contribute directly to surface runoff.
PERIOD OF RECORD.--October 1925 to current year. Prior to October 1953, published as "at lock 6, at Warwick."
REVISED RECORDS. --WSP 1385: 1926-27, 1928 (M), 1929, 1931 (M), 1932, 1933-34 (M), 1935, 1937, drainage area.
GAGE.--Water-stage recorder. Datum of gage is 489.90 ft Kentucky River datum. Prior to November 1934 , nonrecording gage at same site and datum. Auxiliary water-stage recorder at lock 5, 14 mi downstream. Prior to Sept. 30 , 1981 , nonrecording gage at same site and datum.

REMARKS.--Records good above \(1000 \mathrm{ft} 3 / \mathrm{s}\), fair below. Flow regulated since November 1925 by Herrington Lake, since December 1960 by Buckhorn Lake, since January 1976 by Carr Fork Lake, and by hydroelectric plant at lock 7.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
DAILY MEAN VALUES


KENTUCKY RIVER BASIN
03287000 KENTUCKY RIVER AT LOCK 6, NEAR SALVISA, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CA & R YEAR & \multicolumn{2}{|l|}{FOR 1999 WATER YEAR} & \multicolumn{3}{|l|}{WATER YEARS 1961 - 1999} \\
\hline ANNUAL TOTAL & 2693628 & & 1563684 & & & & \\
\hline ANNUAL MEAN & 7380 & & 4284 & & 6984 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 11050 & & 1994 \\
\hline LOWEST ANNUAL MEAN & & & & & 2826 & & 1988 \\
\hline HIGHEST DAILY MEAN & 57300 & Apr 20 & 50300 & Jan 11 & 125000 & Dec 10 & 1978 \\
\hline LOWEST DAILY MEAN & 166 & Sep 9 & 146 & Sep 19 & 83 & Sep 4 & 1984 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 254 & Oct 25 & 158 & Sep 6 & 112 & Nov 8 & 1991 \\
\hline INSTANTANEOUS PEAK FLOW & & & 50900 & Jan 9 & 144000 & Dec 10 & 1978 \\
\hline INSTANTANEOUS PEAK STAGE & & & 21.38 & Jan 9 & 49.04 & Dec 10 & 1978 \\
\hline 10 PERCENT EXCEEDS & 19600 & & 13000 & & 17800 & & \\
\hline 50 PERCENT EXCEEDS & 3990 & & 818 & & 3040 & & \\
\hline 90 PERCENT EXCEEDS & 393 & & 218 & & 470 & & \\
\hline
\end{tabular}


03287500 KENTUCKY RIVER AT LOCK 4, AT FRANKFORT, KY
LOCATION.--Lat \(38^{\circ} 12^{\prime} 06^{\prime \prime}\), long \(84^{\circ} 52^{\prime} 5^{\prime \prime}\), Franklin County, Hydrologic Unit 05100205 , on left bank at downstream side of Broadway Street Bridge at Frankfort, 300 ft upstream from Benson Creek, 0.8 mi upstream from lock 4, and at mile 65.8 . Records include flow of Benson Creek.
DRAINAGE AREA. \(--5,411 \mathrm{mi}^{2}\), (includes that of Benson Creek), of which about 120 mi \({ }^{2}\) does not contribute directly to surface runoff.

PERIOD OF RECORD.--March 1905 to July 1906 (gage heights only), October 1925 to current year. Monthly discharge only October 1930 to February 1931, October, November 1931, and May to September 1932, published in WSP 1305. Gage-height records collected in this vicinity September 1887 to December 1889, January to May 1893, and since April 1901 are contained in reports of the National Weather Service.
REVISED RECORDS.--WSP 1113: 1941-42. WSP 1385: 1926-27, 1929 (M), 1932-33, 1935-37, 1938 (M), drainage area. WSP 1555: 1932 (M).
GAGE.--Water-stage recorder. Datum of gage is 462.10 ft above sea level. See WDR KY-90-1 for history of changes prior to Jan. 28, 1982.

REMARKS.--Record fair above \(1,000 \mathrm{ft} 3 / \mathrm{s}\) and poor below. Flow regulated since November 1925 by Herrington Lake, since December 1960 by Buckhorn Lake, since January 1976 by Carr Fork Lake, and by hydroelectric plant at lock 7 .

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 340 & 277 & 452 & 3260 & 15800 & 5670 & 4080 & 12600 & 672 & 1180 & 508 & 523 \\
\hline 2 & 331 & 276 & 528 & 3380 & 20200 & 8600 & 3170 & 8580 & 321 & 1130 & 473 & 424 \\
\hline 3 & 428 & 297 & 536 & 7820 & 17200 & 14400 & 2990 & 6040 & 370 & 1600 & 424 & 369 \\
\hline 4 & 921 & 301 & 454 & 9280 & 14700 & 23600 & 2950 & 4560 & 434 & 1500 & 388 & 310 \\
\hline 5 & 781 & 305 & 512 & 9880 & 12200 & 26900 & 2810 & 3670 & 433 & 1150 & 349 & 263 \\
\hline 6 & 609 & 311 & 286 & 9060 & 10100 & 27400 & 2990 & 3300 & 440 & 909 & 311 & 234 \\
\hline 7 & 600 & 354 & 406 & 6870 & 8920 & 22300 & 2700 & 3340 & 479 & 791 & 317 & 197 \\
\hline 8 & 747 & 400 & 1900 & 7600 & 7920 & 18600 & 2360 & 4190 & 641 & 747 & 353 & 168 \\
\hline 9 & 826 & 525 & 3960 & 38700 & 7190 & 17700 & 2140 & 5370 & 324 & 693 & 349 & 169 \\
\hline 10 & 752 & 737 & 5510 & 49200 & 6550 & 16900 & 2070 & 5680 & 340 & 595 & 305 & 164 \\
\hline 11 & 660 & 796 & 6770 & 49800 & 5920 & 16000 & 2050 & 5680 & 443 & 537 & 278 & 167 \\
\hline 12 & 730 & 885 & 5590 & 41300 & 6360 & 14400 & 2130 & 4420 & 434 & 486 & 253 & 182 \\
\hline 13 & 798 & 863 & 4310 & 21500 & 8270 & 12600 & 2650 & 3330 & 429 & 441 & 237 & 186 \\
\hline 14 & 713 & 843 & 5700 & 15500 & 9770 & 13300 & 3850 & 2790 & 485 & 378 & 232 & 180 \\
\hline 15 & 595 & 876 & 11800 & 14200 & 9100 & 30200 & 4800 & 3070 & 482 & 341 & 226 & 172 \\
\hline 16 & 524 & 899 & 13700 & 15500 & 8850 & 30400 & 4110 & 2580 & 429 & 304 & 231 & 162 \\
\hline 17 & 467 & 876 & 9040 & 17600 & 8230 & 28800 & 3920 & 2140 & 413 & 294 & 208 & 157 \\
\hline 18 & 410 & 844 & 5430 & 18800 & 7230 & 24300 & 4460 & 1760 & 412 & 286 & 202 & 168 \\
\hline 19 & 405 & 804 & 3670 & 19400 & 6180 & 20000 & 4520 & 1710 & 423 & 273 & 198 & 176 \\
\hline 20 & 412 & 695 & 2920 & 18400 & 5640 & 17100 & 4100 & 1350 & 388 & 270 & 184 & 182 \\
\hline 21 & 430 & 710 & 2420 & 20200 & 5310 & 13900 & 3580 & 847 & 342 & 297 & 190 & 198 \\
\hline 22 & 385 & 705 & 3780 & 17200 & 4890 & 10900 & 3320 & 1330 & 298 & 388 & 191 & 184 \\
\hline 23 & 355 & 635 & 4550 & 21500 & 5390 & 9940 & 3310 & 1190 & 264 & 463 & 196 & 171 \\
\hline 24 & 308 & 529 & 4720 & 31500 & 4050 & 9280 & 3000 & 1170 & 284 & 479 & 215 & 166 \\
\hline 25 & 266 & 470 & 4350 & 35500 & 3240 & 9410 & 2780 & 1290 & 304 & 453 & 237 & 177 \\
\hline 26 & 242 & 521 & 3730 & 35600 & 3160 & 8210 & 2770 & 1350 & 333 & 512 & 213 & 176 \\
\hline 27 & 222 & 542 & 2970 & 25600 & 3230 & 6330 & 2800 & 1280 & 519 & 635 & 214 & 177 \\
\hline 28 & 230 & 558 & 2510 & 17200 & 4710 & 4830 & 2920 & 1260 & 2310 & 708 & 765 & 162 \\
\hline 29 & 225 & 519 & 2860 & 14100 & --- & 4100 & 6070 & 1090 & 4190 & 724 & 1470 & 128 \\
\hline 30 & 236 & 491 & 2750 & 12100 & --- & 3840 & 8000 & 893 & 1290 & 644 & 1080 & 123 \\
\hline 31 & 263 & --- & 3230 & 10700 & --- & 4050 & --- & 778 & --- & 575 & 733 & --- \\
\hline TOTAL & 15211 & 17844 & 121344 & 618250 & 230310 & 473960 & 103400 & 98638 & 18926 & 19783 & 11530 & 6215 \\
\hline MEAN & 491 & 595 & 3914 & 19940 & 8225 & 15290 & 3447 & 3182 & 631 & 638 & 372 & 207 \\
\hline MAX & 921 & 899 & 13700 & 49800 & 20200 & 30400 & 8000 & 12600 & 4190 & 1600 & 1470 & 523 \\
\hline MIN & 222 & 276 & 286 & 3260 & 3160 & 3840 & 2050 & 778 & 264 & 270 & 184 & 123 \\
\hline \multicolumn{2}{|l|}{STATISTICS OF} & \multicolumn{8}{|l|}{MONTHLY MEAN DATA FOR WATER YEARS 1961 - 1999, BY WATER YEAR (WY)} & & & \\
\hline MEAN & 2033 & 4418 & 9471 & 11800 & 13110 & 16150 & 12010 & 8748 & 4772 & 2334 & 2035 & 1808 \\
\hline MAX & 13240 & 13700 & 33220 & 33500 & 35680 & 34760 & 36690 & 28200 & 20840 & 6446 & 6433 & 10980 \\
\hline (WY) & 1990 & 1987 & 1979 & 1974 & 1989 & 1975 & 1972 & 1983 & 1997 & 1998 & 1992 & 1974 \\
\hline MIN & 289 & 542 & 566 & 540 & 2885 & 4175 & 1518 & 1142 & 417 & 568 & 336 & 207 \\
\hline (WY) & 1981 & 1966 & 1966 & 1981 & 1968 & 1983 & 1986 & 1976 & 1988 & 1970 & 1986 & 1999 \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03287500 KENTUCKY RIVER AT LOCK 4, AT FRANKFORT, KY--Continued



03287580 NORTH ELKHORN CREEK AT BRYANT ROAD NEAR CADENTOWN, KY
LOCATION.--Lat \(38^{\circ} 01^{\prime} 42^{\prime \prime}\), long \(8^{\circ} 2^{\prime} 4^{\prime} 07\) ", Fayette County, Hydrologic Unit 05100205 , on right bank, downstream side of bridge on Bryant Road, 0.7 miles northeast of intersection with I-75, 1.6 miles southeast of intersection of US 60 (Winchester Road), 1.8 miles northeast of Cadentown, and at mile 90.3.

DRAINAGE AREA. \(--2.20 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1997 to current year.
GAGE.--Water-stage recorder. Datum of gage is 942.109 ft above sea level.
REMARKS.--Records fair except for those below \(2.0 \mathrm{ft} 3 / \mathrm{s}\) and those estimated, which are poor.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 00 & . 02 & . 06 & e. 58 & 18 & 5.3 & . 88 & . 54 & . 00 & . 04 & . 00 & . 00 \\
\hline 2 & . 00 & . 02 & . 05 & 2.6 & 13 & 4.4 & 1.9 & . 47 & . 07 & . 07 & . 00 & . 00 \\
\hline 3 & . 94 & . 02 & . 04 & 9.4 & 7.3 & 9.3 & 1.8 & . 41 & . 07 & . 10 & . 00 & . 00 \\
\hline 4 & . 70 & . 02 & . 03 & 6.2 & 5.1 & 7.7 & 1.7 & . 33 & . 02 & . 05 & . 00 & . 00 \\
\hline 5 & . 24 & . 02 & . 08 & e3.5 & 3.8 & 5.5 & 1.4 & . 50 & . 00 & . 02 & . 00 & . 00 \\
\hline 6 & . 08 & . 02 & . 08 & e3.0 & 3.3 & 5.0 & . 49 & 1.3 & . 00 & . 00 & . 00 & . 00 \\
\hline 7 & 1.8 & . 01 & 1.9 & e2.7 & 3.3 & 3.9 & . 43 & . 71 & . 00 & . 00 & . 00 & . 00 \\
\hline 8 & 2.0 & . 02 & 5.1 & e15 & 2.9 & 3.5 & . 41 & . 34 & . 00 & . 00 & . 00 & . 00 \\
\hline 9 & . 68 & . 02 & 3.7 & 40 & 2.7 & 8.3 & . 55 & . 21 & . 01 & . 00 & . 00 & . 00 \\
\hline 10 & . 25 & . 26 & 1.7 & 8.1 & 2.6 & 9.3 & . 59 & . 15 & . 00 & . 01 & . 00 & . 00 \\
\hline 11 & . 12 & . 35 & . 86 & 4.4 & 2.6 & 6.3 & . 62 & . 12 & . 00 & . 01 & . 00 & . 00 \\
\hline 12 & . 07 & . 10 & . 62 & 3.3 & 5.2 & 4.7 & . 55 & . 11 & . 00 & . 00 & . 00 & . 00 \\
\hline 13 & . 04 & . 06 & 6.3 & 3.0 & 5.6 & 3.8 & . 50 & . 12 & . 00 & . 00 & . 00 & . 00 \\
\hline 14 & . 03 & . 04 & 5.7 & 4.0 & 4.5 & 14 & . 56 & . 11 & . 05 & . 00 & . 00 & . 00 \\
\hline 15 & . 02 & . 03 & 3.4 & 4.1 & 4.1 & 13 & 1.1 & . 11 & . 06 & . 00 & . 00 & . 00 \\
\hline 16 & . 01 & . 02 & 2.1 & 3.5 & 3.8 & 7.0 & 1.3 & . 10 & . 02 & . 00 & . 00 & . 00 \\
\hline 17 & . 01 & . 01 & 1.6 & 3.3 & 3.9 & 4.8 & 1.0 & . 08 & . 00 & . 00 & . 00 & . 00 \\
\hline 18 & . 01 & . 01 & 1.2 & 5.8 & 3.6 & 3.6 & . 73 & . 06 & . 00 & . 00 & . 00 & . 00 \\
\hline 19 & . 05 & . 01 & 1.0 & 4.7 & 3.3 & 3.0 & . 88 & . 06 & . 00 & . 00 & . 00 & . 00 \\
\hline 20 & . 05 & . 05 & . 91 & 3.6 & 3.1 & 2.8 & . 76 & . 04 & . 00 & . 00 & . 00 & . 00 \\
\hline 21 & . 04 & . 08 & . 90 & 3.1 & 2.9 & 2.6 & . 93 & . 01 & . 00 & . 15 & . 00 & . 00 \\
\hline 22 & . 03 & . 06 & 5.5 & 3.2 & 2.7 & 2.3 & . 61 & . 00 & . 00 & . 04 & . 00 & . 00 \\
\hline 23 & . 02 & . 04 & 4.6 & 13 & 2.7 & 4.0 & . 44 & . 00 & . 00 & . 00 & . 00 & . 00 \\
\hline 24 & . 02 & . 03 & e3.0 & 11 & 2.6 & 4.7 & . 46 & . 05 & . 00 & . 00 & . 00 & . 00 \\
\hline 25 & . 02 & . 24 & e1.8 & 6.2 & 3.0 & 3.7 & . 30 & . 06 & . 00 & . 00 & . 00 & . 00 \\
\hline 26 & . 01 & 1.1 & e1.2 & 4.4 & 3.0 & 3.1 & . 64 & . 04 & . 00 & . 00 & . 00 & . 00 \\
\hline 27 & . 01 & . 41 & e. 90 & 3.5 & 3.2 & 2.8 & . 77 & . 02 & . 00 & . 00 & . 00 & . 00 \\
\hline 28 & . 02 & . 19 & e. 78 & 2.9 & 5.4 & 2.5 & 1.8 & . 00 & . 18 & . 00 & . 00 & . 00 \\
\hline 29 & . 03 & . 10 & e. 72 & 2.6 & --- & 2.3 & 2.1 & . 00 & . 24 & . 00 & . 00 & . 00 \\
\hline 30 & . 02 & . 07 & e. 66 & 2.3 & - & 2.1 & . 85 & . 00 & . 11 & . 00 & . 00 & . 00 \\
\hline 31 & . 02 & --- & e. 61 & 3.7 & --- & 1.6 & --- & . 00 & --- & . 00 & . 00 & - \\
\hline TOTAL & 7.34 & 3.43 & 57.10 & 186.68 & 127.2 & 156.9 & 27.05 & 6.05 & 0.83 & 0.49 & 0.00 & 0.00 \\
\hline MEAN & . 24 & . 11 & 1.84 & 6.02 & 4.54 & 5.06 & . 90 & . 20 & . 028 & . 016 & . 000 & . 000 \\
\hline MAX & 2.0 & 1.1 & 6.3 & 40 & 18 & 14 & 2.1 & 1.3 & . 24 & . 15 & . 00 & . 00 \\
\hline MIN & . 00 & . 01 & . 03 & . 58 & 2.6 & 1.6 & . 30 & . 00 & . 00 & . 00 & . 00 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1998 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrrrr} 
MEAN & .16 & .31 & 1.53 & 6.19 & 5.69 & 4.46 & 3.54 & 2.73 & 3.82 & 3.11 & .041 & .038 \\
MAX & .24 & .50 & 1.84 & 6.35 & 6.84 & 5.06 & 6.19 & 5.27 & 7.61 & 6.20 & .082 & .076 \\
(WY) & 1999 & 1998 & 1999 & 1998 & 1998 & 1999 & 1998 & 1998 & 1998 & 1998 & 1998 & 1998 \\
MIN & .076 & .11 & 1.21 & 6.02 & 4.54 & 3.86 & .90 & .20 & .028 & .016 & .000 & .000 \\
(WY) & 1998 & 1999 & 1998 & 1999 & 1999 & 1998 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999
\end{tabular}

KENTUCKY RIVER BASIN
03287580 NORTH ELKHORN CREEK AT BRYANT ROAD NEAR CADENTOWN, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALENDAR YEAR & FOR 1999 WATER YEAR & WATER YEARS & 1998 - & 1999 \\
\hline ANNUAL TOTAL & 1350.09 & 573.07 & & & \\
\hline ANNUAL MEAN & 3.70 & 1.57 & 2.62 & & \\
\hline HIGHEST ANNUAL MEAN & & & 3.66 & & 1998 \\
\hline LOWEST ANNUAL MEAN & & & 1.57 & & 1999 \\
\hline HIGHEST DAILY MEAN & 89 Jul 20 & 40 Jan 9 & 89 & Jul 20 & 1998 \\
\hline LOWEST DAILY MEAN & . 00 Aug 21 & . 00 Oct 1 & . 00 & Oct 1 & 1997 \\
\hline ANNUAL SEVEN-DAY MINIMUM & . 00 Aug 21 & . 00 Jun 17 & . 00 & Oct 1 & 1997 \\
\hline INSTANTANEOUS PEAK FLOW & & 102 Jan 9 & 281 & Jun 29 & 1998 \\
\hline INSTANTANEOUS PEAK STAGE & & 3.17 Jan 9 & 5.11 & Jun 29 & 1998 \\
\hline INSTANTANEOUS LOW FLOW & & . 00 Oct 1 & & & \\
\hline 10 PERCENT EXCEEDS & 8.2 & 4.5 & 6.4 & & \\
\hline 50 PERCENT EXCEEDS & 1.4 & . 08 & . 59 & & \\
\hline 90 PERCENT EXCEEDS & . 00 & . 00 & . 00 & & \\
\hline
\end{tabular}
e Estimated


03287590 NORTH ELKHORN CREEK AT WINCHESTER ROAD AT LEXINGTON, KY
LOCATION.--Lat \(38^{\circ} 02^{\prime} 54^{\prime \prime}\), long \(84^{\circ} 24^{\prime} 40^{\prime \prime}\), Fayette County, Hydrologic Unit 05100205, on right bank, downstream side of culvert on Winchester Road (US 60), 0.5 miles east of I-75, 0.8 miles west of intersection with Bryant Road (1425), 2.2 miles east of Lexington, and at mile 89.1.
DRAINAGE AREA. \(-4.05 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1997 to current year.
GAGE.--Water-stage recorder. Elevation of gage is 921.258 ft above sea level.
REMARKS.--Records fair except for discharges below \(5.0 \mathrm{ft} 3 / \mathrm{s}\) and for periods of estimated record, which are poor.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 03 & . 33 & . 39 & 1.1 & 45 & 13 & 2.5 & . 88 & . 57 & . 57 & . 31 & . 00 \\
\hline 2 & . 03 & . 34 & . 19 & 11 & 27 & 8.9 & 2.7 & . 60 & 1.9 & 2.4 & . 11 & . 00 \\
\hline 3 & 8.3 & . 71 & . 17 & 21 & 17 & 25 & 2.6 & . 49 & . 48 & 1.0 & . 03 & . 00 \\
\hline 4 & 3.4 & . 37 & . 16 & 11 & 11 & 19 & 2.5 & . 39 & . 19 & . 42 & . 02 & . 00 \\
\hline 5 & . 76 & . 42 & 1.6 & e6.0 & 7.1 & 14 & 2.3 & 1.6 & . 09 & . 20 & . 01 & . 00 \\
\hline 6 & . 29 & . 28 & . 34 & e4.0 & 5.9 & 13 & 2.3 & 3.6 & . 07 & . 15 & . 01 & . 00 \\
\hline 7 & 13 & . 26 & 10 & 3.0 & 8.7 & 8.1 & . 93 & . 77 & . 05 & . 10 & . 00 & . 00 \\
\hline 8 & 5.0 & . 29 & 11 & 47 & 7.0 & 6.4 & . 82 & . 47 & . 05 & . 06 & . 00 & . 00 \\
\hline 9 & 1.0 & . 55 & 4.1 & 85 & 6.2 & 23 & 1.2 & . 41 & . 05 & . 05 & . 11 & . 00 \\
\hline 10 & . 42 & 5.7 & 1.8 & 21 & 5.8 & 22 & . 74 & . 34 & . 05 & 1.9 & . 03 & . 00 \\
\hline 11 & . 26 & 1.3 & 1.1 & 11 & 5.7 & 15 & . 56 & . 23 & . 04 & . 43 & . 03 & . 00 \\
\hline 12 & . 20 & . 37 & 1.7 & 7.0 & 17 & 10 & . 42 & . 20 & . 03 & . 18 & . 02 & . 00 \\
\hline 13 & . 19 & . 23 & 17 & 6.9 & 14 & 7.0 & . 38 & . 24 & . 29 & . 13 & . 01 & . 00 \\
\hline 14 & . 21 & . 17 & 7.1 & 12 & 9.9 & 38 & . 34 & . 22 & 3.3 & . 08 & . 00 & . 00 \\
\hline 15 & . 22 & . 15 & 3.3 & 10 & 8.4 & 29 & 2.9 & . 41 & . 68 & . 06 & . 00 & . 00 \\
\hline 16 & . 20 & . 12 & 2.4 & 7.7 & 7.0 & 17 & 1.3 & . 17 & . 34 & . 05 & . 00 & . 00 \\
\hline 17 & . 19 & . 19 & 2.2 & 8.0 & 8.6 & 12 & . 64 & . 13 & . 24 & . 03 & . 00 & . 00 \\
\hline 18 & . 20 & . 16 & 1.3 & 16 & 6.2 & 8.1 & . 48 & . 09 & . 19 & . 03 & . 00 & . 00 \\
\hline 19 & 1.7 & . 11 & 1.6 & 11 & 5.4 & 6.1 & . 64 & . 14 & . 16 & . 04 & . 00 & . 00 \\
\hline 20 & . 27 & 1.9 & 1.1 & 7.2 & 4.5 & 4.7 & . 55 & . 10 & . 14 & 6.4 & . 00 & 2.2 \\
\hline 21 & . 32 & . 31 & 1.3 & 5.5 & 4.1 & 4.1 & . 48 & . 08 & . 11 & 2.9 & . 00 & . 07 \\
\hline 22 & . 41 & . 19 & 9.6 & 4.7 & 3.6 & 3.6 & . 38 & . 06 & . 11 & . 84 & . 00 & . 02 \\
\hline 23 & . 33 & . 17 & 4.0 & 33 & 3.7 & 13 & . 61 & 1.7 & . 08 & . 43 & . 00 & . 00 \\
\hline 24 & . 33 & . 21 & 2.4 & 23 & 3.4 & 13 & . 34 & 1.2 & . 81 & . 21 & 3.3 & . 00 \\
\hline 25 & . 26 & 4.6 & 1.8 & 13 & 6.0 & 8.3 & . 32 & . 29 & . 23 & . 12 & . 75 & . 00 \\
\hline 26 & . 26 & 4.1 & 1.3 & 8.8 & 4.2 & 6.2 & 3.7 & . 15 & . 12 & . 09 & . 10 & . 00 \\
\hline 27 & . 36 & 1.1 & e1.16 & 6.9 & 6.7 & 5.1 & 1.5 & . 09 & 1.8 & . 10 & . 05 & . 08 \\
\hline 28 & . 79 & . 43 & e1.08 & 4.4 & 15 & 4.3 & 5.1 & . 06 & 10 & . 08 & . 02 & . 03 \\
\hline 29 & . 30 & . 28 & e1.00 & 3.5 & --- & 3.7 & 4.1 & . 05 & 3.9 & . 06 & . 02 & 1.5 \\
\hline 30 & . 32 & . 27 & e. 94 & 3.1 & --- & 3.2 & 1.5 & . 05 & 1.1 & . 05 & . 01 & . 16 \\
\hline 31 & . 31 & --- & . 91 & 12 & --- & 3.2 & -- & . 04 & - & . 05 & . 00 & --- \\
\hline TOTAL & 39.86 & 25.61 & 94.04 & 424.8 & 274.1 & 367.0 & 44.83 & 15.25 & 27.17 & 19.21 & 4.94 & 4.06 \\
\hline MEAN & 1.29 & . 85 & 3.03 & 13.7 & 9.79 & 11.8 & 1.49 & . 49 & . 91 & . 62 & . 16 & . 14 \\
\hline MAX & 13 & 5.7 & 17 & 85 & 45 & 38 & 5.1 & 3.6 & 10 & 6.4 & 3.3 & 2.2 \\
\hline MIN & . 03 & . 11 & . 16 & 1.1 & 3.4 & 3.2 & . 32 & . 04 & . 03 & . 03 & . 00 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1998 - 1999, BY WATER YEAR (WY)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MEAN & . 81 & 1.29 & 2.82 & 13.2 & 11.5 & 9.36 & 6.91 & 5.77 & 8.08 & 9.59 & . 19 & . 20 \\
\hline MAX & 1.29 & 1.73 & 3.03 & 13.7 & 13.2 & 11.8 & 12.3 & 11.0 & 15.3 & 18.6 & . 22 & . 27 \\
\hline (WY) & 1999 & 1998 & 1999 & 1999 & 1998 & 1999 & 1998 & 1998 & 1998 & 1998 & 1998 & 1998 \\
\hline MIN & . 33 & . 85 & 2.61 & 12.7 & 9.79 & 6.88 & 1.49 & . 49 & . 91 & . 62 & . 16 & . 14 \\
\hline (WY) & 1998 & 1999 & 1998 & 1998 & 1999 & 1998 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03287590 NORTH ELKHORN CREEK AT WINCHESTER ROAD AT LEXINGTON, KY--Continued



03287600 NORTH ELKHORN CREEK AT BRYAN STATION ROAD AT MONTROSE, KY
LOCATION.--Lat \(38^{\circ} 04^{\prime} 3^{\prime \prime \prime}\), long \(84^{\circ} 24^{\prime} 4^{\prime \prime \prime}\), Fayette County, Hydrologic Unit 05100205, on right bank, downstream side of bridge on Bryan Station Road (Highway 57), 100 ft southwest of intersection of Briar Hill Road (highway 1970) and Bryan Station Road (Highway 57), 0.5 miles Northwest of Montrose, amd at mile 86.0.
DRAINAGE AREA. \(--21.5 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1997 to current year.
GAGE.--Water-stage recorder. Elevation of gage is 892.042 ft above sea level.
REMARKS.--Records poor.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & e. 04 & . 50 & 1.9 & e3.0 & 221 & 52 & 17 & 5.3 & 2.3 & 1.6 & . 03 & . 00 \\
\hline 2 & e. 03 & . 43 & 1.8 & 49 & 116 & 38 & 12 & 3.6 & 9.8 & 2.2 & . 02 & . 00 \\
\hline 3 & 28 & . 41 & 1.8 & 120 & 69 & 109 & 12 & 2.8 & 2.2 & 2.8 & . 00 & . 00 \\
\hline 4 & 13 & . 51 & 1.9 & 50 & 47 & 81 & 11 & 2.3 & 1.0 & . 99 & . 00 & . 00 \\
\hline 5 & 3.2 & . 60 & 8.1 & e30 & 31 & 53 & 9.2 & 6.3 & . 78 & . 68 & . 00 & . 00 \\
\hline 6 & 1.3 & . 63 & 3.9 & e20 & 26 & 51 & 13 & 17 & . 66 & . 52 & . 00 & . 00 \\
\hline 7 & 35 & . 59 & 48 & e14 & 32 & 33 & 7.9 & 5.3 & . 61 & . 44 & . 00 & . 00 \\
\hline 8 & 21 & . 56 & 62 & e232 & 23 & 28 & 6.9 & 2.8 & . 55 & . 40 & . 00 & . 00 \\
\hline 9 & 3.7 & . 59 & 27 & 489 & 20 & 109 & 7.9 & 1.8 & . 51 & . 35 & . 00 & . 00 \\
\hline 10 & 1.4 & 30 & 11 & 88 & 17 & 102 & 6.1 & 1.5 & . 48 & . 32 & . 00 & . 00 \\
\hline 11 & . 88 & 9.5 & 6.2 & 49 & 16 & 61 & 5.3 & 1.3 & . 47 & . 57 & . 00 & . 00 \\
\hline 12 & . 71 & 2.0 & 6.2 & 33 & 65 & 42 & 4.6 & 19 & . 47 & . 50 & . 00 & . 00 \\
\hline 13 & . 57 & 1.1 & 98 & 29 & 58 & 31 & 4.2 & 9.5 & . 71 & . 35 & . 00 & . 00 \\
\hline 14 & . 53 & . 83 & 50 & 50 & 41 & 190 & 4.1 & 2.7 & 10 & . 29 & . 00 & . 00 \\
\hline 15 & . 47 & . 66 & 21 & 44 & 32 & 138 & 11 & 2.3 & 2.0 & . 23 & . 00 & . 00 \\
\hline 16 & . 42 & . 79 & 13 & 33 & 26 & 72 & 11 & 1.4 & . 89 & . 22 & . 00 & . 00 \\
\hline 17 & . 38 & . 83 & 14 & 32 & 30 & 47 & 5.6 & 1.0 & . 66 & . 21 & . 00 & . 00 \\
\hline 18 & . 35 & . 78 & 7.3 & 66 & 22 & 32 & 4.7 & 1.0 & . 51 & . 20 & . 00 & . 00 \\
\hline 19 & 6.0 & . 74 & 6.8 & 48 & 19 & 24 & 5.3 & 1.1 & . 46 & . 20 & . 00 & . 00 \\
\hline 20 & 1.0 & 1.8 & 6.9 & 33 & 17 & 21 & 5.3 & . 81 & . 43 & 8.4 & . 00 & . 00 \\
\hline 21 & . 59 & 3.1 & 6.1 & 26 & 14 & 18 & 4.5 & . 72 & . 40 & 7.3 & . 00 & . 00 \\
\hline 22 & . 62 & 2.1 & 65 & 22 & 14 & 15 & 3.9 & . 71 & . 36 & 2.3 & . 00 & . 03 \\
\hline 23 & . 63 & 2.3 & 34 & 151 & 13 & 49 & 3.8 & 13 & . 33 & . 69 & . 00 & . 00 \\
\hline 24 & . 55 & 2.8 & e30 & 102 & 12 & 47 & 2.9 & 14 & . 31 & . 35 & 19 & . 00 \\
\hline 25 & . 57 & 16 & e18 & 59 & 18 & 31 & 1.9 & 2.4 & . 53 & . 18 & 15 & . 00 \\
\hline 26 & . 60 & 27 & e12 & 38 & 15 & 24 & 14 & 1.1 & . 57 & . 14 & 2.0 & . 00 \\
\hline 27 & . 72 & 4.3 & e8.0 & 28 & 20 & 20 & 9.8 & . 85 & . 52 & . 12 & . 63 & . 00 \\
\hline 28 & 2.5 & 2.0 & e6.0 & 20 & 57 & 18 & 20 & . 72 & 41 & . 10 & . 32 & . 00 \\
\hline 29 & 1.5 & 1.4 & e4.5 & 16 & --- & 16 & 16 & . 67 & 18 & . 08 & . 18 & . 00 \\
\hline 30 & 1.7 & 1.5 & e4.2 & 13 & --- & 14 & 7.7 & . 61 & 4.8 & . 07 & . 13 & . 19 \\
\hline 31 & . 89 & --- & e4.0 & 43 & --- & 13 & --- & . 55 & -- & . 05 & . 06 & --- \\
\hline TOTAL & 128.85 & 116.35 & 588.6 & 2030.0 & 1091 & 1579 & 248.6 & 124.14 & 102.31 & 32.85 & 37.37 & 0.22 \\
\hline MEAN & 4.16 & 3.88 & 19.0 & 65.5 & 39.0 & 50.9 & 8.29 & 4.00 & 3.41 & 1.06 & 1.21 & . 007 \\
\hline MAX & 35 & 30 & 98 & 489 & 221 & 190 & 20 & 19 & 41 & 8.4 & 19 & . 19 \\
\hline MIN & . 03 & . 41 & 1.8 & 3.0 & 12 & 13 & 1.9 & . 55 & . 31 & . 05 & . 00 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1998 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lllllllllllll} 
MEAN & 2.59 & 5.16 & 16.0 & 64.2 & 53.2 & 40.6 & 32.7 & 26.5 & 60.7 & 42.8 & 1.17 & .29 \\
MAX & 4.16 & 6.43 & 19.0 & 65.5 & 67.5 & 50.9 & 57.0 & 48.9 & 118 & 84.5 & 1.21 & 199 \\
(WY) & 1999 & 1998 & 1999 & 1999 & 1998 & 1999 & 1998 & 1998 & 1998 & 1998 \\
MIN & 1.03 & 3.88 & 13.0 & 63.0 & 39.0 & 30.3 & 8.29 & 4.00 & 3.41 & 1.06 & 1.13 & 1998 \\
(WY) & 1998 & 1999 & 1998 & 1998 & 1999 & 1998 & 1999 & 1999 & 1999 & 1999 & 1998 & 1999
\end{tabular}

KENTUCKY RIVER BASIN
03287600 NORTH ELKHORN CREEK AT BRYAN STATION ROAD AT MONTROSE, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & R YEAR & \multicolumn{3}{|l|}{1999 WATER YEAR} & WATER YEARS & 1998 - & 1999 \\
\hline ANNUAL TOTAL & 15057.20 & & 6079.29 & & & & & \\
\hline ANNUAL MEAN & 41.3 & & 16.7 & & & 28.7 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & & 40.7 & & 1998 \\
\hline LOWEST ANNUAL MEAN & & & & & & 16.7 & & 1999 \\
\hline HIGHEST DAILY MEAN & 1830 & Jul 20 & 489 & Jan & 9 & 1830 & Jul 20 & 1998 \\
\hline LOWEST DAILY MEAN & . 00 & Sep 8 & . 00 & Aug & 3 & . 00 & Oct 8 & 1997 \\
\hline ANNUAL SEVEN-DAY MINIMUM & . 00 & Sep 8 & . 00 & Aug & 3 & . 00 & Sep 8 & 1998 \\
\hline INSTANTANEOUS PEAK FLOW & & & 1460 & Jan & 9 & 7900 & Jun 29 & 1998 \\
\hline INSTANTANEOUS PEAK STAGE & & & 5.84 & Jan & 9 & 10.23 & Jun 29 & 1998 \\
\hline INSTANTANEOUS LOW FLOW & & & . 00 & Aug & 7 & . 00 & Aug 7 & 1999 \\
\hline 10 PERCENT EXCEEDS & 73 & & 47 & & & 59 & & \\
\hline 50 PERCENT EXCEEDS & 11 & & 2.5 & & & 6.9 & & \\
\hline 90 PERCENT EXCEEDS & . 28 & & . 00 & & & . 03 & & \\
\hline
\end{tabular}


03288000 NORTH ELKHORN CREEK NEAR GEORGETOWN, KY
LOCATION.--Lat \(38^{\circ} 12^{\prime} \mathbf{2 0 \prime}^{\prime \prime}\), long \(84^{\circ} 30^{\prime} 4^{\prime \prime \prime}\), Scott County, Hydrologic Unit 05100205, on left bank at upstream side of bridge on Crumbaugh Lane, 1.7 mi downstream from Miller Run, 2.5 mi east of Georgetown, 2.7 mi upstream from Lanes Run at mile 58.3 . DRAINAGE AREA. \(--119 \mathrm{mi}^{2}\), of which about \(8 \mathrm{mi}^{2}\) does not contribute directly to surface runoff.

PERIOD OF RECORD.--October 1949 to August 1984; October 1988 to June 1999 (discontiuned). Monthly discharge only October 1949 to March 1950, published in WSP 1305.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 796.49 ft above sea level. Prior to Sept. 18, 1952 , nonrecording gage and crest-stage gage at same site and datum.
REMARKS.--Records good except for those estimated, which are fair.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in April 1948 reached a stage of about 22 ft, from information by local residents. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 3.8 & 8.3 & 3.3 & 8.5 & 1000 & 295 & 98 & 39 & 7.6 & --- & --- & --- \\
\hline 2 & 3.7 & 8.7 & 2.4 & 7.5 & 1020 & 253 & 95 & 29 & 8.8 & --- & --- & --- \\
\hline 3 & 4.8 & 12 & 1.8 & 303 & 617 & 421 & 81 & 25 & 11 & --- & --- & --- \\
\hline 4 & 7.7 & 14 & 1.5 & 261 & 419 & 606 & 78 & 21 & 19 & --- & --- & --- \\
\hline 5 & 29 & 13 & 1.8 & 118 & 290 & 434 & 71 & 19 & 15 & --- & --- & --- \\
\hline 6 & 20 & 11 & 2.1 & e52 & 226 & 388 & 68 & 25 & 11 & --- & --- & --- \\
\hline 7 & 12 & 9.9 & 4.1 & e28 & 229 & 336 & 74 & 38 & 8.2 & --- & --- & --- \\
\hline 8 & 20 & 9.3 & 50 & e130 & 230 & 262 & 64 & 32 & 6.9 & --- & --- & --- \\
\hline 9 & 52 & 8.9 & 126 & 2160 & 177 & 395 & 60 & 22 & 6.2 & --- & --- & --- \\
\hline 10 & 20 & 12 & 63 & 807 & 149 & 731 & 54 & 18 & 5.2 & --- & --- & --- \\
\hline 11 & 11 & 16 & 24 & 431 & 130 & 533 & 49 & 15 & 5.1 & --- & --- & --- \\
\hline 12 & 7.5 & 32 & 13 & 278 & 178 & 378 & 43 & 14 & 5.1 & --- & --- & --- \\
\hline 13 & 5.5 & 12 & 15 & 226 & 367 & 276 & 39 & 14 & 6.1 & --- & --- & --- \\
\hline 14 & 4.5 & 5.0 & 175 & 399 & 303 & 449 & 36 & 36 & 8.7 & --- & --- & --- \\
\hline 15 & 3.5 & 4.9 & 75 & 396 & 247 & 1090 & 38 & 23 & 9.3 & --- & --- & -- \\
\hline 16 & 3.3 & 7.0 & 34 & 315 & 203 & 638 & 45 & 16 & 8.6 & --- & --- & --- \\
\hline 17 & 2.7 & 5.7 & 21 & 252 & 182 & 436 & 49 & 17 & 11 & --- & --- & --- \\
\hline 18 & 1.8 & 5.4 & 17 & 308 & 161 & 308 & 38 & 15 & 7.6 & --- & --- & --- \\
\hline 19 & 2.7 & 5.2 & 12 & 356 & 135 & 223 & 33 & 14 & 5.8 & --- & --- & --- \\
\hline 20 & 2.4 & 7.1 & 9.4 & 273 & 116 & 172 & 32 & 12 & 5.3 & --- & --- & --- \\
\hline 21 & 1.7 & 7.4 & 11 & 234 & 100 & 146 & 32 & 10 & 5.4 & --- & --- & --- \\
\hline 22 & 2.5 & 4.7 & 50 & 242 & 88 & 121 & 31 & 10 & 5.4 & --- & --- & --- \\
\hline 23 & 3.6 & 6.3 & 111 & 507 & 81 & 133 & 28 & 9.6 & 5.3 & --- & --- & --- \\
\hline 24 & 2.8 & 8.0 & 59 & 847 & 79 & 269 & 24 & 12 & 6.5 & --- & --- & --- \\
\hline 25 & 2.4 & 8.6 & 38 & 523 & 80 & 213 & 22 & 27 & 7.3 & --- & --- & --- \\
\hline 26 & 2.0 & 11 & 23 & 347 & 88 & 162 & 24 & 22 & 6.6 & --- & --- & --- \\
\hline 27 & 1.4 & 35 & 16 & 253 & 95 & 135 & 40 & 14 & 8.1 & --- & --- & --- \\
\hline 28 & 2.7 & 24 & 12 & 190 & 210 & 117 & 49 & 10 & 12 & --- & --- & --- \\
\hline 29 & 4.3 & 9.9 & 10 & 143 & --- & 104 & 56 & 8.4 & 62 & --- & --- & --- \\
\hline 30 & 6.3 & 5.1 & 9.6 & 115 & - & 91 & 61 & 7.5 & 64 & --- & --- & --- \\
\hline 31 & 9.1 & --- & 9.3 & 108 & --- & 82 & --- & 7.5 & --- & --- & --- & --- \\
\hline TOTAL & 256.7 & 327.4 & 1000.3 & 10618.0 & 7200 & 10197 & 1512 & 582.0 & 354.1 & --- & --- & --- \\
\hline MEAN & 8.28 & 10.9 & 32.3 & 343 & 257 & 329 & 50.4 & 18.8 & 11.8 & --- & --- & --- \\
\hline MAX & 52 & 35 & 175 & 2160 & 1020 & 1090 & 98 & 39 & 64 & --- & --- & --- \\
\hline MIN & 1.4 & 4.7 & 1.5 & 7.5 & 79 & 82 & 22 & 7.5 & 5.1 & --- & --- & --- \\
\hline CFSM & . 07 & . 10 & . 29 & 3.09 & 2.32 & 2.96 & . 45 & . 17 & . 11 & --- & --- & --- \\
\hline IN. & . 09 & . 11 & . 34 & 3.56 & 2.41 & 3.42 & . 51 & . 20 & . 12 & --- & --- & --- \\
\hline STATIS & CS OF & NTHLY & AN DATA & FOR WATER & RS 19 & - 1998 & WATE & YEAR (W) & & & & \\
\hline MEAN & 33.5 & 89.4 & 256 & 293 & 352 & 399 & 233 & 192 & 112 & 64.0 & 47.3 & 43.7 \\
\hline MAX & 312 & 347 & 1028 & 798 & 1169 & 1187 & 746 & 881 & 630 & 460 & 375 & 702 \\
\hline (WY) & 1976 & 1980 & 1979 & 1951 & 1989 & 1997 & 1972 & 1983 & 1997 & 1998 & 1974 & 1979 \\
\hline MIN & . 000 & . 000 & . 28 & 11.5 & 24.8 & 39.8 & 45.6 & 14.3 & 4.41 & 1.59 & . 41 & . 000 \\
\hline (WY) & 1954 & 1954 & 1954 & 1981 & 1954 & 1983 & 1955 & 1976 & 1954 & 1951 & 1983 & 1953 \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03288000 NORTH ELKHORN CREEK NEAR GEORGETOWN, KY--Continued



03288100 NORTH ELKHORN CREEK AT GEORGETOWN, KY
LOCATION.--Lat \(38^{\circ} 13^{\prime} 10^{\prime \prime}\), long \(84^{\circ} 33^{\prime} 47^{\prime \prime}\), Scott County, Hydrologic Unit 05100205, on right bank, 300 ft upstream of bridge on Highway \(25,0.4 \mathrm{mi}\) downstream from Dry Run, and at mile 33.4.
DRAINAGE AREA. \(--147 \mathrm{mi}^{2}\), of which about \(8 \mathrm{mi}^{2}\) does not contribute directly to surface runoff.
PERIOD OF RECORD.--December 1992 to current year.
GAGE.--Water-stage recorder and concrete control. Elevation of gage is 803.40 ft above sea level, from topographic map. Prior to Oct. 1, 1994 at datum 3.40 ft . lower.

REMARKS.--Records good except for periods of estimated discharges and discharges below \(80 \mathrm{ft} / \mathrm{s}\) which are fair .
PEAKS ABOVE BASE.--Peak discharges above base of \(2,800 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 9 & 0600 & 2760 & 7.79
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 13 & 8.4 & 14 & e23 & 1160 & 371 & 138 & 45 & 11 & 55 & 6.0 & 4.7 \\
\hline 2 & 12 & 8.1 & 12 & e22 & 1150 & 315 & 131 & 31 & 13 & 37 & 6.1 & 3.8 \\
\hline 3 & 18 & 13 & 11 & 393 & 705 & 524 & 106 & 28 & 15 & 37 & 5.8 & 3.1 \\
\hline 4 & 22 & 11 & 9.8 & e700 & 481 & 663 & 100 & 25 & 16 & 17 & 5.2 & 2.9 \\
\hline 5 & 27 & 9.2 & 11 & e500 & 339 & 491 & 93 & 25 & 19 & 14 & 4.7 & 2.9 \\
\hline 6 & 28 & 9.6 & 12 & e310 & 268 & 464 & 101 & 33 & 16 & 14 & 3.9 & 2.8 \\
\hline 7 & 25 & 9.6 & 15 & e220 & 301 & 409 & 104 & 41 & 14 & 13 & 3.5 & 2.8 \\
\hline 8 & 35 & 9.4 & 53 & e400 & 297 & 322 & 86 & 42 & 13 & 12 & 3.7 & 3.0 \\
\hline 9 & 57 & 11 & 119 & 2370 & 234 & 518 & 82 & 28 & 12 & 11 & 3.6 & 2.7 \\
\hline 10 & 32 & 12 & 87 & 899 & 202 & 904 & 71 & 24 & 9.8 & 9.4 & 3.5 & 2.9 \\
\hline 11 & 21 & 24 & 50 & 472 & 177 & 656 & 61 & 22 & 10 & 9.5 & 3.3 & 2.4 \\
\hline 12 & 15 & 47 & 33 & 326 & 256 & 464 & 47 & 19 & 9.4 & 8.7 & 3.4 & 1.9 \\
\hline 13 & 14 & 37 & 48 & 284 & 420 & 344 & 42 & 18 & 9.6 & 7.4 & 3.5 & 1.7 \\
\hline 14 & 12 & 23 & 168 & 515 & 354 & 569 & 39 & 38 & 22 & 7.4 & 4.2 & 1.7 \\
\hline 15 & 11 & 16 & 122 & 458 & 295 & 1220 & 42 & 38 & 24 & 6.1 & 4.8 & 2.0 \\
\hline 16 & 10 & 12 & 67 & 359 & 247 & 748 & 51 & 26 & 16 & 4.5 & 5.5 & 1.7 \\
\hline 17 & 9.7 & 10 & 48 & 298 & 228 & 516 & 56 & 22 & 15 & 5.1 & 5.2 & 1.5 \\
\hline 18 & 8.0 & 9.2 & 37 & 339 & 208 & 369 & 44 & 23 & 14 & 4.8 & 4.1 & 1.3 \\
\hline 19 & 12 & 8.0 & 31 & 386 & 177 & 274 & 36 & 21 & 9.9 & 5.2 & 4.0 & 1.3 \\
\hline 20 & 14 & 9.7 & 27 & 311 & 149 & 221 & 35 & 18 & 8.5 & 5.2 & 5.7 & 1.4 \\
\hline 21 & 13 & 12 & 31 & 327 & 126 & 193 & 34 & 17 & 8.4 & 8.6 & 4.9 & 2.0 \\
\hline 22 & 13 & 9.4 & 171 & 316 & 109 & 159 & 35 & 16 & 8.4 & 23 & 4.0 & 1.7 \\
\hline 23 & 14 & 8.1 & 155 & 610 & 100 & 195 & 32 & 16 & 8.9 & 13 & 4.2 & 1.8 \\
\hline 24 & 14 & 8.7 & 98 & 944 & 97 & 339 & 28 & 18 & 10 & 10 & 5.0 & 2.6 \\
\hline 25 & 12 & 10 & 66 & 583 & 100 & 274 & 25 & 23 & 12 & 10 & 11 & 2.1 \\
\hline 26 & 10 & 29 & 49 & 394 & 107 & 218 & 27 & 35 & 11 & 10 & 7.1 & 1.9 \\
\hline 27 & 9.8 & 37 & 38 & 300 & 130 & 185 & 39 & 25 & 14 & 9.0 & 4.4 & 2.3 \\
\hline 28 & 11 & 43 & 32 & 236 & 332 & 155 & 63 & 19 & 35 & 7.6 & 3.5 & 3.3 \\
\hline 29 & 12 & 25 & 29 & 190 & --- & 136 & 52 & 16 & 135 & 7.6 & 4.5 & 5.2 \\
\hline 30 & 9.2 & 17 & e26 & 148 & -- & 118 & 80 & 13 & 136 & 7.5 & 7.0 & 7.5 \\
\hline 31 & 8.5 & --- & e24 & 149 & --- & 104 & --- & 11 & - & 6.2 & 6.5 & --- \\
\hline TOTAL & 522.2 & 496.4 & 1693.8 & 13782 & 8749 & 12438 & 1880 & 776 & 655.9 & 395.8 & 151.8 & 78.9 \\
\hline MEAN & 16.8 & 16.5 & 54.6 & 445 & 312 & 401 & 62.7 & 25.0 & 21.9 & 12.8 & 4.90 & 2.63 \\
\hline MAX & 57 & 47 & 171 & 2370 & 1160 & 1220 & 138 & 45 & 136 & 55 & 11 & 7.5 \\
\hline MIN & 8.0 & 8.0 & 9.8 & 22 & 97 & 104 & 25 & 11 & 8.4 & 4.5 & 3.3 & 1.3 \\
\hline CFSM & . 11 & . 11 & . 37 & 3.02 & 2.13 & 2.73 & . 43 & . 17 & . 15 & . 09 & . 03 & . 02 \\
\hline IN. & . 13 & . 13 & . 43 & 3.49 & 2.21 & 3.15 & . 48 & . 20 & . 17 & . 10 & . 04 & . 02 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1993 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 35.1 & 143 & 234 & 467 & 402 & 613 & 232 & 353 & 284 & 105 & 50.5 & 29.5 \\
MAX & 71.2 & 398 & 564 & 631 & 552 & 1574 & 408 & 786 & 768 & 156 \\
(WY) & 1994 & 1994 & 1997 & 1994 & 1997 & 1997 & 1994 & 1995 & 1997 & 1998 & 1993 & 1996 \\
MIN & 12.8 & 16.5 & 54.6 & 333 & 211 & 242 & 62.7 & 25.0 & 19.6 & 12.8 & 4.90 & 2.63 \\
(WY) & 1995 & 1999 & 1999 & 1993 & 1996 & 1998 & 1999 & 1999 & 1994 & 1999 & 1999 & 1999
\end{tabular}

KENTUCKY RIVER BASIN
03288100 NORTH ELKHORN CREEK AT GEORGETOWN, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & AR YEAR & FOR 1999 WAT & R YEAR & WATER YEARS & \multicolumn{3}{|l|}{1993-1999} \\
\hline ANNUAL TOTAL & 94092.1 & & 41619.8 & & & & & \\
\hline ANNUAL MEAN & 258 & & 114 & & 252 & & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 371 & & & 1997 \\
\hline LOWEST ANNUAL MEAN & & & & & 114 & & & 1999 \\
\hline HIGHEST DAILY MEAN & 5290 & Jul 20 & 2370 & Jan 9 & 11000 & Mar & 3 & 1997 \\
\hline LOWEST DAILY MEAN & 8.0 & Oct 18 & 1.3 & Sep 18 & 1.3 & Sep & 18 & 1999 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 9.3 & Nov 18 & 1.6 & Sep 14 & 1.6 & Sep & 14 & 1999 \\
\hline INSTANTANEOUS PEAK FLOW & & & 2760 & Jan 9 & 19300 & Mar & 2 & 1997 \\
\hline INSTANTANEOUS PEAK STAGE & & & 7.79 & Jan 9 & 19.01 & Mar & 2 & 1997 \\
\hline ANNUAL RUNOFF (CFSM) & 1.75 & & . 78 & & 1.72 & & & \\
\hline ANNUAL RUNOFF (INCHES) & 23.81 & & 10.53 & & 23.30 & & & \\
\hline 10 PERCENT EXCEEDS & 620 & & 348 & & 595 & & & \\
\hline 50 PERCENT EXCEEDS & 109 & & 22 & & 87 & & & \\
\hline 90 PERCENT EXCEEDS & 11 & & 4.0 & & 9.3 & & & \\
\hline
\end{tabular}
e Estimated

\[
03288110 \text { ROYAL SPRINGS AT GEORGETOWN, KY }
\]

LOCATION.--Lat \(38^{\circ} 12^{\prime} 34^{\prime \prime}\), long \(84^{\circ} 33^{\prime \prime} 43^{\prime \prime}\), Scott County, Hydrologic Unit 05100205, at Georgetown Water Plant, 200 ft downstream from dam, and 0.64 mi upstream from mouth.

PERIOD OF RECORD.--December 1992 to current year.
GAGE.--Water-stage recorder. Datum of gage is 800.00 ft above sea level, from topographic map.
REMARKS.--Estimated daily discharges: Nov. 30, Dece. 1, 30, 31, Feb. 4-8, and Aug. 8, 9. Records good \(10 \mathrm{ft} 3 / \mathrm{s}\) to 200 ft . 3 s and poor below \(10 \mathrm{ft}^{3} / \mathrm{s}\). and above \(200 \mathrm{ft}^{3} / \mathrm{s}\), and for periods of estimated record. Flow regulated by Georgetown Water Plant.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 00 & 3.4 & 1.3 & 2.8 & 77 & 30 & 30 & 8.0 & . 36 & 16 & . 79 & . 08 \\
\hline 2 & . 00 & 3.0 & 1.1 & 6.5 & 77 & 31 & 26 & 6.3 & 11 & 13 & 14 & . 08 \\
\hline 3 & 5.3 & 1.9 & . 88 & 42 & 69 & 52 & 23 & 5.0 & 8.7 & 13 & 7.7 & . 08 \\
\hline 4 & 7.3 & . 44 & . 85 & 24 & 62 & 59 & 21 & 4.4 & 4.2 & 9.0 & 2.6 & . 08 \\
\hline 5 & 4.6 & . 29 & 1.9 & 16 & 55 & 55 & 18 & 6.0 & 3.0 & 7.3 & 1.0 & . 08 \\
\hline 6 & 2.3 & . 08 & 1.8 & 13 & 51 & 57 & 21 & 13 & 2.5 & 6.1 & . 11 & . 09 \\
\hline 7 & 4.2 & . 07 & 6.5 & 11 & 50 & 50 & 20 & 8.5 & 1.3 & 3.8 & . 10 & . 09 \\
\hline 8 & 10 & . 06 & 13 & 41 & 47 & 44 & 17 & 6.8 & 2.0 & 3.4 & . 25 & . 09 \\
\hline 9 & 4.8 & . 16 & 9.3 & 100 & 43 & 57 & 20 & 5.1 & . 42 & 2.3 & . 20 & . 10 \\
\hline 10 & 2.8 & 2.4 & 5.4 & 71 & 40 & 63 & 15 & 3.5 & 2.2 & 2.3 & . 14 & . 08 \\
\hline 11 & 1.9 & 4.6 & 3.9 & 59 & 38 & 60 & 12 & 3.1 & 1.9 & 2.8 & . 10 & . 07 \\
\hline 12 & . 00 & 2.0 & 3.5 & 51 & 48 & 55 & 11 & 3.6 & 3.9 & . 50 & . 09 & . 08 \\
\hline 13 & . 00 & 1.5 & 15 & 44 & 49 & 48 & 11 & 22 & 2.8 & . 47 & . 09 & . 08 \\
\hline 14 & . 00 & 1.3 & 14 & 60 & 47 & 61 & 9.9 & 11 & 8.3 & . 45 & . 09 & . 08 \\
\hline 15 & . 00 & 1.2 & 7.9 & 59 & 45 & 72 & 11 & 7.2 & 6.7 & . 34 & . 09 & . 08 \\
\hline 16 & . 00 & 1.1 & 5.7 & 52 & 43 & 65 & 12 & 4.4 & 5.0 & . 35 & . 09 & . 08 \\
\hline 17 & . 08 & . 55 & 4.8 & 46 & 43 & 59 & 11 & 3.0 & 4.3 & . 92 & . 09 & . 08 \\
\hline 18 & . 90 & . 69 & 3.9 & 49 & 40 & 53 & 11 & 3.1 & 3.2 & . 78 & . 09 & . 08 \\
\hline 19 & 1.5 & . 24 & 3.5 & 46 & 37 & 47 & 8.5 & 2.4 & 2.3 & . 30 & . 10 & . 08 \\
\hline 20 & . 66 & . 71 & 3.3 & 43 & 34 & 43 & 8.5 & 2.1 & 2.1 & . 43 & . 09 & . 08 \\
\hline 21 & . 71 & 1.2 & 4.4 & 43 & 30 & 40 & 7.9 & 1.7 & 1.7 & 7.2 & . 08 & . 06 \\
\hline 22 & . 63 & 1.2 & 22 & 42 & 25 & 38 & 7.3 & 1.6 & . 84 & 10 & . 08 & . 00 \\
\hline 23 & . 61 & 1.0 & 13 & 63 & 23 & 43 & 6.8 & 1.7 & . 16 & 4.8 & . 08 & . 00 \\
\hline 24 & . 05 & . 42 & 9.2 & 70 & 22 & 48 & 6.4 & 11 & . 92 & 2.9 & 1.3 & . 00 \\
\hline 25 & . 33 & 2.8 & 6.7 & 62 & 23 & 42 & 5.3 & 5.7 & 3.5 & 1.0 & 8.2 & . 00 \\
\hline 26 & . 00 & 7.1 & 5.2 & 55 & 22 & 39 & 9.3 & 3.5 & 3.3 & . 49 & 3.7 & . 00 \\
\hline 27 & . 00 & 3.3 & 4.3 & 48 & 24 & 37 & 12 & 2.8 & 10 & . 49 & 2.3 & . 27 \\
\hline 28 & . 07 & 3.5 & 3.8 & 44 & 31 & 36 & 11 & 2.4 & 21 & . 49 & 1.8 & . 11 \\
\hline 29 & . 00 & 3.2 & 3.5 & 39 & --- & 34 & 13 & 1.6 & 45 & . 49 & 1.2 & 3.3 \\
\hline 30 & . 00 & 1.7 & 3.2 & 35 & --- & 32 & 9.2 & . 83 & 20 & . 56 & . 16 & 4.2 \\
\hline 31 & . 00 & - & 3.1 & 38 & --- & 30 & --- & 1.6 & -- & . 52 & . 08 & --- \\
\hline TOTAL & 48.74 & 51.11 & 185.93 & 1375.3 & 1195 & 1480 & 405.1 & 162.93 & 182.60 & 112.48 & 46.79 & 9.58 \\
\hline MEAN & 1.57 & 1.70 & 6.00 & 44.4 & 42.7 & 47.7 & 13.5 & 5.26 & 6.09 & 3.63 & 1.51 & . 32 \\
\hline MAX & 10 & 7.1 & 22 & 100 & 77 & 72 & 30 & 22 & 45 & 16 & 14 & 4.2 \\
\hline MIN & . 00 & . 06 & . 85 & 2.8 & 22 & 30 & 5.3 & . 83 & . 16 & . 30 & . 08 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1993 - 1999, BY WATER YEAR (WY)
\begin{tabular}{llllllllllllll} 
MEAN & 5.62 & 16.1 & 27.3 & 41.8 & 40.2 & 50.2 & 31.2 & 31.9 & 30.4 & 12.4 & 8.50 \\
MAX & 9.63 & 35.9 & 48.3 & 49.0 & 52.5 & 77.5 & 47.5 & 55.9 & 65.1 & 44.1 & 13.0 & 12.7 \\
(WY) & 1997 & 1994 & 1997 & 1996 & 1994 & 1997 & 1994 & 1996 & 1997 & 1998 & 1993 & 1996 \\
MIN & 1.57 & 1.70 & 6.00 & 33.5 & 29.4 & 35.9 & 13.5 & 5.26 & 3.04 & 1.21 & 1.51 & .26 \\
(WY) & 1999 & 1999 & 1999 & 1997 & 1996 & 1998 & 1999 & 1999 & 1994 & 1995 & 1999 & 1998
\end{tabular}

KENTUCKY RIVER BASIN
03288110 ROYAL SPRINGS AT GEORGETOWN, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN HIGHEST DAILY MEAN
LOWEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

FOR 1998 CALENDAR YEAR
\begin{tabular}{cccr}
9423.51 & & \\
25.8 & & \\
& & & \\
166 & & Jul & 20 \\
.00 & Sep & 4 \\
.00 & Sep & 4 \\
& & & \\
59 & & & \\
21 & & & \\
& .07 & &
\end{tabular}

FOR 1999 WATER YEAR
\begin{tabular}{ccc}
5255.56 & & \\
14.4 & & \\
& & \\
100 & & Jan \\
.00 & Oct & 9 \\
.02 & Sep & 20 \\
128 & Jan & 9 \\
4.00 & Jan & 9 \\
48 & & \\
3.9 & & \\
.08 & &
\end{tabular}

WATER YEARS 1993 - 1999



LOCATION.--Lat \(38^{\circ} 02^{\prime} 3^{\prime \prime \prime}\), long \(84^{\circ} 37^{\prime} 3^{\prime \prime \prime}\), Fayette County, Hydrologic Unit 05100205 , on downstream side of bridge on Fort Spring Roat at U.S. Highway 60 at Fort Spring, 1.7 mi upstream from Shannon Run, 6.5 mi west of Lexington, and at mile 42.6 .
DRAINAGE AREA. \(-24.0 \mathrm{mi}^{2}\), of which about \(3.0 \mathrm{mi}^{2}\) does not contribute directly to surface runoff.
PERIOD OF RECORD.--March 1950 to September 1992, October 1997 to current year.
REVISED RECORDS.--WSP 1275: 1951-52. WSP 1505: Drinage area. WSP 1625: 1951-52 (P).
GAGE.--Water-stage recorder and concrete control. Datum of gage is 834.25 ft above sea level. Prior to Aug. 12, 1952 , and Feb. 18 to Nov. 16, 1965, nonrecording gage and crest-stage gage at same site and datum.

REMARKS.- Records good.
PEAKS ABOVE BASE.--Peak discharges above base of \(500 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 9 & 0200 & \(* 827\) & 6.58
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 1.9 & 6.3 & 5.1 & 8.0 & 234 & 55 & 27 & 10 & 5.1 & 9.1 & 1.1 & 1.2 \\
\hline 2 & 1.6 & 8.9 & 4.3 & 39 & 164 & 44 & 20 & 8.6 & 17 & 16 & 1.3 & 1.1 \\
\hline 3 & 45 & 11 & 3.9 & 142 & 99 & 117 & 18 & 7.7 & 8.7 & 14 & 1.1 & 1.6 \\
\hline 4 & 37 & 13 & 3.6 & 50 & 69 & 104 & 17 & 6.9 & 4.8 & 7.1 & . 94 & 1.1 \\
\hline 5 & 15 & 12 & 11 & 30 & 48 & 74 & 15 & 11 & 3.4 & 4.5 & . 93 & . 78 \\
\hline 6 & 7.5 & 11 & 7.7 & 22 & 39 & 71 & 20 & 24 & 2.8 & 3.2 & . 79 & . 62 \\
\hline 7 & 12 & 12 & 42 & 18 & 40 & 49 & 16 & 12 & 2.3 & 2.5 & . 71 & . 57 \\
\hline 8 & 14 & 12 & 55 & 195 & 31 & 40 & 14 & 9.0 & 2.2 & 2.0 & . 78 & . 54 \\
\hline 9 & 6.9 & 13 & 34 & 290 & 26 & 116 & 14 & 7.4 & 2.8 & 1.7 & 1.5 & . 46 \\
\hline 10 & 4.5 & 25 & 18 & 144 & 23 & 118 & 12 & 6.3 & 4.2 & 5.2 & 1.3 & . 39 \\
\hline 11 & 3.4 & 14 & 12 & 128 & 20 & 83 & 11 & 5.5 & 4.8 & 4.9 & . 98 & . 28 \\
\hline 12 & 2.9 & 6.4 & 11 & 66 & 58 & 60 & 10 & 4.7 & 6.7 & 2.1 & . 84 & . 26 \\
\hline 13 & 2.6 & 4.3 & 74 & 47 & 53 & 45 & 9.4 & 4.4 & 8.4 & 2.0 & . 69 & . 28 \\
\hline 14 & 2.2 & 3.4 & 41 & 55 & 42 & 194 & 8.9 & 4.2 & 20 & 1.5 & . 55 & . 57 \\
\hline 15 & 2.0 & 3.2 & 23 & 46 & 36 & 199 & 14 & 11 & 7.9 & 1.2 & . 49 & . 48 \\
\hline 16 & 1.7 & 2.9 & 16 & 39 & 32 & 112 & 17 & 5.3 & 4.2 & 1.0 & . 46 & . 42 \\
\hline 17 & 1.6 & 2.8 & 15 & 38 & 38 & 75 & 11 & 4.0 & 3.1 & 1.0 & . 47 & . 36 \\
\hline 18 & 1.6 & 2.7 & 11 & 68 & 30 & 53 & 9.9 & 3.8 & 2.4 & . 85 & . 36 & . 33 \\
\hline 19 & 6.9 & 2.5 & 11 & 58 & 26 & 40 & 9.2 & 4.5 & 1.9 & 1.2 & . 28 & . 30 \\
\hline 20 & 3.6 & 6.9 & 11 & 47 & 23 & 33 & 8.8 & 3.3 & 1.8 & 15 & . 25 & 1.8 \\
\hline 21 & 2.5 & 5.8 & 11 & 40 & 21 & 29 & 8.4 & 2.9 & 1.5 & 20 & . 72 & 3.3 \\
\hline 22 & 2.2 & 3.8 & 46 & 33 & 18 & 25 & 7.9 & 2.7 & 1.3 & 13 & . 55 & 1.6 \\
\hline 23 & 2.0 & 2.9 & 27 & 166 & 17 & 58 & 9.7 & 3.0 & . 95 & 4.3 & . 34 & 1.2 \\
\hline 24 & 2.2 & 2.6 & 20 & 125 & 17 & 56 & 8.5 & 20 & 5.9 & 2.6 & 11 & . 81 \\
\hline 25 & 2.4 & 12 & 15 & 79 & 19 & 39 & 6.8 & 6.9 & 14 & 1.9 & 30 & . 78 \\
\hline 26 & 2.6 & 31 & 13 & 55 & 17 & 32 & 23 & 4.9 & 4.6 & 1.5 & 4.6 & 1.2 \\
\hline 27 & 2.9 & 10 & 11 & 42 & 20 & 28 & 20 & 3.6 & 12 & 3.3 & 2.6 & 2.1 \\
\hline 28 & 4.5 & 7.5 & 9.9 & 33 & 61 & 24 & 18 & 2.9 & 64 & 2.5 & 1.7 & 3.6 \\
\hline 29 & 5.7 & 5.9 & 9.2 & 27 & --- & 22 & 18 & 2.5 & 43 & 3.1 & 1.2 & 7.1 \\
\hline 30 & 4.5 & 5.0 & 9.6 & 23 & --- & 20 & 12 & 2.2 & 15 & 1.6 & 1.1 & 11 \\
\hline 31 & 5.9 & --- & 8.8 & 51 & --- & 19 & --- & 2.1 & --- & 1.1 & 1.1 & --- \\
\hline TOTAL & 211.3 & 259.8 & 590.1 & 2204.0 & 1321 & 2034 & 414.5 & 207.3 & 276.75 & 150.95 & 70.73 & 46.13 \\
\hline MEAN & 6.82 & 8.66 & 19.0 & 71.1 & 47.2 & 65.6 & 13.8 & 6.69 & 9.23 & 4.87 & 2.28 & 1.54 \\
\hline MAX & 45 & 31 & 74 & 290 & 234 & 199 & 27 & 24 & 64 & 20 & 30 & 11 \\
\hline MIN & 1.6 & 2.5 & 3.6 & 8.0 & 17 & 19 & 6.8 & 2.1 & . 95 & . 85 & . 25 & . 26 \\
\hline CFSM & . 32 & . 41 & . 90 & 3.35 & 2.23 & 3.09 & . 65 & . 32 & . 44 & . 23 & . 11 & . 07 \\
\hline IN. & . 37 & . 46 & 1.04 & 3.87 & 2.32 & 3.57 & . 73 & . 36 & . 49 & . 26 & . 12 & . 08 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1950 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrrr} 
MEAN & 8.43 & 21.0 & 50.6 & 51.2 & 64.8 & 69.2 & 43.9 & 32.7 & 20.4 & 15.9 & 11.5 & 9.20 \\
MAX & 57.0 & 64.0 & 198 & 159 & 227 & 172 & 145 & 156 & 83.2 & 97.0 & 68.0 & 81.4 \\
(WY) & 1976 & 1980 & 1979 & 1951 & 1989 & 1964 & 1972 & 1983 & 1960 & 1958 \\
MIN & .000 & .087 & .86 & 4.43 & 6.48 & 11.0 & 10.3 & 3.92 & 1.14 & .66 & .006 & 1979 \\
(WY) & 1954 & 1954 & 1954 & 1981 & 1954 & 1954 & 1971 & 1952 & 1954 & 1951 & 1965 & 1953
\end{tabular}

KENTUCKY RIVER BASIN
03289000 SOUTH ELKHORN CREEK AT FORT SPRING, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALENDAR YEAR & FOR 1999 WATER YEAR & WATER YEARS & 1950 - & 1999 \\
\hline ANNUAL TOTAL & 14983.3 & 7786.56 & & & \\
\hline ANNUAL MEAN & 41.1 & 21.3 & 33.0 & & \\
\hline HIGHEST ANNUAL MEAN & & & 62.1 & & 1989 \\
\hline LOWEST ANNUAL MEAN & & & 6.75 & & 1954 \\
\hline HIGHEST DAILY MEAN & 712 Jul 20 & 290 Jan 9 & 1310 & Feb 15 & 1989 \\
\hline LOWEST DAILY MEAN & 1.6 Oct 2 & . 25 Aug 20 & . 00 & Aug 6 & 1951 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 2.1 Oct 12 & . 38 Sep 11 & . 00 & Aug 19 & 1951 \\
\hline INSTANTANEOUS PEAK FLOW & & 827 Jan 9 & 2280 & Feb 15 & 1989 \\
\hline INSTANTANEOUS PEAK STAGE & & 6.58 Jan 9 & 12.13 & Sep 21 & 1979 \\
\hline INSTANTANEOUS LOW FLOW & & & . 00 & Aug 6 & 1951 \\
\hline ANNUAL RUNOFF (CFSM) & 1.94 & 1.01 & 1.56 & & \\
\hline ANNUAL RUNOFF (INCHES) & 26.29 & 13.66 & 21.17 & & \\
\hline 10 PERCENT EXCEEDS & 91 & 55 & 81 & & \\
\hline 50 PERCENT EXCEEDS & 21 & 8.7 & 12 & & \\
\hline 90 PERCENT EXCEEDS & 3.3 & . 97 & 1.4 & & \\
\hline
\end{tabular}


LOCATION.--Lat \(38^{\circ} 04^{\prime} 00 \prime \prime\), long \(84^{\circ} 33^{\prime} 1^{\prime \prime}\), Fayette County, Hydrologic Unit 05100205 , on left bank, downstream side of bridge on Old Frankfort Pike (1681), 0.3 mile southeast of the intersection of Old Frankfort Pike and Viley Road, 0.7 mile northwest of the intersection of Old Frankfort Pike and New Circle Road (Hwy 4), and 0.5 mile above mouth.
DRAINAGE AREA. --9. \(57 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1997 to current year.
GAGE.--Water-stage recorder. Elevation of gage is 860 ft above sea level (from topographic map).
REMARKS.--1998: Records poor.

\section*{1999: Records poor}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 88 & 9.6 & e22 & 7.2 & 5.1 & 7.8 & 26 & 68 & 31 & 91 & 7.8 & 1.2 \\
\hline 2 & . 60 & 13 & 13 & 6.6 & 4.6 & 7.1 & 9.4 & 47 & 15 & 42 & 6.1 & 1.3 \\
\hline 3 & . 54 & 8.5 & 12 & 5.8 & 4.1 & 6.5 & 8.7 & 34 & 12 & 26 & 5.0 & 1.3 \\
\hline 4 & . 49 & 6.1 & 12 & 5.4 & 8.0 & 7.9 & 8.3 & 18 & 17 & 19 & 4.2 & 1.2 \\
\hline 5 & . 46 & 4.5 & 8.9 & 28 & 7.4 & 8.1 & 6.9 & 13 & 16 & 15 & 3.3 & e1.1 \\
\hline 6 & e. 43 & 3.7 & 7.5 & 86 & 9.5 & 6.7 & 6.1 & 14 & 11 & 12 & 2.8 & 1.3 \\
\hline 7 & e. 40 & 3.8 & 6.4 & 260 & 12 & 6.4 & 5.5 & 118 & 9.2 & 14 & 2.4 & 1.3 \\
\hline 8 & e. 38 & 6.7 & 5.4 & 110 & 13 & 23 & 17 & 39 & 8.8 & 16 & e2.2 & 1.2 \\
\hline 9 & . 57 & 4.5 & 5.4 & 51 & 18 & 66 & 20 & 22 & 52 & 11 & e4.0 & 1.9 \\
\hline 10 & . 46 & 3.5 & 60 & 28 & 27 & 21 & 17 & 17 & 16 & 9.2 & 3.9 & 1.5 \\
\hline 11 & e. 42 & 2.9 & 16 & 21 & 176 & 16 & 9.6 & 13 & 12 & 8.1 & 3.4 & 1.2 \\
\hline 12 & e. 38 & 2.4 & 12 & 28 & 161 & 14 & 8.4 & 11 & 57 & 6.7 & 2.3 & e1.1 \\
\hline 13 & e. 34 & 21 & 10 & 20 & 75 & 12 & 7.3 & 10 & 56 & 5.9 & 2.0 & e1.0 \\
\hline 14 & 7.1 & 12 & 8.9 & 15 & 43 & 10 & 15 & 9.6 & 23 & 44 & 6.6 & e. 94 \\
\hline 15 & 1.5 & 7.6 & 7.7 & 14 & 29 & 9.4 & 9.2 & 7.7 & 27 & 12 & 3.3 & 1.3 \\
\hline 16 & . 92 & 6.0 & 6.6 & 13 & 26 & 8.7 & 190 & 6.6 & 15 & 13 & 2.5 & 1.3 \\
\hline 17 & . 65 & 4.9 & 5.7 & 13 & 28 & 8.3 & 42 & 5.8 & 13 & 9.5 & 2.4 & 1.1 \\
\hline 18 & . 54 & 3.9 & 4.9 & 11 & 26 & 8.2 & 25 & 5.0 & 12 & 8.2 & 2.3 & e1.0 \\
\hline 19 & e. 48 & 3.4 & 4.2 & 9.7 & 18 & 7.3 & 46 & 4.3 & 44 & 7.5 & 2.6 & e. 96 \\
\hline 20 & e. 43 & 2.9 & 3.5 & 8.9 & 15 & 60 & 23 & 17 & 12 & 717 & 2.7 & e. 92 \\
\hline 21 & e. 38 & 19 & 3.6 & 8.3 & 13 & 25 & 18 & 12 & 90 & 106 & 2.5 & 38 \\
\hline 22 & e. 35 & 13 & 23 & 11 & 12 & 19 & 21 & 13 & 80 & 50 & 2.2 & 4.4 \\
\hline 23 & . 49 & 8.7 & 8.0 & 17 & 11 & 16 & 14 & 130 & e140 & 29 & 2.1 & 2.1 \\
\hline 24 & 12 & 6.8 & 36 & 11 & 9.8 & 13 & 11 & 34 & 32 & 18 & 1.7 & 1.4 \\
\hline 25 & 4.9 & 5.3 & 25 & 10 & 8.9 & 14 & 9.9 & 18 & 22 & 14 & 1.5 & 1.1 \\
\hline 26 & 64 & 4.2 & 15 & 9.1 & 8.4 & 11 & 9.0 & 14 & 17 & 11 & 1.7 & . 98 \\
\hline 27 & 13 & 3.3 & 12 & 8.8 & 10 & 9.8 & 12 & 12 & 14 & 10 & 1.5 & . 89 \\
\hline 28 & 7.3 & 2.9 & 10 & 8.0 & 9.0 & 9.0 & 8.1 & 10 & 12 & 9.1 & 1.3 & . 84 \\
\hline 29 & 5.3 & 2.8 & 9.6 & 7.1 & --- & 8.4 & 26 & 8.9 & 585 & 8.3 & 1.7 & . 84 \\
\hline 30 & 3.7 & e38 & 9.2 & 6.4 & --- & 7.5 & 155 & 8.1 & 403 & 26 & 1.5 & . 79 \\
\hline 31 & 2.8 & --- & 8.1 & 5.6 & --- & 16 & --- & 122 & --- & 13 & 1.3 & --- \\
\hline TOTAL & 132.19 & 234.9 & 391.6 & 843.9 & 787.8 & 463.1 & 784.4 & 862.0 & 1854.0 & 1381.5 & 90.8 & 75.46 \\
\hline MEAN & 4.26 & 7.83 & 12.6 & 27.2 & 28.1 & 14.9 & 26.1 & 27.8 & 61.8 & 44.6 & 2.93 & 2.52 \\
\hline MAX & 64 & 38 & 60 & 260 & 176 & 66 & 190 & 130 & 585 & 717 & 7.8 & 38 \\
\hline MIN & . 34 & 2.4 & 3.5 & 5.4 & 4.1 & 6.4 & 5.5 & 4.3 & 8.8 & 5.9 & 1.3 & . 79 \\
\hline CFSM & . 45 & . 82 & 1.32 & 2.84 & 2.94 & 1.56 & 2.73 & 2.91 & 6.46 & 4.66 & . 31 & . 26 \\
\hline IN. & . 51 & . 91 & 1.52 & 3.28 & 3.06 & 1.80 & 3.05 & 3.35 & 7.21 & 5.37 & . 35 & . 29 \\
\hline STATIS & ICS OF & NTHLY M & DATA & R WATER & EARS 19 & - 1998 & BY WATE & YEAR ( & & & & \\
\hline MEAN & 4.26 & 7.83 & 12.6 & 27.2 & 28.1 & 14.9 & 26.1 & 27.8 & 61.8 & 44.6 & 2.93 & 2.52 \\
\hline MAX & 4.26 & 7.83 & 12.6 & 27.2 & 28.1 & 14.9 & 26.1 & 27.8 & 61.8 & 44.6 & 2.93 & 2.52 \\
\hline (WY) & 1998 & 1998 & 1998 & 1998 & 1998 & 1998 & 1998 & 1998 & 1998 & 1998 & 1998 & 1998 \\
\hline MIN & 4.26 & 7.83 & 12.6 & 27.2 & 28.1 & 14.9 & 26.1 & 27.8 & 61.8 & 44.6 & 2.93 & 2.52 \\
\hline (WY) & 1998 & 1998 & 1998 & 1998 & 1998 & 1998 & 1998 & 1998 & 1998 & 1998 & 1998 & 1998 \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03289193 WOLF RUN AT OLD FRANKFORT PIKE AT LEXINGTON, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & \multicolumn{2}{|l|}{FOR 1998 WATER YEAR} & WATER YEARS & \multicolumn{2}{|l|}{\(1995-1998\)} \\
\hline ANNUAL TOTAL & 7901.65 & & & & \\
\hline ANNUAL MEAN & 21.6 & & 21.6 & & \\
\hline HIGHEST ANNUAL MEAN & & & 21.6 & & 1998 \\
\hline LOWEST ANNUAL MEAN & & & 21.6 & & 1998 \\
\hline HIGHEST DAILY MEAN & 717 & Jul 20 & 717 & Jul 20 & 1998 \\
\hline LOWEST DAILY MEAN & . 34 & Oct 13 & . 34 & Oct 13 & 1997 \\
\hline ANNUAL SEVEN-DAY MINIMUM & . 42 & Oct 7 & . 42 & Oct 7 & 1997 \\
\hline INSTANTANEOUS PEAK FLOW & 3120 & Jun 29 & 3120 & Jun 29 & 1998 \\
\hline INSTANTANEOUS PEAK STAGE & 7.97 & Jun 29 & 7.97 & Jun 29 & 1998 \\
\hline ANNUAL RUNOFF (CFSM) & 2.26 & & 2.26 & & \\
\hline ANNUAL RUNOFF (INCHES) & 30.71 & & 30.74 & & \\
\hline 10 PERCENT EXCEEDS & 40 & & 38 & & \\
\hline 50 PERCENT EXCEEDS & 9.1 & & 8.7 & & \\
\hline 90 PERCENT EXCEEDS & 1.2 & & 1.0 & & \\
\hline
\end{tabular}
e Estimated


WATER YEAR

KENTUCKY RIVER BASIN
03289193 WOLF RUN AT OLD FRANKFORT PIKE AT LEXINGTON, KY--Continued DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 77 & . 93 & 1.4 & 2.2 & 107 & 11 & 13 & 4.8 & 5.1 & 4.3 & 9.6 & . 79 \\
\hline 2 & . 76 & . 87 & e1.3 & 58 & 44 & 9.7 & 8.5 & 3.9 & 35 & 6.9 & e3.8 & . 73 \\
\hline 3 & 48 & . 93 & 1.2 & 29 & 23 & 69 & 7.9 & 3.3 & 4.0 & 3.5 & e2.5 & e. 71 \\
\hline 4 & 19 & . 86 & e1.1 & 12 & 16 & 26 & 6.8 & 3.0 & 2.2 & 2.3 & e1.0 & e. 69 \\
\hline 5 & 6.7 & e. 82 & 11 & 10 & 12 & 18 & 5.8 & 7.3 & 1.8 & 2.0 & e. 85 & e. 64 \\
\hline 6 & 4.2 & e. 78 & 2.6 & 7.9 & 10 & 31 & 14 & 30 & 1.7 & 1.8 & e. 80 & e. 60 \\
\hline 7 & 18 & e. 74 & 35 & 6.1 & 15 & 14 & 7.0 & 6.5 & 1.6 & 1.7 & e. 77 & e. 55 \\
\hline 8 & 8.2 & e. 70 & 22 & 205 & 9.3 & 11 & 5.9 & 4.9 & 1.5 & 1.5 & 1.8 & e. 51 \\
\hline 9 & 4.4 & 8.1 & 11 & 279 & 8.1 & 84 & 5.3 & 4.0 & e1.4 & e1.4 & 2.5 & e. 48 \\
\hline 10 & 2.8 & 24 & 7.8 & 49 & 6.8 & 36 & 4.7 & 3.3 & e1.3 & 9.9 & 1.3 & e. 45 \\
\hline 11 & 1.9 & 6.7 & 5.7 & 21 & 6.1 & 23 & 4.0 & 3.6 & 1.7 & 2.0 & . 94 & e. 42 \\
\hline 12 & 1.5 & 3.4 & 6.2 & 15 & 39 & 16 & 3.6 & 3.5 & 1.5 & 1.5 & . 87 & e. 40 \\
\hline 13 & 1.3 & 2.4 & 44 & 15 & 14 & 12 & 3.4 & 2.9 & 1.4 & e1.2 & . 73 & . 94 \\
\hline 14 & 1.2 & 1.7 & 13 & 18 & 11 & 182 & 3.1 & 3.9 & 19 & e. 92 & . 70 & e. 83 \\
\hline 15 & 1.1 & e1.3 & 9.5 & 13 & 10 & 69 & 8.9 & 5.2 & 2.8 & e. 82 & e. 62 & e. 77 \\
\hline 16 & 1.0 & e1.2 & 7.9 & 12 & 9.7 & 32 & 7.0 & 2.9 & 1.8 & e. 74 & e. 56 & e. 68 \\
\hline 17 & 1.0 & e1.0 & 7.8 & 17 & 21 & 20 & 4.4 & 2.7 & 1.6 & e. 62 & e. 50 & e. 59 \\
\hline 18 & 1.1 & e. 85 & 5.7 & 23 & 8.7 & 15 & 3.7 & 2.6 & 1.5 & e. 70 & e. 45 & e. 49 \\
\hline 19 & 7.8 & e. 73 & 5.9 & 15 & 7.5 & 11 & 3.9 & 2.6 & 1.4 & 1.1 & e. 41 & . 77 \\
\hline 20 & 2.4 & 7.5 & 4.9 & 13 & 6.5 & 9.5 & 3.4 & 2.4 & 1.4 & 76 & . 86 & 2.9 \\
\hline 21 & 1.5 & 2.6 & 6.2 & 13 & 5.6 & 8.5 & 3.1 & 2.4 & 1.3 & 15 & . 69 & e2.0 \\
\hline 22 & 1.3 & 1.7 & 29 & 11 & 5.0 & 7.3 & 2.8 & 2.3 & 1.2 & 6.3 & e. 60 & 1.3 \\
\hline 23 & 1.1 & 1.4 & 9.3 & 124 & 4.6 & 66 & 3.3 & 51 & e1.1 & 4.7 & e. 54 & 1.1 \\
\hline 24 & 1.1 & 1.4 & 7.3 & 32 & 4.2 & 21 & 2.7 & 9.7 & 13 & 4.3 & 49 & 1.0 \\
\hline 25 & 1.0 & 40 & 5.6 & 20 & 7.3 & 13 & 2.6 & 2.5 & 4.3 & 4.2 & 12 & . 93 \\
\hline 26 & . 97 & 11 & 4.4 & 15 & 5.1 & 11 & 25 & 1.9 & 1.6 & 4.0 & 3.6 & . 87 \\
\hline 27 & 1.0 & 4.1 & 3.3 & 12 & 12 & 9.8 & 8.5 & 1.7 & 5.7 & 13 & 2.2 & 2.0 \\
\hline 28 & 2.0 & 2.4 & 2.5 & 11 & 18 & 9.0 & 17 & 1.6 & 105 & 4.7 & 1.6 & 1.8 \\
\hline 29 & 1.2 & 1.7 & 2.4 & 9.2 & --- & 8.5 & 8.1 & 1.4 & 16 & 4.4 & 1.3 & 11 \\
\hline 30 & . 97 & 1.4 & 2.8 & 8.3 & --- & 7.8 & 6.2 & e1.3 & 6.9 & 4.3 & 1.0 & 4.1 \\
\hline 31 & . 93 & --- & 2.3 & 93 & --- & 8.0 & --- & e1.2 & --- & 4.2 & . 92 & --- \\
\hline TOTAL & 146.20 & 133.21 & 280.1 & 1168.7 & 446.5 & 869.1 & 203.6 & 180.3 & 245.8 & 190.00 & 105.01 & 41.04 \\
\hline MEAN & 4.72 & 4.44 & 9.04 & 37.7 & 15.9 & 28.0 & 6.79 & 5.82 & 8.19 & 6.13 & 3.39 & 1.37 \\
\hline MAX & 48 & 40 & 44 & 279 & 107 & 182 & 25 & 51 & 105 & 76 & 49 & 11 \\
\hline MIN & . 76 & . 70 & 1.1 & 2.2 & 4.2 & 7.3 & 2.6 & 1.2 & 1.1 & . 62 & . 41 & . 40 \\
\hline CFSM & . 49 & . 46 & . 94 & 3.94 & 1.67 & 2.93 & . 71 & . 61 & . 86 & . 64 & . 35 & . 14 \\
\hline IN. & . 57 & . 52 & 1.09 & 4.54 & 1.74 & 3.38 & . 79 & . 70 & . 96 & . 74 & . 41 & . 16 \\
\hline \multicolumn{2}{|l|}{STATISTICS OF} & MONTHLY M & DATA & \multicolumn{6}{|l|}{R WATER YEARS 1995 - 1999, BY WATER YEAR (WY)} & & & \\
\hline MEAN & 4.49 & 6.14 & 10.8 & 32.5 & 22.0 & 21.5 & 16.5 & 16.8 & 35.0 & 25.3 & 3.16 & 1.94 \\
\hline MAX & 4.72 & 7.83 & 12.6 & 37.7 & 28.1 & 28.0 & 26.1 & 27.8 & 61.8 & 44.6 & 3.39 & 2.52 \\
\hline (WY) & 1999 & 1998 & 1998 & 1999 & 1998 & 1999 & 1998 & 1998 & 1998 & 1998 & 1999 & 1998 \\
\hline MIN & 4.26 & 4.44 & 9.04 & 27.2 & 15.9 & 14.9 & 6.79 & 5.82 & 8.19 & 6.13 & 2.93 & 1.37 \\
\hline (WY) & 1998 & 1999 & 1999 & 1998 & 1999 & 1998 & 1999 & 1999 & 1999 & 1999 & 1998 & 1999 \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03289193 WOLF RUN AT OLD FRANKFORT PIKE AT LEXINGTON, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & AR YEAR & FOR 1999 WAT & R YEAR & WATER YEARS & \multicolumn{2}{|l|}{1995 - 1999} \\
\hline ANNUAL TOTAL & 7702.47 & & 4009.56 & & & & \\
\hline ANNUAL MEAN & 21.1 & & 11.0 & & 16.3 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 21.6 & & 1998 \\
\hline LOWEST ANNUAL MEAN & & & & & 11.0 & & 1999 \\
\hline HIGHEST DAILY MEAN & 717 & Jul 20 & 279 & Jan 9 & 717 & Jul 20 & 1998 \\
\hline LOWEST DAILY MEAN & . 70 & Nov 8 & . 40 & Sep 12 & . 34 & Oct 13 & 1997 \\
\hline ANNUAL SEVEN-DAY MINIMUM & . 81 & Nov 2 & . 49 & Sep 6 & . 42 & Oct 7 & 1997 \\
\hline INSTANTANEOUS PEAK FLOW & & & 1040 & Jul 20 & 3120 & Jun 29 & 1998 \\
\hline INSTANTANEOUS PEAK STAGE & & & 4.79 & Jul 20 & 7.97 & Jun 29 & 1998 \\
\hline ANNUAL RUNOFF (CFSM) & 2.21 & & 1.15 & & 1.70 & & \\
\hline ANNUAL RUNOFF (INCHES) & 29.94 & & 15.59 & & 23.17 & & \\
\hline 10 PERCENT EXCEEDS & 41 & & 22 & & 29 & & \\
\hline 50 PERCENT EXCEEDS & 8.4 & & 4.0 & & 6.5 & & \\
\hline 90 PERCENT EXCEEDS & 1.1 & & . 79 & & . 92 & & \\
\hline
\end{tabular}
e Estimated


LOCATION.--Lat \(38^{\circ} 04^{\prime} 3^{\prime \prime}\), long \(84^{\circ} 24^{\prime} 48^{\prime \prime}\), Fayette County, Hydrologic Unit 05100205, on right bank, downstream side of bridge on Bryan Station Road (Highway 57), 100 ft southwest of intersection of Briar Hill Road (highway 1970) and Bryan Station Road (Highway 57), 0.5 miles Northwest of Montrose, amd at mile 86.0.
DRAINAGE AREA. \(--30.0 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1997 to current year.
GAGE.--Water-stage recorder. Elevation of gage is 830 ft above sea level.
REMARKS.--Records fair except for periods of estimated record, which are poor. Flow regulated by a Sewage Tretment Plant and Federal Correctional Institute upstream.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 46 & 26 & 26 & 22 & 280 & 89 & 75 & 44 & 90 & 61 & e67 & 24 \\
\hline 2 & 42 & 26 & 25 & 82 & 211 & 80 & 56 & 40 & 157 & 70 & e50 & 24 \\
\hline 3 & 139 & 28 & 26 & 122 & 161 & 185 & 55 & 41 & 83 & 57 & e40 & 25 \\
\hline 4 & 81 & 27 & 26 & 63 & 130 & 152 & 48 & 43 & 77 & 50 & e34 & 24 \\
\hline 5 & 50 & 26 & 52 & 52 & 103 & 126 & 44 & 57 & 74 & e58 & e32 & 23 \\
\hline 6 & 39 & 27 & 31 & 37 & 90 & 146 & 69 & 93 & 77 & e54 & 25 & 23 \\
\hline 7 & 74 & 25 & 101 & 33 & 105 & 111 & 51 & 57 & 83 & e52 & 23 & 24 \\
\hline 8 & 51 & 24 & 94 & 219 & 84 & 98 & 46 & 50 & 88 & e50 & 33 & 24 \\
\hline 9 & 37 & 27 & 62 & 474 & 75 & 206 & 48 & 48 & 88 & e48 & 36 & 23 \\
\hline 10 & 32 & 91 & 47 & 199 & 68 & 182 & 42 & 53 & 89 & 65 & 27 & 23 \\
\hline 11 & 27 & 46 & 39 & 133 & 64 & 149 & 41 & 53 & 87 & e56 & 27 & 21 \\
\hline 12 & 27 & 33 & 37 & 100 & 142 & 124 & 40 & 79 & 81 & e52 & 26 & 20 \\
\hline 13 & 27 & 30 & 121 & 85 & 105 & 103 & 40 & 70 & 76 & e48 & 25 & 25 \\
\hline 14 & 25 & 27 & 70 & 119 & 91 & 266 & 38 & 58 & 131 & e45 & 24 & 23 \\
\hline 15 & 25 & 26 & 51 & 96 & 85 & 232 & 57 & 58 & 68 & e42 & 22 & 22 \\
\hline 16 & 26 & 27 & 43 & 83 & 81 & 173 & 57 & 52 & 59 & e41 & 24 & 22 \\
\hline 17 & 25 & 26 & 44 & 86 & 97 & 138 & 44 & 57 & 52 & e39 & 23 & 21 \\
\hline 18 & 24 & 27 & 37 & 117 & 79 & 113 & 38 & 59 & 49 & e38 & 25 & 20 \\
\hline 19 & 47 & 26 & 35 & 92 & 72 & 96 & 40 & 64 & 42 & e37 & 24 & 19 \\
\hline 20 & 32 & 46 & 33 & 82 & 65 & 82 & 40 & 65 & 39 & e110 & 24 & 37 \\
\hline 21 & 28 & 30 & 36 & 88 & 61 & 73 & 39 & 66 & 39 & 68 & 23 & 21 \\
\hline 22 & 27 & 25 & 103 & 78 & 59 & 69 & 38 & 65 & 38 & e52 & 22 & 23 \\
\hline 23 & 25 & 26 & 52 & 237 & 58 & 132 & 42 & 121 & 38 & e48 & 24 & 23 \\
\hline 24 & 25 & 26 & 43 & 176 & 57 & 108 & 36 & 111 & 64 & e45 & 107 & 23 \\
\hline 25 & 24 & 67 & 33 & 132 & 72 & 85 & 33 & 65 & 50 & e41 & 80 & 22 \\
\hline 26 & 26 & 56 & 29 & 104 & 60 & 75 & 77 & 62 & 32 & e39 & 38 & 21 \\
\hline 27 & 25 & 31 & 26 & 86 & 71 & 65 & 61 & 61 & 42 & e73 & 31 & 31 \\
\hline 28 & 33 & 26 & 26 & 74 & 106 & 59 & 84 & 62 & 199 & e50 & 27 & 26 \\
\hline 29 & 29 & 24 & 27 & 65 & --- & 57 & 61 & 64 & 130 & e43 & 24 & 52 \\
\hline 30 & 28 & 26 & 28 & 57 & --- & 54 & 49 & 65 & 76 & e39 & 25 & 37 \\
\hline 31 & 26 & --- & 25 & 122 & --- & 53 & --- & 69 & --- & e38 & 24 & --- \\
\hline TOTAL & 1172 & 978 & 1428 & 3515 & 2732 & 3681 & 1489 & 1952 & 2298 & 1609 & 1036 & 746 \\
\hline MEAN & 37.8 & 32.6 & 46.1 & 113 & 97.6 & 119 & 49.6 & 63.0 & 76.6 & 51.9 & 33.4 & 24.9 \\
\hline MAX & 139 & 91 & 121 & 474 & 280 & 266 & 84 & 121 & 199 & 110 & 107 & 52 \\
\hline MIN & 24 & 24 & 25 & 22 & 57 & 53 & 33 & 40 & 32 & 37 & 22 & 19 \\
\hline CFSM & . 09 & . 08 & . 11 & . 28 & . 24 & . 29 & . 12 & . 16 & . 19 & . 13 & . 08 & . 06 \\
\hline IN. & . 11 & . 09 & . 13 & . 32 & . 25 & . 34 & . 14 & . 18 & . 21 & . 15 & . 10 & . 07 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1998 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
MEAN & 37.1 & 34.2 & 53.5 & 115 & 117 & 102 & 88.5 & 119 & 180 & 125 & 42.9 \\
MAX & 37.8 & 35.9 & 61.0 & 117 & 136 & 119 & 127 & 174 & 284 & 199 & 52.4 \\
(WY) & 1999 & 1998 & 1998 & 1998 & 1998 & 1999 & 1998 & 1998 & 1998 & 1998 \\
MIN & 36.5 & 32.6 & 46.1 & 113 & 97.6 & 84.9 & 49.6 & 63.0 & 76.6 & 51.9 & 39.4 \\
(WY) & 1998 & 1999 & 1999 & 1999 & 1999 & 1998 & 1999 & 1999 & 1999 & 1999 & 1999
\end{tabular}

KENTUCKY RIVER BASIN
03289200 TOWN BRANCH AT YARNALLTON, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS
e Estimated


LOCATION.--Lat \(38^{\circ} 08^{\prime} 27^{\prime \prime}\), long \(8^{\circ} 3^{\prime \prime} \mathbf{4 3}^{\prime \prime}\), Scott County, Hydrologic Unit 05100205, on right bank, 5 ft upstream from bridge on U.S. Route \(62 / 421,2.2 \mathrm{mi}\) southeast of Midway, 6.5 mi downstream from Town Branch, and at mile 27.6 .

DRAINAGE AREA. \(-105 \mathrm{mi}^{2}\) of which about \(21 \mathrm{mi}^{2}\) does not contribute directly to surface runoff.
PERIOD OF RECORD.--September 1982 to current year.
GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 790 ft above sae level..
REMARKS.--Records good except for periods of estimated record, which are poor. Water is diverted from the Kentucky River for use by the city of Lexington and is discharged into Town Branch at a site 17 mi above gage. Discharge partially regulated by low-head turbine, 1 mile upstream, since October 1989. Regulation does not effect peak discharge.
PEAKS ABOVE BASE.--Peak discharges above base of \(1,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 9 & 1015 & \(* 1890\) & 11.78
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 17 & 15 & 30 & e25 & 684 & 207 & 156 & 67 & 26 & 84 & 15 & 18 \\
\hline 2 & 14 & 19 & 28 & e30 & 643 & 195 & 135 & 55 & 89 & 63 & 62 & 21 \\
\hline 3 & 65 & 17 & 29 & 393 & 473 & 339 & 123 & 54 & 88 & 92 & 28 & 9.8 \\
\hline 4 & 154 & 18 & 21 & 231 & 361 & 426 & 117 & e46 & 45 & 53 & 8.2 & 5.8 \\
\hline 5 & 103 & 18 & 51 & 159 & 278 & 347 & 104 & e44 & 32 & 37 & 23 & 6.7 \\
\hline 6 & 56 & 14 & 50 & 124 & 235 & 337 & 123 & e42 & 27 & 50 & 13 & 7.8 \\
\hline 7 & 43 & 17 & 90 & 107 & 231 & 280 & 120 & e54 & 33 & 35 & 7.0 & 16 \\
\hline 8 & 122 & 15 & 185 & 297 & 207 & 242 & 101 & e50 & 29 & 37 & 7.9 & 15 \\
\hline 9 & 60 & 19 & 159 & 1480 & 179 & 373 & 98 & e39 & 28 & 33 & 42 & 15 \\
\hline 10 & 38 & 68 & 104 & 637 & 160 & 508 & 90 & e33 & 30 & 6.1 & 22 & 9.0 \\
\hline 11 & 30 & 124 & 75 & 394 & 145 & 409 & 80 & e28 & 30 & 37 & 19 & 5.1 \\
\hline 12 & 27 & 60 & 59 & 289 & 232 & 325 & 74 & e24 & 16 & 50 & 17 & 6.0 \\
\hline 13 & 24 & 39 & 158 & 240 & 260 & 263 & 74 & e26 & 27 & 28 & 10 & 17 \\
\hline 14 & 21 & 31 & 193 & 316 & 230 & 430 & 68 & e29 & 79 & 17 & 5.5 & 16 \\
\hline 15 & 19 & 27 & 126 & 295 & 211 & 720 & 77 & e28 & 87 & 17 & 6.7 & 16 \\
\hline 16 & 16 & 27 & 94 & 250 & 192 & 490 & 108 & e27 & 53 & 19 & 20 & 18 \\
\hline 17 & 16 & 26 & 85 & 217 & 202 & 372 & 82 & e25 & 40 & 5.1 & 17 & 9.0 \\
\hline 18 & 14 & 25 & 70 & 275 & 178 & 292 & 69 & e23 & 16 & 7.9 & 11 & 13 \\
\hline 19 & 35 & 25 & 54 & 258 & 161 & 237 & 66 & e20 & 12 & 22 & 15 & 17 \\
\hline 20 & 38 & 37 & 58 & 232 & 144 & 200 & 71 & e18 & 14 & 22 & 8.1 & 33 \\
\hline 21 & 28 & 48 & 58 & 225 & 130 & 178 & 64 & e16 & 26 & 140 & 4.6 & 39 \\
\hline 22 & 23 & 34 & 166 & 222 & 120 & 160 & 61 & e20 & 22 & 76 & 6.0 & 20 \\
\hline 23 & 21 & 28 & 145 & 477 & 114 & 194 & 55 & e36 & 21 & 46 & 17 & 13 \\
\hline 24 & 15 & 27 & 106 & 567 & 110 & 277 & 53 & e62 & 20 & 26 & 14 & 9.1 \\
\hline 25 & 15 & 26 & 79 & 408 & 118 & 206 & 46 & e58 & 70 & 24 & 144 & 6.9 \\
\hline 26 & 18 & 143 & 62 & 308 & 118 & 178 & 72 & e40 & 43 & 30 & 64 & 7.8 \\
\hline 27 & 17 & 66 & 53 & 253 & 114 & 159 & 132 & e42 & 35 & 30 & 33 & 21 \\
\hline 28 & 16 & 42 & e38 & 213 & 183 & 144 & 107 & e33 & 135 & 44 & 16 & 21 \\
\hline 29 & 22 & 33 & e34 & 179 & --- & 136 & 131 & e29 & 323 & 21 & 15 & 21 \\
\hline 30 & 17 & 30 & e31 & 154 & --- & 125 & 86 & e25 & 127 & 19 & 20 & 60 \\
\hline 31 & 17 & - & e29 & 146 & --- & 119 & --- & e20 & --- & 14 & 6.4 & --- \\
\hline TOTAL & 1121 & 1118 & 2520 & 9401 & 6413 & 8868 & 2743 & 1113 & 1623 & 1185.1 & 697.4 & 493.0 \\
\hline MEAN & 36.2 & 37.3 & 81.3 & 303 & 229 & 286 & 91.4 & 35.9 & 54.1 & 38.2 & 22.5 & 16.4 \\
\hline MAX & 154 & 143 & 193 & 1480 & 684 & 720 & 156 & 67 & 323 & 140 & 144 & 60 \\
\hline MIN & 14 & 14 & 21 & 25 & 110 & 119 & 46 & 16 & 12 & 5.1 & 4.6 & 5.1 \\
\hline CFSM & . 34 & . 35 & . 77 & 2.89 & 2.18 & 2.72 & . 87 & . 34 & . 52 & . 36 & . 21 & . 16 \\
\hline IN. & . 40 & . 40 & . 89 & 3.33 & 2.27 & 3.14 & . 97 & . 39 & . 58 & . 42 & . 25 & . 17 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1982 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
MEAN & 64.1 & 131 & 232 & 251 & 292 & 315 & 183 & 215 & 182 & 105 & 67.1 \\
MAX & 151 & 307 & 673 & 405 & 1030 & 1165 & 366 & 718 & 606 & 443 & 255 \\
(WY) & 1991 & 1994 & 1991 & 1996 & 1989 & 1997 & 1984 & 1983 & 1997 & 1998 & 1992 \\
MIN & 31.2 & 37.3 & 81.3 & 50.4 & 114 & 60.1 & 60.9 & 35.9 & 39.5 & 35.8 & 22.5 \\
(WY) & 1995 & 1999 & 1999 & 1986 & 1993 & 1983 & 1986 & 1992 \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03289300 SOUTH ELKHORN CREEK NEAR MIDWAY, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & R YEAR & FOR 1999 WAT & R Y & AR & WATER YE & 1982 & \multicolumn{2}{|l|}{- 1999} \\
\hline ANNUAL TOTAL & 70943.9 & & 37295.5 & & & & & & \\
\hline ANNUAL MEAN & 194 & & 102 & & & 174 & & & \\
\hline HIGHEST ANNUAL MEAN & & & & & & 276 & & & 1997 \\
\hline LOWEST ANNUAL MEAN & & & & & & 102 & & & 1999 \\
\hline HIGHEST DAILY MEAN & 3940 & Jul 21 & 1480 & Jan & 9 & 10700 & Mar & 2 & 1997 \\
\hline LOWEST DAILY MEAN & 9.9 & Sep 19 & 4.6 & Aug & 21 & 3.1 & Oct & 8 & 1994 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 14 & Sep 10 & 11 & Sep & 6 & 11 & Sep & 6 & 1999 \\
\hline INSTANTANEOUS PEAK FLOW & & & 1890 & Jan & 9 & 12300 & Mar & 2 & 1997 \\
\hline INSTANTANEOUS PEAK STAGE & & & 11.78 & Jan & 9 & 26.37 & Mar & 2 & 1997 \\
\hline INSTANTANEOUS LOW FLOW & & & & & & . 00 & Oct & 7 & 1992 \\
\hline ANNUAL RUNOFF (CFSM) & 1.85 & & . 97 & & & 1.65 & & & \\
\hline ANNUAL RUNOFF (INCHES) & 25.13 & & 13.21 & & & 22.47 & & & \\
\hline 10 PERCENT EXCEEDS & 385 & & 259 & & & 360 & & & \\
\hline 50 PERCENT EXCEEDS & 116 & & 46 & & & 90 & & & \\
\hline 90 PERCENT EXCEEDS & 17 & & 15 & & & 31 & & & \\
\hline
\end{tabular}
e Estimated


03289500 ELKHORN CREEK NEAR FRANKFORT, KY
LOCATION.--Lat \(38^{\circ} 16^{\prime} 07\) ", long \(84^{\circ} 48^{\prime} 53^{\prime \prime}\), Franklin County, Hydrologic Unit 05100205, on right bank, 50 ft downstream from bridge on State Highway \(1900,4.2 \mathrm{mi}\) northeast of city limits of Frankfort, 7.4 mi downstream from confluence of North and South Elkhorn Creeks, and at mile 10.4.
DRAINAGE AREA. \(-473 \mathrm{mi}^{2}\) of which about \(70 \mathrm{mi}^{2}\) does not contribute directly to surface runoff.
PERIOD OF RECORD.--May 1915 to December 1920 (gage heights only, October 1918 to December 1920), December 1939 to August 1984, October 1987 to current year. Published as "at Forks of Elkhorn" 1915-20.

REVISED RECORDS.--WSP 1555: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is approximately 540.20 ft above sea level. See WDR KY-90-1 for history of changes prior to Aug. 31, 1970.

REMARKS.--Records fair except for periods of estimated record, which are poor. City of Lexington diverts water from Hickman Creek in Kentucky River Basin for municipal water supply; return flow of which enters tributary above station.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 2, 1932, reached a stage of about 17.5 ft, from information by local resident. Flood of January 1937 was about 0.3 ft lower.
PEAKS ABOVE BASE.--Peak discharges above base of \(7,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 9 & 1700 & \(* 7030\) & 9.27
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 39 & 35 & 93 & e96 & 2670 & 1090 & 360 & 165 & 60 & 293 & 32 & 38 \\
\hline 2 & 33 & 35 & 79 & e92 & 3910 & 969 & 412 & 140 & 66 & 199 & 31 & 24 \\
\hline 3 & 41 & 35 & 73 & e1000 & 2610 & 1220 & 356 & 116 & 95 & 160 & 46 & 30 \\
\hline 4 & 91 & 36 & 67 & e1200 & 1780 & 2110 & 324 & 106 & 119 & 151 & 38 & 35 \\
\hline 5 & 164 & 36 & 69 & e720 & 1290 & 1760 & 294 & 95 & 90 & 122 & 32 & 26 \\
\hline 6 & 128 & 39 & 70 & e450 & 1000 & 1450 & 287 & 107 & 74 & 97 & 21 & 22 \\
\hline 7 & 89 & 39 & 102 & e300 & 958 & 1370 & 341 & 144 & 67 & 92 & 27 & 21 \\
\hline 8 & 103 & 39 & 159 & e500 & 1050 & 1080 & 307 & 139 & 69 & 73 & 24 & 21 \\
\hline 9 & 164 & 40 & 344 & 6230 & 853 & 1390 & 279 & 111 & 67 & 71 & 22 & 27 \\
\hline 10 & 114 & 43 & 304 & 4300 & 709 & 2520 & 265 & 99 & 66 & 65 & 26 & 26 \\
\hline 11 & 99 & 86 & 221 & 2020 & 616 & 2140 & 235 & 86 & 64 & 53 & 38 & 25 \\
\hline 12 & 66 & 142 & 162 & 1280 & 833 & 1580 & 209 & 77 & 60 & 46 & 29 & 22 \\
\hline 13 & 53 & 123 & 164 & 1060 & 1320 & 1210 & 193 & 69 & 73 & 67 & 27 & 21 \\
\hline 14 & 44 & 104 & 367 & 1630 & 1220 & 1300 & 180 & 88 & 77 & 52 & 24 & 20 \\
\hline 15 & 39 & 92 & 434 & 1730 & 1020 & 3260 & 179 & 85 & 106 & 42 & 21 & 23 \\
\hline 16 & 40 & 77 & 302 & 1310 & 873 & 2650 & 185 & 84 & 128 & 39 & 16 & 25 \\
\hline 17 & 35 & 65 & 215 & 1030 & 777 & 1810 & 206 & 80 & 107 & 38 & 16 & 24 \\
\hline 18 & 31 & 57 & 176 & 1040 & 726 & 1320 & 183 & 68 & 82 & 38 & 25 & 23 \\
\hline 19 & 38 & 53 & 151 & 1070 & 621 & 991 & 170 & 60 & 66 & 24 & 24 & 22 \\
\hline 20 & 33 & 56 & 129 & 932 & 537 & 781 & 159 & 55 & 60 & 24 & 20 & 20 \\
\hline 21 & 52 & 53 & 134 & 1150 & 473 & 645 & 156 & 51 & 58 & 48 & 21 & 21 \\
\hline 22 & 44 & 70 & 555 & 1150 & 411 & 539 & 146 & 45 & 54 & 134 & 18 & 32 \\
\hline 23 & 41 & 66 & 629 & 1940 & 374 & 549 & 138 & 41 & 56 & 94 & 17 & 40 \\
\hline 24 & 37 & 61 & 431 & 2970 & 351 & 916 & 127 & 43 & 53 & 71 & 16 & 28 \\
\hline 25 & 37 & 59 & 294 & 2160 & 337 & 856 & 115 & 118 & 54 & 60 & 30 & 22 \\
\hline 26 & 34 & 79 & 221 & 1460 & 347 & 665 & 120 & 108 & 70 & 53 & 116 & 21 \\
\hline 27 & 34 & 165 & 182 & 1050 & 357 & 555 & 145 & 83 & 87 & 49 & 83 & 21 \\
\hline 28 & 39 & 135 & e150 & 819 & 979 & 481 & 190 & 87 & 116 & 45 & 60 & 21 \\
\hline 29 & 39 & 108 & e130 & 636 & -- & 428 & 189 & 76 & 475 & 56 & 54 & 29 \\
\hline 30 & 36 & 105 & e110 & 492 & --- & 382 & 185 & 67 & 471 & 41 & 42 & 32 \\
\hline 31 & 38 & --- & e100 & 447 & --- & 347 & --- & 65 & --- & 33 & 37 & --- \\
\hline TOTAL & 1875 & 2133 & 6617 & 42264 & 29002 & 38364 & 6635 & 2758 & 3090 & 2430 & 1033 & 762 \\
\hline MEAN & 60.5 & 71.1 & 213 & 1363 & 1036 & 1238 & 221 & 89.0 & 103 & 78.4 & 33.3 & 25.4 \\
\hline MAX & 164 & 165 & 629 & 6230 & 3910 & 3260 & 412 & 165 & 475 & 293 & 116 & 40 \\
\hline MIN & 31 & 35 & 67 & 92 & 337 & 347 & 115 & 41 & 53 & 24 & 16 & 20 \\
\hline CFSM & . 15 & . 18 & . 53 & 3.39 & 2.57 & 3.08 & . 55 & . 22 & . 26 & . 19 & . 08 & . 06 \\
\hline IN. & . 17 & . 20 & . 61 & 3.91 & 2.68 & 3.55 & . 61 & . 25 & . 29 & . 22 & . 10 & . 07 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1916 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 128 & 323 & 863 & 1143 & 1294 & 1419 & 914 & 664 & 431 & 258 & 173 & 963 \\
MAX & 1012 & 1379 & 3138 & 4630 & 4438 & 4309 & 3332 & 3747 & 2686 & 1708 & 191 \\
(WY) & 1976 & 1943 & 1979 & 1950 & 1989 & 1964 & 1948 & 1983 & 1997 & 1998 & 1992 & 1979 \\
MIN & 5.94 & 12.1 & 17.3 & 33.8 & 64.5 & 145 & 119 & 51.8 & 31.7 & 15.9 & 17.7 & 9.21 \\
(WY) & 1944 & 1944 & 1944 & 1944 & 1944 & 1941 & 1918 & 1941 & 1944 & 1944 & 1948 & 1953
\end{tabular}

KENTUCKY RIVER BASIN
03289500 ELKHORN CREEK NEAR FRANKFORT, KY--Continued

SUMMARY STATISTICS

ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS
e Estimated


WATER YEAR

03290500 KENTUCKY RIVER AT LOCK 2, AT LOCKPORT, KY
LOCATION.--Lat \(38^{\circ} 26^{\prime} 2^{\prime \prime \prime}\), long \(84^{\circ} 57^{\prime} 48^{\prime \prime}\), Henry County, Hydrologic Unit 05100205, on left bank at lock 2 at Lockport, 0.1 mi downstream from Sixmile Creek and at mile 31.0 .
DRAINAGE AREA. \(--6,180 \mathrm{mi}^{2}\), of which about \(196 \mathrm{mi}^{2}\) does not contribute directly to surface runoff.
PERIOD OF RECORD.--October 1925 to current year. Monthly discharge only for some periods, published in WSP 1305 . Monthly discharge only for June to January 1931, published in WSP 1305; figures of daily discharge published in WSP 698 are unreliable.

REVISED RECORDS.--WSP 1385: 1926-29, 1932, 1934-37, 1945. WSP 1555: Drainage area. See also PERIOD OF RECORD.
GAGE.--Water-stage recorder. Datum of gage is 433.36 ft above sea level. Prior to August 29 , 1975 , nonrecording gage at same site and datum. Auxiliary nonrecording gage at lock 3, 11.0 mi upstream.

REMARKS.-- Records fair. Flow regulated by Carr Fork Lake beginning January 1976 (station 03277446), Buckhorn Lake beginning December 1960 (station 03280800), Herrington Lake beginning November 1925 (station 03286000), and by hydroelectric plant at lock 7.
COOPERATION.--Auxiliary gage readings furnished by U.S. Army Corps of Engineers.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 315 & 311 & 541 & 3590 & 20100 & 7100 & 4830 & 13400 & 974 & 1350 & 389 & 526 \\
\hline 2 & 323 & 310 & 531 & 3820 & 24300 & 8450 & 4090 & 9000 & 692 & 1080 & 351 & 403 \\
\hline 3 & 378 & 334 & 656 & 9010 & 20900 & 14200 & 3780 & 6350 & 540 & 1140 & 316 & 311 \\
\hline 4 & 627 & 327 & 457 & 10300 & 17200 & 22900 & 3690 & 4970 & 636 & 1140 & 291 & 307 \\
\hline 5 & 798 & 329 & 610 & 10500 & 14100 & 26700 & 3580 & 4120 & 641 & 998 & 269 & 239 \\
\hline 6 & 733 & 335 & 426 & 9740 & 11600 & 27600 & 4390 & 3800 & 633 & 805 & 243 & 210 \\
\hline 7 & 670 & 344 & 447 & 7960 & 11400 & 24200 & 3860 & 3690 & 619 & 681 & 228 & 178 \\
\hline 8 & 761 & 405 & 1380 & 8560 & 9640 & 20300 & 3320 & 4120 & 801 & 651 & 250 & 155 \\
\hline 9 & 792 & 478 & 3440 & 34700 & 8410 & 18900 & 3010 & 5130 & 578 & 612 & 277 & 119 \\
\hline 10 & 806 & 628 & 4510 & 53800 & 7570 & 19700 & 2840 & 5440 & 431 & 547 & 257 & 121 \\
\hline 11 & 713 & 710 & 5760 & 51100 & 6910 & 18400 & 2780 & 5590 & 521 & 494 & 225 & 127 \\
\hline 12 & 690 & 789 & 5290 & 48700 & 7910 & 16000 & 2800 & 4820 & 558 & 453 & 223 & 137 \\
\hline 13 & 721 & 882 & 4330 & 29000 & 9310 & 14300 & 3140 & 3800 & 565 & 407 & 207 & 142 \\
\hline 14 & 695 & 848 & 4900 & 19600 & 11000 & 13000 & 4020 & 3180 & 1010 & 388 & 191 & 122 \\
\hline 15 & 626 & 867 & 8670 & 16400 & 10400 & 28500 & 5160 & 3270 & 762 & 324 & 197 & 116 \\
\hline 16 & 558 & 903 & 12900 & 16700 & 9910 & 33000 & 4920 & 3080 & 599 & 300 & 192 & 112 \\
\hline 17 & 516 & 869 & 9270 & 18100 & 9210 & 30100 & 4560 & 2600 & 554 & 279 & 190 & 127 \\
\hline 18 & 474 & 831 & 5780 & 19400 & 8420 & 25200 & 4840 & 2250 & 528 & 258 & 186 & 137 \\
\hline 19 & 449 & 798 & 3970 & 20900 & 7180 & 21400 & 5080 & 2000 & 514 & 241 & 180 & 159 \\
\hline 20 & 432 & 857 & 3160 & 19000 & 6560 & 17800 & 4770 & 1880 & 505 & 237 & 183 & 165 \\
\hline 21 & 444 & 835 & 2820 & 24000 & 6180 & 14600 & 4310 & 1260 & 451 & 254 & 182 & 162 \\
\hline 22 & 456 & 730 & 5250 & 20200 & 5660 & 11600 & 3990 & 1570 & 397 & 317 & 181 & 153 \\
\hline 23 & 419 & 687 & 4940 & 26000 & 6040 & 10100 & 3880 & 1590 & 365 & 394 & 189 & 153 \\
\hline 24 & 388 & 620 & 5040 & 33200 & 5250 & 10100 & 3680 & 1540 & 404 & 400 & 217 & 171 \\
\hline 25 & 349 & 542 & 4570 & 39400 & 4170 & 9760 & 3440 & 1540 & 439 & 384 & 269 & 166 \\
\hline 26 & 333 & 680 & 4090 & 44800 & 4080 & 8950 & 3480 & 1650 & 383 & 383 & 283 & 164 \\
\hline 27 & 315 & 674 & 3390 & 30700 & 4220 & 7310 & 3470 & 1580 & 564 & 432 & 326 & 166 \\
\hline 28 & 318 & 710 & 2850 & 19300 & 7620 & 5770 & 3680 & 1520 & 1300 & 493 & 427 & 172 \\
\hline 29 & 319 & 652 & 3070 & 15300 & --- & 5040 & 5660 & 1420 & 5130 & 511 & 953 & 195 \\
\hline 30 & 310 & 589 & 3110 & 12900 & --- & 4630 & 10300 & 1220 & 2130 & 502 & 924 & 207 \\
\hline 31 & 302 & --- & 3400 & 11900 & --- & 4690 & --- & 1060 & --- & 440 & 716 & --- \\
\hline TOTAL & 16030 & 18874 & 119558 & 688580 & 275250 & 500300 & 125350 & 108440 & 24224 & 16895 & 9512 & 5622 \\
\hline MEAN & 517 & 629 & 3857 & 22210 & 9830 & 16140 & 4178 & 3498 & 807 & 545 & 307 & 187 \\
\hline MAX & 806 & 903 & 12900 & 53800 & 24300 & 33000 & 10300 & 13400 & 5130 & 1350 & 953 & 526 \\
\hline MIN & 302 & 310 & 426 & 3590 & 4080 & 4630 & 2780 & 1060 & 365 & 237 & 180 & 112 \\
\hline \multicolumn{2}{|l|}{STATISTICS OF} & \multicolumn{2}{|l|}{MONTHLY MEAN DATA} & OR WATER & \multicolumn{5}{|l|}{YEARS 1961 - 1999, BY WATER YEAR (WY)} & & & \\
\hline MEAN & 2316 & 4963 & 10950 & 13680 & 15080 & 18980 & 14020 & 10330 & 5680 & 2741 & 2336 & 2145 \\
\hline MAX & 14120 & 13960 & 39510 & 37850 & 40180 & 40410 & 41540 & 34340 & 23380 & 8458 & 8589 & 14740 \\
\hline (WY) & 1990 & 1987 & 1979 & 1974 & 1989 & 1975 & 1972 & 1983 & 1997 & 1998 & 1992 & 1979 \\
\hline MIN & 450 & 603 & 668 & 770 & 4073 & 4423 & 2074 & 1518 & 508 & 545 & 307 & 187 \\
\hline (WY) & 1970 & 1988 & 1966 & 1981 & 1968 & 1983 & 1986 & 1976 & 1988 & 1999 & 1999 & 1999 \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03290500 KENTUCKY RIVER AT LOCK 2, AT LOCKPORT, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALENDAR YEAR & FOR 1999 WATER YEAR & WATER YEARS & 1961 - & 1999 \\
\hline ANNUAL TOTAL & 3362904 & 1908635 & & & \\
\hline ANNUAL MEAN & 9213 & 5229 & 8574 & & \\
\hline HIGHEST ANNUAL MEAN & & & 14030 & & 1979 \\
\hline LOWEST ANNUAL MEAN & & & 3891 & & 1988 \\
\hline HIGHEST DAILY MEAN & 62000 Apr 22 & 53800 Jan 10 & 121000 & Dec 11 & 1978 \\
\hline LOWEST DAILY MEAN & 239 Sep 10 & 112 Sep 16 & 112 & Sep 16 & 1999 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 312 Oct 27 & 125 Sep 10 & 125 & Sep 10 & 1999 \\
\hline INSTANTANEOUS PEAK FLOW & & 55000 Jan 10 & 123000 & Jan 26 & 1937 \\
\hline INSTANTANEOUS PEAK STAGE & & 26.68 Jan 10 & 56.85 & Jan 24 & 1937 \\
\hline 10 PERCENT EXCEEDS & 23900 & 16900 & 21900 & & \\
\hline 50 PERCENT EXCEEDS & 5160 & 1010 & 3870 & & \\
\hline 90 PERCENT EXCEEDS & 476 & 214 & 624 & & \\
\hline
\end{tabular}


03291500 EAGLE CREEK AT GLENCOE, KY
LOCATION.--Lat \(38^{\circ} 42^{\prime} 18^{\prime \prime}\), long \(84^{\circ} 49^{\prime} 26^{\prime \prime}\), Gallatin County, Hydrologic Unit 05100205, on left bank 600 ft upstream from bridge on U.S. Highway \(127,0.6 \mathrm{mi}\) south of Glencoe, 5.8 mi downstream from Tenmile Creek, and at mile 21.6 .

DRAINAGE AREA. \(--437 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--April 1915 - September 1918, October 1918 - December 1920 (gage heights only), May 1928-September 1931, June 1938 - September 1977, December 1988 to current year. Monthly discharge only for May 1915 , June 1938, published in WSP 1305.

REVISED RECORDS.--WSP 1275: 1916-17, 1920 (M). WSP 1555: Drainage area. WSP 1908: 1939-40 (M), 1943 (M), 1945 (M), 1948 (P), 1950 (M), 1956-57(P), \(1960(\mathrm{M})\).

GAGE.--Water-stage recorder. Datum of gage is 508.52 ft above sea level. Prior Oct. 1 , 1950 , nonrecording gages at same site and datum. Oct. 1, 1950 to Oct. 19, 1960, nonrecording gage 600 ft downstream at same datum.

REMARKS.--Records fair except for those estimated, which are poor.
PEAKS ABOVE BASE.--Peak discharges above base of \(1,200 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 9 & 0600 & \(* 11500\) & 13.05
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 1.0 & 4.7 & 54 & 60 & 6030 & 1770 & 137 & 96 & 9.1 & e45 & e2.0 & . 56 \\
\hline 2 & . 98 & 5.3 & 41 & 62 & 3190 & 771 & 149 & 82 & 11 & e56 & e1.9 & . 45 \\
\hline 3 & 1.7 & 7.6 & 34 & 2920 & 1120 & 845 & 143 & 67 & 13 & e45 & e2. 5 & . 36 \\
\hline 4 & 2.2 & 8.5 & 30 & 1640 & 639 & 1740 & 166 & 58 & 22 & e40 & e2.9 & . 28 \\
\hline 5 & 2.2 & 7.7 & 27 & 408 & 406 & 738 & 157 & 52 & 46 & e35 & e3.5 & . 21 \\
\hline 6 & 3.0 & 7.3 & 25 & 294 & 318 & 1130 & 199 & 55 & 30 & e31 & e4.3 & . 15 \\
\hline 7 & 4.3 & 11 & 26 & 211 & 2820 & 1090 & 817 & 60 & 22 & e27 & e3.6 & . 11 \\
\hline 8 & 9.1 & 15 & 380 & 690 & 1890 & 608 & 362 & 57 & 18 & e23 & e2.8 & . 08 \\
\hline 9 & 21 & 14 & 557 & 9770 & 756 & 799 & 566 & 49 & 15 & e20 & e3.1 & . 05 \\
\hline 10 & 14 & 15 & 407 & 2670 & 437 & 1050 & 355 & 42 & 16 & e18 & e3.3 & . 03 \\
\hline 11 & 11 & 17 & 176 & 623 & 320 & 746 & 194 & 37 & 19 & e15 & e3.1 & . 01 \\
\hline 12 & 9.7 & 34 & 109 & 479 & 595 & 572 & 163 & 32 & 15 & e13 & 2.8 & . 00 \\
\hline 13 & 8.9 & 37 & 83 & 4420 & 1580 & 464 & 132 & 29 & 12 & e12 & 2.7 & . 00 \\
\hline 14 & 11 & 41 & 239 & 3320 & 811 & 399 & 114 & 26 & 12 & e15 & 2.6 & e. 00 \\
\hline 15 & 10 & 30 & 421 & 1400 & 495 & 724 & 109 & 25 & 12 & e13 & 2.4 & e. 00 \\
\hline 16 & 8.3 & 22 & 202 & 593 & 384 & 1530 & 136 & 23 & 20 & e11 & 2.2 & e. 00 \\
\hline 17 & 7.6 & 17 & 123 & 447 & 333 & 1680 & 142 & 22 & 46 & e9.6 & 2.0 & e. 00 \\
\hline 18 & 6.0 & 14 & 89 & 821 & 319 & 1210 & 117 & 22 & 40 & e8.2 & 1.8 & e. 00 \\
\hline 19 & 5.7 & 13 & 71 & 850 & 316 & 582 & 109 & 20 & 29 & e6.2 & 1.8 & e. 00 \\
\hline 20 & 5.2 & 14 & 59 & 444 & 257 & 401 & 119 & 19 & 22 & e5.2 & 1.9 & e. 05 \\
\hline 21 & 4.5 & 15 & 111 & 2410 & 213 & 321 & 156 & 17 & 17 & e4.3 & 1.7 & e. 20 \\
\hline 22 & 4.0 & 16 & 3640 & 3780 & 182 & 269 & 175 & 15 & 14 & e3.7 & 1.5 & e. 56 \\
\hline 23 & 3.6 & 21 & 1430 & 4490 & 164 & 231 & 146 & 14 & 11 & e5.8 & 1.3 & e1.8 \\
\hline 24 & 3.3 & 20 & 396 & 2450 & 158 & 217 & 124 & 14 & 11 & e8.0 & 1.2 & e2.5 \\
\hline 25 & 3.2 & 24 & 201 & 863 & 154 & 276 & 101 & 13 & 12 & e6.4 & 1.3 & 1.2 \\
\hline 26 & 2.9 & 225 & 137 & 483 & 151 & 246 & 92 & 12 & 9.9 & e4.3 & 1.5 & . 97 \\
\hline 27 & 3.2 & 271 & 104 & 346 & 164 & 191 & 95 & 11 & 11 & e3.2 & 1.4 & . 92 \\
\hline 28 & 3.7 & 202 & 87 & 281 & 3260 & 167 & 106 & 11 & 12 & e2.7 & 1.3 & 1.2 \\
\hline 29 & 4.0 & 109 & 78 & 230 & --- & 152 & 116 & 10 & 14 & e2. 5 & 1.1 & 2.8 \\
\hline 30 & 4.4 & 71 & 74 & 191 & --- & 136 & 92 & 10 & e25 & e2.2 & . 88 & 3.5 \\
\hline 31 & 4.2 & --- & 73 & 223 & - & 127 & --- & 9.7 & --- & e2.1 & . 69 & --- \\
\hline TOTAL & 183.88 & 1309.1 & 9484 & 47869 & 27462 & 21182 & 5589 & 1009.7 & 566.0 & 493.4 & 67.07 & 17.99 \\
\hline MEAN & 5.93 & 43.6 & 306 & 1544 & 981 & 683 & 186 & 32.6 & 18.9 & 15.9 & 2.16 & . 60 \\
\hline MAX & 21 & 271 & 3640 & 9770 & 6030 & 1770 & 817 & 96 & 46 & 56 & 4.3 & 3.5 \\
\hline MIN & . 98 & 4.7 & 25 & 60 & 151 & 127 & 92 & 9.7 & 9.1 & 2.1 & . 69 & . 00 \\
\hline CFSM & . 01 & . 10 & . 70 & 3.53 & 2.24 & 1.56 & . 43 & . 07 & . 04 & . 04 & . 00 & . 00 \\
\hline IN. & . 02 & . 11 & . 81 & 4.07 & 2.34 & 1.80 & . 48 & . 09 & . 05 & . 04 & . 01 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1916 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrrr} 
MEAN & 103 & 336 & 643 & 964 & 1080 & 1302 & 932 & 670 & 466 & 242 & 122 & 755 & 1355 \\
MAX & 1005 & 1641 & 1874 & 3170 & 3295 & 5197 & 2910 & 3190 & 2673 & 1016 & 1957 & 1977 & 1965 \\
(WY) & 1976 & 1973 & 1952 & 1950 & 1956 & 1964 & 1948 & 1996 & 1997 & 1957 \\
MIN & .000 & .000 & .000 & 2.85 & 44.6 & 120 & 131 & 25.5 & 1.56 & .14 & .000 & .000 \\
(WY) & 1931 & 1931 & 1931 & 1931 & 1954 & 1941 & 1976 & 1930 & 1930 & 1930 & 1930 & 1930
\end{tabular}

KENTUCKY RIVER BASIN
03291500 EAGLE CREEK AT GLENCOE, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & R YEAR & \multicolumn{2}{|l|}{FOR 1999 WATER YEAR} & WATER YEARS & 1916 - & 1999 \\
\hline ANNUAL TOTAL & 244040.18 & & 115233.14 & & & & \\
\hline ANNUAL MEAN & 669 & & 316 & & 576 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 1059 & & 1973 \\
\hline LOWEST ANNUAL MEAN & & & & & 117 & & 1954 \\
\hline HIGHEST DAILY MEAN & 11100 & Jun 23 & 9770 & Jan 9 & 39300 & Mar 10 & 1964 \\
\hline LOWEST DAILY MEAN & . 98 & Oct 2 & . 00 & Sep 12 & . 00 & Jul 15 & 1930 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 1.7 & Sep 28 & . 00 & Sep 12 & . 00 & Jul 15 & 1930 \\
\hline INSTANTANEOUS PEAK FLOW & & & 11500 & Jan 9 & 58300 & Mar 2 & 1997 \\
\hline INSTANTANEOUS PEAK STAGE & & & 13.05 & Jan 9 & 29.08 & Mar 2 & 1997 \\
\hline ANNUAL RUNOFF (CFSM) & 1.53 & & . 72 & & 1.32 & & \\
\hline ANNUAL RUNOFF (INCHES) & 20.77 & & 9.81 & & 17.92 & & \\
\hline 10 PERCENT EXCEEDS & 1750 & & 762 & & 1300 & & \\
\hline 50 PERCENT EXCEEDS & 134 & & 27 & & 97 & & \\
\hline 90 PERCENT EXCEEDS & 4.4 & & 1.5 & & 1.2 & & \\
\hline
\end{tabular}


03292470 HARRODS CREEK AT HIGHWAY 329 NEAR GOSHEN, KY
LOCATION.--Lat \(38^{\circ} 21^{\prime \prime} 42^{\prime \prime}\), long \(85^{\circ} 34^{\prime} 30^{\prime \prime}\), Oldham County, Hydrologic Unit 05140101 , on downstream side of bridge on Highway 329 (covered Bridge Road) and at mile 7.29.

DRAINAGE AREA. \(--70.3 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--December 15, 1998 to September 1999.
GAGE.--Water-stage recorder.
COOPERATION.--Field determations were made in cooperation with the Louisville and Jefferson County Metropolitan Sewer District personnel.

REMARKS.--Records good.
PEAKS ABOVE BASE.--Peak discharges above base of \(1,800 \mathrm{ft}^{3} / \mathrm{s}\) and maximun*.
\begin{tabular}{rccccccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & \begin{tabular}{c} 
Time
\end{tabular} & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} \\
Jan. 9 & 0005 & \(* 2470\) & 7.97 & Jan. 23 & 0725 & 2210
\end{tabular}


STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999 - 1999, BY WATER YEAR (WY)
\begin{tabular}{llllrrrrrrrrr} 
MEAN & --- & --- & --- & 180 & 121 & 115 & 51.1 & 16.5 & 35.0 & 6.81 & .29 & .089 \\
MAX & --- & --- & --- & 180 & 121 & 115 & 51.1 & 16.5 & 35.0 & 6.81 & .29 & .089 \\
(WY) & --- & --- & --- & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 \\
MIN & --- & --- & --- & 180 & 121 & 115 & 51.1 & 16.5 & 35.0 & 6.81 & .29 & .089 \\
(WY) & -- & --- & --- & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999
\end{tabular}


03292474 GOOSE CREEK AT OLD WESTPORT ROAD NR ST. MATTHEWS, KY
LOCATION.--Lat \(38^{\circ} 16^{\prime} 3^{\prime \prime \prime}\), long \(85^{\circ} 36^{\prime} 22^{\prime \prime}\), Jefferson County, Hydrologic Unit 05140101, on downstream side of bridge on Westport Road, left bank, 1.2 mile northeast of St. Mathews, 5.0 miles above Little Goose Creek, and at mile 5.5

DRAINAGE AREA. \(--6.0 \mathrm{mi}^{2}\).
WATER-DISCHARGE RECORDS
PERIOD OF RECORD.--October 1996 to current year.
GAGE.--Water-stage recorder and crest-stage gage.
COOPERATION--.Filed determinations were made in cooperation with Louisville and Jefferson County Metropolitan Sewer District personnel.

REMARKS.--Records fair, except those for estimated discharges which are poor
PEAKS ABOVE BASE.--Peak discharges above base of \(150 \mathrm{ft}^{3} / \mathrm{s}\) and maximun*.
\begin{tabular}{rcccccc} 
\\
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & \begin{tabular}{c} 
Time
\end{tabular} \\
Jun. 2 & 0840 & 185 & 2.43 & Jun. 29 & 0215 & \(* 302\)
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 36 & 1.2 & 1.0 & 2.3 & 33 & 7.1 & 4.7 & 4.2 & 1.3 & 9.9 & . 50 & e. 03 \\
\hline 2 & . 29 & 1.2 & . 95 & 11 & 24 & 6.2 & 4.2 & 3.3 & 30 & 9.7 & . 38 & e. 02 \\
\hline 3 & 2.1 & 1.4 & . 90 & 15 & 19 & 12 & 4.3 & 3.0 & 6.0 & 6.3 & . 25 & e. 01 \\
\hline 4 & 1.1 & 1.3 & . 85 & 8.1 & 15 & 9.7 & 4.1 & 2.7 & 3.2 & 4.2 & . 20 & e. 02 \\
\hline 5 & . 93 & 1.2 & . 98 & 6.3 & 13 & 8.6 & 3.5 & 2.8 & 2.5 & 3.0 & . 20 & e. 03 \\
\hline 6 & . 88 & e1.1 & . 99 & 4.6 & 11 & 18 & 6.1 & 12 & 2.0 & 2.6 & . 10 & . 03 \\
\hline 7 & 10 & e1.0 & 4.6 & 4.0 & 19 & 12 & 4.7 & 4.4 & 1.9 & 2.4 & . 10 & . 04 \\
\hline 8 & 3.1 & 1.2 & 3.8 & e54 & 13 & 11 & 3.9 & 3.2 & 1.5 & 2.1 & e. 70 & . 03 \\
\hline 9 & 1.5 & 1.4 & 2.5 & 38 & 12 & 26 & 3.8 & 2.7 & 1.9 & 1.9 & . 50 & . 83 \\
\hline 10 & 1.2 & 6.3 & 1.9 & 19 & 10 & 19 & 3.3 & 2.4 & 1.5 & 1.8 & . 26 & . 29 \\
\hline 11 & 1.1 & 2.4 & 1.5 & 15 & 9.2 & 15 & 3.1 & 2.1 & 1.3 & 1.8 & . 16 & . 06 \\
\hline 12 & . 97 & 1.4 & 1.3 & 16 & 14 & 13 & 2.8 & 2.0 & 1.1 & 1.6 & . 08 & . 03 \\
\hline 13 & . 88 & 1.1 & 3.4 & e28 & 10 & 11 & 2.7 & 2.8 & 1.0 & 1.5 & . 05 & e. 02 \\
\hline 14 & . 77 & 1.0 & 2.7 & 24 & 8.5 & 18 & 2.6 & 2.3 & 14 & 1.2 & . 03 & e. 01 \\
\hline 15 & . 71 & . 87 & 2.0 & 18 & 8.0 & 18 & e3.8 & 1.9 & 3.1 & 1.0 & e. 02 & e. 01 \\
\hline 16 & . 69 & . 73 & 1.8 & 14 & 7.9 & 17 & 3.3 & 1.7 & 2.1 & . 78 & e. 01 & e. 01 \\
\hline 17 & . 61 & . 68 & 1.8 & 12 & 7.6 & 14 & 2.7 & 1.7 & 1.7 & . 75 & e. 02 & e. 02 \\
\hline 18 & . 77 & . 64 & 1.5 & 12 & 6.5 & 12 & 2.5 & 3.1 & 1.3 & . 69 & . 03 & e. 02 \\
\hline 19 & 1.2 & . 65 & 1.4 & 9.1 & 5.9 & 10 & 2.4 & 2.1 & 1.1 & . 60 & . 12 & . 03 \\
\hline 20 & . 96 & 3.3 & 1.3 & 8.1 & 5.1 & 8.4 & 2.4 & 1.7 & . 99 & . 59 & . 22 & . 04 \\
\hline 21 & . 86 & 1.8 & 13 & 25 & 4.6 & 7.7 & 2.2 & 1.6 & . 86 & . 92 & . 09 & . 04 \\
\hline 22 & e1.2 & 1.2 & 25 & 35 & 4.1 & 6.0 & 2.2 & 1.3 & . 75 & 3.7 & . 05 & . 06 \\
\hline 23 & 1.1 & 1.1 & 10 & 80 & e3.9 & 14 & 2.0 & 1.5 & . 66 & 1.4 & . 03 & . 11 \\
\hline 24 & 1.0 & 1.0 & 7.2 & 33 & e3.8 & 10 & 1.8 & 1.8 & 16 & 1.1 & e. 02 & . 06 \\
\hline 25 & 1.1 & 4.3 & 4.8 & 23 & e3.6 & 7.8 & 1.7 & 1.4 & 4.7 & . 85 & . 07 & . 02 \\
\hline 26 & 1.1 & 3.2 & 4.0 & 18 & e3.5 & 6.4 & 5.0 & 1.2 & 2.9 & . 68 & e. 15 & e. 01 \\
\hline 27 & 1.1 & 1.8 & 3.4 & 16 & 5.6 & 5.7 & 3.6 & 1.1 & 9.3 & . 67 & . 12 & . 02 \\
\hline 28 & 1.2 & 1.4 & 3.1 & 13 & 11 & 5.2 & 11 & 1.0 & 14 & . 55 & . 07 & 5.2 \\
\hline 29 & 1.4 & 1.2 & 3.0 & 11 & --- & 4.7 & 14 & . 85 & 57 & . 55 & . 05 & 1.7 \\
\hline 30 & 1.3 & 1.1 & 2.7 & 9.1 & --- & 4.2 & 6.2 & . 91 & 13 & . 48 & . 04 & . 79 \\
\hline 31 & 1.3 & --- & 2.5 & 21 & --- & 4.3 & --- & 1.5 & --- & . 41 & . 03 & -_- \\
\hline TOTAL & 42.78 & 48.17 & 115.87 & 602.6 & 291.8 & 342.0 & 120.6 & 76.26 & 198.66 & 65.72 & 4.65 & 9.59 \\
\hline MEAN & 1.38 & 1.61 & 3.74 & 19.4 & 10.4 & 11.0 & 4.02 & 2.46 & 6.62 & 2.12 & . 15 & . 32 \\
\hline MAX & 10 & 6.3 & 25 & 80 & 33 & 26 & 14 & 12 & 57 & 9.9 & . 70 & 5.2 \\
\hline MIN & . 29 & . 64 & . 85 & 2.3 & 3.5 & 4.2 & 1.7 & . 85 & . 66 & . 41 & . 01 & . 01 \\
\hline CFSM & . 23 & . 27 & . 62 & 3.24 & 1.74 & 1.84 & . 67 & . 41 & 1.10 & . 35 & . 03 & . 05 \\
\hline IN. & . 27 & . 30 & . 72 & 3.74 & 1.81 & 2.12 & . 75 & . 47 & 1.23 & . 41 & . 03 & . 06 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 1.58 & 2.82 & 10.1 & 13.7 & 10.8 & 33.2 & 7.12 & 7.56 & 15.9 & 4.99 & 2.90 & .49 \\
MAX & 2.79 & 3.80 & 21.8 & 19.4 & 11.2 & 77.1 & 12.6 & 10.5 & 26.3 & 11.0 & 4.31 & .63 \\
(WY) & 1997 & 1997 & 1997 & 1999 & 1998 & 1997 & 1998 & 1997 & 1997 & 1998 & 1998 & 1997 \\
MIN & .57 & 1.61 & 3.74 & 9.58 & 10.4 & 11.0 & 4.02 & 2.46 & 6.62 & 1.88 \\
(WY) & 1998 & 1999 & 1999 & 1998 & 1999 & 1999 & 1999 & 1999 & 1999 & 1997 & 1999 & 1999
\end{tabular}

03292474 GOOSE CREEK AT OLD WESTPORT ROAD NR ST. MATTHEWS, KY--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALENDAR YEAR & FOR 1999 WATER YEAR & WATER YEARS & 1997 - 1999 \\
\hline ANNUAL TOTAL & 2787.63 & 1918.70 & & \\
\hline ANNUAL MEAN & 7.64 & 5.26 & 9.29 & \\
\hline HIGHEST ANNUAL MEAN & & & 14.8 & 1997 \\
\hline LOWEST ANNUAL MEAN & & & 5.26 & 1999 \\
\hline HIGHEST DAILY MEAN & 75 May 23 & 80 Jan 23 & 800 & Mar 21997 \\
\hline LOWEST DAILY MEAN & . 18 Sep 29 & . 01 Aug 16 & . 01 & Aug 161999 \\
\hline ANNUAL SEVEN-DAY MINIMUM & . 26 Sep 26 & . 02 Sep 12 & . 02 & Sep 121999 \\
\hline INSTANTANEOUS PEAK FLOW & & 302 Jun 29 & 3530 & Mar 11997 \\
\hline INSTANTANEOUS PEAK STAGE & & 3.15 Jun 29 & 5.93 & Mar 11997 \\
\hline ANNUAL RUNOFF (CFSM) & 1.27 & . 88 & 1.55 & \\
\hline ANNUAL RUNOFF (INCHES) & 17.28 & 11.90 & 21.03 & \\
\hline 10 PERCENT EXCEEDS & 18 & 14 & 19 & \\
\hline 50 PERCENT EXCEEDS & 4.4 & 2.0 & 3.9 & \\
\hline 90 PERCENT EXCEEDS & . 72 & . 07 & . 49 & \\
\hline
\end{tabular}
e Estimated


LOCATION.--Lat \(38^{\circ} 18^{\prime} 4^{\prime \prime \prime}\), long \(85^{\circ} 37^{\prime} 33^{\prime \prime}\), Jefferson County, Hydrologic Unit 05140101, at downstream side of culvert on U.S. Highway 42 and at mile 1.8 .
DRAINAGE AREA. \(--5.8 \mathrm{mi}^{2}\).
WATER-DISCHARGE RECORDS
PERIOD OF RECORD.--December 1998 to current year.
GAGE.--Water-stage recorder.
REMARKS.--Records fair, except those for periods estimated discharges which are poor.
PEAKS ABOVE BASE.--Peak discharges above base of \(140 \mathrm{ft}^{3} / \mathrm{s}\) and maximun*.
\begin{tabular}{lcccccc} 
\\
\multicolumn{1}{c}{ Date } & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & Discharge & Time \begin{tabular}{c} 
Gage Height \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} \\
Jan. 8 & 2220 & 150 & 5.84 & Jan. 23 & 0215 & 144 \\
Jun. 29 & 0345 & \(* 154\) & 5.91 & & 5.73 \\
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & --- & --- & e1.9 & 1.7 & 72 & 8.6 & 6.1 & 4.6 & 1.6 & 8.5 & . 42 & . 00 \\
\hline 2 & --- & --- & e1.8 & 21 & 50 & 6.4 & 4.4 & 2.9 & 48 & 7.8 & . 41 & . 00 \\
\hline 3 & --- & - & 2.3 & 51 & 32 & 22 & 5.6 & 2.3 & 20 & 7.1 & . 34 & . 00 \\
\hline 4 & --- & -- & 2.0 & 13 & 21 & 12 & 4.8 & 2.1 & 4.6 & 2.5 & . 30 & . 00 \\
\hline 5 & --- & --- & 2.3 & 6.6 & 15 & 8.7 & 3.3 & 2.9 & 2.7 & 1.8 & . 29 & . 00 \\
\hline 6 & - & --- & 1.9 & 4.6 & 13 & 39 & 9.8 & 33 & 2.0 & 1.5 & . 21 & . 00 \\
\hline 7 & --- & --- & 27 & 3.6 & 41 & 17 & 5.4 & 10 & 1.6 & 1.3 & . 19 & . 00 \\
\hline 8 & --- & --- & 20 & 53 & e23 & 12 & 4.0 & 4.6 & 1.3 & 1.1 & . 55 & . 00 \\
\hline 9 & --- & --- & 8.2 & 84 & e13 & 52 & 3.4 & 2.7 & 1.4 & . 98 & 1.5 & . 01 \\
\hline 10 & --- & -- & 4.3 & 46 & e11 & 41 & 2.8 & 2.2 & 1.5 & 1.1 & . 59 & . 04 \\
\hline 11 & - & --- & 3.2 & 23 & e10 & 22 & 2.5 & 1.9 & 1.4 & 1.0 & . 38 & . 01 \\
\hline 12 & --- & --- & 2.7 & 28 & e20 & 15 & 2.2 & 1.9 & . 94 & . 85 & . 30 & . 00 \\
\hline 13 & --- & --- & 19 & 56 & e14 & 12 & 2.1 & 5.0 & . 94 & . 83 & . 18 & . 00 \\
\hline 14 & --- & --- & 8.8 & 56 & e9.6 & 27 & 2.1 & 2.2 & 37 & . 87 & . 31 & . 00 \\
\hline 15 & --- & --- & 4.5 & 36 & e8.4 & 44 & 3.6 & 1.7 & 9.4 & . 99 & 1.0 & . 00 \\
\hline 16 & --- & --- & 2.9 & 22 & e8. 2 & 39 & 3.2 & 1.4 & 2.8 & . 92 & 1.2 & . 00 \\
\hline 17 & --- & --- & 3.8 & 15 & e7.8 & 26 & 2.2 & 1.3 & 2.0 & . 74 & 1.2 & . 00 \\
\hline 18 & --- & --- & 2.4 & 16 & e7.6 & 17 & 2.0 & 9.6 & 1.4 & . 68 & . 28 & . 00 \\
\hline 19 & --- & --- & 2.3 & 10 & e6.8 & 12 & 1.9 & 5.5 & 1.1 & . 59 & . 13 & . 00 \\
\hline 20 & --- & --- & 2.2 & 8.7 & e6.0 & 10 & 1.9 & 2.1 & 1.0 & . 68 & . 40 & . 00 \\
\hline 21 & --- & --- & 42 & 53 & e5.2 & 8.8 & 1.9 & 1.7 & . 86 & 2.5 & . 17 & . 00 \\
\hline 22 & --- & --- & 75 & 77 & e4.5 & 7.1 & 1.7 & 1.5 & . 76 & 3.9 & . 09 & . 06 \\
\hline 23 & --- & --- & 32 & 108 & e4.0 & 25 & 1.5 & 1.4 & . 75 & 1.1 & . 10 & . 05 \\
\hline 24 & --- & --- & 10 & 65 & e3. 5 & 21 & 1.4 & 2.8 & 41 & . 85 & . 09 & . 02 \\
\hline 25 & --- & --- & 6.4 & 44 & e3.1 & 11 & 1.3 & 1.3 & 14 & . 70 & . 55 & . 02 \\
\hline 26 & --- & --- & 4.4 & 27 & 2.8 & 8.0 & 14 & 1.1 & 3.9 & . 65 & . 90 & . 04 \\
\hline 27 & --- & --- & 3.0 & 19 & 5.3 & 6.6 & 7.3 & . 94 & 21 & . 75 & . 32 & . 04 \\
\hline 28 & - & --- & 2.5 & 14 & 21 & 5.8 & 18 & . 84 & 42 & . 73 & . 16 & 6.9 \\
\hline 29 & --- & --- & 2.3 & 11 & --- & 5.0 & 26 & . 81 & 72 & . 74 & . 08 & 12 \\
\hline 30 & --- & --- & 2.0 & 8.7 & - & 4.1 & 8.2 & . 80 & 28 & . 55 & . 03 & 3.2 \\
\hline 31 & --- & --- & 1.8 & 33 & --- & 4.2 & --- & 3.1 & --- & . 45 & . 00 & --- \\
\hline TOTAL & --- & -- & 304.9 & 1014.9 & 438.8 & 549.3 & 154.6 & 116.19 & 366.95 & 54.75 & 12.67 & 22.39 \\
\hline MEAN & --- & --- & 9.84 & 32.7 & 15.7 & 17.7 & 5.15 & 3.75 & 12.2 & 1.77 & . 41 & . 75 \\
\hline MAX & --- & -- & 75 & 108 & 72 & 52 & 26 & 33 & 72 & 8.5 & 1.5 & 12 \\
\hline MIN & --- & --- & 1.8 & 1.7 & 2.8 & 4.1 & 1.3 & . 80 & . 75 & . 45 & . 00 & . 00 \\
\hline CFSM & --- & --- & 1.70 & 5.65 & 2.71 & 3.06 & . 89 & . 65 & 2.11 & . 31 & . 07 & . 13 \\
\hline IN. & --- & --- & 1.96 & 6.52 & 2.82 & 3.53 & . 99 & . 75 & 2.36 & . 35 & . 08 & . 14 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lllllllllllllll} 
MEAN & --- & --- & 9.84 & 32.7 & 15.7 & 17.7 & 5.15 & 3.75 & 12.2 & 1.77 & .41 & .75 \\
MAX & --- & --- & 9.84 & 32.7 & 15.7 & 17.7 & 5.15 & 3.75 & 12.2 & 1.77 & .41 & 199 \\
(WY) & --- & --- & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 199 \\
MIN & --- & --- & 9.84 & 32.7 & 15.7 & 17.7 & 5.15 & 3.75 & 12.2 & 1.77 & 1999 \\
(WY) & --- & --- & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999
\end{tabular}

\footnotetext{
e Estimated
}

03292480 LITTLE GOOSE CREEK NEAR HARRODS CREEK, KY--Continued


03292500 SOUTH FORK BEARGRASS CREEK AT LOUISVILLE, KY
LOCATION.--Lat \(38^{\circ} 12^{\prime} 41^{\prime \prime}\), long \(85^{\circ} 42^{\prime} 09^{\prime \prime}\), Jefferson County, Hydrologic Unit 05140101 , on right bank, 10 ft downstream of Trevilian Way Bridge at Louisville, 4.9 mi upstream from Middle Fork Beargrass, and at mile 6.5 .
DRAINAGE AREA. \(-17.2 \mathrm{mi}^{2}\).
WATER-DISCHARGE RECORDS
PERIOD OF RECORD.--October 1939 to September 1940, August 1944 to September 1953, October 1954 to September 1983 (High water records only, October 1962 to June 1970), and June 1988 to current year. Monthly discharge only for October to December 1939, published in WSP 1305.
REVISED RECORDS.--WSP 1705: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 445.60 ft , Louisville city datum. Prior to Oct. 29 , 1953 , at datum 5.00 ft higher. Oct. 29, 1953, to June 24, 1970, at datum 3.00 ft higher. Prior to April 8, 1994, gage located 125 ft upstream at same datum.

REMARKS.--Records fair.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 19, 1943 reached a stage of 18.1 ft, present datum, from information furnished by U.S. Army Corps of Engineers.
PEAKS ABOVE BASE.--Peak discharges above base of \(500 \mathrm{ft}^{3} / \mathrm{s}\) and maximun*.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Date & Time & Discharge
\[
\left(\mathrm{ft}^{3} / \mathrm{s}\right)
\] & \begin{tabular}{l}
Gage Height \\
(ft)
\end{tabular} & \multicolumn{2}{|r|}{Date} & Time & Discharge
\[
\left(\mathrm{ft}^{3} / \mathrm{s}\right)
\] & \begin{tabular}{l}
Gage Height \\
(ft)
\end{tabular} \\
\hline Oct. 7 & 1600 & 735 & 8.59 & Jan. & 8 & 2235 & 778 & 8.84 \\
\hline Jan. 23 & 0215 & 573 & 7.56 & Jun. & 2 & 0900 & 965 & 9.87 \\
\hline Jun. 28 & 1105 & 539 & 733 & Jun. & & 1810 & *1400 & 11.99 \\
\hline
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 8.1 & 11 & 3.2 & 4.0 & 93 & 17 & 11 & 13 & 3.6 & 19 & 2.6 & 1.3 \\
\hline 2 & 9.5 & 12 & 3.6 & 80 & 39 & 14 & 8.7 & 11 & 172 & 15 & 3.5 & 1.3 \\
\hline 3 & 49 & 12 & 3.9 & 44 & 26 & 40 & 15 & 8.7 & 15 & 9.8 & 2.6 & 1.1 \\
\hline 4 & 6.4 & 4.3 & 3.7 & 13 & 20 & 18 & 10 & 7.7 & 8.2 & 7.6 & 2.4 & 1.2 \\
\hline 5 & 3.5 & 3.2 & 2.4 & 9.5 & 16 & 14 & 7.9 & 15 & 6.7 & 6.4 & 2.3 & 1.2 \\
\hline 6 & 3.2 & 2.9 & 1.7 & 7.8 & 14 & 73 & 30 & 104 & 5.1 & 5.7 & 1.9 & 1.3 \\
\hline 7 & 130 & 2.8 & 42 & 7.2 & 64 & 22 & 11 & 18 & 4.8 & 5.2 & 1.9 & 1.3 \\
\hline 8 & 12 & 4.9 & 25 & 246 & 21 & 18 & 8.7 & 12 & 4.6 & 4.9 & 2.5 & 1.2 \\
\hline 9 & 3.4 & 9.1 & 6.1 & 141 & 16 & 116 & 7.5 & 9.8 & 4.8 & 4.9 & 3.8 & 1.7 \\
\hline 10 & 2.1 & 60 & 3.3 & 35 & 14 & 42 & 6.8 & 8.4 & 4.1 & 5.1 & 2.6 & 2.0 \\
\hline 11 & 1.6 & 5.6 & 2.2 & 23 & 12 & 26 & 6.3 & 7.1 & 3.8 & 4.5 & 2.1 & 1.4 \\
\hline 12 & 1.4 & 1.4 & 1.8 & 24 & 41 & 20 & 5.9 & 6.2 & 3.4 & 3.8 & 2.4 & 1.5 \\
\hline 13 & 1.2 & 1.1 & 33 & 43 & 17 & 17 & 5.7 & 21 & 3.3 & 3.5 & 2.3 & 1.3 \\
\hline 14 & 1.4 & 1.0 & 7.0 & 46 & 14 & 87 & 5.5 & 8.4 & 24 & 3.3 & 2.0 & 1.6 \\
\hline 15 & 1.1 & 1.2 & 4.1 & 24 & 12 & 43 & 13 & 6.4 & 5.5 & 3.3 & 2.0 & 1.4 \\
\hline 16 & 1.2 & 1.3 & 2.8 & 19 & 12 & 27 & 7.4 & 5.6 & 3.5 & 3.1 & 1.6 & 1.5 \\
\hline 17 & 2.1 & 2.3 & 3.8 & 16 & 15 & 22 & 5.8 & 11 & 3.3 & 3.1 & 1.3 & 1.6 \\
\hline 18 & 5.7 & 3.1 & 2.1 & 20 & 11 & 19 & 5.2 & 23 & 3.0 & 3.3 & 1.4 & 1.2 \\
\hline 19 & 5.7 & 5.2 & 2.5 & 13 & 9.3 & 16 & 5.2 & 9.7 & 2.8 & 3.8 & 5.5 & 1.1 \\
\hline 20 & 1.2 & 43 & 2.3 & 19 & 8.3 & 14 & 6.6 & 6.3 & 2.8 & 3.4 & 3.6 & 1.0 \\
\hline 21 & 1.0 & 3.5 & 64 & 65 & 7.8 & 13 & 6.4 & 5.3 & 2.6 & 4.0 & 1.1 & 1.1 \\
\hline 22 & 1.6 & 1.8 & 99 & 141 & 7.1 & 12 & 5.5 & 4.8 & 2.5 & 3.5 & 1.0 & . 96 \\
\hline 23 & 1.1 & 1.5 & 15 & 302 & 7.4 & 103 & 5.2 & 9.0 & 2.4 & 3.7 & . 89 & 1.1 \\
\hline 24 & 1.1 & 2.5 & 10 & 68 & 9.3 & 28 & 5.0 & 11 & 84 & 3.3 & . 97 & 1.0 \\
\hline 25 & 1.1 & 40 & 7.5 & 36 & 7.3 & 17 & 5.8 & 5.2 & 11 & 3.5 & 1.0 & 1.2 \\
\hline 26 & 1.1 & 20 & 6.2 & 26 & 6.7 & 14 & 66 & 4.5 & 6.0 & 3.3 & 1.3 & 1.4 \\
\hline 27 & 1.2 & 3.6 & 5.3 & 19 & 43 & 12 & 15 & 4.0 & 55 & 3.4 & 1.2 & 1.5 \\
\hline 28 & 3.2 & 2.3 & 4.9 & 17 & 53 & 11 & 89 & 3.8 & 381 & 5.1 & 1.2 & 16 \\
\hline 29 & 5.4 & 2.0 & 4.4 & 14 & --- & 10 & 76 & 3.4 & 92 & 7.0 & 1.3 & 6.2 \\
\hline 30 & 7.5 & 1.8 & 4.3 & 12 & --- & 8.8 & 20 & 3.3 & 21 & 3.2 & 1.3 & 2.5 \\
\hline 31 & 11 & --- & 4.3 & 87 & --- & 9.7 & --- & 3.4 & --- & 2.9 & 1.2 & --- \\
\hline TOTAL & 285.1 & 266.4 & 381.4 & 1621.5 & 616.2 & 903.5 & 477.1 & 370.0 & 941.8 & 161.6 & 62.76 & 60.16 \\
\hline MEAN & 9.20 & 8.88 & 12.3 & 52.3 & 22.0 & 29.1 & 15.9 & 11.9 & 31.4 & 5.21 & 2.02 & 2.01 \\
\hline MAX & 130 & 60 & 99 & 302 & 93 & 116 & 89 & 104 & 381 & 19 & 5.5 & 16 \\
\hline MIN & 1.0 & 1.0 & 1.7 & 4.0 & 6.7 & 8.8 & 5.0 & 3.3 & 2.4 & 2.9 & . 89 & . 96 \\
\hline CFSM & . 53 & . 52 & . 72 & 3.04 & 1.28 & 1.69 & . 92 & . 69 & 1.83 & . 30 & . 12 & . 12 \\
\hline IN. & . 62 & . 58 & . 82 & 3.51 & 1.33 & 1.95 & 1.03 & . 80 & 2.04 & . 35 & . 14 & . 13 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1940 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrrrr} 
MEAN & 7.51 & 13.7 & 23.1 & 31.7 & 39.0 & 44.7 & 32.1 & 28.4 & 20.3 & 15.7 & 10.1 & 7.44 \\
MAX & 46.7 & 53.9 & 73.6 & 125 & 107 & 201 & 95.2 & 103 & 78.3 & 126 & 54.7 & 86.3 \\
(WY) & 1978 & 1974 & 1979 & 1950 & 1989 & 1997 & 1948 & 1961 & 1950 & 1973 & 1974 & 1979 \\
MIN & .30 & .84 & 1.32 & .71 & 8.52 & 6.41 & 3.13 & 5.51 & 1.11 & .89 & .23 & .000 \\
(WY) & 1953 & 1953 & 1977 & 1940 & 1953 & 1983 & 1976 & 1962 & 1959 & 1956 & 1952 & 1953
\end{tabular}

03292500 SOUTH FORK BEARGRASS CREEK AT LOUISVILLE, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALENDAR YEAR & FOR 1999 WATER YEAR & WATER YEARS & 1940 & - 1999 \\
\hline ANNUAL TOTAL & 8996.1 & 6147.52 & & & \\
\hline ANNUAL MEAN & 24.6 & 16.8 & 22.9 & & \\
\hline HIGHEST ANNUAL MEAN & & & 41.6 & & 1997 \\
\hline LOWEST ANNUAL MEAN & & & 9.35 & & 1959 \\
\hline HIGHEST DAILY MEAN & 376 Jun 10 & 381 Jun 28 & 1960 & Mar & 21997 \\
\hline LOWEST DAILY MEAN & 1.0 Oct 21 & . 89 Aug 23 & . 00 & Sep & 41940 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 1.2 Oct 20 & 1.1 Aug 21 & . 00 & Sep & 41940 \\
\hline INSTANTANEOUS PEAK FLOW & & 1400 Jun 28 & 5290 & Mar & 21997 \\
\hline INSTANTANEOUS PEAK STAGE & & 11.99 Jun 28 & 17.81 & Mar & 21997 \\
\hline INSTANTANEOUS LOW FLOW & & & . 00 & Sep & 41940 \\
\hline ANNUAL RUNOFF (CFSM) & 1.43 & . 98 & 1.33 & & \\
\hline ANNUAL RUNOFF (INCHES) & 19.46 & 13.30 & 18.11 & & \\
\hline 10 PERCENT EXCEEDS & 56 & 42 & 48 & & \\
\hline 50 PERCENT EXCEEDS & 9.1 & 5.7 & 7.6 & & \\
\hline 90 PERCENT EXCEEDS & 2.8 & 1.3 & . 95 & & \\
\hline
\end{tabular}


03292550 SOUTH FORK BEARGRASS CREEK AT WINTER AVENUE AT LOUISVILLE, KY
LOCATION.--Lat \(38^{\circ} 14^{\prime} 04^{\prime \prime}\), long \(85^{\circ} 45^{\prime} 50 \prime\), Jefferson County, Hydrologic Unit 05140101, on left bank of floodwall, 100 ft. upstream of Winter Avenue, 1.4 mi above Middle Fork Beargrass Creek, and at mile 3.3
DRAINAGE AREA. \(--22.6 \mathrm{mi}^{2}\).
WATER-DISCHARGE RECORDS
PERIOD OF RECORD.--October 1998 to September 1999.
GAGE.--Water-stage recorder.
REMARKS.--Records fair.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 3.9 & 3.0 & 3.2 & 5.6 & 97 & 16 & 15 & 16 & 5.2 & 19 & 2.7 & 2.6 \\
\hline 2 & 4.9 & 2.7 & 3.2 & 79 & 40 & 14 & 12 & 15 & 247 & 15 & 2.9 & 2.7 \\
\hline 3 & 60 & 4.8 & 3.1 & 60 & 27 & 34 & 17 & 12 & 19 & 9.9 & 2.5 & 2.4 \\
\hline 4 & 9.2 & 3.0 & 3.9 & 19 & 21 & 16 & 14 & 10 & 10 & 6.5 & 2.3 & 2.4 \\
\hline 5 & 4.5 & 2.4 & 4.4 & 16 & 16 & 15 & 11 & 18 & 8.4 & 5.2 & 2.3 & 2.4 \\
\hline 6 & 3.7 & 2.3 & 3.8 & 13 & 16 & 73 & 37 & 143 & 5.8 & 5.1 & 2.0 & 2.5 \\
\hline 7 & 159 & 2.3 & 53 & 11 & 65 & 21 & 15 & 20 & 5.3 & 4.0 & 1.9 & 2.4 \\
\hline 8 & 25 & 2.0 & 34 & 271 & 22 & 17 & 13 & 14 & 5.0 & 3.7 & 2.1 & 2.2 \\
\hline 9 & 8.1 & 4.3 & 13 & 181 & 17 & 112 & 11 & 12 & 5.2 & 3.7 & 3.0 & 2.1 \\
\hline 10 & 5.5 & 70 & 7.5 & 42 & 16 & 42 & 9.2 & 10 & 4.5 & 3.9 & 2.9 & 2.2 \\
\hline 11 & 4.6 & 15 & 5.7 & 28 & 15 & 27 & 8.4 & 8.4 & 4.4 & 3.5 & 2.5 & 1.9 \\
\hline 12 & 4.2 & 4.5 & 4.9 & 28 & 42 & 21 & 7.6 & 7.3 & 3.7 & 3.1 & 2.4 & 2.1 \\
\hline 13 & 3.8 & 3.6 & 46 & 48 & 18 & 17 & 7.4 & 25 & 3.3 & 3.0 & 2.6 & 1.9 \\
\hline 14 & 3.6 & 3.1 & 14 & 59 & 15 & 88 & 7.3 & 12 & 34 & 2.8 & 2.0 & 1.9 \\
\hline 15 & 3.2 & 2.9 & 8.8 & 30 & 14 & 44 & 17 & 8.7 & 6.7 & 2.8 & 2.2 & 1.9 \\
\hline 16 & 3.0 & 2.8 & 6.6 & 23 & 14 & 26 & 13 & 7.5 & 4.0 & 2.7 & 2.1 & 1.7 \\
\hline 17 & 2.8 & 2.5 & 8.5 & 20 & 16 & 21 & 8.8 & 19 & 3.5 & 2.7 & 1.9 & 2.0 \\
\hline 18 & 4.1 & 2.3 & 5.5 & 23 & 13 & 17 & 7.9 & 34 & 3.2 & 2.7 & 1.8 & 2.0 \\
\hline 19 & 11 & 4.9 & 5.6 & 16 & 10 & 15 & 7.6 & 14 & 3.1 & 3.2 & 5.3 & 2.1 \\
\hline 20 & 3.3 & 53 & 5.6 & 21 & 8.6 & 15 & 9.8 & 8.4 & 3.1 & 3.2 & 9.0 & 2.1 \\
\hline 21 & 2.8 & 8.6 & 69 & 75 & 7.9 & 14 & 9.7 & 7.2 & 3.0 & 3.0 & 3.5 & 2.1 \\
\hline 22 & 3.1 & 4.9 & 129 & 151 & 7.3 & 12 & 8.7 & 6.4 & 2.8 & 3.4 & 3.3 & 2.0 \\
\hline 23 & 2.7 & 3.8 & 21 & 373 & 7.5 & 123 & 8.0 & 11 & 2.7 & 2.9 & 2.7 & 2.2 \\
\hline 24 & 2.6 & 3.5 & 16 & 72 & 9.9 & 31 & 8.1 & 20 & 106 & 2.5 & 2.6 & 2.0 \\
\hline 25 & 2.5 & 36 & 12 & 38 & 7.0 & 19 & 9.0 & 7.6 & 12 & 2.5 & 2.4 & 2.0 \\
\hline 26 & 2.4 & 33 & 10 & 27 & 6.8 & 16 & 96 & 6.4 & 5.9 & 2.4 & 2.8 & 2.0 \\
\hline 27 & 2.3 & 7.0 & 8.3 & 20 & 33 & 15 & 30 & 5.7 & 54 & 2.5 & 2.7 & 1.9 \\
\hline 28 & 2.1 & 4.8 & 7.4 & 17 & 59 & 14 & 100 & 5.6 & 548 & 3.5 & 2.5 & 25 \\
\hline 29 & 2.2 & 4.1 & 6.5 & 16 & --- & 13 & 112 & 5.3 & 110 & 7.2 & 2.4 & 11 \\
\hline 30 & 2.6 & 3.5 & 6.1 & 15 & - & 12 & 22 & 5.0 & 20 & 2.8 & 2.4 & 5.1 \\
\hline 31 & 3.0 & --- & 5.7 & 83 & --- & 12 & --- & 5.0 & --- & 2.6 & 2.5 & --- \\
\hline TOTAL & 355.7 & 300.6 & 531.3 & 1880.6 & 641.0 & 932 & 652.5 & 499.5 & 1248.8 & 141.0 & 86.2 & 98.8 \\
\hline MEAN & 11.5 & 10.0 & 17.1 & 60.7 & 22.9 & 30.1 & 21.8 & 16.1 & 41.6 & 4.55 & 2.78 & 3.29 \\
\hline MAX & 159 & 70 & 129 & 373 & 97 & 123 & 112 & 143 & 548 & 19 & 9.0 & 25 \\
\hline MIN & 2.1 & 2.0 & 3.1 & 5.6 & 6.8 & 12 & 7.3 & 5.0 & 2.7 & 2.4 & 1.8 & 1.7 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999 - 1999, BY WATER YEAR (WY)
\begin{tabular}{llllllllllllll} 
MEAN & 11.5 & 10.0 & 17.1 & 60.7 & 22.9 & 30.1 & 21.8 & 16.1 & 41.6 & 4.55 & 2.78 \\
MAX & 11.5 & 10.0 & 17.1 & 60.7 & 22.9 & 30.1 & 21.8 & 16.1 & 41.6 & 4.55 & 2.78 & 3.29 \\
(WY) & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 \\
MIN & 11.5 & 10.0 & 17.1 & 60.7 & 22.9 & 30.1 & 21.8 & 16.1 & 41.6 & 4.55 & 2.78 \\
(WY) & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999
\end{tabular}

BEARGRASS CREEK BASIN
03292550 SOUTH FORK BEARGRASS CREEK AT WINTER AVENUE AT LOUISVILLE, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS PEAK STAGE
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS


03293000 MIDDLE FORK BEARGRASS CREEK AT LOUISVILLE, KY
LOCATION.--Lat \(38^{\circ} 14^{\prime} 1^{\prime \prime \prime}\), long \(85^{\circ} 39^{\prime} 53^{\prime \prime}\), Jefferson County, Hydrologic Unit 05140101, on right bank 75 ft downstream from bridge on Old Cannons Lane at Louisville, 1.7 mi downstream from Weicher Creek, 5.4 mi upstream from mouth and 7.0 mi upstream from Ohio River.
DRAINAGE AREA. \(--18.9 \mathrm{mi}^{2}\), of which about \(0.5 \mathrm{mi}^{2}\) does not contribute directly to surface runoff.
WATER-DISCHARGE RECORDS
PERIOD OF RECORD.--August 1944 to current year.
REVISED RECORDS.--WSP 1625: 1945 (M), 1948 (M), 1950 (P), 1951-52 (M), 1954-55 (M), 1957 (M), drainage area. WRD KY \(72-1: 1950\) (M).
GAGE.--Water-stage recorder. Datum of gage is 476.70 ft , Louisville city datum. See WDR KY-90-1 for history of changes prior to July 26, 1971.

REMARKS.--Records good.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1943 reached a stage of 9.1 ft, present site and datum, from information by local residents.
PEAKS ABOVE BASE.--Peak discharges above base of \(600 \mathrm{ft}^{3} / \mathrm{s}\) and maximun*.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Date & Time & Discharge
\[
\left(\mathrm{ft}^{3} / \mathrm{s}\right)
\] & \begin{tabular}{l}
Gage Height \\
(ft)
\end{tabular} & \multicolumn{2}{|r|}{Date} & Time & Discharge
\[
\left(\mathrm{ft}^{3} / \mathrm{s}\right)
\] & \begin{tabular}{l}
Gage Height \\
(ft)
\end{tabular} \\
\hline Jan. 8 & 2350 & *680 & 4.67 & Jan. & 23 & 0350 & 649 & 4.58 \\
\hline Jun. 2 & 1020 & 676 & 4.66 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 1.1 & 1.4 & 3.2 & 4.7 & 113 & 22 & 12 & 17 & 2.0 & 24 & 1.1 & . 01 \\
\hline 2 & 1.3 & 1.5 & 2.8 & 59 & 56 & 17 & 9.8 & 13 & 153 & 30 & 1.6 & . 01 \\
\hline 3 & 30 & 4.6 & 2.7 & 59 & 40 & 47 & 15 & 11 & 24 & 14 & . 51 & . 03 \\
\hline 4 & 7.0 & 3.2 & 2.8 & 23 & 29 & 26 & 11 & 8.9 & 11 & 9.7 & . 13 & . 00 \\
\hline 5 & 3.5 & 3.0 & 4.1 & 14 & 23 & 20 & 8.8 & 14 & 8.4 & 7.2 & . 18 & . 08 \\
\hline 6 & 2.7 & 2.5 & 3.7 & 11 & 20 & 73 & 33 & 85 & 5.4 & 5.2 & . 17 & . 12 \\
\hline 7 & 97 & 2.3 & 39 & 9.8 & 63 & 33 & 15 & 21 & 4.2 & 4.2 & . 08 & . 05 \\
\hline 8 & 22 & 2.2 & 30 & 199 & 29 & 25 & 12 & 14 & 3.6 & 3.0 & . 46 & . 03 \\
\hline 9 & 6.6 & 2.7 & 14 & 169 & 22 & 108 & 10 & 11 & 6.6 & 2.6 & 5.2 & . 05 \\
\hline 10 & 3.7 & 49 & 8.3 & 51 & 18 & 55 & 8.8 & 8.6 & 6.4 & 2.7 & 1.0 & . 05 \\
\hline 11 & 2.6 & 11 & 6.0 & 33 & 16 & 39 & 7.7 & 7.2 & 2.9 & 2.3 & . 57 & . 21 \\
\hline 12 & 1.9 & 3.3 & 5.1 & 33 & 46 & 30 & 6.7 & 6.2 & 2.4 & 1.8 & . 14 & . 05 \\
\hline 13 & 1.9 & 2.1 & 31 & 61 & 25 & 24 & 6.5 & 21 & 2.0 & 1.6 & . 08 & . 01 \\
\hline 14 & 1.5 & 1.6 & 15 & 65 & 19 & 76 & 6.2 & 8.0 & 41 & 1.6 & . 08 & . 02 \\
\hline 15 & 1.3 & 1.4 & 8.9 & 38 & 16 & 54 & 13 & 5.9 & 9.2 & 1.3 & . 08 & . 11 \\
\hline 16 & 1.2 & 1.3 & 7.1 & 28 & 15 & 41 & 11 & 4.9 & 4.9 & 1.2 & . 06 & . 20 \\
\hline 17 & 1.2 & 1.5 & 7.8 & 23 & 16 & 32 & 7.4 & 5.2 & 3.3 & 1.8 & . 06 & . 62 \\
\hline 18 & 2.1 & 1.5 & 5.5 & 26 & 13 & 26 & 6.4 & 11 & 2.4 & 1.3 & . 07 & . 10 \\
\hline 19 & 4.5 & 2.2 & 5.2 & 17 & 11 & 21 & 5.8 & 7.5 & 2.0 & 1.3 & 1.1 & . 01 \\
\hline 20 & 1.8 & 36 & 5.0 & 19 & 10 & 18 & 5.8 & 4.5 & 1.7 & 2.2 & 2.4 & . 00 \\
\hline 21 & 1.3 & 6.1 & 57 & 86 & 9.1 & 15 & 5.4 & 3.7 & 1.4 & 2.5 & . 41 & . 00 \\
\hline 22 & 1.4 & 3.1 & 118 & 130 & 8.2 & 12 & 5.2 & 3.0 & 1.4 & 2.4 & . 13 & . 00 \\
\hline 23 & 1.3 & 2.4 & 28 & 332 & 8.2 & 80 & 4.9 & 5.8 & 1.3 & 1.2 & . 01 & . 00 \\
\hline 24 & 1.2 & 2.2 & 17 & 87 & 9.2 & 37 & 4.3 & 11 & 94 & . 80 & . 00 & . 08 \\
\hline 25 & 1.2 & 21 & 12 & 53 & 8.1 & 23 & 4.0 & 4.1 & 18 & . 61 & . 00 & . 05 \\
\hline 26 & 1.0 & 23 & 9.4 & 37 & 7.1 & 18 & 40 & 3.1 & 8.8 & . 43 & . 31 & . 00 \\
\hline 27 & . 94 & 7.0 & 8.0 & 28 & 33 & 15 & 17 & 2.5 & 31 & . 28 & . 08 & . 00 \\
\hline 28 & 1.3 & 4.8 & 6.9 & 22 & 56 & 13 & 112 & 2.3 & 118 & . 62 & . 07 & 25 \\
\hline 29 & 1.3 & 3.8 & 6.3 & 17 & --- & 11 & 80 & 2.0 & 115 & . 67 & . 09 & 15 \\
\hline 30 & 1.5 & 3.4 & 5.4 & 14 & --- & 10 & 26 & 1.9 & 31 & . 33 & . 06 & 5.8 \\
\hline 31 & 1.3 & --- & 5.0 & 76 & --- & 10 & --- & 2.8 & --- & . 36 & . 01 & --- \\
\hline TOTAL & 208.64 & 211.1 & 480.2 & 1824.5 & 738.9 & 1031 & 510.7 & 327.1 & 716.3 & 129.20 & 16.24 & 47.69 \\
\hline MEAN & 6.73 & 7.04 & 15.5 & 58.9 & 26.4 & 33.3 & 17.0 & 10.6 & 23.9 & 4.17 & . 52 & 1.59 \\
\hline MAX & 97 & 49 & 118 & 332 & 113 & 108 & 112 & 85 & 153 & 30 & 5.2 & 25 \\
\hline MIN & . 94 & 1.3 & 2.7 & 4.7 & 7.1 & 10 & 4.0 & 1.9 & 1.3 & . 28 & . 00 & . 00 \\
\hline CFSM & . 37 & . 38 & . 84 & 3.20 & 1.43 & 1.81 & . 93 & . 57 & 1.30 & . 23 & . 03 & . 09 \\
\hline IN. & . 42 & . 43 & . 97 & 3.69 & 1.49 & 2.08 & 1.03 & . 66 & 1.45 & . 26 & . 03 & . 10 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1944 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 8.44 & 16.3 & 26.9 & 33.9 & 42.2 & 50.9 & 38.1 & 30.6 & 20.9 & 16.5 & 11.1 & 9.22 \\
MAX & 40.7 & 54.7 & 88.9 & 148 & 119 & 195 & 143 & 114 & 83.5 & 109 & 42.1 & 105 \\
(WY) & 1978 & 1974 & 1979 & 1950 & 1956 & 1964 & 1970 & 1961 & 1950 & 1973 & 1978 \\
MIN & .15 & .71 & 1.90 & 3.31 & 3.44 & 4.20 & 5.27 & 3.04 & .93 & .37 & .52 & .033 \\
(WY) & 1954 & 1954 & 1954 & 1981 & 1954 & 1954 & 1954 & 1954 & 1954 & 1954 & 1999 & 1953
\end{tabular}

03293000 MIDDLE FORK BEARGRASS CREEK AT LOUISVILLE, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & AR YEAR & FOR 1999 WAT & R YEAR & WATER YEARS & \multicolumn{2}{|l|}{1944-1999} \\
\hline ANNUAL TOTAL & 9404.94 & & 6241.57 & & & & \\
\hline ANNUAL MEAN & 25.8 & & 17.1 & & 25.4 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 49.2 & & 1979 \\
\hline LOWEST ANNUAL MEAN & & & & & 3.76 & & 1954 \\
\hline HIGHEST DAILY MEAN & 350 & Jun 10 & 332 & Jan 23 & 2000 & Mar 9 & 1964 \\
\hline LOWEST DAILY MEAN & . 94 & Oct 27 & . 00 & Aug 24 & . 00 & Aug 27 & 1952 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 1.2 & Oct 23 & . 02 & Sep 20 & . 00 & Sep 28 & 1952 \\
\hline INSTANTANEOUS PEAK FLOW & & & 680 & Jan 8 & 5900 & Mar 2 & 1997 \\
\hline INSTANTANEOUS PEAK STAGE & & & 4.67 & Jan 8 & 8.70 & Mar 2 & 1997 \\
\hline INSTANTANEOUS LOW FLOW & & & & & . 00 & Aug 27 & 1952 \\
\hline ANNUAL RUNOFF (CFSM) & 1.40 & & . 93 & & 1.38 & & \\
\hline ANNUAL RUNOFF (INCHES) & 19.01 & & 12.62 & & 18.72 & & \\
\hline 10 PERCENT EXCEEDS & 63 & & 43 & & 53 & & \\
\hline 50 PERCENT EXCEEDS & 10 & & 5.9 & & 10 & & \\
\hline 90 PERCENT EXCEEDS & 2.7 & & . 10 & & 1.9 & & \\
\hline
\end{tabular}


LOCATION.--Lat \(38^{\circ} 16^{\prime} 49^{\prime \prime}\), long \(85^{\circ} 47^{\prime} 57^{\prime \prime}\), Jefferson County, Hydrologic Unit 05140101, on left bank at downstream end of lock guide wall in lower pool at McAlpine Locks, at Louisville, 5.3 mi downstream from Beargrass Creek, and at mile 607.3 .
DRAINAGE AREA. \(--91,170 \mathrm{mi}^{2}\), approximately.
PERIOD OF RECORD.--January 1928 to current year. Prior to October 1935 monthly discharge only, published in WSP 1305. Gage-height records collected in this vicinity since 1871 are published in reports of National Weather Service.

REVISED RECORDS.--WSP 893: 1939, KY-92-1 peak.
GAGE.--Water-stage recorder. Datum of gage is 373.18 ft above sea level or 374.00 ft Ohio River datum. Prior to Oct. 1 , 1939 , and Oct. 1, 1943 to Sept. 30, 1946, various combinations of gages near Louisville were used. Oct. 1, 1939 to Sept. 30, 1943, water-stage recorders at Louisville and Kosmosdale, downstream from McAlpine Dam ( 4 mi and 20.1 mi , respectively), were used to determine discharge. Oct. 1, 1946 to Sept. 30, 1961, nonrecording gage at site 0.3 mi upstream at same datum. Oct. 1 , 1952 to Sept. 30, 1970, upper nonrecording gage at dam 43, 25.9 mi downstream used as an auxiliary gage. Since Oct. 1 , 1970 , auxiliary water-stage recorder at Kosmosdale, 19.8 mi downstream. Datum of auxiliary gage is 372.75 ft above sea level or 373.67 ft above Ohio River Dam

REMARKS.--Records fair except for estimated periods and those below \(20,000 \mathrm{ft} / \mathrm{s}\), which are poor. Flow regulated by Ohio River system of locks, dams, and reserviors.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 12600 & 18400 & 21900 & 31100 & 235000 & 138000 & e80000 & 141000 & 33500 & 21100 & e20000 & e7500 \\
\hline 2 & 4070 & 17900 & 9770 & 32400 & 237000 & 167000 & e77000 & 128000 & 35200 & 9650 & 12500 & e5800 \\
\hline 3 & 19600 & 11500 & 23600 & 36700 & 225000 & 197000 & e82000 & 91700 & 16600 & 44400 & 17200 & 16200 \\
\hline 4 & 14200 & 3560 & 12400 & 43000 & 209000 & 220000 & e80000 & 77400 & 33500 & 18400 & e6000 & 11000 \\
\hline 5 & 16900 & 24300 & 14200 & 57500 & 197000 & 253000 & e86000 & 64100 & 20700 & 17700 & e10000 & e5000 \\
\hline 6 & 18000 & 13800 & 13400 & 67500 & 194000 & 292000 & e80000 & 53400 & 28000 & 12800 & e12500 & 10100 \\
\hline 7 & 18100 & 4790 & 24000 & 42100 & 196000 & 321000 & e82000 & 52700 & 14500 & 11900 & e10500 & 17700 \\
\hline 8 & 7290 & 10500 & 21000 & 48400 & 231000 & 319000 & e80000 & 39500 & 19400 & 5560 & e12000 & 13200 \\
\hline 9 & 40900 & 15900 & 28000 & 96800 & 222000 & 320000 & e90000 & 43900 & 22700 & 18200 & e14500 & 15300 \\
\hline 10 & 37500 & 21300 & 24200 & 198000 & 227000 & 323000 & e105000 & 48500 & 25800 & 10800 & e12000 & 15000 \\
\hline 11 & 35400 & 24500 & 32600 & 230000 & 236000 & 298000 & e135000 & 45700 & 6580 & 21200 & e7000 & 12300 \\
\hline 12 & 25200 & 25900 & 30900 & 234000 & 224000 & 266000 & e160000 & 47000 & 5410 & 2530 & e10000 & 19200 \\
\hline 13 & 23700 & 16600 & 25300 & 205000 & 209000 & 236000 & 174000 & 43600 & 25400 & 3640 & e16000 & 11600 \\
\hline 14 & 22800 & 20300 & 31800 & 200000 & 186000 & 189000 & 180000 & 33800 & 8650 & 18300 & e9000 & e5200 \\
\hline 15 & 10200 & 24600 & 25900 & 189000 & 174000 & 167000 & 178000 & 46400 & 27200 & 5150 & e18000 & e4800 \\
\hline 16 & 22600 & 7770 & 44800 & 211000 & 156000 & 185000 & 162000 & 37400 & 10000 & 10600 & e8500 & 16100 \\
\hline 17 & 15500 & 21300 & 35200 & 232000 & 138000 & 220000 & 154000 & 49900 & 12500 & 9260 & e9000 & e5600 \\
\hline 18 & 11200 & 24800 & 33100 & 259000 & 130000 & 234000 & 137000 & 42800 & 17600 & 16000 & e11000 & 9550 \\
\hline 19 & 19000 & 15200 & 34400 & 276000 & 118000 & 225000 & 134000 & 35300 & 14400 & 3600 & 12400 & 17300 \\
\hline 20 & 21500 & 5670 & 16300 & 272000 & 112000 & 219000 & 128000 & 57100 & 6960 & 12200 & 13100 & 9200 \\
\hline 21 & 16800 & 13900 & 22400 & 295000 & 105000 & 220000 & 122000 & 66200 & 6320 & 14100 & 9200 & 9260 \\
\hline 22 & 14500 & 34300 & 87200 & 333000 & 93500 & 216000 & 152000 & 55300 & 17800 & 4820 & 8540 & 20100 \\
\hline 23 & 8310 & 7540 & 71200 & 368000 & 93800 & 191000 & 168000 & 38700 & 15400 & 12400 & 12500 & e6500 \\
\hline 24 & 8910 & 14400 & 91200 & 380000 & 72500 & 160000 & 175000 & 51500 & 14900 & 3360 & 16900 & e5000 \\
\hline 25 & 18300 & 21600 & 90000 & 378000 & 67100 & 147000 & 177000 & 53900 & 7050 & 6360 & 26500 & e4600 \\
\hline 26 & 18800 & 21100 & 69300 & 386000 & 51200 & 145000 & 177000 & 67700 & 9020 & 11900 & 39700 & e8000 \\
\hline 27 & 12400 & 24600 & 43300 & 397000 & 60400 & 125000 & 181000 & 88000 & 12500 & 8570 & 29800 & 15300 \\
\hline 28 & 13800 & 13200 & 31800 & 391000 & 94900 & 106000 & 173000 & 78400 & 26500 & 2740 & 18800 & 9870 \\
\hline 29 & 12300 & 18300 & 39000 & 363000 & --- & 92400 & 146000 & 59600 & 24300 & 23200 & 24200 & 13600 \\
\hline 30 & 13600 & 29700 & 29800 & 302000 & --- & e87000 & 136000 & 42600 & 11000 & 35500 & 15500 & 20200 \\
\hline 31 & 14200 & --- & 34500 & 250000 & --- & e80000 & --- & 36100 & --- & 27700 & e12000 & --- \\
\hline TOTAL & 548180 & 527230 & 1112470 & 6804500 & 4494400 & 6358400 & 3991000 & 1817200 & 529390 & 423640 & 454840 & 340080 \\
\hline MEAN & 17680 & 17570 & 35890 & 219500 & 160500 & 205100 & 133000 & 58620 & 17650 & 13670 & 14670 & 11340 \\
\hline MAX & 40900 & 34300 & 91200 & 397000 & 237000 & 323000 & 181000 & 141000 & 35200 & 44400 & 39700 & 20200 \\
\hline MIN & 4070 & 3560 & 9770 & 31100 & 51200 & 80000 & 77000 & 33800 & 5410 & 2530 & 6000 & 4600 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1929 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
MEAN & 37370 & 69020 & 122300 & 167800 & 194100 & 244600 & 203900 & 144300 & 85530 & 55660 & 43610 \\
MAX & 153500 & 245900 & 321300 & 595800 & 430400 & 524300 & 403300 & 392900 & 234400 & 163400 & 151300 \\
(WY) & 1980 & 1986 & 1973 & 1937 & 1939 & 1945 & 1948 & 1996 & 1981 & 1958 & 1958 \\
MIN & 4377 & 6660 & 14090 & 21630 & 38010 & 69390 & 66480 & 29350 & 16400 & 8035 & 4924 \\
(WY) & 1931 & 1931 & 1931 & 1931 & 1934 & 1969 & 1986 & 1949 \\
\hline
\end{tabular}

OHIO RIVER MAIN STEM
03294500 OHIO RIVER AT LOUISVILLE, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CA & R YEAR & \multicolumn{2}{|l|}{FOR 1999 WATER YEAR} & \multicolumn{3}{|l|}{WATER YEARS 1929-1999} \\
\hline ANNUAL TOTAL & 43369620 & & 27401330 & & & & \\
\hline ANNUAL MEAN & 118800 & & 75070 & & 116400 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 176700 & & 1979 \\
\hline LOWEST ANNUAL MEAN & & & & & 57390 & & 1954 \\
\hline HIGHEST DAILY MEAN & 414000 & Jan 13 & 397000 & Jan 27 & 1110000 & Jan 27 & 1937 \\
\hline LOWEST DAILY MEAN & 3560 & Nov 4 & 2530 & Jul 12 & 2100 & Aug 12 & 1930 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 11700 & Sep 13 & 7160 & Jul 22 & 3530 & Oct 15 & 1930 \\
\hline INSTANTANEOUS PEAK FLOW & & & 400000 & Jan 27 & 1110000 & Jan 27 & 1937 \\
\hline INSTANTANEOUS PEAK STAGE & & & 47.36 & Jan 24 & 85.44 & Jan 27 & 1937 \\
\hline 10 PERCENT EXCEEDS & 313000 & & 221000 & & 280000 & & \\
\hline 50 PERCENT EXCEEDS & 74800 & & 27700 & & 72400 & & \\
\hline 90 PERCENT EXCEEDS & 13800 & & 8560 & & 16500 & & \\
\hline
\end{tabular}


03295400 SALT RIVER AT GLENSBORO, KY
LOCATION.--Lat \(38^{\circ} 00^{\prime} 07 \prime \prime\), long \(85^{\circ} 03^{\prime} 3^{\prime \prime}\), Anderson County, Hydrologic Unit 05140102, on left bank 5 ft downstream from bridge on Highway 53 at Glensboro, 0.9 mi upstream from Timber Creek, 2.0 mi downstream from Indian Creek, and at mile 82.5 .
DRAINAGE AREA. \(--172 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--May 1989 to current year.
GAGE.--Water-stage recorder. Datum of gage undetermined.
REMARKS.--Records fair.
PEAKS ABOVE BASE.--Peak discharges above base of \(6,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximun*.
\begin{tabular}{rccccccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 9 & 0400 & 6370 & 8.97 & Jun. 28 & 2100 & \(* 12300\) & 10.82
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES} \\
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 6.7 & 8.4 & 29 & 66 & 1450 & 461 & 123 & 101 & 8.9 & 175 & 1.9 & . 73 \\
\hline 2 & 4.0 & 10 & 24 & 250 & 1010 & 290 & 119 & 70 & 9.2 & 101 & 1.7 & . 44 \\
\hline 3 & 4.8 & 10 & 21 & 1340 & 542 & 689 & 111 & 53 & 9.0 & 200 & . 59 & . 28 \\
\hline 4 & 98 & 9.6 & 19 & 611 & 358 & 894 & 110 & 42 & 8.3 & 105 & . 06 & . 15 \\
\hline 5 & 109 & 11 & 23 & 347 & 253 & 477 & 97 & 40 & 8.1 & 69 & . 00 & . 01 \\
\hline 6 & 39 & 12 & 38 & 244 & 207 & 479 & 115 & 97 & 17 & 44 & . 00 & . 00 \\
\hline 7 & 43 & 12 & 106 & 165 & 200 & 354 & 147 & 116 & 23 & 30 & . 00 & . 00 \\
\hline 8 & 139 & 12 & 417 & 1200 & 181 & 269 & 113 & 134 & 49 & 22 & . 00 & . 00 \\
\hline 9 & 47 & 13 & 398 & 4900 & 154 & 755 & 100 & 73 & 37 & 17 & . 06 & . 00 \\
\hline 10 & 25 & 19 & 230 & 1850 & 132 & 759 & 90 & 48 & 151 & 14 & . 49 & . 00 \\
\hline 11 & 17 & 30 & 146 & 557 & 120 & 444 & 80 & 35 & 29 & 11 & . 32 & . 00 \\
\hline 12 & 10 & 24 & 101 & 351 & 501 & 317 & 70 & 27 & 18 & 9.3 & . 16 & . 00 \\
\hline 13 & 7.2 & 17 & 271 & 335 & 619 & 249 & 63 & 28 & 14 & 8.0 & . 15 & . 00 \\
\hline 14 & 5.1 & 20 & 457 & 810 & 369 & 1090 & 63 & 25 & 23 & 8.4 & . 22 & . 00 \\
\hline 15 & 3.9 & 25 & 293 & 431 & 271 & 1880 & 68 & 20 & 31 & 6.3 & . 50 & . 00 \\
\hline 16 & 3.5 & 24 & 187 & 322 & 223 & 673 & 84 & 18 & 19 & 4.9 & . 36 & . 00 \\
\hline 17 & 2.8 & 21 & 140 & 265 & 213 & 405 & 76 & 17 & 15 & 4.3 & . 21 & . 00 \\
\hline 18 & 2.4 & 17 & 112 & 408 & 197 & 281 & 69 & 15 & 19 & 2.9 & . 17 & . 00 \\
\hline 19 & 2.6 & 14 & 98 & 305 & 175 & 216 & 57 & 15 & 13 & 2.6 & . 09 & . 00 \\
\hline 20 & 3.1 & 13 & 89 & 257 & 150 & 177 & 51 & 13 & 9.9 & 2.0 & . 00 & . 00 \\
\hline 21 & 3.0 & 14 & 134 & 300 & 129 & 157 & 47 & 11 & 7.8 & 2.7 & . 00 & . 00 \\
\hline 22 & 2.6 & 14 & 909 & 254 & 113 & 135 & 45 & 9.9 & 5.9 & 4.2 & . 00 & . 48 \\
\hline 23 & 2.4 & 12 & 367 & 1660 & 106 & 297 & 43 & 8.9 & 5.2 & 6.6 & . 00 & . 70 \\
\hline 24 & 2.5 & 11 & 257 & 1200 & 104 & 423 & 37 & 11 & 8.0 & 7.7 & . 00 & . 74 \\
\hline 25 & 2.5 & 22 & 176 & 534 & 100 & 314 & 30 & 13 & 22 & 11 & . 24 & . 80 \\
\hline 26 & 2.4 & 113 & 135 & 337 & 96 & 226 & 59 & 32 & 21 & 7.0 & 1.5 & . 81 \\
\hline 27 & 3.1 & 64 & 111 & 250 & 95 & 172 & 112 & 38 & 37 & 4.8 & 2.1 & . 92 \\
\hline 28 & 4.5 & 37 & 96 & 203 & 405 & 145 & 81 & 22 & 2700 & 3.6 & 1.6 & 1.4 \\
\hline 29 & 5.0 & 27 & 87 & 164 & --- & 126 & 124 & 16 & 1750 & 2.8 & 1.4 & 2.7 \\
\hline 30 & 6.2 & 38 & 81 & 137 & --- & 109 & 178 & 12 & 391 & 2.3 & 1.5 & 3.6 \\
\hline 31 & 7.2 & --- & 77 & 234 & -- & 101 & --- & 9.7 & -- & 1.7 & 1.2 & --- \\
\hline TOTAL & 614.5 & 674.0 & 5629 & 20287 & 8473 & 13364 & 2562 & 1170.5 & 5459.3 & 891.1 & 16.52 & 13.76 \\
\hline MEAN & 19.8 & 22.5 & 182 & 654 & 303 & 431 & 85.4 & 37.8 & 182 & 28.7 & . 53 & . 46 \\
\hline MAX & 139 & 113 & 909 & 4900 & 1450 & 1880 & 178 & 134 & 2700 & 200 & 2.1 & 3.6 \\
\hline MIN & 2.4 & 8.4 & 19 & 66 & 95 & 101 & 30 & 8.9 & 5.2 & 1.7 & . 00 & . 00 \\
\hline CFSM & . 12 & . 13 & 1.06 & 3.80 & 1.76 & 2.51 & . 50 & . 22 & 1.06 & . 17 & . 00 & . 00 \\
\hline IN. & . 13 & . 15 & 1.22 & 4.39 & 1.83 & 2.89 & . 55 & . 25 & 1.18 & . 19 & . 00 & . 00 \\
\hline STATIS & CS OF & NTHLY M & DATA & OR WATER & RS 19 & - 1999 & WATE & YEAR (V) & & & & \\
\hline MEAN & 59.9 & 157 & 370 & 502 & 436 & 614 & 218 & 338 & 328 & 158 & 57.1 & 51.8 \\
\hline MAX & 262 & 359 & 1360 & 675 & 642 & 1845 & 480 & 925 & 926 & 528 & 137 & 241 \\
\hline (WY) & 1991 & 1994 & 1991 & 1994 & 1991 & 1997 & 1998 & 1995 & 1997 & 1998 & 1992 & 1996 \\
\hline MIN & 6.13 & 11.4 & 123 & 344 & 149 & 99.9 & 71.4 & 37.8 & 23.6 & 6.72 & . 53 & . 46 \\
\hline (WY) & 1995 & 1992 & 1990 & 1993 & 1996 & 1990 & 1997 & 1999 & 1994 & 1993 & 1999 & 1999 \\
\hline
\end{tabular}

SALT RIVER BASIN
03295400 SALT RIVER AT GLENSBORO, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & R YEAR & FOR 1999 WAT & R Y & AR & WATER YEARS 1989 - 1999 & \multicolumn{3}{|l|}{1989 - 1999} \\
\hline ANNUAL TOTAL & 114758.8 & & 59154.68 & & & & & & \\
\hline ANNUAL MEAN & 314 & & 162 & & & 273 & & & \\
\hline HIGHEST ANNUAL MEAN & & & & & & 403 & & & 1997 \\
\hline LOWEST ANNUAL MEAN & & & & & & 162 & & & 1999 \\
\hline HIGHEST DAILY MEAN & 7070 & Jul 20 & 4900 & Jan & 9 & 16400 & Mar & 2 & 1997 \\
\hline LOWEST DAILY MEAN & 1.9 & Sep 10 & . 00 & Aug & 5 & . 00 & Aug & 5 & 1999 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 2.1 & Sep 9 & . 00 & Sep & 6 & . 00 & Sep & 6 & 1999 \\
\hline INSTANTANEOUS PEAK FLOW & & & 12300 & Jun & 28 & 22000 & Mar & 2 & 1997 \\
\hline INSTANTANEOUS PEAK STAGE & & & 10.82 & Jun & & 12.91 & Mar & 2 & 1997 \\
\hline ANNUAL RUNOFF (CFSM) & 1.83 & & . 94 & & & 1.59 & & & \\
\hline ANNUAL RUNOFF (INCHES) & 24.82 & & 12.79 & & & 21.60 & & & \\
\hline 10 PERCENT EXCEEDS & 807 & & 401 & & & 586 & & & \\
\hline 50 PERCENT EXCEEDS & 136 & & 30 & & & 88 & & & \\
\hline 90 PERCENT EXCEEDS & 6.0 & & . 26 & & & 5.4 & & & \\
\hline
\end{tabular}


03295702 BULLSKIN CREEK NEAR SIMPSONVILLE, KY
LOCATION.--Lat \(38^{\circ} 13^{\prime} 07^{\prime \prime}\), long \(85^{\circ} 18^{\prime} 07 \prime\), Shelby County, Hydrologic Unit 05140102 , at center span on the downstream side of bridge on Highway 60, 2.6 miles east of Simpsonville, 2.6 miles below Fox Run, and at mile 21.7 .
DRAINAGE AREA. \(--54.8 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--May 1998 to current year.
GAGE.--Water-stage recorder. Datum of gage is 680 ft above sea level (from topographic map).
REMARKS. -Records fair except for those below \(2.0 \mathrm{ft}^{3} / \mathrm{s}\) and those estimated, which are poor.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 00 & e. 00 & e. 60 & e1.1 & e516 & e100 & 30 & 5.7 & . 13 & 49 & . 00 & . 00 \\
\hline 2 & e. 01 & e. 00 & e. 43 & e4.0 & e184 & 84 & 26 & 4.5 & . 59 & 31 & . 00 & . 00 \\
\hline 3 & e. 02 & e. 02 & e. 70 & e124 & e58 & 128 & 25 & 3.9 & 7.2 & 26 & . 00 & . 00 \\
\hline 4 & e. 04 & e. 03 & e. 88 & e255 & e32 & 123 & 28 & 3.5 & 5.3 & 14 & . 00 & . 00 \\
\hline 5 & e. 01 & e. 04 & e. 64 & e277 & e22 & 96 & 22 & 3.3 & 2.4 & 9.2 & . 00 & . 00 \\
\hline 6 & . 00 & e. 06 & e1.0 & e127 & e14 & 304 & 162 & 11 & 1.1 & 6.2 & . 00 & . 00 \\
\hline 7 & . 94 & e. 04 & e2.0 & e39 & e107 & 182 & 109 & 14 & . 89 & 4.4 & . 00 & . 00 \\
\hline 8 & 3.7 & e. 03 & e4.6 & e28 & e46 & 119 & 70 & 7.8 & . 59 & 3.0 & . 00 & . 00 \\
\hline 9 & 2.5 & e. 36 & e1.9 & e430 & e21 & 450 & 56 & 5.3 & . 27 & 1.8 & . 00 & . 00 \\
\hline 10 & 1.3 & e. 50 & e1.1 & e59 & e14 & 323 & 39 & 3.7 & . 18 & 1.3 & . 00 & . 00 \\
\hline 11 & . 56 & e1.1 & e. 88 & e24 & e51 & 163 & 31 & 2.7 & . 35 & . 99 & . 00 & . 00 \\
\hline 12 & . 22 & e2. 8 & e. 71 & e40 & 76 & 110 & 23 & 2.1 & . 07 & . 59 & . 00 & . 00 \\
\hline 13 & . 08 & e1.5 & e. 75 & e348 & 48 & 84 & 19 & 2.0 & 8.1 & . 48 & . 00 & . 00 \\
\hline 14 & . 03 & e1.0 & e1.1 & e206 & 22 & 150 & 17 & 1.9 & 64 & . 43 & . 00 & . 00 \\
\hline 15 & . 01 & e. 80 & e3.0 & e90 & 16 & 262 & 19 & 1.7 & 48 & . 29 & . 00 & . 00 \\
\hline 16 & . 00 & e. 60 & e1.0 & e50 & 55 & 268 & 21 & 1.2 & 14 & . 17 & . 00 & . 00 \\
\hline 17 & . 00 & e. 39 & e. 65 & e30 & 65 & 148 & 15 & 1.0 & 6.7 & . 10 & . 00 & . 00 \\
\hline 18 & e. 00 & e. 59 & e. 56 & e20 & 54 & 98 & 13 & . 92 & 3.6 & . 07 & . 00 & . 00 \\
\hline 19 & e. 00 & e. 85 & e. 64 & e15 & 47 & 73 & 12 & . 95 & 2.0 & . 04 & . 00 & . 00 \\
\hline 20 & e. 00 & e1.8 & e. 54 & e22 & 39 & 61 & 11 & . 77 & 1.2 & . 04 & . 00 & . 00 \\
\hline 21 & e. 00 & e2. 8 & e4.1 & e81 & 33 & 52 & 11 & . 59 & . 70 & . 07 & . 00 & . 00 \\
\hline 22 & e. 00 & e2.0 & e78 & e103 & 28 & 41 & 9.8 & . 48 & . 30 & . 15 & . 00 & . 00 \\
\hline 23 & e. 00 & e1.6 & e29 & e870 & 28 & 76 & 8.1 & . 33 & . 13 & . 13 & . 00 & . 00 \\
\hline 24 & e. 00 & e1.0 & e12 & e144 & 28 & 99 & 6.4 & . 39 & 1.6 & . 08 & . 00 & . 00 \\
\hline 25 & e. 00 & e. 78 & e5.5 & e58 & 27 & 65 & 5.1 & . 27 & 3.3 & . 05 & . 00 & . 00 \\
\hline 26 & e. 00 & e. 58 & e3.0 & e30 & 25 & 51 & 11 & . 19 & 4.0 & . 04 & . 00 & . 00 \\
\hline 27 & e. 00 & e. 43 & e1.4 & e22 & 36 & 43 & 19 & . 15 & 2.5 & . 03 & . 00 & . 00 \\
\hline 28 & e. 00 & e2.0 & e1.1 & e16 & e194 & 37 & 14 & . 22 & 41 & . 01 & . 00 & . 00 \\
\hline 29 & e. 00 & e1.2 & e1.0 & e14 & --- & 32 & 11 & . 13 & 726 & . 00 & . 00 & . 00 \\
\hline 30 & e. 00 & e. 80 & e1.1 & e12 & --- & 27 & 7.6 & . 10 & 121 & . 00 & . 00 & . 00 \\
\hline 31 & e. 00 & --- & e1.2 & e11 & --- & 25 & --- & . 07 & -- & . 00 & . 00 & --- \\
\hline TOTAL & 9.42 & 25.70 & 161.08 & 3550.1 & 1886 & 3874 & 851.0 & 80.86 & 1067.20 & 149.66 & 0.00 & 0.00 \\
\hline MEAN & . 30 & . 86 & 5.20 & 115 & 67.4 & 125 & 28.4 & 2.61 & 35.6 & 4.83 & . 000 & . 000 \\
\hline MAX & 3.7 & 2.8 & 78 & 870 & 516 & 450 & 162 & 14 & 726 & 49 & . 00 & . 00 \\
\hline MIN & . 00 & . 00 & . 43 & 1.1 & 14 & 25 & 5.1 & . 07 & . 07 & . 00 & . 00 & . 00 \\
\hline \multicolumn{2}{|l|}{STATISTICS OF} & MONTHLY MEAN DATA & AN DATA & \multicolumn{2}{|l|}{R WATER YEARS 1998} & \multicolumn{4}{|l|}{- 1999, BY WATER YEAR (WY)} & & & \\
\hline MEAN & . 30 & . 86 & 5.20 & 115 & 67.4 & 125 & 28.4 & 61.8 & 164 & 29.5 & 2.85 & . 034 \\
\hline MAX & . 30 & . 86 & 5.20 & 115 & 67.4 & 125 & 28.4 & 121 & 293 & 54.1 & 5.71 & . 067 \\
\hline (WY) & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1998 & 1998 & 1998 & 1998 & 1998 \\
\hline MIN & . 30 & . 86 & 5.20 & 115 & 67.4 & 125 & 28.4 & 2.61 & 35.6 & 4.83 & . 000 & . 000 \\
\hline (WY) & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 \\
\hline
\end{tabular}

SALT RIVER BASIN
03295702 BULLSKIN CREEK NEAR SIMPSONVILLE, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN HIGHEST DATIY MEAN HIGHEST DAILY MEAN
LOWEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS
e Estimated


03295890 BRASHEARS CREEK AT TAYLORSVILLE, KY
LOCATION.--Lat \(38^{\circ} 02^{\prime} 1^{\prime \prime \prime}\), long \(85^{\circ} 20^{\prime} \mathbf{2 7 \prime}^{\prime \prime}\), Spencer County, Hydrologic Unit 05140102, on left bank at downstream side of bridge on State Highway 155, at the north edge of Taylorsville, 1.2 mi upstream from Salt River, and at mile 1.2 .
DRAINAGE AREA. \(--259 \mathrm{mi}^{2}\)
PERIOD OF RECORD.--July 1981 to current year.
GAGE.--Water-stage recorder. Datum of gage is 466.85 ft above sea level.
REMARKS.--Records good except those for estimated daily discharges, which are fair.
PEAKS ABOVE BASE.--Peak discharges above base of \(5,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{lcccccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} \\
Jan. \(\quad 9\) & 0800 & 5590 & 14.21 & Jan. 23 & 1600 & \(* 8340\)
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 11 & 6.8 & 27 & 135 & 3120 & 1030 & 172 & 63 & 9.4 & 563 & 5.4 & . 36 \\
\hline 2 & 9.1 & 6.6 & 22 & 141 & 2400 & 707 & 173 & 52 & 12 & 323 & 4.8 & . 44 \\
\hline 3 & 13 & 7.2 & 18 & 802 & 1360 & 697 & 158 & 45 & 13 & 220 & 2.7 & . 46 \\
\hline 4 & 17 & 7.3 & 16 & 621 & 884 & 787 & 160 & 43 & 26 & 165 & 2.0 & . 49 \\
\hline 5 & 23 & 6.4 & 20 & 381 & 607 & 633 & 154 & 43 & 22 & 110 & 1.7 & . 48 \\
\hline 6 & 36 & 6.1 & 21 & 423 & 486 & 838 & 158 & 83 & 22 & 75 & 1.9 & . 53 \\
\hline 7 & 33 & 5.8 & 23 & 314 & 570 & 993 & 469 & 141 & 17 & 55 & 1.9 & . 55 \\
\hline 8 & 36 & 5.5 & 31 & 607 & 833 & 695 & 302 & 110 & 13 & 39 & 1.8 & . 53 \\
\hline 9 & 77 & 5.3 & 49 & 4250 & 618 & 1260 & 248 & 79 & 10 & 28 & 2.1 & . 54 \\
\hline 10 & 36 & 7.0 & 85 & 1750 & 486 & 1920 & 212 & 60 & 9.2 & 21 & 1.9 & . 54 \\
\hline 11 & 19 & 6.6 & 70 & 943 & 404 & 1130 & 167 & 48 & 10 & 16 & 1.4 & . 57 \\
\hline 12 & 12 & 14 & 55 & 648 & 492 & 768 & 143 & 41 & 11 & 12 & 1.2 & . 64 \\
\hline 13 & 8.2 & 17 & 66 & 1170 & 679 & 570 & 123 & 45 & 9.3 & 9.5 & 1.2 & . 64 \\
\hline 14 & 6.9 & 9.8 & 131 & 2200 & 548 & 824 & 112 & 36 & 13 & 7.9 & 1.0 & . 68 \\
\hline 15 & 5.4 & 7.1 & 123 & 1340 & 474 & 1480 & 114 & 33 & 136 & 6.7 & . 87 & . 61 \\
\hline 16 & 4.9 & 5.5 & 86 & 829 & 409 & 1180 & 118 & 29 & 138 & 6.0 & . 81 & . 66 \\
\hline 17 & 7.3 & 4.9 & 65 & 614 & 383 & 879 & 118 & 25 & 66 & 5.0 & . 70 & . 70 \\
\hline 18 & 6.6 & 4.6 & 53 & 540 & 339 & 626 & 132 & 22 & 37 & 4.2 & . 55 & . 67 \\
\hline 19 & 6.3 & 4.3 & 46 & 468 & 292 & 466 & 116 & 19 & 24 & 4.0 & . 53 & . 75 \\
\hline 20 & 6.5 & 5.7 & 39 & 409 & 252 & 375 & 103 & 17 & 18 & 3.5 & . 50 & . 80 \\
\hline 21 & 6.6 & 6.7 & 41 & 1180 & 215 & 321 & 85 & 16 & 13 & e18 & . 45 & . 97 \\
\hline 22 & 7.4 & 7.7 & 643 & 1960 & 186 & 269 & 71 & 15 & 10 & e120 & . 45 & . 93 \\
\hline 23 & 8.0 & 14 & 624 & 6200 & 168 & 276 & 65 & 14 & 8.5 & 84 & . 37 & . 89 \\
\hline 24 & 7.3 & 14 & 303 & 2800 & 164 & 660 & 60 & 17 & 16 & 28 & . 41 & . 78 \\
\hline 25 & 6.5 & 13 & 193 & 1470 & 156 & 455 & 53 & 16 & 25 & 13 & . 47 & . 49 \\
\hline 26 & 6.3 & 14 & 153 & 907 & 147 & 358 & 53 & 15 & 50 & 29 & . 48 & . 26 \\
\hline 27 & 7.1 & 59 & 133 & 658 & 167 & 300 & 116 & 14 & 31 & 19 & . 45 & . 16 \\
\hline 28 & 7.3 & 64 & 105 & 514 & 1030 & 258 & 124 & 11 & 1240 & 7.5 & . 37 & . 08 \\
\hline 29 & 6.8 & 50 & 93 & 402 & --- & 224 & 98 & 9.0 & 2370 & 5.3 & . 37 & . 19 \\
\hline 30 & 7.1 & 37 & 86 & 324 & -- & 193 & 79 & 8.1 & 1200 & 4.2 & . 33 & . 21 \\
\hline 31 & 6.5 & --- & 78 & 338 & --- & 171 & --- & 7.6 & --- & 3.2 & . 30 & --- \\
\hline TOTAL & 451.1 & 422.9 & 3498 & 35338 & 17869 & 21343 & 4256 & 1176.7 & 5579.4 & 2005.0 & 39.41 & 16.60 \\
\hline MEAN & 14.6 & 14.1 & 113 & 1140 & 638 & 688 & 142 & 38.0 & 186 & 64.7 & 1.27 & . 55 \\
\hline MAX & 77 & 64 & 643 & 6200 & 3120 & 1920 & 469 & 141 & 2370 & 563 & 5.4 & . 97 \\
\hline MIN & 4.9 & 4.3 & 16 & 135 & 147 & 171 & 53 & 7.6 & 8.5 & 3.2 & . 30 & . 08 \\
\hline CFSM & . 06 & . 05 & . 44 & 4.40 & 2.46 & 2.66 & . 55 & . 15 & . 72 & . 25 & . 00 & . 00 \\
\hline IN. & . 06 & . 06 & . 50 & 5.08 & 2.57 & 3.07 & . 61 & . 17 & . 80 & . 29 & . 01 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1990 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrr} 
MEAN & 50.2 & 158 & 463 & 724 & 748 & 882 & 451 & 440 & 484 & 128 \\
MAX & 240 & 419 & 1806 & 1140 & 1817 & 3025 & 841 & 1210 & 1318 & 584 \\
(WY) & 1991 & 1994 & 1991 & 1999 & 1990 & 1997 & 1996 & 1990 & 1997 & 1998 \\
MIN & .80 & 7.98 & 113 & 405 & 212 & 228 & 142 & 38.0 & 14.9 & 4.44 \\
(WY) & 1998 & 1992 & 1999 & 1998 & 1992 & 1990 & 1999 & 1999 & 1994 & 1994
\end{tabular}

SALT RIVER BASIN
03295890 BRASHEARS CREEK AT TAYLORSVILLE, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & R YEAR & FOR 1999 WAT & WATER YEAR & WATER YEARS & 1990 - & - 1999 \\
\hline ANNUAL TOTAL & 140475.5 & & 91995.11 & & & & \\
\hline ANNUAL MEAN & 385 & & 252 & & 397 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 642 & & 1997 \\
\hline LOWEST ANNUAL MEAN & & & & & 252 & & 1999 \\
\hline HIGHEST DAILY MEAN & 5430 & Feb 12 & 6200 & Jan 23 & 39600 & Mar 2 & 1997 \\
\hline LOWEST DAILY MEAN & 3.7 & Sep 20 & . 08 & Sep 28 & . 00 & Oct 11 & 1997 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 4.4 & Sep 14 & . 31 & Sep 24 & . 00 & Oct 15 & 1997 \\
\hline INSTANTANEOUS PEAK FLOW & & & 6200 & Jan 23 & 44800 & Mar 2 & 1997 \\
\hline INSTANTANEOUS PEAK STAGE & & & 17.04 & Jan 23 & 31.54 & Mar 2 & 1997 \\
\hline ANNUAL RUNOFF (CFSM) & 1.49 & & . 97 & & 1.53 & & \\
\hline ANNUAL RUNOFF (INCHES) & 20.18 & & 13.21 & & 20.84 & & \\
\hline 10 PERCENT EXCEEDS & 1050 & & 701 & & 933 & & \\
\hline 50 PERCENT EXCEEDS & 144 & & 36 & & 116 & & \\
\hline 90 PERCENT EXCEEDS & 7.1 & & . 68 & & 3.9 & & \\
\hline
\end{tabular}
e Estimated


03297900 FLOYDS FORK NEAR PEWEE VALLEY, KY
LOCATION.--Lat \(38^{\circ} 17^{\prime} 07{ }^{\prime \prime}\), long \(85^{\circ} 28^{\prime} 03^{\prime \prime}\), Oldham County, Hydrologic Unit 05140102, on left bank at downstream side of bridge on State Highway \(362,2.0 \mathrm{mi}\) south of PeWee Valley, 2.2 mi downstream from Curry's Fork, and at mile 44.3 .
DRAINAGE AREA. \(--79.9 \mathrm{mi}^{2}\). (revised)
PERIOD OF RECORD.--June 1991 to current year.
REVISED RECORDS.--WRD KY-95-1: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 599.892 ft above sea level.
REMARKS.--Records fair except for discharges below \(5.0 \mathrm{ft} 3 / \mathrm{s}\) and those estimated, which are poor.
PEAKS ABOVE BASE.--Peak discharges above base of \(4,600 \mathrm{ft}^{3} / \mathrm{s}\) and maximun*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Feb. 1 & 0200 & \(* 2420\) & 12.17
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 9.3 & 9.5 & e5.9 & 19 & 1360 & e180 & 43 & 23 & 6.5 & 60 & 2.9 & . 03 \\
\hline 2 & 9.2 & 10 & e5.3 & 38 & 351 & e110 & 40 & 17 & 126 & 43 & 2.4 & . 00 \\
\hline 3 & 12 & 10 & e5.0 & 201 & 219 & e140 & 38 & 14 & 77 & 30 & 2.0 & . 00 \\
\hline 4 & 18 & 10 & e4.7 & e680 & 159 & 177 & 43 & 12 & 23 & 17 & 1.8 & . 00 \\
\hline 5 & 18 & 9.5 & e5.0 & e560 & 104 & 119 & 35 & 11 & 11 & 12 & 1.7 & . 00 \\
\hline 6 & 15 & 9.6 & 5.6 & e440 & 89 & 353 & 136 & 59 & 7.6 & 9.8 & 1.5 & . 03 \\
\hline 7 & 35 & 9.8 & 15 & e320 & 322 & 203 & 104 & 44 & e7. 8 & 8.6 & 1.2 & . 08 \\
\hline 8 & 49 & 9.6 & 46 & e240 & 219 & 144 & 63 & 23 & e9.6 & 7.5 & 1.1 & . 13 \\
\hline 9 & 11 & 10 & 48 & e210 & 147 & 492 & 53 & 15 & e5.8 & 6.7 & 1.2 & . 25 \\
\hline 10 & 8.1 & 16 & 24 & e160 & 100 & 306 & 41 & 11 & e7.2 & 6.0 & 1.1 & . 18 \\
\hline 11 & 7.5 & 29 & 16 & e130 & 81 & 187 & 34 & e9.5 & e3.0 & 5.4 & 1.0 & . 11 \\
\hline 12 & e6.6 & 9.8 & 12 & 95 & 158 & 135 & 29 & e8.0 & e4.0 & 4.9 & . 99 & . 16 \\
\hline 13 & e5.9 & 6.5 & 19 & 657 & 172 & 102 & 25 & e7.2 & 8.6 & 4.5 & 1.2 & . 27 \\
\hline 14 & e5.4 & 5.8 & 40 & 479 & 116 & 149 & 24 & e6.7 & 221 & 4.1 & . 77 & . 19 \\
\hline 15 & e4.9 & 4.7 & 25 & 204 & 96 & 319 & 27 & e6.3 & 112 & 3.7 & . 66 & . 15 \\
\hline 16 & e4.4 & 10 & 17 & 145 & 79 & 320 & 35 & e6.0 & 28 & 3.6 & . 57 & . 16 \\
\hline 17 & e4.1 & 17 & 16 & 121 & 77 & 204 & 27 & 8.4 & 13 & 3.6 & . 49 & . 10 \\
\hline 18 & 7.8 & 19 & 22 & 143 & 67 & 137 & 21 & 15 & 8.7 & 3.4 & . 42 & . 14 \\
\hline 19 & e6.4 & 19 & 24 & 104 & 58 & 96 & 20 & 25 & e6.2 & 5.0 & . 35 & . 19 \\
\hline 20 & e5.4 & 27 & 19 & 85 & 50 & 79 & 20 & 9.3 & e4.3 & 4.4 & . 41 & . 15 \\
\hline 21 & 4.7 & 43 & 62 & 188 & 44 & 69 & 19 & 8.1 & e2.8 & 3.9 & . 39 & . 15 \\
\hline 22 & 4.1 & 32 & 230 & e640 & 39 & 57 & 18 & e5.8 & e2.2 & 4.1 & . 32 & . 11 \\
\hline 23 & 4.2 & 27 & 132 & e580 & 38 & 105 & 16 & e7.8 & 7.4 & 3.5 & . 25 & . 00 \\
\hline 24 & 3.6 & 24 & e74 & e360 & 42 & 138 & 14 & e5.8 & 117 & 3.7 & . 23 & . 00 \\
\hline 25 & 3.3 & 26 & e59 & 199 & 41 & 79 & 12 & e4.6 & 57 & 3.6 & . 22 & . 02 \\
\hline 26 & 3.3 & 49 & e45 & 139 & 40 & 62 & 25 & e3. 5 & 21 & 3.3 & . 29 & . 00 \\
\hline 27 & 3.3 & 23 & e37 & 111 & 40 & 54 & 42 & e2.7 & 57 & 2.9 & . 27 & . 01 \\
\hline 28 & 3.3 & 12 & 31 & 84 & 238 & 48 & 37 & e2.2 & 140 & 3.1 & . 23 & . 02 \\
\hline 29 & 4.0 & 7.9 & 24 & 68 & --- & 45 & 84 & e1.8 & 737 & 3.2 & . 30 & . 03 \\
\hline 30 & 7.1 & e6.8 & 21 & 57 & --- & 40 & 36 & e1.6 & 166 & 3.2 & . 23 & . 07 \\
\hline 31 & 7.1 & --- & 19 & 188 & --- & 36 & --- & e1.4 & --- & 3.3 & . 11 & --- \\
\hline TOTAL & 291.0 & 502.5 & 1108.5 & 7645 & 4546 & 4685 & 1161 & 375.7 & 1997.7 & 281.0 & 26.60 & 2.73 \\
\hline MEAN & 9.39 & 16.8 & 35.8 & 247 & 162 & 151 & 38.7 & 12.1 & 66.6 & 9.06 & . 86 & . 091 \\
\hline MAX & 49 & 49 & 230 & 680 & 1360 & 492 & 136 & 59 & 737 & 60 & 2.9 & . 27 \\
\hline MIN & 3.3 & 4.7 & 4.7 & 19 & 38 & 36 & 12 & 1.4 & 2.2 & 2.9 & . 11 & . 00 \\
\hline CFSM & . 12 & . 21 & . 45 & 3.09 & 2.03 & 1.89 & . 48 & . 15 & . 83 & . 11 & . 01 & . 00 \\
\hline IN. & . 14 & . 23 & . 52 & 3.56 & 2.12 & 2.18 & . 54 & . 17 & . 93 & . 13 & . 01 & . 00 \\
\hline \multicolumn{2}{|l|}{STATISTICS OF} & \multicolumn{2}{|l|}{MONTHLY MEAN DATA} & \multicolumn{6}{|l|}{WATER YEARS 1991 - 1999, BY WATER YEAR (WY)} & & & \\
\hline MEAN & 12.0 & 46.6 & 111 & 225 & 151 & 287 & 139 & 153 & 134 & 30.5 & 29.9 & 14.1 \\
\hline MAX & 26.3 & 118 & 331 & 320 & 202 & 958 & 306 & 398 & 381 & 66.7 & 103 & 87.7 \\
\hline (WY) & 1994 & 1994 & 1997 & 1996 & 1993 & 1997 & 1996 & 1995 & 1997 & 1995 & 1993 & 1996 \\
\hline MIN & 3.01 & 3.14 & 35.8 & 127 & 43.3 & 103 & 37.3 & 12.1 & 4.07 & 1.89 & . 86 & . 091 \\
\hline (WY) & 1995 & 1992 & 1999 & 1992 & 1992 & 1995 & 1995 & 1999 & 1991 & 1991 & 1999 & 1999 \\
\hline
\end{tabular}

SALT RIVER BASIN
03297900 FLOYDS FORK NEAR PEWEE VALLEY, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS
e Estimated

FOR 1998 CALENDAR YEAR
\begin{tabular}{lll}
41392.8 \\
113 & & \\
& & \\
2030 & Apr 16 \\
3.3 & Oct 25 \\
3.6 & Oct 23 \\
& & \\
1.42 & & \\
19.27 & & \\
204 & & \\
42 & & \\
7.0 & &
\end{tabular}

FOR 1999 WATER YEAR
\begin{tabular}{ccc}
22622.73 & & \\
62.0 & & \\
& & \\
1360 & Feb & 1 \\
.00 & Sep & 2 \\
.01 & Sep & 23 \\
2420 & Feb & 1 \\
12.17 & Feb & 1 \\
.78 & & \\
10.53 & & \\
168 & & \\
15 & & \\
.27 & &
\end{tabular}

WATER YEARS 1991 - 1999
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{113} \\
\hline \multicolumn{4}{|l|}{1981997} \\
\hline \multicolumn{4}{|l|}{62.01999} \\
\hline \multicolumn{4}{|l|}{10500 Mar 21997} \\
\hline . 00 & Sep & 2 & 1999 \\
\hline . 01 & Sep & 23 & 1999 \\
\hline \multicolumn{4}{|l|}{e18800 Mar 21997} \\
\hline \multicolumn{4}{|l|}{e28.60 Mar 21997} \\
\hline \multicolumn{4}{|l|}{1.42} \\
\hline \multicolumn{4}{|l|}{19.25} \\
\hline \multicolumn{4}{|l|}{212} \\
\hline \multicolumn{4}{|l|}{28} \\
\hline 1.4 & & & \\
\hline
\end{tabular}


WATER YEAR

03284000 KENTUCKY RIVER AT LOCK 10 NEAR WINCHESTER, KY
LOCATION.--Lat \(37^{\circ} 53^{\prime} 41^{\prime \prime}\), long \(84^{\circ} 1^{\prime} \mathbf{\prime}^{\prime \prime} 44^{\prime \prime}\), Madison County, Hydrologic Unit 05100205, on left bank at lock 10 , 0.9 mi downstream from Otter Creek, 8.0 mi southwest of Winchester, and at mile 176.4.
DRAINAGE AREA. \(--3,955 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1907 to current year.
REVISED RECORDS.--WSP 1275: 1908-52. 1955: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 557.37 ft above sea level (Ohio River datum). Feb. 2, 1940 to Aug. 10 , 1943 , water-stage recorder 1.1 mi upstream at different datum. Aug. 11, 1943 to June 12, 1978 , nonrecording gage at present site and datum.

REMARKS.--Records fair. Flow regulated since January 1976 by Carr Fork Lake (station 03277446 ), since December 1960 by Buckhorn Lake (station 03280800).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 266 & 240 & 358 & 3000 & 9210 & 5840 & 2640 & 7360 & 537 & 650 & 288 & 258 \\
\hline 2 & 252 & 248 & 354 & 2890 & 10100 & 10200 & 2600 & 5170 & 488 & 816 & 273 & 216 \\
\hline 3 & 277 & 252 & 349 & 5030 & 9670 & 13700 & 2650 & 4020 & 456 & 682 & 247 & 180 \\
\hline 4 & 334 & 265 & 344 & 6720 & 8200 & 18200 & 2620 & 3280 & 446 & 544 & 252 & 147 \\
\hline 5 & 365 & 314 & 348 & 6620 & 6640 & 20700 & 2530 & 2820 & 479 & 496 & 279 & 126 \\
\hline 6 & 363 & 364 & 329 & 5010 & 5390 & 16800 & 2370 & 2750 & 510 & 522 & 268 & 111 \\
\hline 7 & 355 & 451 & 466 & 3720 & 4690 & 13900 & 2170 & 3690 & 494 & 506 & 219 & 101 \\
\hline 8 & 388 & 498 & 1660 & 6390 & 4250 & 11500 & 1960 & 4860 & 451 & 441 & 184 & 89 \\
\hline 9 & 393 & 500 & 3760 & 31900 & 3840 & 10000 & 1930 & 4920 & 416 & 362 & 172 & 79 \\
\hline 10 & 487 & 501 & 5230 & 44200 & 3460 & 10500 & 2010 & 5020 & 378 & 312 & 149 & 65 \\
\hline 11 & 601 & 545 & 4240 & 40300 & 3090 & 10700 & 2240 & 3900 & 365 & 270 & 125 & 58 \\
\hline 12 & 521 & 570 & 2840 & 17600 & 3880 & 9590 & 2630 & 2900 & 346 & 235 & 114 & 52 \\
\hline 13 & 446 & 619 & 2670 & 10200 & 6090 & 8110 & 3830 & 2510 & 338 & 229 & 104 & 58 \\
\hline 14 & 398 & 656 & 8060 & 8800 & 5940 & 11800 & 4430 & 2920 & 383 & 222 & 94 & 103 \\
\hline 15 & 357 & 644 & 12000 & 10100 & 5590 & 20100 & 3730 & 2160 & 406 & 214 & 78 & 99 \\
\hline 16 & 320 & 611 & 7550 & 12400 & 5090 & 21100 & 3550 & 1870 & 427 & 205 & 87 & 84 \\
\hline 17 & 295 & 576 & 4150 & 13100 & 4900 & 18400 & 4180 & 1630 & 455 & 202 & 158 & 78 \\
\hline 18 & 275 & 551 & 2850 & 13300 & 4920 & 14800 & 4280 & 1390 & 423 & 198 & 217 & 72 \\
\hline 19 & 273 & 526 & 2320 & 12500 & 4850 & 12600 & 3690 & 1290 & 371 & 218 & 205 & 70 \\
\hline 20 & 266 & 498 & 1950 & 14900 & 4570 & 10200 & 3320 & 1240 & 332 & 273 & 167 & 84 \\
\hline 21 & 256 & 430 & 1690 & 13000 & 4170 & 7580 & 3210 & 1200 & 304 & 321 & 135 & 75 \\
\hline 22 & 245 & 380 & 2370 & 10400 & 3730 & 6220 & 3070 & 1170 & 282 & 314 & 112 & 85 \\
\hline 23 & 231 & 352 & 3080 & 15200 & 3310 & 5300 & 2820 & 1080 & 257 & 304 & 97 & 85 \\
\hline 24 & 221 & 354 & 3110 & 25000 & 3020 & 5440 & 2600 & 1120 & 258 & 395 & 89 & 82 \\
\hline 25 & 211 & 365 & 2780 & 30400 & 2870 & 5080 & 2420 & 1230 & 261 & 464 & 116 & 86 \\
\hline 26 & 205 & 413 & 2340 & 21500 & 2970 & 4330 & 2320 & 1260 & 236 & 511 & 452 & 94 \\
\hline 27 & 200 & 399 & 1960 & 13100 & 3000 & 3760 & 2560 & 1250 & 225 & 489 & 1230 & 102 \\
\hline 28 & 213 & 379 & 1770 & 10500 & 3400 & 3370 & 4040 & 1030 & 283 & 474 & 891 & 103 \\
\hline 29 & 220 & 368 & 1760 & 8910 & --- & 3120 & 9660 & 804 & 480 & 416 & 541 & 107 \\
\hline 30 & 221 & 363 & 2140 & 7370 & --- & 2900 & 12100 & 667 & 542 & 356 & 379 & 101 \\
\hline 31 & 226 & --- & 2810 & 5560 & --- & 2710 & -- & 588 & --- & 318 & 308 & --- \\
\hline TOTAL & 9681 & 13232 & 87638 & 429620 & 140840 & 318550 & 104160 & 77099 & 11629 & 11959 & 8030 & 3050 \\
\hline MEAN & 312 & 441 & 2827 & 13860 & 5030 & 10280 & 3472 & 2487 & 388 & 386 & 259 & 102 \\
\hline MAX & 601 & 656 & 12000 & 44200 & 10100 & 21100 & 12100 & 7360 & 542 & 816 & 1230 & 258 \\
\hline MIN & 200 & 240 & 329 & 2890 & 2870 & 2710 & 1930 & 588 & 225 & 198 & 78 & 52 \\
\hline \multicolumn{2}{|l|}{STATISTICS OF} & MONTHLY MEAN DATA & DATA & OR WATER & \multicolumn{5}{|l|}{YEARS 1961 - 1999, BY WATER YEAR (WY)} & & & \\
\hline MEAN & 1541 & 3393 & 7035 & 8915 & 10050 & 12290 & 9402 & 6711 & 3503 & 1708 & 1467 & 1164 \\
\hline MAX & 12850 & 10270 & 23400 & 25490 & 25060 & 27650 & 26100 & 19600 & 15220 & 4640 & 4916 & 6676 \\
\hline (WY) & 1990 & 1987 & 1979 & 1974 & 1989 & 1975 & 1972 & 1984 & 1997 & 1992 & 1992 & 1974 \\
\hline MIN & 177 & 372 & 416 & 446 & 2011 & 3125 & 1177 & 1031 & 265 & 292 & 258 & 102 \\
\hline (WY) & 1970 & 1964 & 1966 & 1981 & 1968 & 1988 & 1986 & 1976 & 1988 & 1970 & 1986 & 1999 \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03284000 KENTUCKY RIVER AT LOCK 10 NEAR WINCHESTER, KY--Continued



03284520 EAST HICKMAN CREEK AT ANDOVER VILLAGE NEAR CADENTOWN, KY
LOCATION.--Lat \(37^{\circ} 59^{\prime} 50^{\prime \prime}\), long \(84^{\circ} 24^{\prime} 2^{\prime \prime \prime}\), Fayette County, Hydrologic Unit 05100205, on right wingwall, downstrem side of culvert in Andover Village, 1.6 mi west of intersection of Todds Road and Walnut Hill-Chilesbug Road, and at mile 12.4 .
DRAINAGE AREA. \(--1.58 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1997 to current year.
GAGE.--Water-stage recorder. Elevation of gage is 980 ft above sea level from topographic map.
REMARKS.--Records poor.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 03 & . 19 & . 16 & . 24 & 18 & 4.2 & 2.1 & . 67 & . 10 & . 36 & . 09 & . 00 \\
\hline 2 & . 02 & . 19 & . 13 & 6.6 & 8.9 & 3.3 & 1.7 & . 43 & . 29 & 2.4 & . 11 & . 00 \\
\hline 3 & 4.9 & . 21 & . 13 & 6.5 & 4.9 & 8.1 & 1.5 & . 31 & . 12 & . 46 & . 06 & . 00 \\
\hline 4 & 1.1 & . 21 & . 22 & 2.3 & 3.4 & 5.7 & 1.4 & . 30 & . 10 & . 25 & . 05 & . 00 \\
\hline 5 & . 32 & . 20 & . 59 & e1.2 & 2.5 & 4.1 & 1.3 & . 53 & . 08 & . 20 & . 05 & . 00 \\
\hline 6 & . 21 & . 18 & . 23 & e. 40 & 2.1 & 4.5 & 1.5 & 1.4 & . 07 & . 19 & . 04 & . 00 \\
\hline 7 & 10 & . 19 & 7.2 & e. 25 & 2.6 & 3.9 & 1.2 & . 34 & . 06 & . 19 & . 03 & . 00 \\
\hline 8 & 2.0 & . 20 & 6.4 & . 22 & 2.5 & 2.6 & 1.2 & . 25 & . 06 & . 16 & . 04 & . 00 \\
\hline 9 & . 34 & . 30 & 1.4 & 27 & 3.5 & 8.2 & 1.3 & . 19 & . 05 & . 16 & . 03 & . 00 \\
\hline 10 & . 17 & 1.8 & . 52 & 7.9 & 3.3 & 6.7 & 1.2 & . 16 & . 04 & 2.1 & . 01 & . 00 \\
\hline 11 & . 13 & . 20 & . 30 & 4.3 & 3.7 & 4.7 & 1.2 & . 23 & . 04 & . 36 & . 00 & . 00 \\
\hline 12 & . 12 & . 16 & . 42 & 2.9 & 6.0 & 3.6 & 1.1 & . 36 & . 05 & . 26 & . 00 & . 00 \\
\hline 13 & . 13 & . 14 & 8.7 & 3.0 & 4.0 & 3.0 & 1.1 & . 29 & . 05 & . 28 & . 06 & . 00 \\
\hline 14 & . 16 & . 23 & 1.7 & 5.4 & 3.1 & 16 & 1.2 & . 28 & 1.4 & . 26 & . 00 & . 00 \\
\hline 15 & . 17 & . 21 & . 67 & 4.4 & 2.6 & 8.3 & 2.3 & . 27 & . 18 & . 21 & . 00 & . 00 \\
\hline 16 & . 17 & . 20 & . 46 & 3.2 & 2.4 & 5.3 & 1.6 & . 27 & . 11 & . 18 & . 07 & . 00 \\
\hline 17 & . 17 & . 18 & . 46 & 3.8 & 2.9 & 4.3 & 1.1 & . 22 & . 09 & . 17 & . 00 & . 00 \\
\hline 18 & . 18 & . 17 & . 32 & 6.5 & 2.2 & 3.6 & . 95 & . 20 & . 08 & . 16 & . 00 & . 00 \\
\hline 19 & . 33 & . 18 & . 42 & 4.3 & 1.9 & 2.9 & . 94 & . 21 & . 06 & . 13 & . 01 & . 00 \\
\hline 20 & . 13 & . 84 & . 40 & 3.0 & 1.7 & 2.5 & . 95 & . 23 & . 06 & 6.5 & . 00 & . 21 \\
\hline 21 & . 11 & . 16 & . 76 & 4.0 & 1.6 & 2.3 & . 96 & . 34 & . 06 & 1.2 & . 00 & . 03 \\
\hline 22 & . 12 & . 11 & 3.2 & 3.7 & 1.3 & 2.0 & . 92 & . 34 & . 05 & . 41 & . 00 & . 02 \\
\hline 23 & . 14 & . 10 & . 83 & 17 & 1.4 & 5.9 & 1.3 & . 58 & . 06 & . 22 & . 00 & . 02 \\
\hline 24 & . 13 & . 11 & . 54 & 8.5 & 1.4 & 4.7 & . 91 & . 36 & . 17 & . 15 & . 07 & . 01 \\
\hline 25 & . 13 & 2.9 & . 40 & 4.4 & 2.2 & 3.4 & . 76 & . 17 & . 14 & . 12 & . 33 & . 00 \\
\hline 26 & . 12 & . 75 & e. 34 & 2.8 & 1.8 & 2.7 & 2.4 & . 14 & . 10 & . 10 & . 30 & . 00 \\
\hline 27 & . 12 & . 27 & e. 31 & 2.3 & 2.8 & 2.3 & 1.7 & . 12 & . 85 & . 11 & . 05 & . 01 \\
\hline 28 & . 27 & . 18 & . 29 & 2.0 & 5.3 & 2.1 & 4.7 & . 11 & 5.7 & . 10 & . 02 & . 00 \\
\hline 29 & . 23 & . 14 & . 28 & 1.6 & --- & 1.8 & 2.3 & . 10 & 1.6 & . 09 & . 00 & . 04 \\
\hline 30 & . 19 & . 13 & . 31 & 1.4 & --- & 1.7 & 1.1 & . 11 & . 51 & . 07 & . 02 & . 04 \\
\hline 31 & . 20 & -- & . 28 & 6.3 & - & 1.8 & - & . 09 & --- & . 05 & . 00 & --- \\
\hline TOTAL & 22.54 & 11.03 & 38.37 & 147.41 & 100.0 & 136.2 & 43.89 & 9.60 & 12.33 & 17.60 & 1.44 & 0.38 \\
\hline MEAN & . 73 & . 37 & 1.24 & 4.76 & 3.57 & 4.39 & 1.46 & . 31 & . 41 & . 57 & . 046 & . 013 \\
\hline MAX & 10 & 2.9 & 8.7 & 27 & 18 & 16 & 4.7 & 1.4 & 5.7 & 6.5 & . 33 & . 21 \\
\hline MIN & . 02 & . 10 & . 13 & . 22 & 1.3 & 1.7 & . 76 & . 09 & . 04 & . 05 & . 00 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1998 - 1999, BY WATER YEAR (WY)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MEAN & . 47 & . 65 & 1.38 & 5.22 & 4.27 & 3.61 & 3.40 & 2.09 & 3.57 & 2.67 & . 072 & . 047 \\
\hline MAX & . 73 & . 93 & 1.52 & 5.69 & 4.96 & 4.39 & 5.34 & 3.87 & 6.73 & 4.78 & . 098 & . 081 \\
\hline (WY) & 1999 & 1998 & 1998 & 1998 & 1998 & 1999 & 1998 & 1998 & 1998 & 1998 & 1998 & 1998 \\
\hline MIN & . 21 & . 37 & 1.24 & 4.76 & 3.57 & 2.82 & 1.46 & . 31 & . 41 & . 57 & . 046 & . 013 \\
\hline (WY) & 1998 & 1999 & 1999 & 1999 & 1999 & 1998 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 \\
\hline
\end{tabular}

KENTUCKY RIVER BASIN
03284520 EAST HICKMAN CREEK AT ANDOVER VILLAGE NEAR CADENTOWN, KY--Continued



03284525 EAST HICKMAN CREEK TRIBUTARY NEAR LEXINGTON, KY
LOCATION.--Lat \(37^{\circ} 59^{\prime} 1^{\prime \prime \prime}\), long \(84^{\circ} 24^{\prime} 40^{\prime \prime}\), Fayette County, Hydrologic Unit 05100205, on left bak, downstream side of bridge on Walnut Hill-Chilesburg Road, 0.9 mi northeast of Athens Road (\#418), and 0.9 mi southwest of Todds Road (1927).

DRAINAGE AREA. \(-0.96 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1997 to September 1998
GAGE.--Water-stage recorder. Elevation of gage is 980 ft above sea level from topographic map.
REMARKS.--Records fair except for discharges below. \(10 \mathrm{ft} 3 / \mathrm{s}\) and periods of estimated record, which are poor.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 00 & . 00 & . 02 & . 02 & 10 & 2.2 & . 28 & . 15 & . 01 & . 05 & e. 00 & e. 00 \\
\hline 2 & . 00 & . 02 & . 02 & . 37 & 6.6 & 1.6 & . 24 & . 13 & . 01 & . 09 & e. 00 & e. 00 \\
\hline 3 & . 00 & . 00 & . 02 & . 33 & 3.8 & 3.8 & . 22 & . 12 & . 01 & . 08 & e. 00 & e. 00 \\
\hline 4 & . 00 & . 00 & . 02 & . 09 & 2.6 & 3.3 & . 21 & . 13 & . 01 & . 05 & e. 00 & e. 00 \\
\hline 5 & . 00 & . 00 & . 03 & . 06 & 1.8 & 2.2 & . 19 & . 13 & . 01 & . 04 & e. 00 & e. 00 \\
\hline 6 & . 00 & . 00 & . 02 & . 03 & 1.3 & 2.0 & . 18 & . 17 & . 01 & . 04 & e. 00 & e. 00 \\
\hline 7 & . 01 & . 00 & . 08 & . 03 & 1.2 & 1.2 & . 16 & . 13 & . 01 & . 03 & e. 00 & e. 00 \\
\hline 8 & . 00 & . 00 & . 11 & 8.2 & . 67 & . 93 & . 16 & . 11 & . 01 & . 03 & e. 00 & e. 00 \\
\hline 9 & . 00 & . 00 & . 06 & 18 & . 48 & 3.4 & . 16 & . 10 & . 01 & . 02 & e. 00 & e. 00 \\
\hline 10 & . 00 & . 05 & . 04 & 5.1 & . 37 & 3.8 & . 14 & . 10 & . 01 & . 04 & e. 00 & e. 00 \\
\hline 11 & . 00 & . 05 & . 03 & 3.0 & . 33 & 2.5 & . 13 & . 09 & . 01 & . 04 & e. 00 & e. 00 \\
\hline 12 & . 00 & . 03 & . 03 & 2.3 & 1.7 & 1.6 & . 12 & . 08 & . 01 & . 03 & e. 00 & e. 00 \\
\hline 13 & . 00 & . 03 & . 14 & 2.1 & 1.8 & 1.1 & . 11 & . 07 & . 01 & . 03 & e. 00 & e. 00 \\
\hline 14 & . 00 & . 03 & . 07 & 2.8 & 1.4 & 8.0 & . 11 & . 06 & . 04 & . 03 & e. 00 & e. 00 \\
\hline 15 & . 00 & . 03 & . 05 & 2.7 & 1.2 & 6.2 & . 15 & . 07 & . 03 & . 02 & e. 00 & e. 00 \\
\hline 16 & . 00 & . 03 & . 04 & 2.2 & . 92 & 3.3 & . 15 & . 06 & . 03 & . 02 & e. 00 & e. 00 \\
\hline 17 & . 00 & . 03 & . 04 & 2.0 & 1.1 & 2.1 & . 13 & . 05 & . 02 & . 00 & e. 00 & e. 00 \\
\hline 18 & . 00 & . 03 & . 03 & 3.4 & . 79 & 1.2 & . 12 & . 04 & . 02 & . 00 & e. 00 & e. 00 \\
\hline 19 & . 00 & . 03 & . 03 & 2.6 & . 56 & . 73 & . 12 & . 04 & . 02 & . 21 & e. 00 & e. 00 \\
\hline 20 & . 00 & . 05 & . 03 & 2.0 & . 40 & . 48 & . 13 & . 04 & . 02 & . 34 & e. 00 & e. 00 \\
\hline 21 & . 00 & . 04 & . 03 & 1.8 & . 33 & . 40 & . 13 & . 03 & . 02 & . 05 & e. 00 & e. 00 \\
\hline 22 & . 00 & . 03 & . 08 & 1.5 & . 28 & . 30 & . 12 & . 03 & . 02 & . 04 & e. 00 & e. 00 \\
\hline 23 & . 00 & . 03 & . 05 & 7.5 & . 27 & 1.2 & . 12 & . 02 & . 02 & . 03 & e. 00 & e. 00 \\
\hline 24 & . 00 & . 03 & . 07 & 5.8 & . 26 & 1.3 & . 10 & . 04 & . 03 & . 02 & e. 00 & e. 00 \\
\hline 25 & . 00 & . 05 & . 03 & 3.5 & . 35 & . 88 & . 10 & . 03 & . 03 & . 02 & e. 00 & e. 00 \\
\hline 26 & . 00 & . 05 & . 03 & 2.4 & . 28 & . 58 & . 14 & . 03 & . 03 & . 01 & e. 00 & e. 00 \\
\hline 27 & . 00 & . 03 & . 05 & 1.8 & . 44 & . 42 & . 16 & . 02 & . 04 & . 00 & e. 00 & e. 00 \\
\hline 28 & . 00 & . 03 & . 05 & 1.2 & 2.0 & . 35 & . 86 & . 01 & . 10 & . 00 & e. 00 & e. 00 \\
\hline 29 & . 00 & . 03 & . 03 & . 83 & --- & . 29 & . 27 & . 01 & . 10 & . 00 & e. 00 & e. 00 \\
\hline 30 & . 00 & . 02 & . 02 & . 57 & --- & . 25 & . 18 & . 01 & . 06 & . 00 & e. 00 & e. 00 \\
\hline 31 & . 00 & - & . 02 & 1.8 & - & . 25 & --- & . 01 & - & e. 00 & e. 00 & --- \\
\hline TOTAL & 0.01 & 0.75 & 1.37 & 86.03 & 43.23 & 57.86 & 5.39 & 2.11 & 0.76 & 1.36 & 0.00 & 0.00 \\
\hline MEAN & . 000 & . 025 & . 044 & 2.78 & 1.54 & 1.87 & . 18 & . 068 & . 025 & . 044 & . 000 & . 000 \\
\hline MAX & . 01 & . 05 & . 14 & 18 & 10 & 8.0 & . 86 & . 17 & . 10 & . 34 & . 00 & . 00 \\
\hline MIN & . 00 & . 00 & . 02 & . 02 & . 26 & . 25 & . 10 & . 01 & . 01 & . 00 & . 00 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1998 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrrr} 
MEAN & .058 & .096 & .14 & 2.99 & 2.43 & 1.52 & 1.73 & 1.31 & 1.14 & .83 & .045 & .019 \\
MAX & .12 & .17 & .23 & 3.21 & 3.31 & 1.87 & 3.28 & 2.54 & 2.25 & 1.61 & .090 & .039 \\
(WY) & 1998 & 1998 & 1998 & 1998 & 1998 & 1999 & 1998 & 1998 & 1998 & 1998 & 1998 & 1998 \\
MIN & .000 & .025 & .044 & 2.78 & 1.54 & 1.18 & .18 & .068 & .025 & .044 & .000 & .000 \\
(WY) & 1999 & 1999 & 1999 & 1999 & 1999 & 1998 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999
\end{tabular}

KENTUCKY RIVER BASIN
03284525 EAST HICKMAN CREEK TRIBUTARY NEAR LEXINGTON, KY--Continued

e Estimated


03284530 EAST HICKMAN CREEK NEAR EAST HICKMAN, KY
LOCATION.--Lat \(37^{\circ} 56^{\prime} 59 \prime \prime\), long \(84^{\circ} 27^{\prime} 19 "\), Fayette County, Hydrologic Unit 05100205 , on right bank, downstream side of bridge on Delong Road, 1.0 mi north of intersection with Walnut Hill Road, 1.6 mi south of intersection with Armstrong Mill Road, 2.0 mi north of East Hickman, and at mile 7.6.
DRAINAGE AREA. \(-15.1 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1997 to current year.
GAGE.--Water-stage recorder. Elevation of gage is 913.491 ft above sea level
REMARKS.--Records poor
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 16 & 2.4 & . 60 & e. 90 & 154 & 20 & 12 & 5.2 & . 89 & . 59 & . 00 & . 00 \\
\hline 2 & . 14 & 1.1 & . 46 & 17 & 100 & 15 & 10 & 3.4 & 1.4 & 6.4 & . 00 & . 00 \\
\hline 3 & 9.5 & 1.3 & . 47 & 24 & 54 & 58 & 9.1 & 2.4 & . 79 & 8.7 & . 00 & . 00 \\
\hline 4 & 3.7 & 1.4 & . 52 & 8.6 & 35 & 57 & 7.8 & 2.3 & . 47 & 2.9 & . 00 & . 00 \\
\hline 5 & 1.7 & 1.3 & 1.1 & e6.0 & 25 & 38 & 8.0 & 3.6 & . 30 & . 97 & . 00 & . 00 \\
\hline 6 & 1.3 & 1.1 & . 69 & e4.0 & 20 & 36 & 6.9 & 11 & . 52 & . 71 & . 00 & . 00 \\
\hline 7 & 16 & 1.1 & 9.1 & 2.6 & 21 & 28 & 6.9 & 6.0 & . 72 & . 67 & . 47 & . 00 \\
\hline 8 & 5.5 & 1.3 & 8.3 & 81 & 18 & 21 & 5.8 & 3.3 & . 51 & . 30 & . 36 & . 00 \\
\hline 9 & 1.9 & 1.4 & 3.4 & 190 & 14 & 58 & 5.7 & 2.4 & . 45 & . 21 & . 30 & . 00 \\
\hline 10 & 1.4 & 5.6 & 1.7 & 69 & 11 & 66 & 6.2 & 2.0 & 2.7 & . 86 & . 40 & . 00 \\
\hline 11 & 1.3 & 1.5 & 1.2 & 31 & 9.8 & 42 & 3.5 & 1.6 & . 75 & . 83 & . 33 & . 00 \\
\hline 12 & 1.2 & . 79 & 1.2 & 17 & 37 & 30 & 3.1 & 1.2 & . 26 & . 64 & . 18 & . 00 \\
\hline 13 & . 99 & . 71 & 15 & 14 & 36 & 23 & 2.7 & 1.2 & . 23 & . 51 & . 07 & . 00 \\
\hline 14 & 1.0 & . 67 & 5.4 & 18 & 28 & 124 & 2.4 & 1.2 & 3.0 & . 46 & . 07 & . 00 \\
\hline 15 & 1.0 & . 88 & 2.6 & 26 & 23 & 108 & 4.7 & 1.5 & . 73 & . 38 & . 05 & . 00 \\
\hline 16 & . 99 & . 56 & 1.9 & 27 & 20 & 53 & 6.6 & 1.2 & . 55 & . 28 & . 03 & . 00 \\
\hline 17 & . 99 & . 44 & 1.9 & 27 & 25 & 34 & 4.3 & 1.4 & . 56 & . 21 & . 00 & . 00 \\
\hline 18 & 1.2 & . 45 & 1.5 & 46 & 21 & 24 & 3.4 & 1.1 & . 55 & . 83 & . 00 & . 00 \\
\hline 19 & 2.6 & . 46 & 1.5 & 38 & 18 & 18 & 2.8 & 1.3 & . 48 & . 72 & . 00 & . 00 \\
\hline 20 & 1.7 & 1.6 & 1.4 & 29 & 13 & 15 & 3.0 & 1.2 & . 53 & 13 & . 00 & . 75 \\
\hline 21 & 1.5 & . 83 & 1.4 & 26 & 12 & 14 & 2.9 & 1.1 & . 43 & 6.9 & . 00 & 1.2 \\
\hline 22 & 1.6 & . 61 & 6.3 & 25 & 10 & 10 & 2.5 & 1.1 & . 40 & 16 & . 00 & . 37 \\
\hline 23 & 1.5 & . 58 & 3.2 & 124 & 8.2 & 33 & 3.0 & 2.2 & . 36 & 15 & . 00 & . 14 \\
\hline 24 & 1.6 & . 54 & 2.3 & 92 & 9.0 & 42 & 5.5 & 2.3 & . 58 & 8.1 & . 00 & . 09 \\
\hline 25 & 1.6 & 3.9 & 1.8 & 50 & 13 & 26 & 3.2 & 1.1 & . 84 & 5.5 & . 44 & . 06 \\
\hline 26 & 1.6 & 2.0 & 1.5 & 33 & 7.1 & 19 & 5.7 & . 81 & . 51 & 3.7 & . 11 & . 28 \\
\hline 27 & 1.6 & . 78 & 1.3 & 24 & 10 & 14 & 8.8 & . 76 & . 82 & 3.9 & . 04 & . 55 \\
\hline 28 & 3.1 & . 62 & 1.2 & 20 & 22 & 12 & 36 & . 65 & 11 & 3.8 & . 00 & . 33 \\
\hline 29 & 3.6 & 1.1 & 1.1 & 17 & --- & 11 & 24 & . 64 & 4.1 & 1.2 & . 01 & . 35 \\
\hline 30 & 2.8 & . 52 & 1.2 & 14 & --- & 9.4 & 11 & . 57 & 1.9 & . 89 & . 00 & 1.3 \\
\hline 31 & 1.9 & - & 1.0 & 26 & --- & 8.6 & --- & . 55 & - & . 10 & . 00 & --- \\
\hline TOTAL & 76.67 & 37.54 & 82.24 & 1127.10 & 774.1 & 1067.0 & 217.5 & 66.28 & 37.33 & 105.26 & 2.86 & 5.42 \\
\hline MEAN & 2.47 & 1.25 & 2.65 & 36.4 & 27.6 & 34.4 & 7.25 & 2.14 & 1.24 & 3.40 & . 092 & . 18 \\
\hline MAX & 16 & 5.6 & 15 & 190 & 154 & 124 & 36 & 11 & 11 & 16 & . 47 & 1.3 \\
\hline MIN & . 14 & . 44 & . 46 & . 90 & 7.1 & 8.6 & 2.4 & . 55 & . 23 & . 10 & . 00 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1998 - 1999, BY WATER YEAR (WY)
\begin{tabular}{llllllllllllll} 
MEAN & 1.74 & 2.41 & 5.34 & 30.3 & 29.4 & 23.7 & 14.3 & 10.8 & 17.1 & 16.0 & .61 & .50 \\
MAX & 2.47 & 3.57 & 8.04 & 36.4 & 31.2 & 34.4 & 21.4 & 19.5 & 33.0 & 28.7 & 1.12 & 19 & .83 \\
(WY) & 1999 & 1998 & 1998 & 1999 & 1998 & 1999 & 1998 & 1998 & 1998 & 1998 \\
MIN & 1.00 & 1.25 & 2.65 & 24.2 & 27.6 & 12.9 & 7.25 & 2.14 & 1.24 & 3.40 & .092 & 1998 \\
(WY) & 1998 & 1999 & 1999 & 1998 & 1999 & 1998 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999
\end{tabular}

KENTUCKY RIVER BASIN
03284530 EAST HICKMAN CREEK NEAR EAST HICKMAN, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALENDA & R YEAR & \multicolumn{2}{|l|}{1999 WATER YEAR} & WATER YEARS & \multicolumn{2}{|l|}{1998 - 1999} \\
\hline ANNUAL TOTAL & 5406.75 & & 3599.30 & & & & \\
\hline ANNUAL MEAN & 14.8 & & 9.86 & & 12.6 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 15.3 & & 1998 \\
\hline LOWEST ANNUAL MEAN & & & & & 9.86 & & 1999 \\
\hline HIGHEST DAILY MEAN & 512 & Jul 20 & 190 & Jan 9 & 512 & Jul 20 & 1998 \\
\hline LOWEST DAILY MEAN & . 06 & Sep 30 & . 00 & Aug 1 & . 00 & Aug 1 & 1999 \\
\hline ANNUAL SEVEN-DAY MINIMUM & . 09 & Sep 14 & . 00 & Aug 17 & . 00 & Aug 17 & 1999 \\
\hline INSTANTANEOUS PEAK FLOW & & & 438 & Jan 9 & 1000 & Jul 20 & 1998 \\
\hline INSTANTANEOUS PEAK STAGE & & & 3.78 & Jan 9 & 5.25 & Jul 20 & 1998 \\
\hline 10 PERCENT EXCEEDS & 33 & & 26 & & 29 & & \\
\hline 50 PERCENT EXCEEDS & 5.3 & & 1.6 & & 3.9 & & \\
\hline 90 PERCENT EXCEEDS & . 54 & & . 01 & & . 22 & & \\
\hline
\end{tabular}


03284555 WEST HICKMAN CREEK NEAR EAST HICKMAN, KY
LOCATION.--Lat \(37^{\circ} 56^{\prime} 04^{\prime \prime}\), long \(84^{\circ} 30^{\prime} 08^{\prime \prime}\), Jessamine County, Hydrologic Unit 05100205, on center pier, downstream side of bridge on Ash Grove Pike (\#1980), 0.7 mi northwest of intersection with Macker Road, 1.9 mi northwest of East Hickman, 2.4 mi southeast of Nicholasville Road (US 27); and at mile 28.3.

DRAINAGE AREA. --20.5 \(\mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1997 to current year.
GAGE.--Water-stage recorder. Elevation of gage is 868.402 ft above sea level.
REMARKS.--Record fair.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 25 & 21 & 24 & 24 & 294 & 99 & 60 & 41 & 24 & 27 & 21 & 17 \\
\hline 2 & 24 & 20 & 22 & 108 & 177 & 73 & 50 & 37 & 38 & 50 & 22 & 18 \\
\hline 3 & 91 & 16 & 23 & 143 & 113 & 201 & 47 & 35 & 23 & 31 & 19 & 18 \\
\hline 4 & 46 & 21 & 23 & 66 & 84 & 130 & 44 & 33 & 21 & 25 & 19 & 18 \\
\hline 5 & 27 & 12 & 40 & 47 & 65 & 92 & 43 & 43 & 21 & 25 & 19 & 18 \\
\hline 6 & 20 & 18 & 29 & 37 & 56 & 100 & 52 & 69 & 21 & 24 & 19 & 19 \\
\hline 7 & 70 & 20 & 115 & 33 & 70 & 72 & 42 & 38 & 21 & 23 & 19 & 18 \\
\hline 8 & 41 & 20 & 111 & 295 & 52 & 60 & 39 & 35 & 21 & 22 & 19 & 18 \\
\hline 9 & 23 & 20 & 63 & 475 & 46 & 182 & 40 & 33 & 21 & 23 & 20 & 18 \\
\hline 10 & 20 & 58 & 45 & 176 & 42 & 137 & 37 & 32 & 24 & 32 & 19 & 19 \\
\hline 11 & 20 & 31 & 35 & 105 & 40 & 98 & 37 & 31 & 27 & 24 & 18 & 18 \\
\hline 12 & 21 & 22 & 38 & 77 & 132 & 75 & 33 & 27 & 20 & 22 & 19 & 18 \\
\hline 13 & 23 & 20 & 165 & 69 & 93 & 64 & 32 & 29 & 20 & 21 & 19 & 18 \\
\hline 14 & 20 & 20 & 74 & 90 & 71 & 308 & 31 & 29 & 48 & 21 & 19 & 17 \\
\hline 15 & 21 & 20 & 52 & 71 & 61 & 201 & 50 & 31 & 24 & 21 & 19 & 17 \\
\hline 16 & 19 & 20 & 42 & 62 & 54 & 123 & 45 & 29 & 22 & 21 & 17 & 17 \\
\hline 17 & 23 & 18 & 41 & 63 & 70 & 90 & 36 & 27 & 20 & 21 & 17 & 16 \\
\hline 18 & 35 & 19 & 33 & 102 & 56 & 69 & 34 & 26 & 20 & 21 & 17 & 17 \\
\hline 19 & 45 & 20 & 35 & 72 & 48 & 57 & 32 & 26 & 20 & 20 & 18 & 18 \\
\hline 20 & 22 & 35 & 33 & 62 & 45 & 52 & 32 & 26 & 20 & 52 & 17 & 33 \\
\hline 21 & 19 & 25 & 33 & 55 & 42 & 50 & 32 & 27 & 20 & 38 & 17 & 20 \\
\hline 22 & 20 & 24 & 86 & 50 & 39 & 44 & 32 & 25 & 20 & 31 & 17 & 18 \\
\hline 23 & 20 & 22 & 47 & 261 & 36 & 130 & 37 & 33 & 20 & 23 & 17 & 17 \\
\hline 24 & 21 & 23 & 38 & 154 & 37 & 103 & 33 & 39 & 26 & 22 & 59 & 17 \\
\hline 25 & 21 & 52 & 29 & 102 & 50 & 75 & 33 & 26 & 23 & 22 & 38 & 18 \\
\hline 26 & 20 & 40 & 28 & 70 & 43 & 63 & 72 & 24 & 21 & 21 & 22 & 18 \\
\hline 27 & 19 & 24 & 26 & 60 & 71 & 56 & 51 & 23 & 25 & 25 & 18 & 19 \\
\hline 28 & 23 & 22 & 25 & 50 & 151 & 53 & 105 & 22 & 93 & 22 & 20 & 19 \\
\hline 29 & 21 & 22 & 26 & 43 & -- & 50 & 67 & 22 & 46 & 22 & 19 & 26 \\
\hline 30 & 20 & 21 & 28 & 41 & --- & 47 & 47 & 21 & 30 & 21 & 18 & 24 \\
\hline 31 & 21 & --- & 26 & 127 & --- & 46 & --- & 22 & --- & 21 & 18 & - \\
\hline TOTAL & 861 & 726 & 1435 & 3190 & 2138 & 3000 & 1325 & 961 & 800 & 794 & 639 & 566 \\
\hline MEAN & 27.8 & 24.2 & 46.3 & 103 & 76.4 & 96.8 & 44.2 & 31.0 & 26.7 & 25.6 & 20.6 & 18.9 \\
\hline MAX & 91 & 58 & 165 & 475 & 294 & 308 & 105 & 69 & 93 & 52 & 59 & 33 \\
\hline MIN & 19 & 12 & 22 & 24 & 36 & 44 & 31 & 21 & 20 & 20 & 17 & 16 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1998 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 28.0 & 31.5 & 51.0 & 102 & 85.5 & 82.3 & 77.1 & 69.4 & 80.7 & 65.5 & 27.8 & 22.2 \\
MAX & 28.2 & 38.8 & 55.6 & 103 & 94.6 & 96.8 & 110 & 108 & 135 & 105 & 35.1 & 25.6 \\
(WY) & 1998 & 1998 & 1998 & 1999 & 1998 & 1999 & 1998 & 1998 & 1998 & 1998 \\
MIN & 27.8 & 24.2 & 46.3 & 101 & 76.4 & 67.8 & 44.2 & 31.0 & 26.7 & 25.6 & 20.6 & 1998 \\
(WY) & 1999 & 1999 & 1999 & 1998 & 1999 & 1998 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999
\end{tabular}

KENTUCKY RIVER BASIN
03284555 WEST HICKMAN CREEK NEAR EAST HICKMAN, KY--Continued

SUMMARY STATISTICS

ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN \(\begin{array}{ll}\text { LOWEST } & \text { DAILY MEAN } \\ \text { ANNUAL } & \text { SEVEN-DAY MINIMUM }\end{array}\) ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1998 CALENDAR YEAR
\begin{tabular}{ccc}
26698 & & \\
73.1 & & \\
& & \\
893 & Jul & 20 \\
12 & Nov & 5 \\
18 & Nov & 2 \\
& & \\
& & \\
131 & & \\
46 & & \\
22 & & \\
& &
\end{tabular}

FOR 1999 WATER YEAR
16435
45.0

WATER YEARS 1998 - 1999
\begin{tabular}{cllll}
60.1 & & & \\
75.2 & & & 1998 \\
45.0 & & & 1999 \\
893 & & Jul & 20 & 1998 \\
12 & & Nov & 5 & 1998 \\
17 & & Aug & 16 & 1999 \\
3040 & & Jul & 20 & 1998 \\
7.43 & & Jul & 20 & 1998 \\
1.4 & & Nov & 5 & 1998 \\
113 & & & \\
39 & & & & \\
20 & & & &
\end{tabular}


03298000 FLOYDS FORK AT FISHERVILLE, KY
LOCATION.--Lat \(38^{\circ} 11^{\prime} 18^{\prime \prime}\), long \(85^{\circ} 27^{\prime} 37\) ", Jefferson County, Hydrologic Unit 05140102 , on left bank on downstream side of bridge on former State Highway 155, at Fisherville, 0.2 mi downstream from Brush Run, 1.4 mi upstream from Pope Lick, and at mile 32.7.

DRAINAGE AREA. \(--138 \mathrm{mi}^{2}\).
WATER-DISCHARGE RECORDS
PERIOD OF RECORD.--August 1944 to current year. Monthly discharge only for August 1944, published in WSP 1305.
REVISED RECORDS.--WSP 1275: 1946. WSP 1909: 1945(P), 1948 (P), 1960 (M).
GAGE.--Water-stage recorder. Datum of gage is 542.60 ft above sea level, from benchmark elevation supplied by Park Aerial Survey.

COOPERATION.--Field determations were made in cooperation with Louisville and Jefferson County Metropolitan Sewer District personnel.

REMARKS.--Records good except for discharges below \(2.0 \mathrm{ft} 3 / \mathrm{s}\), which are poor. Diversions by local golf course for irrigation. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of January 1937 reached a stage of 16.8 ft, from floodmark.
PEAKS ABOVE BASE.--Peak discharges above base of \(6,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 23 & 0930 & \(* 5180\) & 9.61
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 05 & 21 & 14 & 36 & 2160 & 302 & 86 & 68 & 12 & 124 & 5.5 & . 55 \\
\hline 2 & . 00 & e25 & 8.9 & 110 & 756 & 180 & 79 & 55 & 211 & 90 & 13 & . 32 \\
\hline 3 & . 38 & e23 & 5.0 & e310 & 402 & 260 & 77 & 37 & 150 & 86 & 16 & . 20 \\
\hline 4 & 11 & e22 & 4.2 & e820 & 247 & 320 & 82 & 30 & 60 & 58 & 14 & . 13 \\
\hline 5 & 3.2 & 21 & 5.8 & e980 & 164 & 188 & 72 & 29 & 36 & 42 & 11 & . 10 \\
\hline 6 & 1.7 & 20 & 12 & e720 & 136 & 678 & 275 & 134 & 23 & 33 & 7.7 & . 10 \\
\hline 7 & 63 & 19 & 30 & e530 & 473 & 410 & 233 & 101 & 16 & 26 & 4.6 & . 09 \\
\hline 8 & 102 & 20 & 86 & e430 & 410 & 233 & 130 & 59 & 17 & 21 & 4.6 & . 02 \\
\hline 9 & 35 & 21 & 72 & e350 & 216 & 831 & 110 & 40 & 10 & 17 & 6.4 & . 00 \\
\hline 10 & 13 & 34 & 50 & e275 & 153 & 735 & 94 & 30 & 13 & 15 & 3.8 & . 00 \\
\hline 11 & 5.2 & 57 & 34 & 239 & 125 & 350 & 83 & 26 & 5.3 & 14 & 5.1 & . 00 \\
\hline 12 & 3.4 & 46 & 25 & 234 & 237 & 233 & 65 & 20 & 7.5 & 13 & 3.8 & . 00 \\
\hline 13 & 2.4 & 21 & 43 & 981 & 284 & 175 & 57 & 27 & 6.9 & 6.7 & 3.3 & . 00 \\
\hline 14 & 2.0 & 11 & 63 & 1030 & 181 & 362 & 53 & 23 & 184 & 4.6 & 1.9 & . 00 \\
\hline 15 & 1.4 & 4.2 & 51 & 390 & 149 & 551 & 68 & 18 & 192 & 4.9 & 1.1 & . 00 \\
\hline 16 & 1.2 & 2.3 & 36 & 227 & 125 & 648 & 64 & 12 & 61 & 5.5 & . 99 & . 00 \\
\hline 17 & 2.3 & 2.4 & 31 & 177 & 121 & 349 & 58 & 8.6 & 35 & 8.2 & 1.2 & . 00 \\
\hline 18 & 6.3 & 3.2 & 26 & 188 & 104 & 222 & 50 & 15 & 22 & 11 & . 99 & . 00 \\
\hline 19 & 12 & 17 & 29 & 160 & 92 & 159 & 46 & 37 & 15 & 16 & 1.3 & . 00 \\
\hline 20 & 25 & 35 & 30 & 135 & 83 & 132 & 43 & 27 & 8.6 & 16 & 2.0 & . 00 \\
\hline 21 & 25 & 39 & 55 & 797 & 76 & 117 & 42 & 15 & 5.1 & 133 & . 95 & . 00 \\
\hline 22 & 23 & 33 & 986 & 876 & 68 & 99 & 40 & 9.7 & 2.6 & 223 & . 50 & . 00 \\
\hline 23 & 26 & 25 & 237 & 3450 & 65 & 303 & 38 & 14 & 2.0 & 37 & . 26 & . 00 \\
\hline 24 & 23 & 16 & 112 & 748 & 69 & 328 & 34 & 12 & 132 & 21 & . 15 & . 10 \\
\hline 25 & 19 & 13 & 79 & 383 & 67 & 171 & 31 & 6.7 & 152 & 13 & . 10 & . 18 \\
\hline 26 & 18 & 66 & 65 & 235 & 66 & 127 & 78 & 5.0 & 55 & 7.9 & . 12 & . 16 \\
\hline 27 & 19 & 70 & 57 & 182 & 122 & 107 & 94 & 3.4 & 37 & 6.7 & . 46 & . 04 \\
\hline 28 & 17 & 41 & 51 & 145 & 632 & 96 & 113 & 2.0 & 502 & 5.8 & . 72 & . 00 \\
\hline 29 & 14 & 25 & 49 & 116 & --- & 89 & 197 & 1.4 & 1320 & 6.1 & . 83 & . 03 \\
\hline 30 & 14 & 16 & 46 & 97 & --- & 78 & 93 & . 79 & 306 & 4.8 & 1.0 & . 09 \\
\hline 31 & 13 & --- & 41 & 229 & --- & 74 & --- & 1.4 & --- & 3.9 & . 81 & - \\
\hline TOTAL & 501.53 & 769.1 & 2433.9 & 15580 & 7783 & 8907 & 2585 & 867.99 & 3599.0 & 1074.1 & 114.18 & 2.11 \\
\hline MEAN & 16.2 & 25.6 & 78.5 & 503 & 278 & 287 & 86.2 & 28.0 & 120 & 34.6 & 3.68 & . 070 \\
\hline MAX & 102 & 70 & 986 & 3450 & 2160 & 831 & 275 & 134 & 1320 & 223 & 16 & . 55 \\
\hline MIN & . 00 & 2.3 & 4.2 & 36 & 65 & 74 & 31 & . 79 & 2.0 & 3.9 & . 10 & . 00 \\
\hline CFSM & . 12 & . 19 & . 57 & 3.64 & 2.01 & 2.08 & . 62 & . 20 & . 87 & . 25 & . 03 & . 00 \\
\hline IN. & . 14 & . 21 & . 66 & 4.20 & 2.10 & 2.40 & . 70 & . 23 & . 97 & . 29 & . 03 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1944 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 32.5 & 105 & 229 & 297 & 361 & 406 & 279 & 212 & 129 & 64.2 & 44.4 & 38.9 \\
MAX & 423 & 485 & 1025 & 1252 & 990 & 1639 & 1021 & 971 & 622 & 331 & 1990 & 1020 \\
(WY) & 1978 & 1974 & 1991 & 1950 & 1956 & 1997 & 1970 & 1983 & 1997 & 1973 & 1979 & 1979 \\
MIN & .000 & .000 & .000 & 3.54 & 12.4 & 40.3 & 34.0 & 12.2 & .90 & 1.73 & .048 \\
(WY) & 1949 & 1954 & 1954 & 1977 & 1954 & 1954 & 1959 & 1965 & 1988 & 1954 & 1962 & 1948
\end{tabular}

SALT RIVER BASIN
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & AR YEAR & FOR 1999 WAT & R YEAR & WATER YEAR & \multirow[t]{2}{*}{1944} & \multicolumn{2}{|r|}{1999} \\
\hline ANNUAL TOTAL & 68668.95 & & 44216.91 & & & & & \\
\hline ANNUAL MEAN & 188 & & 121 & & 182 & & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 382 & & & 1979 \\
\hline LOWEST ANNUAL MEAN & & & & & 29.0 & & & 1954 \\
\hline HIGHEST DAILY MEAN & 3000 & Apr 16 & 3450 & Jan 23 & 20000 & Mar & 2 & 1997 \\
\hline LOWEST DAILY MEAN & . 00 & Oct 2 & . 00 & Oct 2 & . 00 & Sep & 7 & 1945 \\
\hline ANNUAL SEVEN-DAY MINIMUM & . 17 & Sep 2 & . 00 & Sep 9 & . 00 & Sep & 7 & 1945 \\
\hline INSTANTANEOUS PEAK FLOW & & & 5180 & Jan 23 & 42100 & Mar & 2 & 1997 \\
\hline INSTANTANEOUS PEAK STAGE & & & 9.61 & Jan 23 & 17.39 & Mar & 2 & 1997 \\
\hline INSTANTANEOUS LOW FLOW & & & & & . 00 & Sep & 7 & 1945 \\
\hline ANNUAL RUNOFF (CFSM) & 1.36 & & . 88 & & 1.32 & & & \\
\hline ANNUAL RUNOFF (INCHES) & 18.51 & & 11.92 & & 17.95 & & & \\
\hline 10 PERCENT EXCEEDS & 421 & & 304 & & 368 & & & \\
\hline 50 PERCENT EXCEEDS & 65 & & 31 & & 35 & & & \\
\hline 90 PERCENT EXCEEDS & 1.3 & & . 43 & & . 40 & & & \\
\hline
\end{tabular}


WATER YEAR

03298135 CHENOWETH RUN AT RUCKRIEGAL PARKWAY NR JEFFERSONTOWN, KY
LOCATION.--Lat \(38^{\circ} 11^{\prime} 41^{\prime \prime}\), long \(85^{\circ} 33^{\prime} 26^{\prime \prime}\), Jefferson County, Hydrologic Unit 05140102, on right downstream bank at bridge on Ruckriegal Parkway and 500 feet south of Penion Drive.
DRAINAGE AREA. \(-5.47 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--May 5, 1993 to February 26, 1998; January 19, 1999 to current year.
GAGE.--Water-stage recorder.
COOPERATION.--Field determinations were made in cooperation with Louisville and Jefferson County Metropolitan Sewer District personnel.

REMARKS.--Records fair except for those estimated, which are poor.
PEAKS ABOVE BASE.--Peak discharges above base of \(1,100 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccccccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Apr. 28 & 1745 & \(* 1370\) & \(* 6.85\) & Jun. 28 & 1700 & 1130 & 6.14
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & --- & --- & --- & --- & e52 & 7.0 & 5.5 & 5.9 & 3.4 & 4.0 & . 69 & . 12 \\
\hline 2 & - & -- & -- & -- & e21 & 5.5 & 4.1 & 4.6 & 60 & 3.2 & . 42 & . 10 \\
\hline 3 & - & --- & --- & --- & e13 & 17 & 6.0 & 3.8 & 4.3 & 1.8 & . 19 & . 06 \\
\hline 4 & --- & -- & -- & --- & e9.0 & 7.1 & 4.8 & 3.3 & 2.1 & 1.3 & . 18 & . 12 \\
\hline 5 & --- & --- & --- & --- & e6.2 & 5.5 & 4.3 & 5.3 & 1.7 & 1.1 & . 16 & . 14 \\
\hline 6 & --- & -- & --- & --- & 4.2 & 37 & 20 & 45 & 1.3 & . 98 & . 10 & . 16 \\
\hline 7 & --- & --- & --- & -- & 26 & 7.8 & 6.5 & 6.8 & 1.2 & . 79 & . 05 & . 18 \\
\hline 8 & --- & - & --- & --- & 7.1 & 6.1 & 5.4 & 4.3 & 1.2 & . 68 & 1.7 & . 21 \\
\hline 9 & --- & --- & --- & --- & 5.6 & 45 & 5.2 & 3.5 & 2.3 & . 65 & . 87 & . 34 \\
\hline 10 & --- & - & --- & --- & 4.4 & 9.9 & 4.7 & 2.9 & 1.4 & . 64 & . 33 & . 20 \\
\hline 11 & - & -- & -- & --- & 4.1 & 7.4 & 4.5 & 2.6 & 2.3 & . 56 & . 21 & . 15 \\
\hline 12 & --- & --- & - & --- & 17 & 5.9 & 3.8 & 2.3 & 1.1 & . 48 & . 17 & . 19 \\
\hline 13 & --- & --- & -- & -- & 6.9 & 5.0 & 3.8 & 9.4 & 1.0 & . 55 & . 17 & . 22 \\
\hline 14 & - & --- & --- & --- & 5.2 & 43 & 3.7 & 3.0 & 22 & . 45 & . 09 & . 29 \\
\hline 15 & --- & --- & --- & --- & 4.4 & 11 & 6.9 & 2.3 & 3.1 & . 42 & . 14 & . 22 \\
\hline 16 & --- & -- & --- & - & 4.4 & 7.9 & 4.5 & 2.1 & 1.4 & . 38 & . 13 & . 17 \\
\hline 17 & -- & --- & - & --- & 5.7 & 6.3 & 3.6 & 1.9 & 1.1 & . 35 & . 16 & . 19 \\
\hline 18 & --- & - & --- & --- & 3.8 & 5.2 & 3.3 & 8.9 & . 91 & 1.9 & . 10 & . 21 \\
\hline 19 & - & --- & --- & e6.2 & 3.2 & 4.5 & 3.2 & 3.2 & . 91 & . 55 & 5.9 & . 20 \\
\hline 20 & -- & --- & --- & e9.0 & 2.7 & 4.1 & 3.4 & 2.0 & . 85 & . 43 & . 99 & . 27 \\
\hline 21 & --- & - & - & e26 & 2.4 & 3.8 & 3.4 & 1.8 & . 73 & . 48 & . 41 & . 49 \\
\hline 22 & -- & - & -- & e56 & 2.2 & 3.3 & 3.1 & 1.8 & . 67 & . 41 & . 25 & . 43 \\
\hline 23 & --- & --- & --- & e108 & 2.6 & 48 & 3.0 & 3.3 & . 61 & . 34 & . 16 & . 66 \\
\hline 24 & --- & --- & --- & e28 & 3.5 & 8.5 & 2.6 & 3.8 & 60 & . 33 & . 13 & . 62 \\
\hline 25 & --- & --- & --- & e13 & 2.6 & 6.1 & 2.6 & 1.8 & 5.7 & . 34 & . 18 & . 24 \\
\hline 26 & --- & -- & --- & e9.6 & 2.3 & 4.7 & 32 & 1.6 & 1.9 & . 26 & . 23 & . 15 \\
\hline 27 & --- & --- & --- & e8.0 & 40 & 4.2 & 7.3 & 1.4 & 6.2 & . 24 & . 23 & . 10 \\
\hline 28 & --- & -- & --- & e6. 8 & 17 & 3.8 & 164 & 1.4 & 148 & . 36 & . 15 & . 17 \\
\hline 29 & -- & --- & --- & e6.0 & --- & 3.6 & 26 & 1.4 & 25 & . 43 & . 12 & 1.8 \\
\hline 30 & --- & --- & --- & e5.2 & --- & 3.4 & 8.3 & 1.7 & 5.6 & . 26 & . 03 & . 90 \\
\hline 31 & --- & --- & --- & e43 & --- & 4.3 & --- & 2.8 & --- & . 23 & . 08 & --- \\
\hline TOTAL & -- & -- & - & - & 278.5 & 341.9 & 359.5 & 145.9 & 367.98 & 24.89 & 14.72 & 9.30 \\
\hline MEAN & --- & --- & --- & --- & 9.95 & 11.0 & 12.0 & 4.71 & 12.3 & . 80 & . 47 & . 31 \\
\hline MAX & --- & --- & --- & --- & 52 & 48 & 164 & 45 & 148 & 4.0 & 5.9 & 1.8 \\
\hline MIN & --- & --- & --- & --- & 2.2 & 3.3 & 2.6 & 1.4 & . 61 & . 23 & . 03 & . 06 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1995 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lllllllllllll} 
\\
MEAN & 2.31 & 8.04 & 15.6 & 13.8 & 9.31 & 31.1 & 12.7 & 17.3 & 18.7 & 4.07 & 2.58 & 6.00 \\
MAX & 3.07 & 9.79 & 22.5 & 13.9 & 10.5 & 64.5 & 20.2 & 34.9 & 30.0 & 9.93 & 4.96 & 9.09 \\
(WY) & 1997 & 1997 & 1997 & 1997 & 1997 & 1997 & 1996 & 1996 & 1997 & 1996 & 1997 & 1997 \\
MIN & 1.55 & 6.29 & 8.69 & 13.7 & 7.57 & 11.0 & 5.94 & 4.71 & 12.3 & .80 & .47 & .31 \\
(WY) & 1998 & 1998 & 1998 & 1998 & 1996 & 1999 & 1997 & 1999 & 1999 & 1999 & 1999 & 1999
\end{tabular}

03298135 CHENOWETH RUN AT RUCKRIEGAL PARKWAY NR JEFFERSONTOWN, KY--Continued
\begin{tabular}{|c|c|c|c|}
\hline SUMMARY STATISTICS & WATER YEARS & 1995 - & 1999 \\
\hline ANNUAL MEAN & 15.7 & & \\
\hline HIGHEST ANNUAL MEAN & 15.7 & & 1997 \\
\hline LOWEST ANNUAL MEAN & 15.7 & & 1997 \\
\hline HIGHEST DAILY MEAN & 868 & Mar 1 & 1997 \\
\hline LOWEST DAILY MEAN & . 03 & Aug 30 & 1999 \\
\hline ANNUAL SEVEN-DAY MINIMUM & . 09 & Aug 29 & 1999 \\
\hline INSTANTANEOUS PEAK FLOW & 4680 & Mar 1 & 1997 \\
\hline INSTANTANEOUS PEAK STAGE & 9.33 & Mar 1 & 1997 \\
\hline 10 PERCENT EXCEEDS & 26 & & \\
\hline 50 PERCENT EXCEEDS & 4.0 & & \\
\hline 90 PERCENT EXCEEDS & . 55 & & \\
\hline
\end{tabular}


03298150 CHENOWETH RUN AT GELHAUS LANE NEAR FERN CREEK, KY
LOCATION.--Lat \(38^{\circ} 09^{\prime} 3^{\prime \prime}\), long \(83^{\circ} 32^{\prime} 3^{\prime \prime}\), Jefferson County, Hydrologic Unit 05140102, at bridge on Gelhaus Lane, 100 ft above Razor Branch. and at mile 2.3
DRAINAGE AREA. \(--11.6 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--January 1996 to current year.
COOPERATION.--Field determations were made in cooperations with Louisville and Jefferson County Metropolitan Sewer District personnel.
GAGE.--Water-stage recorder.
REMARKS.--Records good. Diversions by a package treatment plant about 2.0 miles upstream.
PEAKS ABOVE BASE.--Peak discharges above base of \(1,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{lccccccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 8 & 2200 & 1030 & 7.27 & Jan. 23 & 0120 & 1150 & 7.59 \\
Apr. 28 & 1700 & 2280 & 10.28 & Jun. 28 & 1710 & 2110 & 9.92
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999} \\
\hline DAY & оСт & Nov & DEC & JAN & FEB & MAR & APR & MAY & Jun & JUL & AUG & SEP \\
\hline 1 & 5.4 & 7.0 & 6.5 & 6.1 & 125 & 28 & 22 & 24 & 6.6 & 21 & 6.5 & 3.0 \\
\hline 2 & 5.1 & 8.2 & 6.5 & 83 & 45 & 22 & 18 & 17 & 101 & 18 & 6.0 & 3.1 \\
\hline 3 & 28 & 9.1 & 6.5 & 44 & 31 & 46 & 24 & 13 & 15 & 13 & 5.7 & 3.1 \\
\hline 4 & 9.4 & 9.3 & 6.2 & 19 & 24 & 28 & 23 & 10 & 6.8 & 10 & 5.3 & 3.1 \\
\hline 5 & 6.0 & 8.5 & 7.9 & 13 & 20 & 22 & 21 & 14 & 4.8 & 9.2 & 5.2 & 2.8 \\
\hline 6 & 5.3 & 8.7 & 7.1 & 10 & 18 & 94 & 58 & 86 & 3.7 & 8.5 & 5.1 & 3.0 \\
\hline 7 & 80 & 8.9 & 29 & 9.7 & 56 & 32 & 17 & 23 & 3.7 & 7.8 & 4.9 & 4.1 \\
\hline 8 & 17 & 8.6 & 37 & 254 & 28 & 25 & 12 & 13 & 3.8 & 6.6 & 7.4 & 3.9 \\
\hline 9 & 8.4 & 9.4 & 19 & 110 & 22 & 115 & 11 & 9.4 & 7.5 & 6.3 & 7.1 & 4.1 \\
\hline 10 & 6.3 & 33 & 11 & 32 & 19 & 42 & 8.8 & 8.3 & 5.1 & 6.3 & 4.4 & 3.6 \\
\hline 11 & 5.5 & 12 & 9.0 & 23 & 18 & 30 & 7.9 & 6.7 & 7.3 & 5.7 & 4.1 & 2.9 \\
\hline 12 & 5.5 & 6.7 & 7.9 & 32 & 42 & 24 & 6.5 & 6.3 & 3.9 & 5.6 & 4.1 & 2.8 \\
\hline 13 & 5.6 & 5.4 & 30 & 54 & 26 & 20 & 6.2 & 21 & 3.4 & 6.0 & 3.9 & 3.2 \\
\hline 14 & 5.5 & 4.8 & 17 & 49 & 21 & 99 & 5.4 & 8.3 & 55 & 5.3 & 3.8 & 3.4 \\
\hline 15 & 5.3 & 4.6 & 11 & 28 & 19 & 44 & 11 & 6.1 & 11 & 5.0 & 3.5 & 3.8 \\
\hline 16 & 4.9 & 4.4 & 9.6 & 22 & 18 & 31 & 7.0 & 5.0 & 4.9 & 4.9 & 4.0 & 3.8 \\
\hline 17 & 5.2 & 4.7 & 13 & 19 & 21 & 24 & 4.7 & 4.5 & 3.6 & 4.6 & 4.1 & 3.7 \\
\hline 18 & 6.9 & 4.9 & 9.1 & 24 & 17 & 21 & 4.1 & 18 & 2.8 & 6.9 & 4.6 & 3.6 \\
\hline 19 & 10 & 4.9 & 8.9 & 17 & 15 & 18 & 3.8 & 8.5 & 2.7 & 5.1 & 12 & 3.5 \\
\hline 20 & 6.2 & 31 & 8.8 & 21 & 13 & 16 & 3.9 & 4.7 & 2.4 & 5.8 & 6.5 & 3.4 \\
\hline 21 & 5.8 & 11 & 62 & 75 & 12 & 14 & 3.3 & 3.6 & 2.4 & 6.0 & 4.2 & 3.8 \\
\hline 22 & 6.5 & 6.9 & 81 & 125 & 11 & 13 & 2.8 & 3.3 & 2.5 & 5.9 & 3.9 & 3.6 \\
\hline 23 & 5.9 & 6.4 & 19 & 333 & 11 & 94 & 2.5 & 5.0 & 2.4 & 5.7 & 3.6 & 3.7 \\
\hline 24 & 5.6 & 6.1 & 12 & 48 & 13 & 34 & 2.1 & 10 & 110 & 5.6 & 3.8 & 4.2 \\
\hline 25 & 4.7 & 30 & 8.5 & 33 & 10 & 24 & 2.0 & 4.0 & 20 & 5.5 & 4.0 & 3.9 \\
\hline 26 & 5.7 & 21 & 7.3 & 26 & 9.0 & 20 & 51 & 3.4 & 8.9 & 5.7 & 3.9 & 3.6 \\
\hline 27 & 6.0 & 9.9 & 6.5 & 22 & 69 & 18 & 13 & 2.9 & 13 & 6.1 & 3.7 & 3.9 \\
\hline 28 & 6.4 & 7.5 & 6.6 & 19 & 62 & 16 & 431 & 2.7 & 359 & 6.4 & 3.4 & 4.3 \\
\hline 29 & 6.7 & 6.7 & 6.9 & 16 & --- & 14 & 124 & 2.5 & 70 & 6.6 & 3.0 & 7.5 \\
\hline 30 & 6.8 & 6.5 & 6.8 & 14 & --- & 14 & 38 & 2.5 & 27 & 6.3 & 2.9 & 5.6 \\
\hline 31 & 7.0 & --- & 6.8 & 97 & --- & 16 & --- & 5.0 & --- & 5.9 & 3.0 & --- \\
\hline TOTAL & 298.6 & 306.1 & 484.4 & 1677.8 & 795.0 & 1058 & 945.0 & 351.7 & 870.2 & 227.3 & 147.6 & 112.0 \\
\hline MEAN & 9.63 & 10.2 & 15.6 & 54.1 & 28.4 & 34.1 & 31.5 & 11.3 & 29.0 & 7.33 & 4.76 & 3.73 \\
\hline MAX & 80 & 33 & 81 & 333 & 125 & 115 & 431 & 86 & 359 & 21 & 12 & 7.5 \\
\hline MIN & 4.7 & 4.4 & 6.2 & 6.1 & 9.0 & 13 & 2.0 & 2.5 & 2.4 & 4.6 & 2.9 & 2.8 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrllllllllllll} 
MEAN & 6.70 & 11.6 & 26.3 & 40.9 & 30.0 & 63.2 & 29.5 & 23.3 & 46.0 & 11.0 & 7.97 & 7.22 \\
MAX & 9.66 & 14.5 & 44.3 & 57.8 & 31.9 & 119 & 40.0 & 28.9 & 73.4 & 20.2 & 10.0 & 13.8 \\
(WY) & 1999 & 1997 & 1997 & 1999 & 1998 & 1997 & 1998 & 1997 & 1997 & 1998 & 1998 & 1997 \\
MIN & 3.81 & 10.1 & 16.1 & 31.9 & 27.2 & 32.5 & 12.2 & 12.7 & 30.3 & 5.56 & 4.76 & 3.73 \\
(WY) & 1998 & 1998 & 1999 & 1997 & 1997 & 1998 & 1997 & 1999 & 1999 & 1997 & 1999 & 1999
\end{tabular}

SALT RIVER BASIN
03298150 CHENOWETH RUN AT GELHAUS LANE NEAR FERN CREEK, KY--Continued



03298250 CEDAR CREEK AT THIXTON ROAD NEAR LOUISVILLE, KY
LOCATION.--Lat \(38^{\circ} 04^{\prime} 45^{\prime \prime}\), long \(85^{\circ} 36^{\prime} 5^{\prime \prime \prime}\), Jefferson County, Hydrologic Unit 05140102, at downstream side of culvert on Thixton Road, 4.2 mi above Pennsylvania Run, and at mile 7.4.
DRAINAGE AREA. \(--11.1 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--January 1999 to current year.
GAGE.--Water-stage recorder.
REMARKS.--Records good.
COOPERATION.--Field determations were made in cooperation with Louisville and Jefferson County Metropolitan Sewer District personnel.
PEAKS ABOVE BASE.--Peak discharges above base of \(2,500 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{rccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jun. 28 & 1835 & \(* 3300\) & 6.07
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & --- & --- & --- & 4.8 & 154 & 27 & 7.0 & 19 & 5.4 & 12 & 2.8 & 2.4 \\
\hline 2 & --- & -- & --- & 54 & 53 & 20 & 6.2 & 13 & 71 & 9.1 & 3.0 & 2.3 \\
\hline 3 & --- & --- & --- & 64 & 30 & 40 & 7.5 & 9.2 & 10 & 7.7 & 2.4 & 2.4 \\
\hline 4 & --- & -- & -- & 18 & 22 & 25 & 8.0 & 7.7 & 6.0 & 6.5 & 2.5 & 2.3 \\
\hline 5 & -- & --- & - & 11 & 15 & 19 & 6.5 & 7.8 & 4.8 & 5.9 & 2.8 & 2.5 \\
\hline 6 & -- & --- & -- & 7.9 & 14 & 79 & 60 & 64 & 4.4 & 5.5 & 2.8 & 2.2 \\
\hline 7 & --- & --- & --- & 7.1 & 42 & 30 & 19 & 18 & 4.0 & 4.7 & 2.9 & 2.7 \\
\hline 8 & -- & -- & - & 195 & 25 & 22 & 13 & 10 & 3.6 & 4.3 & 3.8 & 2.5 \\
\hline 9 & --- & --- & --- & 167 & 18 & 121 & 11 & 8.1 & 3.5 & 4.5 & 4.0 & 2.4 \\
\hline 10 & --- & -- & --- & 34 & 14 & 36 & 8.5 & 7.1 & 3.3 & 4.5 & 3.1 & 2.3 \\
\hline 11 & -- & -- & --- & 20 & 12 & 21 & 8.2 & 6.5 & 4.0 & 4.2 & 2.7 & 2.3 \\
\hline 12 & --- & --- & -- & 23 & 33 & 13 & 7.2 & 6.0 & 3.4 & 3.8 & 2.5 & 2.5 \\
\hline 13 & -- & -- & --- & 37 & 25 & 10 & 6.7 & 7.7 & 3.2 & 3.2 & 2.1 & 2.6 \\
\hline 14 & - & --- & --- & 60 & 19 & 77 & 6.5 & 6.4 & 53 & 3.2 & 2.0 & 2.6 \\
\hline 15 & --- & --- & --- & 26 & 16 & 36 & 8.5 & 5.5 & 6.8 & 3.1 & 2.1 & 2.2 \\
\hline 16 & - & -- & -- & 18 & 14 & 19 & 8.0 & 5.0 & 4.7 & 2.9 & 2.1 & 1.8 \\
\hline 17 & -- & --- & - & 14 & 16 & 13 & 6.5 & 4.7 & 4.2 & 5.5 & 2.3 & 1.7 \\
\hline 18 & --- & --- & --- & 17 & 13 & 9.4 & 6.0 & 5.1 & 3.7 & 2.8 & 3.4 & 1.8 \\
\hline 19 & - & - & - & 12 & 11 & 7.8 & 5.8 & 5.3 & 3.5 & 2.8 & 2.5 & 2.2 \\
\hline 20 & --- & -- & --- & 12 & 9.6 & 7.2 & 5.8 & 4.2 & 3.5 & 2.9 & 2.1 & 2.3 \\
\hline 21 & -- & - & --- & 90 & 8.8 & 6.8 & 5.6 & 3.8 & 3.3 & 2.8 & 1.9 & 2.1 \\
\hline 22 & --- & --- & --- & 111 & e7.8 & 6.0 & 5.1 & 3.6 & 3.2 & 2.5 & 2.2 & 2.0 \\
\hline 23 & --- & --- & --- & 349 & e8.4 & 41 & 5.1 & 4.4 & 3.0 & 2.5 & 2.4 & 1.9 \\
\hline 24 & --- & --- & --- & 61 & e9.0 & 19 & 4.3 & 13 & 32 & 2.5 & 2.3 & 2.0 \\
\hline 25 & --- & --- & -- & 33 & e8.0 & 11 & 4.1 & 5.0 & 10 & 2.7 & 2.5 & 1.8 \\
\hline 26 & -- & -- & -- & 23 & 7.1 & 8.3 & 17 & 4.2 & 5.7 & 2.8 & 2.3 & 1.9 \\
\hline 27 & --- & --- & --- & 19 & 36 & 7.3 & 8.5 & 3.6 & 4.9 & 2.9 & 2.3 & 1.9 \\
\hline 28 & -- & --- & --- & 15 & 75 & 6.7 & 315 & 3.4 & 613 & 2.9 & 2.4 & 1.9 \\
\hline 29 & --- & --- & --- & 11 & --- & 6.2 & 172 & 3.2 & 63 & 3.5 & 2.6 & 2.1 \\
\hline 30 & --- & --- & --- & 9.8 & --- & 5.6 & 34 & 3.2 & 22 & 3.1 & 2.8 & 2.2 \\
\hline 31 & --- & --- & --- & 53 & --- & 5.6 & --- & 5.0 & --- & 2.8 & 2.6 & - \\
\hline TOTAL & -- & -- & -- & 1576.6 & 715.7 & 755.9 & 786.6 & 272.7 & 966.1 & 130.1 & 80.2 & 65.8 \\
\hline MEAN & --- & --- & --- & 50.9 & 25.6 & 24.4 & 26.2 & 8.80 & 32.2 & 4.20 & 2.59 & 2.19 \\
\hline MAX & --- & --- & --- & 349 & 154 & 121 & 315 & 64 & 613 & 12 & 4.0 & 2.7 \\
\hline MIN & --- & --- & --- & 4.8 & 7.1 & 5.6 & 4.1 & 3.2 & 3.0 & 2.5 & 1.9 & 1.7 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1988 - 1999, BY WATER YEAR (WY)
\begin{tabular}{llllllllllllll} 
MEAN & 7.16 & 11.6 & 20.9 & 34.3 & 40.6 & 21.0 & 25.3 & 21.0 & 18.0 & 8.06 & 4.01 & 3.00 \\
MAX & 15.4 & 15.5 & 43.5 & 50.9 & 69.1 & 31.3 & 34.4 & 53.4 & 32.2 & 18.6 & 6.44 & 4.86 \\
(WY) & 1991 & 1989 & 1991 & 1999 & 1989 & 1989 & 1989 & 1990 & 1999 & 1989 & 1989 & 1990 \\
MIN & 1.32 & 9.14 & 5.21 & 21.2 & 21.8 & 13.4 & 20.0 & 5.97 & 1.70 & 3.54 & 2.55 & 1.47 \\
(WY) & 1989 & 1990 & 1990 & 1990 & 1991 & 1990 & 1988 & 1988 & 1988 & 1990 & 1988 & 1988
\end{tabular}

SALT RIVER BASIN
03298250 CEDAR CREEK AT THIXTON ROAD NEAR LOUISVILLE, KY--Continued
\begin{tabular}{lcccc} 
SUMMARY STATISTICS & WATER YEARS & \(1988-1999\) \\
& & & \\
ANNUAL MEAN & 18.9 & & \\
HIGHEST ANNUAL MEAN & 20.4 & & 1989 \\
LOWEST ANNUAL MEAN & 17.4 & & 1990 \\
HIGHEST DAILY MEAN & 613 & Jun 28 & 1999 \\
LOWEST DAILY MEAN & .99 & Jun 29 & 1988 \\
ANNUAL SEVEN-DAY MINIMUM & .99 & Jun 29 & 1988 \\
INSTANTANEOUS PEAK FLOW & 3300 & Jun 28 & 1999 \\
INSTANTANEOUS PEAK STAGE & 6.07 & Jun 28 & 1999 \\
10 PERCENT EXCEEDS & 41 & & \\
50 PERCENT EXCEEDS & 5.7 & & \\
90 PERCENT EXCEEDS & 1.5 & &
\end{tabular}
e Estimated


03298300 PENNSYLVANIA RUN AT MOUNT WASHINGTON ROAD NEAR LOUISVILLE, KY
LOCATION.--Lat \(38^{\circ} 05^{\prime} 1^{\prime \prime}\), long \(85^{\circ} 38^{\prime} 33^{\prime \prime}\), Jefferson County, Hydrologic Unit 05140102, at bridge on Mt. Washington Road, and at mile 1.9.

DRAINAGE AREA. \(--6.4 \mathrm{mi}^{2}\).
WATER-DISCHARGE RECORDS
PERIOD OF RECORD.--October 1998 to September 1999.
GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 430.38 ft above sea level. See WDR KY-90-1 for history of changes prior to Nov. 16, 1962.

REMARKS.--Records good except for periods of estimated discharge which are poor.
COOPERATION.--Field determinations were made in cooperation with Louisville and Jefferson County Metropolitan Sewer District personnel.

PEAKS ABOVE BASE.--Peak discharges above base of \(150 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date & Time & Discharge
\[
\left(\mathrm{ft}^{3} / \mathrm{s}\right)
\] & \begin{tabular}{l}
Gage Height \\
(ft)
\end{tabular} & Date & Time & \[
\begin{aligned}
& \text { Discharge } \\
& \left(\mathrm{ft}^{3} / \mathrm{s}\right)
\end{aligned}
\] & \begin{tabular}{l}
Gage Height \\
(ft)
\end{tabular} \\
\hline Jan. 8 & 2225 & 253 & 3.82 & Jan. 23 & 0135 & 272 & 3.93 \\
\hline Apr. 28 & 2120 & 325 & 4.22 & Jun. 28 & 1750 & *1540 & 8.22 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & e. 30 & e1.7 & 2.7 & e3.3 & 50 & 12 & 6.2 & 13 & 2.1 & 8.7 & . 51 & e. 50 \\
\hline 2 & e. 40 & e1.6 & 2.5 & e22 & 24 & 8.7 & 5.1 & 9.3 & 15 & 6.4 & . 45 & 2.0 \\
\hline 3 & e. 70 & e1.9 & 2.5 & e27 & 15 & 16 & 5.8 & 7.4 & 7.4 & 4.7 & . 37 & 1.8 \\
\hline 4 & e1.0 & e1.8 & 2.2 & e9.4 & 11 & 12 & 6.4 & 6.1 & 3.7 & 3.5 & e. 33 & 1.2 \\
\hline 5 & e1.1 & e1.7 & 2.6 & 6.6 & 8.5 & 8.8 & 5.1 & 6.3 & 2.9 & 2.6 & e. 31 & e1.0 \\
\hline 6 & e1.2 & e1. 6 & 2.5 & 5.5 & 7.7 & 27 & 19 & 28 & 2.0 & 2.0 & e. 29 & e. 90 \\
\hline 7 & 5.4 & e1. 5 & 5.1 & 4.9 & 18 & 15 & 11 & 12 & 1.7 & 1.5 & . 45 & e. 80 \\
\hline 8 & 3.0 & e1.7 & 10 & 65 & 13 & 11 & 8.0 & 7.7 & 1.7 & 1.1 & 1.1 & e. 70 \\
\hline 9 & 1.9 & e2.0 & 7.2 & 69 & 9.7 & 46 & 7.1 & 6.1 & 1.6 & . 93 & . 38 & . 78 \\
\hline 10 & 1.5 & 6.1 & 4.4 & 18 & 8.1 & 26 & 5.8 & 4.8 & 1.6 & . 88 & . 29 & . 54 \\
\hline 11 & e1.3 & 4.2 & 3.3 & 11 & 7.3 & 16 & 4.8 & 4.0 & 1.7 & . 85 & . 26 & . 61 \\
\hline 12 & e1.2 & 2.5 & 2.9 & 12 & 15 & 12 & 3.9 & 3.5 & 1.7 & . 90 & . 28 & . 64 \\
\hline 13 & e1.1 & e1.8 & 9.7 & 16 & 12 & 9.8 & 3.5 & 4.9 & 1.7 & . 79 & e. 26 & . 75 \\
\hline 14 & e1.0 & e1.5 & 7.7 & 23 & 9.3 & 34 & 3.4 & 3.8 & 9.9 & . 73 & e. 25 & . 75 \\
\hline 15 & e. 94 & e1.2 & 5.1 & 14 & 8.2 & 26 & 5.3 & 3.0 & 5.0 & . 94 & e. 24 & . 71 \\
\hline 16 & e. 90 & e. 96 & 4.0 & 10 & 7.5 & 16 & 4.7 & 2.6 & 2.8 & 1.0 & e. 23 & . 65 \\
\hline 17 & e. 84 & e. 88 & 3.7 & 8.6 & 8.1 & 12 & 3.8 & 2.3 & 2.1 & . 77 & e. 22 & . 69 \\
\hline 18 & 2.2 & e. 86 & 3.3 & 9.2 & 7.0 & 9.3 & 3.4 & 3.9 & 1.9 & . 75 & e. 21 & . 71 \\
\hline 19 & 2.1 & e. 92 & 3.0 & 7.5 & 6.2 & 7.7 & 3.2 & 3.4 & 1.7 & . 78 & . 35 & . 69 \\
\hline 20 & 1.8 & e4.8 & 3.3 & 7.1 & 5.4 & 7.1 & 3.1 & 2.5 & 1.6 & . 83 & . 26 & . 71 \\
\hline 21 & 1.6 & e3. 8 & 10 & 27 & 4.9 & 6.7 & 3.1 & 2.1 & 1.5 & . 73 & . 23 & . 73 \\
\hline 22 & 2.2 & e2. 6 & e22 & 42 & 4.3 & 5.7 & 2.8 & 1.9 & 1.5 & . 45 & . 20 & . 72 \\
\hline 23 & 2.4 & e2.0 & e12 & 137 & 4.4 & 19 & 2.7 & 3.7 & 1.2 & . 26 & e. 20 & . 65 \\
\hline 24 & e1.8 & e1.7 & e7.4 & 29 & 4.9 & 16 & 2.4 & 7.1 & 4.7 & . 26 & e. 21 & . 64 \\
\hline 25 & e1.4 & 4.6 & 5.2 & 18 & 4.4 & 9.5 & 2.1 & 3.7 & 5.3 & . 26 & e. 26 & . 64 \\
\hline 26 & e1.3 & 6.1 & 4.5 & 13 & 3.7 & 7.5 & 5.8 & 2.6 & 3.1 & . 27 & . 37 & . 63 \\
\hline 27 & e1.2 & 4.1 & 4.1 & 10 & 9.3 & 6.7 & 6.3 & 2.1 & 2.6 & . 27 & . 36 & . 62 \\
\hline 28 & e1.8 & 3.3 & 3.7 & 8.5 & 26 & 6.2 & 92 & 1.8 & 293 & . 36 & e. 35 & . 62 \\
\hline 29 & 2.2 & 3.0 & 3.6 & 7.1 & --- & 5.4 & 78 & 1.6 & 52 & . 39 & e. 40 & . 76 \\
\hline 30 & 2.4 & 2.8 & e3.5 & 6.3 & - & 4.7 & 20 & 1.6 & 12 & . 43 & e. 40 & . 92 \\
\hline 31 & e1.8 & --- & e3.4 & 18 & -- & 4.9 & -- & 1.7 & --- & . 41 & e. 38 & --- \\
\hline TOTAL & 49.98 & 75.22 & 167.1 & 665.0 & 312.9 & 424.7 & 333.8 & 164.5 & 446.7 & 44.74 & 10.40 & 24.06 \\
\hline MEAN & 1.61 & 2.51 & 5.39 & 21.5 & 11.2 & 13.7 & 11.1 & 5.31 & 14.9 & 1.44 & . 34 & . 80 \\
\hline MAX & 5.4 & 6.1 & 22 & 137 & 50 & 46 & 92 & 28 & 293 & 8.7 & 1.1 & 2.0 \\
\hline MIN & . 30 & . 86 & 2.2 & 3.3 & 3.7 & 4.7 & 2.1 & 1.6 & 1.2 & . 26 & . 20 & . 50 \\
\hline STATIS & ICS OF & NTHLY M & N DATA & R WATER & EARS 19 & - 1999 & BY WATER & YEAR (W) & & & & \\
\hline MEAN & 1.61 & 2.51 & 5.39 & 21.5 & 11.2 & 13.7 & 11.1 & 5.31 & 14.9 & 1.44 & . 34 & . 80 \\
\hline MAX & 1.61 & 2.51 & 5.39 & 21.5 & 11.2 & 13.7 & 11.1 & 5.31 & 14.9 & 1.44 & . 34 & . 80 \\
\hline (WY) & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 \\
\hline MIN & 1.61 & 2.51 & 5.39 & 21.5 & 11.2 & 13.7 & 11.1 & 5.31 & 14.9 & 1.44 & . 34 & . 80 \\
\hline (WY) & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 \\
\hline
\end{tabular}

SALT RIVER BASIN
03298300 PENNSYLVANIA RUN AT MOUNT WASHINGTON ROAD NEAR LOUISVILLE, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS
e Estimated


LOCATION.--Lat \(37^{\circ} 59^{\prime} 06^{\prime \prime}\), long \(85^{\circ} 43^{\prime} 03^{\prime \prime}\), Bullitt County, Hydrologic Unit 05140102, on downstream side of bridge on State Highway 61 at Shepherdsville, 500 ft downstream from Louisville and Nashville Railroad bridge, 2.6 mi downstream from Floyds Fork, and at mile 22.9.
DRAINAGE AREA. \(-1,197 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--May 1938 to current year.
REVISED RECORDS.--WSP 893: 1937(M). WSP 1435: 1955: WSP 1705: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 406.58 ft above sea level. See WDR KY-90-1 for history of changes prior to Oct. 16, 1969.

REMARKS.--Records fair except for periods of estimated record, which are poor. Flow regulated since January 1983 by Taylorsville Lake (station 03295597). Diversions for water supply by Sheperdsville and other municipalities.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Jan. 26, 1937, reached a stage of 47.3 ft, from floodmark (backwater from Ohio River).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 36 & 50 & 190 & 312 & 7050 & 2670 & 418 & 676 & e110 & 2930 & 56 & 28 \\
\hline 2 & 31 & 47 & 175 & 379 & 6460 & 2520 & 411 & 550 & e130 & 2460 & 63 & 29 \\
\hline 3 & 55 & 45 & 167 & 3300 & 4130 & 2640 & 391 & 481 & e150 & 2200 & 69 & 29 \\
\hline 4 & 118 & 45 & 162 & 1960 & 3740 & 3030 & 434 & 433 & e210 & 2050 & 55 & 30 \\
\hline 5 & 101 & 47 & 160 & 1690 & 3100 & 3090 & 401 & 380 & 181 & 1600 & 46 & 31 \\
\hline 6 & 82 & 48 & 154 & 1910 & 2510 & 3550 & 933 & 1690 & 146 & 769 & 43 & 30 \\
\hline 7 & 226 & 51 & 142 & 1820 & 1770 & 3350 & 1180 & 1490 & 120 & 425 & 42 & 31 \\
\hline 8 & 606 & 52 & 306 & 2870 & 2440 & 2620 & 810 & 860 & 105 & 254 & 45 & 30 \\
\hline 9 & 532 & 55 & 540 & 13500 & 1780 & 3120 & 612 & 561 & 98 & 182 & 53 & 28 \\
\hline 10 & 397 & 70 & 418 & 5820 & 1170 & 4710 & 515 & 455 & 94 & 160 & 49 & 30 \\
\hline 11 & 194 & 134 & 411 & 2620 & 953 & 3630 & 448 & 361 & 96 & 123 & 43 & 28 \\
\hline 12 & 109 & 124 & 363 & 3070 & 1420 & 3120 & 388 & 320 & 96 & 100 & 39 & 27 \\
\hline 13 & 87 & 103 & 493 & 3850 & 2320 & 2710 & 346 & 405 & 89 & 90 & 34 & 25 \\
\hline 14 & 76 & 110 & 781 & 5610 & 1880 & 3160 & 322 & 393 & 136 & 83 & 32 & 27 \\
\hline 15 & 72 & 90 & 1140 & 4410 & 1570 & 4430 & 353 & 300 & 391 & 80 & 28 & 28 \\
\hline 16 & 70 & 78 & 1120 & 3760 & 1410 & 4050 & 432 & 235 & 367 & 77 & 26 & 28 \\
\hline 17 & 68 & 75 & 770 & 3180 & 2040 & 3860 & 407 & 210 & 277 & 75 & 26 & 29 \\
\hline 18 & 68 & 103 & 408 & 3020 & 1990 & 3300 & 374 & 195 & 179 & 78 & 25 & 30 \\
\hline 19 & 74 & 108 & 246 & 2890 & 1160 & 2890 & 358 & 201 & 127 & 81 & 26 & 30 \\
\hline 20 & 77 & 125 & 231 & 2780 & 665 & 1990 & 340 & 185 & 100 & 101 & 26 & 32 \\
\hline 21 & 73 & 157 & 262 & 3900 & 563 & 1400 & 315 & 154 & 80 & 162 & 30 & 35 \\
\hline 22 & 66 & 156 & 2940 & 5030 & 511 & 929 & 288 & 127 & 225 & 321 & 33 & 32 \\
\hline 23 & 63 & 150 & 2600 & 16100 & 485 & 1070 & 267 & 115 & e290 & 346 & 30 & 32 \\
\hline 24 & 62 & 146 & 1440 & 11500 & 494 & 2390 & 249 & 141 & e320 & 208 & 27 & 30 \\
\hline 25 & 61 & 150 & 1040 & 2440 & 481 & 2010 & 223 & 154 & 362 & 125 & 26 & 30 \\
\hline 26 & 61 & 260 & 863 & 2070 & 510 & 1650 & 245 & 122 & 554 & 87 & 26 & 30 \\
\hline 27 & 59 & 276 & 804 & 2390 & 567 & 1080 & 465 & 107 & e3100 & 141 & 27 & 30 \\
\hline 28 & 56 & 252 & 744 & 2210 & 3020 & 618 & 627 & 99 & e5450 & 148 & 26 & 34 \\
\hline 29 & 55 & 229 & 707 & 2510 & --- & 528 & 4500 & e96 & 5360 & 83 & 27 & 41 \\
\hline 30 & 54 & 206 & 678 & 2910 & --- & 447 & 1120 & e86 & 4470 & 68 & 27 & 43 \\
\hline 31 & 54 & --- & 457 & 1900 & --- & 398 & --- & e94 & --- & 58 & 28 & --- \\
\hline TOTAL & 3743 & 3542 & 20912 & 121711 & 56189 & 76960 & 18172 & 11676 & 23413 & 15665 & 1133 & 917 \\
\hline MEAN & 121 & 118 & 675 & 3926 & 2007 & 2483 & 606 & 377 & 780 & 505 & 36.5 & 30.6 \\
\hline MAX & 606 & 276 & 2940 & 16100 & 7050 & 4710 & 4500 & 1690 & 5450 & 2930 & 69 & 43 \\
\hline MIN & 31 & 45 & 142 & 312 & 481 & 398 & 223 & 86 & 80 & 58 & 25 & 25 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1984 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
\\
MEAN & 257 & 961 & 1997 & 2683 & 3790 & 3421 & 2103 & 1941 & 1572 & 571 & 186 \\
MAX & 1166 & 2206 & 6329 & 5728 & 12370 & 11410 & 3506 & 5768 & 5192 & 1976 & 1018 & 583 \\
(WY) & 1991 & 1994 & 1991 & 1991 & 1989 & 1997 & 1989 & 1995 & 1997 & 1998 & 1992 & 1996 \\
MIN & 25.9 & 55.5 & 258 & 335 & 996 & 1113 & 377 & 216 & 38.9 & 63.6 & 36.5 & 30.6 \\
(WY) & 1989 & 1988 & 1990 & 1986 & 1992 & 1990 & 1986 & 1985 & 1988 & 1994 & 1999 & 1999
\end{tabular}

SALT RIVER BASIN
03298500 SALT RIVER AT SHEPHERDSVILLE, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN HIGHEST DAIIY MEAN HIGHEST DAILY MEAN
LOWEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE 10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS
e Estimated


03298550 LONG LICK NEAR CLERMONT, KY
LOCATION.--Lat \(37^{\circ} 55^{\prime} 40^{\prime \prime}\), long \(85^{\circ} 39^{\prime} 13^{\prime \prime}\), Bullitt County, Hydrologic Unit 05140102 , downstream side of bridge at Jim Beam Distillery, at Clermont, and
10.8 mi upstream from mouth.

DRAINAGE AREA.-- \(7.91 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--April 1, 1992 to current year.
GAGE.--Water-stage recorder. Datum of gage is 450 ft above sea level.
REMARKS.--Records fair.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 14 & . 27 & . 84 & . 20 & 77 & 9.2 & e5.1 & 11 & . 48 & . 69 & . 12 & . 04 \\
\hline 2 & . 15 & . 48 & . 78 & 10 & 22 & 5.7 & 4.9 & 7.8 & 1.1 & . 32 & . 07 & . 01 \\
\hline 3 & . 23 & . 70 & . 69 & 16 & 11 & 25 & 6.5 & 6.0 & . 80 & . 29 & . 02 & . 01 \\
\hline 4 & . 25 & . 83 & . 20 & . 93 & 6.8 & 16 & 10 & 4.9 & . 32 & . 23 & . 01 & . 01 \\
\hline 5 & . 19 & . 63 & . 32 & . 93 & 4.7 & 8.8 & 6.7 & 3.7 & . 38 & . 18 & . 01 & . 01 \\
\hline 6 & . 21 & . 62 & . 18 & . 77 & 4.4 & 17 & 23 & 67 & . 33 & . 09 & . 01 & . 01 \\
\hline 7 & 1.5 & . 73 & . 42 & . 16 & 12 & 12 & 14 & 13 & . 27 & . 01 & . 01 & . 03 \\
\hline 8 & . 85 & . 65 & . 80 & 50 & 9.1 & 6.7 & 8.5 & 6.7 & . 44 & . 09 & . 08 & . 29 \\
\hline 9 & . 64 & . 69 & . 84 & 84 & 5.7 & 54 & 6.7 & 4.6 & . 87 & . 02 & . 27 & . 55 \\
\hline 10 & . 58 & . 93 & . 75 & 4.9 & 4.5 & 25 & 5.8 & 3.4 & . 60 & . 03 & . 88 & . 77 \\
\hline 11 & . 55 & . 92 & . 78 & . 97 & 4.1 & 13 & 4.7 & 3.1 & . 08 & . 04 & 1.3 & . 09 \\
\hline 12 & . 58 & . 92 & . 80 & . 80 & 23 & 8.6 & 3.0 & 2.7 & . 04 & . 02 & 1.3 & . 02 \\
\hline 13 & . 52 & . 87 & 1.1 & 2.7 & 17 & 6.7 & 3.0 & 3.7 & . 02 & . 02 & . 89 & . 19 \\
\hline 14 & . 52 & . 64 & . 74 & 42 & 8.6 & 90 & 3.0 & 2.9 & . 26 & . 01 & . 04 & . 72 \\
\hline 15 & . 51 & . 58 & . 90 & 1.6 & 6.4 & 33 & 5.0 & 2.2 & . 13 & . 01 & . 02 & 1.0 \\
\hline 16 & . 34 & . 68 & . 85 & . 64 & 5.7 & 18 & 8.3 & 1.9 & . 47 & . 02 & . 01 & 1.5 \\
\hline 17 & . 21 & . 84 & . 73 & . 27 & 6.6 & 11 & 5.8 & 1.5 & . 61 & . 02 & . 07 & 1.2 \\
\hline 18 & . 25 & . 86 & . 77 & . 23 & 6.1 & 8.3 & 4.4 & 1.6 & . 32 & . 01 & . 06 & . 05 \\
\hline 19 & . 55 & . 62 & . 79 & . 48 & 5.0 & 5.9 & 2.8 & 1.5 & . 05 & . 04 & . 02 & . 02 \\
\hline 20 & . 62 & . 68 & . 64 & . 60 & 4.4 & 6.1 & 2.8 & 1.1 & . 04 & . 85 & . 01 & . 18 \\
\hline 21 & . 70 & . 33 & . 92 & . 50 & 4.3 & 5.2 & 2.9 & . 86 & . 02 & 1.0 & . 01 & . 78 \\
\hline 22 & . 41 & . 25 & 6.8 & 14 & 2.3 & 4.0 & 2.9 & . 66 & . 01 & . 09 & . 01 & . 71 \\
\hline 23 & . 28 & . 50 & . 64 & 240 & 2.7 & 28 & 3.2 & . 60 & . 01 & . 61 & . 01 & . 70 \\
\hline 24 & . 28 & . 74 & . 59 & 22 & 3.2 & 22 & 2.8 & . 98 & . 62 & . 53 & . 01 & . 69 \\
\hline 25 & . 27 & . 79 & . 66 & 9.9 & 2.9 & 14 & 2.5 & 1.8 & . 05 & . 34 & . 01 & . 05 \\
\hline 26 & . 44 & . 60 & . 40 & 6.7 & 2.8 & 7.5 & 9.6 & 1.4 & . 03 & . 11 & . 01 & . 02 \\
\hline 27 & . 48 & . 61 & . 28 & 5.5 & 4.1 & 5.9 & 12 & . 89 & . 98 & . 06 & . 01 & . 07 \\
\hline 28 & . 53 & . 75 & . 41 & 4.7 & 20 & 5.5 & 120 & . 47 & 17 & . 04 & . 01 & . 67 \\
\hline 29 & . 35 & . 91 & . 44 & 3.9 & --- & 4.8 & 100 & . 02 & 7.0 & . 03 & . 01 & . 66 \\
\hline 30 & . 53 & . 93 & . 51 & 3.7 & --- & e3.9 & 20 & . 01 & 1.7 & . 02 & . 01 & 1.1 \\
\hline 31 & . 27 & -- & . 29 & 21 & --- & 4.2 & --- & . 01 & --- & . 02 & . 06 & --- \\
\hline TOTAL & 13.93 & 20.55 & 25.86 & 550.08 & 286.4 & 485.0 & 409.9 & 158.00 & 35.03 & 5.84 & 5.36 & 12.15 \\
\hline MEAN & . 45 & . 69 & . 83 & 17.7 & 10.2 & 15.6 & 13.7 & 5.10 & 1.17 & . 19 & . 17 & . 41 \\
\hline MAX & 1.5 & . 93 & 6.8 & 240 & 77 & 90 & 120 & 67 & 17 & 1.0 & 1.3 & 1.5 \\
\hline MIN & . 14 & . 25 & . 18 & . 16 & 2.3 & 3.9 & 2.5 & . 01 & . 01 & . 01 & . 01 & . 01 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 1999, BY WATER YEAR (WY)


SALT RIVER BASIN
03298550 LONG LICK NEAR CLERMONT, KY--Continued


LOCATION.--Lat \(37^{\circ} 49^{\prime} 58^{\prime \prime}\), long \(85^{\circ} 17^{\prime} 46^{\prime \prime}\), Nelson County, Hydrologic Unit 05140103, on right bank on downstream side of bridge on State Highway \(55,100^{\prime} \mathrm{ft}\) upstream from Nealy Run, 0.8 mi north of Maud, 1.7 mi downstream from Chaplin River, and at mile 48.1 .

DRAINAGE AREA. --436 \(\mathrm{mi}^{2}\). .
PERIOD OF RECORD.--August 1972 to current year.
GAGE.--Water-stage recorder. Datum of gage is 530.00 ft above sea level
REMARKS.--Records good except for periods of estimated record, which are fair.
PEAKS ABOVE BASE.--Peak discharges above base of \(8,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 9 & 1700 & \(* 14400\) & 19.41
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{9}{|l|}{DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES} & & \\
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 7.4 & 16 & 33 & 109 & 3070 & 1050 & 245 & 458 & 37 & 276 & 4.4 & . 11 \\
\hline 2 & 5.2 & 16 & 26 & 146 & 2660 & 677 & 256 & 301 & 33 & 181 & 4.0 & . 10 \\
\hline 3 & 7.8 & 16 & 23 & 3170 & 1090 & 1150 & 242 & 234 & 30 & 123 & 3.7 & . 07 \\
\hline 4 & 44 & 18 & 20 & 1640 & 729 & 2660 & 224 & 194 & 28 & 105 & 3.5 & . 07 \\
\hline 5 & 120 & 17 & 19 & 558 & 551 & 1050 & 209 & 183 & 26 & 90 & e3.3 & . 07 \\
\hline 6 & 134 & 16 & 19 & 459 & 439 & 780 & 224 & 594 & 26 & 63 & e2. 8 & . 05 \\
\hline 7 & 83 & 16 & 31 & 366 & 399 & 750 & 437 & 808 & 24 & 44 & e2.3 & . 04 \\
\hline 8 & 122 & 16 & 1050 & 1360 & 368 & 599 & 310 & 422 & 20 & 32 & e1.9 & . 02 \\
\hline 9 & 180 & 18 & 1070 & 12100 & 327 & 1050 & 252 & 263 & 31 & 24 & e1.6 & . 01 \\
\hline 10 & 89 & 23 & 509 & 6810 & 290 & 1800 & 220 & 201 & 93 & 19 & e1.3 & . 00 \\
\hline 11 & 62 & 30 & 273 & 1150 & 264 & 939 & 189 & 162 & 56 & 14 & e1.1 & . 00 \\
\hline 12 & 48 & 28 & 184 & 566 & 886 & 689 & 161 & 136 & 28 & 10 & e. 91 & . 00 \\
\hline 13 & 35 & 25 & 242 & 439 & 1940 & 558 & 143 & 155 & 20 & 8.5 & e. 78 & . 00 \\
\hline 14 & 24 & 23 & 1110 & 558 & 931 & 2030 & 131 & 187 & 26 & 7.3 & e. 67 & . 00 \\
\hline 15 & 18 & 22 & 593 & 836 & 643 & 5710 & 138 & 146 & 68 & 6.3 & e. 58 & . 00 \\
\hline 16 & 13 & 21 & 312 & 612 & 519 & 1610 & 157 & 115 & 50 & 5.8 & e. 54 & . 00 \\
\hline 17 & 9.1 & 20 & 224 & 455 & 461 & 826 & 182 & 96 & 35 & 5.4 & e. 52 & . 00 \\
\hline 18 & 7.8 & 20 & 179 & 482 & 447 & 641 & 164 & 82 & 33 & 4.9 & e. 51 & . 00 \\
\hline 19 & 9.4 & 19 & 150 & 570 & 422 & 505 & 138 & 72 & 24 & 4.2 & e. 56 & . 00 \\
\hline 20 & 8.1 & 23 & 132 & 483 & 373 & 422 & 127 & 64 & 20 & 3.7 & . 47 & . 00 \\
\hline 21 & 6.6 & 23 & 125 & 383 & 324 & 374 & 122 & 55 & 16 & 18 & . 29 & . 00 \\
\hline 22 & 7.0 & 26 & 1050 & 362 & 286 & 334 & 115 & 48 & 12 & 48 & . 13 & . 00 \\
\hline 23 & 15 & 25 & 865 & 5650 & 263 & 441 & 109 & 42 & 9.0 & 25 & . 11 & . 00 \\
\hline 24 & 14 & 24 & 467 & 4040 & 254 & 1280 & 98 & 106 & 14 & 34 & . 25 & . 00 \\
\hline 25 & 15 & 24 & 292 & 1120 & 247 & 868 & 87 & 315 & 18 & 21 & . 53 & . 00 \\
\hline 26 & 15 & 27 & 220 & 637 & 234 & 587 & 103 & 237 & 23 & 16 & . 51 & . 00 \\
\hline 27 & 16 & 31 & 182 & 473 & 227 & 425 & 233 & 149 & 29 & 12 & . 49 & . 00 \\
\hline 28 & 17 & 34 & 153 & 388 & 919 & 349 & 307 & 101 & 258 & 18 & . 48 & . 00 \\
\hline 29 & 16 & 28 & 138 & 321 & --- & 304 & 1180 & 72 & 4730 & 13 & . 44 & . 00 \\
\hline 30 & 15 & 35 & 125 & 271 & --- & 270 & 1130 & 54 & 617 & 7.9 & . 37 & . 00 \\
\hline 31 & 15 & -- & 116 & 270 & --- & 242 & --- & 43 & --- & 5.5 & . 14 & --- \\
\hline TOTAL & 1178.4 & 680 & 9932 & 46784 & 19563 & 30970 & 7633 & 6095 & 6434.0 & 1245.5 & 39.18 & 0.54 \\
\hline MEAN & 38.0 & 22.7 & 320 & 1509 & 699 & 999 & 254 & 197 & 214 & 40.2 & 1.26 & . 018 \\
\hline MAX & 180 & 35 & 1110 & 12100 & 3070 & 5710 & 1180 & 808 & 4730 & 276 & 4.4 & . 11 \\
\hline MIN & 5.2 & 16 & 19 & 109 & 227 & 242 & 87 & 42 & 9.0 & 3.7 & . 11 & . 00 \\
\hline CFSM & . 09 & . 05 & . 73 & 3.46 & 1.60 & 2.29 & . 58 & . 45 & . 49 & . 09 & . 00 & . 00 \\
\hline IN. & . 10 & . 06 & . 85 & 3.99 & 1.67 & 2.64 & . 65 & . 52 & . 55 & . 11 & . 00 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1973 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 166 & 503 & 1029 & 996 & 1179 & 1247 & 752 & 679 & 520 & 213 & 166 & 236 \\
MAX & 1042 & 1699 & 3691 & 2461 & 5071 & 4663 & 2022 & 2359 & 2499 & 764 & 1939 & 2284 \\
(WY) & 1976 & 1989 & 1979 & 1974 & 1989 & 1997 & 1979 & 1995 & 1997 & 1998 & 1978 & 1979 \\
MIN & .011 & .24 & 111 & 16.2 & 203 & 134 & 103 & 43.6 & 3.32 & 2.45 & .87 & .018 \\
(WY) & 1988 & 1988 & 1981 & 1981 & 1980 & 1983 & 1986 & 1976 & 1988 & 1975 & 1986 & 1999
\end{tabular}

SALT RIVER BASIN
03300400 BEECH FORK AT MAUD, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN HIGHEST DAILY MEAN
LOWEST DAILY MEAN LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS
e Estimated
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{FOR 1999 WATER YEAR} & WATER YEAR & 1973 & - & 1999 \\
\hline \multicolumn{6}{|l|}{130554.62} \\
\hline \multirow[t]{3}{*}{358} & & \multicolumn{4}{|l|}{638} \\
\hline & & 1243 & & & 1979 \\
\hline & & 308 & & & 1977 \\
\hline 12100 & Jan 9 & 39800 & Mar & 2 & 1997 \\
\hline . 00 & Sep 10 & . 00 & Oct & 8 & 1983 \\
\hline \multirow[t]{2}{*}{14400.00} & Sep 10 & . 00 & Oct & 23 & 1987 \\
\hline & Jan 9 & 41500 & Mar & 2 & 1997 \\
\hline 19.41 & Jan 9 & 27.60 & Mar & 2 & 1997 \\
\hline \multicolumn{2}{|l|}{. 82} & 1.46 & & & \\
\hline \multicolumn{2}{|l|}{11.14} & 19.88 & & & \\
\hline \multicolumn{2}{|l|}{848} & 1370 & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{72}} & 174 & & & \\
\hline & & 4.9 & & & \\
\hline
\end{tabular}


03301000 BEECH FORK AT BARDSTOWN, KY
LOCATION.--Lat \(37^{\circ} 47^{\prime} 49^{\prime \prime}\), long \(85^{\circ} 28^{\prime} 51^{\prime \prime}\), Nelson County, Hydrologic Unit 05140103 near center of span on downstream side of bridge on U.S. Highway 31E,
0.1 mile downstream from Rowan Creek, 1 mile southwest of Bardstown, and mile 20.7 .

DRAINAGE AREA. \(--669 \mathrm{mi}^{2}(1,733 \mathrm{sq} \mathrm{km})\).
PERIOD OF RECORD.--October 139 to September 1974; converted to a crest-stage partial-record station until 1984. Monthly discharge only for October, November 1939, published in WSP 1305. October 1997 to current year.

REVISIONS.--WSP 1705: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 439.3 ft above mean sea level.
REMARKS.--Records fair except for periods of estimated record which ar e poor. At times during periods of low flow, city of Bardstown diverts entire flow above station for municipal water supply. Some of this water is returned to stream by sewer outfall 300 ft above gage.

PEAKS ABOVE BASE.--Peak discharges above base of \(9,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{ccccccc} 
& & Discharge & Gage Height \\
Date & Time & \(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\) & \((\mathrm{ft})\) & Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} \\
Jan. 10 & 0400 & \(* 17700\) & 30.90 & Jan. 23 & 1530 & 11300
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 6.0 & 22 & 36 & 157 & 3310 & 1490 & 523 & 875 & 65 & 578 & e4.9 & e1. 6 \\
\hline 2 & 4.9 & 22 & 40 & 280 & 4180 & 1040 & 513 & 633 & 68 & 392 & e4.9 & e1.3 \\
\hline 3 & 24 & 22 & 39 & 2930 & 1860 & 1290 & 519 & 529 & 59 & 290 & e4.8 & e1.2 \\
\hline 4 & 267 & 23 & 26 & 2870 & 1140 & 3020 & 512 & 453 & 51 & 173 & e4.8 & e1.2 \\
\hline 5 & 184 & 23 & 31 & 962 & 875 & 1740 & 463 & 484 & 39 & 122 & e4.8 & e1.2 \\
\hline 6 & 286 & 24 & 50 & 624 & 747 & 1130 & 514 & 1070 & 30 & 101 & e4.7 & e1.2 \\
\hline 7 & 299 & 24 & 173 & 604 & 682 & 1040 & 612 & 1080 & 25 & 68 & e4.7 & e1.1 \\
\hline 8 & 437 & 23 & 924 & 2240 & 637 & 879 & 619 & 815 & 21 & 39 & e4.7 & e1.0 \\
\hline 9 & 355 & 25 & e1200 & 15300 & 587 & 1290 & 526 & 573 & 18 & 25 & e4.6 & e. 95 \\
\hline 10 & 358 & 34 & e900 & 15300 & 545 & 2320 & 463 & 469 & 13 & 16 & e4.6 & e. 90 \\
\hline 11 & 185 & 61 & 576 & 4520 & 510 & 1490 & 382 & 365 & 47 & 12 & e4.5 & e. 90 \\
\hline 12 & 107 & 60 & 415 & 1050 & 1120 & 1030 & 286 & 276 & 58 & 8.6 & e4.4 & e. 88 \\
\hline 13 & 80 & 58 & 533 & e800 & 2400 & 850 & 222 & 301 & 25 & 7.0 & e4.0 & e. 87 \\
\hline 14 & 59 & 51 & 1060 & e1000 & 1510 & 3090 & 191 & 338 & 74 & 5.9 & e3. 8 & e. 85 \\
\hline 15 & 41 & 43 & 1030 & e1400 & 986 & 7500 & 218 & 313 & 41 & 5.0 & e3. 4 & e. 84 \\
\hline 16 & 28 & 36 & 628 & e900 & 817 & 3550 & 261 & 222 & 42 & 4.3 & e3.1 & e. 82 \\
\hline 17 & 22 & 31 & 499 & e700 & 758 & 1310 & 245 & 170 & 50 & 3.9 & e2. 8 & e. 81 \\
\hline 18 & 19 & 29 & 386 & e740 & 708 & 980 & 250 & 140 & 28 & 3.6 & e2.7 & e. 80 \\
\hline 19 & 23 & 26 & 287 & e900 & 674 & 806 & 203 & 123 & 18 & 3.4 & e2.9 & e. 80 \\
\hline 20 & 22 & 34 & 242 & 831 & 625 & 700 & 180 & 104 & 15 & 6.0 & e2.8 & e. 77 \\
\hline 21 & 18 & 38 & 232 & 717 & 576 & 639 & 160 & 84 & 9.9 & 10 & e2.4 & e. 75 \\
\hline 22 & 17 & 40 & 986 & 692 & 531 & 590 & 144 & 63 & 7.4 & 10 & e2.2 & e. 74 \\
\hline 23 & 15 & 43 & 1350 & 9100 & 504 & 821 & 129 & 73 & 5.9 & 20 & e2.2 & e. 71 \\
\hline 24 & 14 & 41 & 842 & 8640 & 500 & 1500 & 115 & 392 & 74 & 22 & e2.3 & e. 70 \\
\hline 25 & 14 & 48 & 595 & 2510 & 481 & 1280 & 99 & 386 & 100 & 11 & e2.5 & e. 69 \\
\hline 26 & 16 & 85 & 490 & 1160 & 451 & 949 & 269 & 447 & 56 & 12 & e2. 5 & e. 68 \\
\hline 27 & 17 & 104 & 402 & 886 & 453 & 748 & 461 & 311 & 41 & 8.1 & e2.4 & e. 66 \\
\hline 28 & 18 & 57 & 325 & 752 & 1150 & 653 & 662 & 186 & 134 & 6.3 & e2.3 & e. 65 \\
\hline 29 & 19 & 45 & 260 & 658 & --- & 596 & 2160 & 123 & 3470 & 5.5 & e2.1 & e. 64 \\
\hline 30 & 21 & 43 & 226 & 593 & --- & 551 & 1830 & 88 & 1590 & e5.0 & e2.0 & e. 60 \\
\hline 31 & 22 & -- & 192 & 626 & --- & 518 & --- & 67 & -- & e5.0 & e1.8 & --- \\
\hline TOTAL & 2997.9 & 1215 & 14975 & 80442 & 29317 & 45390 & 13731 & 11553 & 6275.2 & 1978.6 & 106.6 & 26.81 \\
\hline MEAN & 96.7 & 40.5 & 483 & 2595 & 1047 & 1464 & 458 & 373 & 209 & 63.8 & 3.44 & . 89 \\
\hline MAX & 437 & 104 & 1350 & 15300 & 4180 & 7500 & 2160 & 1080 & 3470 & 578 & 4.9 & 1.6 \\
\hline MIN & 4.9 & 22 & 26 & 157 & 451 & 518 & 99 & 63 & 5.9 & 3.4 & 1.8 & . 60 \\
\hline CFSM & . 14 & . 06 & . 72 & 3.88 & 1.57 & 2.19 & . 68 & . 56 & . 31 & . 10 & . 01 & . 00 \\
\hline IN. & . 17 & . 07 & . 83 & 4.47 & 1.63 & 2.52 & . 76 & . 64 & . 35 & . 11 & . 01 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1940 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrrr} 
MEAN & 105 & 525 & 1107 & 1683 & 1838 & 1999 & 1396 & 864 & 592 & 199 & 160 \\
MAX & 1973 & 2682 & 3631 & 7384 & 5269 & 6277 & 6321 & 3372 & 2565 & 2946 & 1115 & 2206 \\
(WY) & 1963 & 1958 & 1952 & 1950 & 1956 & 1964 & 1972 & 1967 & 1998 & 1958 & 1974 & 1974 \\
MIN & .27 & .70 & 1.40 & 42.7 & 123 & 153 & 145 & 46.1 & 22.2 & 1.36 & 3.44 & .39 \\
(WY) & 1954 & 1964 & 1944 & 1944 & 1954 & 1941 & 1963 & 1941 & 1948 & 1954 & 1999 & 1953
\end{tabular}

SALT RIVER BASIN
03301000 BEECH FORK AT BARDSTOWN, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN HIGHEST DATIY MEAN HIGHEST DAILY MEAN
LOWEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS
e Estimated

FOR 1998 CALENDAR YEAR
\begin{tabular}{ccc}
382829.2 & & \\
1049 & & \\
& & \\
14800 & Apr & 17 \\
1.3 & Sep & 15 \\
1.4 & Sep & 9 \\
& & \\
1.57 & & \\
21.29 & & \\
2470 & & \\
499 & & \\
14 & &
\end{tabular}
\begin{tabular}{c} 
FOR 1999 WATER YEAR \\
208008.11 \\
570 \\
\\
15300 \\
.60 \\
.66 \\
\hline
\end{tabular}

WATER YEARS 1940 - 1999
\[
\begin{array}{rlr}
208008.11 & & \\
570 & & \\
& & \\
15300 & & \text { Jan } \\
.60 & \text { Sep } & 30 \\
.66 & \text { Sep } & 24 \\
17700 & \text { Jan } & 10 \\
30.90 & \text { Jan } & 10 \\
.85 & & \\
11.57 & & \\
1140 & & \\
123 & & \\
2.3 & &
\end{array}
\]
\[
\begin{array}{r}
911 \\
1733 \\
245 \\
32200 \\
.00 \\
.03 \\
33900 \\
43.50 \\
1.36 \\
18.51 \\
2050 \\
200 \\
5.4
\end{array}
\]
\[
\begin{aligned}
& 1950 \\
& 1941
\end{aligned}
\]
\[
\begin{array}{ll} 
& \\
\\
\text { Mar } & 1941 \\
5 & 1964
\end{array}
\]
\[
\begin{array}{lrr}
\text { Mar } & 5 & 1964 \\
\text { Sep } & 29 & 1948 \\
\text { Sep } & 28 & 1948 \\
\text { Mar } & 5 & 1964 \\
\text { Mar } & 5 & 1964
\end{array}
\]
\[
\begin{array}{lll}
\text { Mar } & 5 & 1964
\end{array}
\]


WATER YEAR

03301500 ROLLING FORK NEAR BOSTON, KY
LOCATION.--Lat \(37^{\circ} 46^{\prime} 02^{\prime \prime}\), long \(85^{\circ} 42^{\prime} 1^{\prime \prime \prime}\), Nelson Cty, Hydrologic Unit 05140103 , on downstream side of bridge on U . Hwy 62 and State Hwy \(61,0.4 \mathrm{mi}\) downstream from Beech Fork, 2.3 mi southwest of Boston, and at mile 19.8 .
DRAINAGE AREA. \(--1,299 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--May 1938 to current year.
REVISED RECORDS.--WSP 1705: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 400.42 ft above sea level. See WDR KY-90-1 for history of changes prior to Sept. 30, 1971. Datum of Auxilary gage (Rolling Fork at Lebanon Junction) 385.06 ft above sea level.

REMARKS.--Records good.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in January 1937 reached a stage of 55.2 ft, former site, from floodmarks (backwater from Ohio River).

PEAKS ABOVE BASE.--Peak discharges above base of \(16,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximun*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 11 & 0800 & \(* 18700\) & 37.62
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 43 & 32 & 90 & 325 & 4700 & 2990 & 872 & 3870 & 165 & 1000 & 21 & 9.8 \\
\hline 2 & 36 & 33 & 93 & 328 & 8010 & 2600 & 859 & 1710 & 237 & 574 & 22 & 8.7 \\
\hline 3 & 39 & 33 & 99 & 2710 & 6060 & 2110 & 880 & 1200 & 206 & 418 & 19 & 8.5 \\
\hline 4 & 128 & 33 & 95 & 5050 & 3150 & 4720 & 994 & 957 & 165 & 327 & 16 & 8.2 \\
\hline 5 & 244 & 34 & 90 & 2120 & 2100 & 5520 & 862 & 941 & 139 & 233 & 15 & 8.0 \\
\hline 6 & 147 & 33 & 104 & 1260 & 1600 & 3100 & 1060 & 2320 & 119 & 195 & 14 & 8.0 \\
\hline 7 & 212 & 34 & 165 & 983 & 1370 & 2620 & 1160 & 3010 & 103 & 161 & 13 & 8.1 \\
\hline 8 & 279 & 36 & 845 & 1520 & 1260 & 2270 & 1190 & 2340 & 95 & 122 & 13 & 7.3 \\
\hline 9 & 308 & 36 & 3070 & 10600 & 1110 & 2630 & 1010 & 1330 & 86 & 93 & 15 & 7.4 \\
\hline 10 & 259 & 38 & 2200 & 11000 & 981 & 4410 & 852 & 963 & 77 & 80 & 17 & 8.4 \\
\hline 11 & 201 & 68 & 1120 & 16700 & 875 & 4100 & 745 & 764 & 65 & 70 & 17 & 8.9 \\
\hline 12 & 138 & 72 & 706 & 8950 & 1440 & 2620 & 654 & 644 & 96 & 59 & 14 & 8.8 \\
\hline 13 & 105 & 70 & 623 & 2310 & 4060 & 1930 & 593 & 688 & 93 & 50 & 13 & 10 \\
\hline 14 & 96 & 78 & 1380 & 1830 & 4260 & 3660 & 550 & 600 & 177 & 44 & 14 & 11 \\
\hline 15 & 82 & 74 & 2340 & 2120 & 2520 & 10500 & 555 & 590 & 177 & 38 & 13 & 11 \\
\hline 16 & 67 & 65 & 1230 & 2270 & 1830 & 11700 & 603 & 489 & 109 & 33 & 12 & 11 \\
\hline 17 & 53 & 57 & 803 & 1760 & 1600 & 5940 & 725 & 395 & 100 & 31 & 11 & 12 \\
\hline 18 & 43 & 51 & 610 & 1530 & 1490 & 2750 & 689 & 335 & 102 & 27 & 12 & 13 \\
\hline 19 & 43 & 48 & 487 & 1750 & 1450 & 2020 & 610 & 301 & 92 & 24 & 11 & 14 \\
\hline 20 & 45 & 51 & 418 & 1840 & 1260 & 1580 & 546 & 266 & 81 & 22 & 11 & 13 \\
\hline 21 & 42 & 58 & 377 & 1520 & 1100 & 1320 & 494 & 235 & 70 & 27 & 10 & 15 \\
\hline 22 & 37 & 61 & 843 & 1440 & 962 & 1150 & 457 & 204 & 61 & 42 & 11 & 15 \\
\hline 23 & 33 & 60 & 2120 & 11000 & 861 & 1400 & 417 & 201 & 55 & 44 & 9.3 & 14 \\
\hline 24 & 32 & 63 & 1850 & 15400 & 838 & 2660 & 379 & 561 & 124 & 71 & 9.5 & 14 \\
\hline 25 & 28 & 64 & 1070 & 13300 & 805 & 2620 & 338 & 457 & 479 & 70 & 9.0 & 14 \\
\hline 26 & 27 & 89 & 760 & 6990 & 757 & 2050 & 577 & 493 & 255 & 55 & 9.1 & 14 \\
\hline 27 & 26 & 97 & 599 & 3490 & 712 & 1520 & 1170 & 448 & 262 & 49 & 8.7 & 14 \\
\hline 28 & 28 & 107 & 497 & 2840 & 1620 & 1220 & 1560 & 333 & 363 & 42 & 10 & 14 \\
\hline 29 & 28 & 99 & 436 & 2330 & --- & 1060 & 6950 & 245 & 1890 & 34 & 10 & 17 \\
\hline 30 & 28 & 94 & 395 & 1590 & --- & 946 & 7420 & 194 & 3600 & 30 & 11 & 19 \\
\hline 31 & 30 & --- & 358 & 1230 & -- & 860 & --- & 171 & --- & 25 & 9.8 & --- \\
\hline TOTAL & 2907 & 1768 & 25873 & 138086 & 58781 & 96576 & 35771 & 27255 & 9643 & 4090 & 400.4 & 345.1 \\
\hline MEAN & 93.8 & 58.9 & 835 & 4454 & 2099 & 3115 & 1192 & 879 & 321 & 132 & 12.9 & 11.5 \\
\hline MAX & 308 & 107 & 3070 & 16700 & 8010 & 11700 & 7420 & 3870 & 3600 & 1000 & 22 & 19 \\
\hline MIN & 26 & 32 & 90 & 325 & 712 & 860 & 338 & 171 & 55 & 22 & 8.7 & 7.3 \\
\hline CFSM & . 07 & . 05 & . 64 & 3.43 & 1.62 & 2.40 & . 92 & . 68 & . 25 & . 10 & . 01 & . 01 \\
\hline IN. & . 08 & . 05 & . 74 & 3.95 & 1.68 & 2.77 & 1.02 & . 78 & . 28 & . 12 & . 01 & . 01 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1939 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 304 & 1039 & 2390 & 3053 & 3800 & 3894 & 2792 & 1897 & 1158 & 452 & 414 \\
MAX & 2778 & 5310 & 11050 & 13420 & 16320 & 13540 & 11350 & 11810 & 6865 & 5339 & 2806 & 8265 \\
(WY) & 1976 & 1958 & 1979 & 1950 & 1989 & 1997 & 1972 & 1983 & 1997 & 1958 & 1977 & 1979 \\
MIN & .57 & 4.32 & 5.84 & 77.0 & 288 & 344 & 353 & 150 & 24.4 & 6.78 & 12.9 & 1.89 \\
(WY) & 1954 & 1944 & 1944 & 1981 & 1954 & 1941 & 1986 & 1941 & 1988 & 1954 & 1999 & 1953
\end{tabular}

SALT RIVER BASIN
03301500 ROLLING FORK NEAR BOSTON, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & AR YEAR & \multicolumn{2}{|l|}{FOR 1999 WATER YEAR} & WATER YEARS & \multicolumn{2}{|l|}{\(1939-1999\)} \\
\hline ANNUAL TOTAL & 703777.6 & & 401495.5 & & & & \\
\hline ANNUAL MEAN & 1928 & & 1100 & & 1819 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 4268 & & 1979 \\
\hline LOWEST ANNUAL MEAN & & & & & 473 & & 1941 \\
\hline HIGHEST DAILY MEAN & 17300 & Apr 18 & 16700 & Jan 11 & 68400 & Mar 4 & 1997 \\
\hline LOWEST DAILY MEAN & 8.1 & Sep 20 & 7.3 & Sep 8 & . 40 & Oct 20 & 1939 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 8.3 & Sep 14 & 7.9 & Sep 4 & . 40 & Oct 3 & 1953 \\
\hline INSTANTANEOUS PEAK FLOW & & & 18700 & Jan 11 & 69800 & Mar 3 & 1997 \\
\hline INSTANTANEOUS PEAK STAGE & & & 37.62 & Jan 11 & 53.22 & Mar 3 & 1997 \\
\hline INSTANTANEOUS LOW FLOW & & & & & . 40 & Oct 20 & 1939 \\
\hline ANNUAL RUNOFF (CFSM) & 1.48 & & . 85 & & 1.40 & & \\
\hline ANNUAL RUNOFF (INCHES) & 20.15 & & 11.50 & & 19.02 & & \\
\hline 10 PERCENT EXCEEDS & 5990 & & 2640 & & 4820 & & \\
\hline 50 PERCENT EXCEEDS & 820 & & 245 & & 508 & & \\
\hline 90 PERCENT EXCEEDS & 33 & & 13 & & 26 & & \\
\hline
\end{tabular}


03301575 WILSON CREEK AT HARRISON FORK ROAD NEAR DEATSVILLE, KY
LOCATION. --Lat \(37^{\circ} 52^{\prime} 1^{\prime \prime \prime}\), long \(85^{\circ} 35^{\prime} 5^{\prime \prime \prime}\), Nelson Cty, Hydrologic Unit 05140103, Bernheim State Forest, at Harrison Fork Road ford, 300 ft upstream from Harrison Fork, 2.9 mi southwest of Deatsville, 5.4 mi southeast of clermont, and at mile 13.6 . DRAINAGE AREA. \(--5.7 \mathrm{mi}^{2}\).

PERIOD OF RECORD.--January 1997 to current year.
GAGE.--Water-stage recorder.
COOPERATION.--Field determinations were made in cooperation with Louisville and Jefferson County Metropolitan Sewer District personnel.

REMARKS.--Records good, except for periods of estimated record, which are fair.
PEAKS ABOVE BASE.--Peak discharges above base of \(400 \mathrm{ft}^{3} / \mathrm{s}\) and maximun*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 23 & 0050 & \(* 440\) & 7.23
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & --- & - & --- & - & 23 & 5.6 & 5.4 & 6.6 & e2.2 & e4.1 & . 00 & . 00 \\
\hline 2 & --- & --- & --- & --- & 12 & 4.7 & 4.8 & 5.3 & e27 & e1.2 & . 01 & . 00 \\
\hline 3 & --- & --- & --- & --- & 8.1 & 11 & 5.6 & 4.5 & e9.0 & 1.1 & . 00 & . 00 \\
\hline 4 & --- & --- & --- & --- & 6.6 & 7.7 & 6.4 & 3.7 & e3.0 & . 77 & . 00 & . 00 \\
\hline 5 & --- & --- & --- & --- & 5.4 & 6.0 & 5.3 & 4.4 & e2.2 & . 62 & . 00 & . 00 \\
\hline 6 & --- & --- & --- & --- & 5.1 & 7.0 & 9.9 & 14 & e1.7 & . 54 & . 00 & . 00 \\
\hline 7 & --- & --- & --- & 2.0 & 6.7 & 5.6 & 7.5 & 6.4 & e1.3 & . 46 & . 00 & . 00 \\
\hline 8 & --- & --- & --- & 24 & 6.0 & 5.0 & 6.6 & 4.6 & e1.1 & . 35 & . 05 & . 00 \\
\hline 9 & --- & --- & --- & 25 & 5.2 & 15 & 6.3 & 3.9 & e. 90 & . 30 & . 03 & . 00 \\
\hline 10 & --- & --- & --- & 8.1 & 4.6 & 9.6 & 5.3 & 3.5 & e. 80 & . 30 & . 01 & . 00 \\
\hline 11 & --- & --- & --- & 5.5 & 4.4 & 7.1 & 4.9 & 3.3 & e. 72 & . 32 & . 00 & . 00 \\
\hline 12 & --- & --- & --- & 5.0 & 9.8 & 5.9 & 4.3 & 2.9 & e. 66 & . 26 & . 00 & . 00 \\
\hline 13 & --- & --- & --- & 7.0 & 8.3 & 5.3 & 4.1 & 4.5 & e1.1 & . 19 & . 00 & . 00 \\
\hline 14 & --- & --- & --- & 15 & 6.3 & 22 & 4.1 & 3.1 & e3.4 & . 17 & . 00 & . 00 \\
\hline 15 & --- & --- & --- & 7.0 & 5.7 & 13 & 5.7 & 2.6 & e2.2 & . 14 & . 00 & . 00 \\
\hline 16 & --- & --- & --- & 5.2 & 5.3 & 8.9 & 5.7 & 2.3 & e1.2 & . 11 & . 00 & . 00 \\
\hline 17 & --- & --- & --- & 4.3 & 6.9 & 7.2 & 4.8 & 2.1 & e. 98 & . 09 & . 00 & . 00 \\
\hline 18 & --- & --- & --- & 4.4 & 6.0 & 6.4 & 4.1 & 2.1 & e. 88 & . 07 & . 00 & . 00 \\
\hline 19 & --- & --- & --- & 3.7 & 5.1 & 6.1 & 3.8 & 2.0 & e. 80 & . 05 & . 00 & . 00 \\
\hline 20 & --- & --- & --- & 3.5 & 4.4 & 5.7 & 3.7 & 1.7 & e. 74 & . 07 & . 00 & . 00 \\
\hline 21 & --- & --- & --- & 5.1 & 4.0 & 5.3 & 3.6 & e1.5 & e. 70 & 1.2 & . 00 & . 00 \\
\hline 22 & --- & --- & --- & 9.6 & 3.6 & 4.8 & 3.3 & e1.3 & e. 66 & . 41 & . 00 & . 00 \\
\hline 23 & --- & --- & --- & 64 & 3.8 & 12 & 3.2 & e1.8 & e. 64 & . 27 & . 00 & . 00 \\
\hline 24 & --- & --- & --- & 13 & 4.0 & 11 & 2.9 & e4.9 & e5.6 & . 19 & . 00 & . 00 \\
\hline 25 & --- & --- & --- & 8.7 & 3.8 & 7.6 & 2.8 & e2.0 & e3.7 & . 13 & . 00 & . 00 \\
\hline 26 & --- & --- & --- & 6.9 & 3.4 & 6.3 & 6.4 & e1.4 & e1. 8 & . 09 & . 00 & . 00 \\
\hline 27 & --- & --- & --- & 6.0 & 3.7 & 5.6 & 6.6 & e1.1 & e7.4 & . 05 & . 00 & . 02 \\
\hline 28 & --- & --- & --- & 5.2 & 7.7 & 5.2 & 24 & e1.0 & e74 & . 04 & . 00 & . 00 \\
\hline 29 & --- & --- & --- & 4.3 & --- & 4.7 & 25 & e. 96 & e83 & . 02 & . 00 & . 01 \\
\hline 30 & --- & --- & --- & 3.9 & -- & 4.3 & 9.1 & e. 90 & e18 & . 01 & . 00 & . 00 \\
\hline 31 & --- & --- & --- & 8.8 & --- & 4.5 & --- & e. 82 & --- & . 00 & . 00 & --- \\
\hline MEAN & --- & --- & --- & --- & 6.39 & 7.62 & 6.51 & 3.26 & 8.58 & . 44 & . 003 & . 001 \\
\hline MAX & --- & --- & --- & --- & 23 & 22 & 25 & 14 & 83 & 4.1 & . 05 & . 02 \\
\hline MIN & --- & --- & --- & --- & 3.4 & 4.3 & 2.8 & . 82 & . 64 & . 00 & . 00 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999 - 1999, BY WATER YEAR (WY)
\begin{tabular}{clllllllllllll} 
MEAN & --- & --- & --- & --- & 6.39 & 7.62 & 6.51 & 3.26 & 8.58 & .44 & .003 & .001 \\
MAX & --- & --- & --- & --- & 6.39 & 7.62 & 6.51 & 3.26 & 8.58 & .44 & .003 & .001 \\
(WY) & --- & --- & --- & --- & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 \\
MIN & --- & --- & --- & -- & 6.39 & 7.62 & 6.51 & 3.26 & 8.58 & .44 & .003 & .001 \\
(WY) & --- & --- & --- & -- & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999
\end{tabular}

\footnotetext{
e Estimated
}


LOCATION.--Lat \(37^{\circ} 53^{\prime} 00^{\prime \prime}\), long \(85^{\circ} 54^{\prime} 52^{\prime \prime}\), Hardin County, Hydrologic Unit 05140104 , on wooden bridge on Poorman Road, 2.2 miles southeast of Fort Knox and at mile 8.0 . This is on a military reservation, so movemnet of equipment maybe encountered. If the raod is locked or icy contact the Range Officer at 624-2125.
DRAINAGE AREA. \(--38.2 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--May 1998 to September 1999.
GAGE.--Water-stage recorder. Elevation of gage is 440 ft above mean sea level (from topographic map).
REMARKS.--Records fair except for periods of estimated record which ar e poor.
1998: Records fair except for periods of estimated record which is poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & -- & - & -- & - & -- & --- & --- & 312 & 166 & 36 & 9.6 & 6.1 \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & 200 & 74 & 26 & 8.8 & 6.1 \\
\hline 3 & --- & --- & -- & --- & --- & --- & --- & 134 & 41 & 22 & 8.3 & 6.2 \\
\hline 4 & --- & --- & -- & -- & --- & --- & --- & 123 & 333 & 21 & 8.4 & 6.5 \\
\hline 5 & --- & -- & --- & - & -- & -- & --- & 94 & 337 & 21 & 8.4 & 5.9 \\
\hline 6 & --- & --- & --- & --- & --- & --- & --- & 78 & 179 & 18 & 11 & 5.4 \\
\hline 7 & --- & --- & - & - & -- & -- & --- & 82 & 100 & 23 & 74 & 5.7 \\
\hline 8 & --- & --- & --- & --- & --- & --- & -- & 82 & 72 & 31 & e92 & 5.9 \\
\hline 9 & --- & --- & --- & -- & --- & --- & --- & 69 & 177 & 19 & e61 & 5.3 \\
\hline 10 & - & --- & --- & --- & - & - & --- & 58 & 260 & 16 & 40 & 6.3 \\
\hline 11 & -- & --- & --- & --- & - & -- & -- & 49 & 161 & 15 & 27 & 7.1 \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & 43 & 132 & 14 & 18 & 5.5 \\
\hline 13 & --- & --- & -- & --- & -- & - & --- & 36 & 757 & 13 & 13 & 5.7 \\
\hline 14 & -- & --- & -- & -- & --- & -- & --- & 31 & 343 & 23 & 12 & 5.6 \\
\hline 15 & --- & --- & -- & --- & -- & -- & --- & 27 & 677 & 106 & 12 & 5.5 \\
\hline 16 & --- & --- & --- & --- & -- & - & -- & 25 & 221 & 87 & 9.5 & 5.4 \\
\hline 17 & --- & -- & -- & - & - & - & --- & 22 & 118 & 51 & 9.2 & 5.8 \\
\hline 18 & -- & --- & -- & -- & --- & -- & --- & 20 & 83 & 29 & 8.3 & 6.4 \\
\hline 19 & - & --- & --- & --- & --- & --- & --- & 19 & 73 & 22 & 8.1 & 6.8 \\
\hline 20 & -- & -- & - & --- & -- & --- & --- & 20 & 57 & 18 & 6.8 & 6.7 \\
\hline 21 & --- & --- & --- & --- & --- & --- & - & 25 & 634 & 16 & 7.3 & 86 \\
\hline 22 & -- & -- & --- & --- & --- & -- & --- & 41 & 240 & 14 & 7.3 & 19 \\
\hline 23 & --- & --- & --- & --- & - & --- & --- & 56 & 283 & 13 & 7.9 & 9.5 \\
\hline 24 & --- & --- & - & --- & -- & -- & -- & 209 & 165 & 13 & 8.0 & 7.1 \\
\hline 25 & --- & -- & -- & - & --- & --- & --- & 85 & 96 & 12 & 6.5 & 6.6 \\
\hline 26 & --- & - & --- & --- & -- & -- & --- & 53 & 67 & 12 & 6.7 & 6.4 \\
\hline 27 & --- & --- & --- & --- & --- & --- & - & 86 & 52 & 12 & 6.4 & 6.0 \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & 55 & 41 & 11 & 6.2 & 5.8 \\
\hline 29 & --- & --- & --- & --- & --- & --- & --- & 39 & 31 & 10 & 7.2 & 5.8 \\
\hline 30 & --- & -- & -- & --- & - & -- & -- & 30 & 62 & 11 & 7.4 & 5.8 \\
\hline 31 & --- & -- & --- & --- & --- & --- & - & 66 & - & 11 & 6.6 & - \\
\hline TOTAL & --- & --- & --- & --- & --- & --- & -- & 2269 & 6032 & 746 & 522.9 & 277.9 \\
\hline MEAN & --- & --- & --- & -- & --- & --- & --- & 73.2 & 201 & 24.1 & 16.9 & 9.26 \\
\hline MAX & - & --- & -- & --- & --- & --- & --- & 312 & 757 & 106 & 92 & 86 \\
\hline MIN & --- & --- & --- & --- & --- & - & - & 19 & 31 & 10 & 6.2 & 5.3 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1998 - 1998, BY WATER YEAR (WY)
\begin{tabular}{lllllllllrrrr} 
MEAN & --- & --- & --- & --- & --- & --- & --- & 73.2 & 201 & 24.1 & 16.9 & 9.26 \\
MAX & --- & --- & --- & --- & --- & --- & --- & 73.2 & 201 & 24.1 & 16.9 & 9.26 \\
(WY) & --- & --- & --- & --- & --- & --- & --- & 1998 & 1998 & 1998 & 1998 & 1998 \\
MIN & --- & --- & --- & --- & --- & --- & --- & 73.2 & 201 & 24.1 & 16.9 & 9.26 \\
(WY) & --- & --- & --- & --- & --- & --- & --- & 1998 & 1998 & 1998 & 1998
\end{tabular}
e Estimated

SALT RIVER BASIN
03301700 MILL CREEK NEAR FOR KNOX, KY--Continued


SALT RIVER BASIN
03301700 MILL CREEK NEAR FOR KNOX, KY--Continued
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & ОСт & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 5.5 & 8.2 & 7.8 & e30 & 380 & 61 & 36 & 87 & 19 & 11 & 3.3 & 2.7 \\
\hline 2 & 5.9 & 7.0 & 7.2 & 79 & 169 & 47 & 29 & 61 & 23 & 8.8 & 3.4 & 2.9 \\
\hline 3 & 25 & 5.4 & 6.6 & 161 & 104 & 73 & 37 & 45 & 17 & 8.0 & 3.1 & 2.6 \\
\hline 4 & 31 & 8.4 & 6.7 & e70 & 76 & 67 & 57 & 36 & 12 & 6.4 & 3.1 & 2.7 \\
\hline 5 & 14 & 8.4 & 10 & e52 & 53 & 54 & 44 & 43 & 11 & 5.9 & 2.9 & 2.9 \\
\hline 6 & 9.4 & 7.7 & 11 & e38 & 44 & 88 & 240 & 556 & 9.5 & 5.4 & 3.2 & 2.7 \\
\hline 7 & 83 & 8.9 & 25 & e21 & 52 & 70 & 132 & 186 & 8.5 & 5.0 & 3.2 & 3.0 \\
\hline 8 & 50 & 9.9 & 69 & e200 & 45 & 58 & 92 & 102 & 7.8 & 4.3 & 4.1 & 2.6 \\
\hline 9 & 17 & 7.2 & 43 & 466 & 37 & 244 & 72 & 70 & 7.5 & 4.4 & 6.5 & 3.6 \\
\hline 10 & 13 & 19 & 22 & 127 & 31 & 155 & 51 & 52 & 6.8 & 4.5 & 4.9 & 2.6 \\
\hline 11 & 10 & 26 & 16 & 65 & 30 & 102 & 41 & 40 & 7.1 & 4.3 & 4.0 & 2.4 \\
\hline 12 & 8.0 & 12 & 13 & 54 & 70 & 77 & 31 & 34 & 5.7 & 4.0 & 3.5 & 2.9 \\
\hline 13 & 7.3 & 9.2 & 49 & 64 & 70 & 61 & 27 & 119 & 5.8 & 4.1 & 3.3 & 3.1 \\
\hline 14 & 6.8 & 8.7 & 40 & 152 & 53 & 287 & 25 & 54 & 8.4 & 4.0 & 3.0 & 3.0 \\
\hline 15 & 7.4 & 8.1 & 22 & 76 & 46 & 212 & 36 & 37 & 7.2 & 3.9 & 3.1 & 2.9 \\
\hline 16 & 7.0 & 7.7 & 18 & 53 & 41 & 118 & 32 & 30 & 5.9 & 3.8 & 3.1 & 2.8 \\
\hline 17 & 6.0 & 6.8 & 15 & 39 & 48 & 89 & 24 & 25 & 5.1 & 3.4 & 2.9 & 2.8 \\
\hline 18 & 6.6 & 6.4 & 13 & 53 & 41 & 66 & 22 & 31 & 4.8 & 3.9 & 3.2 & 2.7 \\
\hline 19 & 11 & 7.1 & 12 & 38 & 35 & 50 & 20 & 30 & 4.6 & 3.6 & 2.9 & 2.9 \\
\hline 20 & 9.8 & 12 & 12 & 32 & 29 & 42 & 20 & 21 & 4.7 & 3.7 & 2.9 & 3.2 \\
\hline 21 & 7.1 & 17 & 23 & 33 & 25 & 38 & 18 & 17 & 4.4 & 4.7 & 2.9 & e3.8 \\
\hline 22 & 7.4 & 11 & 169 & 137 & 22 & 31 & 17 & 16 & 4.3 & 4.0 & 2.8 & 3.2 \\
\hline 23 & 7.1 & 9.0 & 56 & 897 & 21 & 133 & 15 & 70 & 4.1 & 3.5 & 3.0 & 3.0 \\
\hline 24 & 7.1 & 8.5 & 34 & 250 & 23 & 125 & 14 & 135 & 9.8 & 3.6 & 2.7 & 2.8 \\
\hline 25 & 7.4 & 8.4 & 27 & 119 & 22 & 80 & 12 & 44 & 12 & 3.4 & 2.8 & 2.8 \\
\hline 26 & 7.5 & 23 & 22 & 77 & 19 & 60 & 156 & 27 & 7.2 & 3.4 & 3.1 & 2.8 \\
\hline 27 & 7.0 & 13 & 17 & 59 & 23 & 48 & 123 & 20 & 9.4 & 3.3 & 2.9 & 3.0 \\
\hline 28 & 6.8 & 10 & 15 & 46 & 97 & 40 & 270 & 16 & 39 & 3.4 & 3.4 & 3.0 \\
\hline 29 & 7.4 & 8.3 & 14 & 34 & --- & 34 & 388 & 14 & 48 & 3.5 & 2.8 & 3.7 \\
\hline 30 & 8.5 & 8.7 & 13 & 28 & --- & 29 & 144 & 14 & 14 & 3.3 & 2.8 & 4.6 \\
\hline 31 & 8.1 & --- & 11 & 135 & --- & 28 & --- & 13 & - & 2.9 & 2.9 & --- \\
\hline TOTAL & 415.1 & 311.0 & 819.3 & 3685 & 1706 & 2667 & 2225 & 2045 & 333.6 & 141.4 & 101.7 & 89.7 \\
\hline MEAN & 13.4 & 10.4 & 26.4 & 119 & 60.9 & 86.0 & 74.2 & 66.0 & 11.1 & 4.56 & 3.28 & 2.99 \\
\hline MAX & 83 & 26 & 169 & 897 & 380 & 287 & 388 & 556 & 48 & 11 & 6.5 & 4.6 \\
\hline MIN & 5.5 & 5.4 & 6.6 & 21 & 19 & 28 & 12 & 13 & 4.1 & 2.9 & 2.7 & 2.4 \\
\hline \multicolumn{13}{|l|}{Statistics Of Monthly mean data for water years 1999 - 1999, BY WAter year (wy)} \\
\hline MEAN & 13.4 & 10.4 & 26.4 & 119 & 60.9 & 86.0 & 74.2 & 66.0 & 11.1 & 4.56 & 3.28 & 2.99 \\
\hline MAX & 13.4 & 10.4 & 26.4 & 119 & 60.9 & 86.0 & 74.2 & 66.0 & 11.1 & 4.56 & 3.28 & 2.99 \\
\hline (WY) & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 \\
\hline MIN & 13.4 & 10.4 & 26.4 & 119 & 60.9 & 86.0 & 74.2 & 66.0 & 11.1 & 4.56 & 3.28 & 2.99 \\
\hline (WY) & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 \\
\hline
\end{tabular}

SALT RIVER BASIN
03301700 MILL CREEK NEAR FOR KNOX, KY--Continued
\begin{tabular}{lcc} 
SUMMARY STATISTICS & FOR 1999 WATER YEAR \\
ANNUAL TOTAL & & \\
ANNUAL MEAN & 14539.8 & \\
HIGEST DAILY MEAN & 39.8 & \\
LOWEST DAILY MEAN & 897 & Jan 23 \\
ANNUAL SEVEN-DAY MINIMUM & 2.4 & Sep \\
INSTANTANEOUS PEAK FLOW & 2.8 & Aug 29 \\
INSANTANEOUS PEAK STAGE & 2160 & Jan 23 \\
IO PERCENT EXCEEDS & 7.33 & Jan 23 \\
50 PERCENT EXCEEDS & 90 & \\
90 PERCENT EXCEEDS & 14 & \\
\end{tabular}
e Estimated


03301900 FERN CREEK AT OLD BARDSTOWN ROAD AT LOUISVILLE, KY
LOCATION.--Lat \(38^{\circ} 10^{\prime} 32^{\prime \prime}\), long \(85^{\circ} 36^{\prime} 5^{\prime \prime}\), Jefferson County, Hydrologic Unit 05140102, on right upstream wingwall, at bridge on Old Bardstown Road, and at mile 3.2.
DRAINAGE AREA. \(--3.5 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--February 1991 to October 1995. September 1997 to current year.
GAGE.--Water-stage recorder. Datum of gage 550.74 ft .
COOPERATION.--Field determinations were made in cooperations with Louisville and Jefferson County Metropolitan Sewer District personnel.

REMARKS.--Records good except for periods of estimated discharge, which are fair.
PEAKS ABOVE BASE.--Peak discharges above base of \(200 \mathrm{ft}^{3} / \mathrm{s}\) and maximun*.
\begin{tabular}{lccccccc}
\multicolumn{1}{c}{ Date } & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 8 & 2100 & 220 & 2.51 & Apr. 28 & 1750 & 568 & 3.44 \\
Jun. 28 & 1650 & \(* 933\) & 4.16 & & &
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & e1.1 & 2.3 & 1.3 & 1.7 & 21 & 7.5 & 4.4 & 8.5 & 1.6 & 6.1 & . 95 & . 64 \\
\hline 2 & e1. 5 & 2.7 & 1.1 & 16 & 14 & 5.9 & 3.9 & 6.5 & 14 & 4.7 & . 81 & . 67 \\
\hline 3 & e4.4 & 2.6 & 1.1 & 12 & 10 & 10 & 4.8 & 5.2 & 3.2 & 3.6 & . 75 & . 69 \\
\hline 4 & e1.8 & 2.3 & 1.1 & 5.8 & 7.9 & 6.9 & 4.2 & 4.2 & 2.2 & 2.8 & . 77 & . 80 \\
\hline 5 & e1.2 & 2.1 & 1.3 & 3.9 & 6.2 & 5.6 & 3.7 & 4.5 & 1.8 & 2.4 & . 71 & . 80 \\
\hline 6 & e1.0 & 2.1 & 1.2 & 3.1 & 5.7 & 18 & 8.4 & 14 & 1.7 & 2.1 & . 70 & . 81 \\
\hline 7 & e6.5 & 2.8 & 4.3 & 2.5 & 13 & 9.8 & 5.1 & 6.5 & 1.6 & 1.8 & . 75 & . 80 \\
\hline 8 & e3.2 & 3.1 & 6.8 & 43 & 8.1 & 7.8 & 4.7 & 4.7 & 1.4 & 1.6 & . 92 & . 68 \\
\hline 9 & 1.7 & 3.7 & 3.1 & 21 & 6.5 & 22 & 4.5 & 3.7 & 1.4 & 1.5 & . 84 & . 67 \\
\hline 10 & 1.5 & 7.0 & 2.0 & 11 & 5.4 & 15 & 4.0 & 3.3 & 1.3 & 1.5 & . 76 & . 77 \\
\hline 11 & 1.4 & 2.4 & 1.7 & 7.9 & 4.9 & 12 & 3.9 & 2.6 & 1.5 & 1.4 & . 71 & . 81 \\
\hline 12 & 1.2 & 1.4 & 1.6 & 8.0 & 8.5 & 11 & 3.5 & 2.4 & 1.2 & 1.2 & . 70 & . 79 \\
\hline 13 & 1.1 & 1.2 & 5.2 & 11 & 6.3 & 9.7 & 3.5 & 4.2 & 1.2 & 1.2 & . 71 & . 76 \\
\hline 14 & 1.2 & 1.3 & 3.2 & 12 & 5.4 & 19 & 3.6 & 2.5 & 5.7 & 1.1 & . 74 & . 69 \\
\hline 15 & 1.2 & 1.3 & 2.5 & 8.3 & 5.0 & 15 & 5.0 & 2.3 & 2.1 & 1.1 & . 77 & . 66 \\
\hline 16 & 1.0 & 1.2 & 2.3 & 6.9 & 4.7 & 12 & 4.2 & 2.1 & 1.6 & 1.0 & . 72 & . 73 \\
\hline 17 & 1.2 & 1.2 & 2.2 & 5.9 & 4.6 & 10 & 3.9 & 1.9 & 1.4 & 1.0 & . 66 & . 75 \\
\hline 18 & 2.0 & 1.1 & 2.0 & 6.0 & 4.0 & 8.1 & 3.7 & 3.3 & 1.3 & 1.1 & . 64 & . 68 \\
\hline 19 & 1.6 & 1.4 & 2.1 & 4.5 & 3.7 & 6.8 & 3.6 & 2.2 & 1.2 & . 95 & 1.4 & . 72 \\
\hline 20 & 1.4 & 6.3 & 1.9 & 4.9 & 3.5 & 6.2 & 3.5 & 1.9 & 1.2 & . 97 & . 76 & . 92 \\
\hline 21 & 1.5 & 2.5 & 13 & 13 & 3.2 & 5.7 & 3.5 & 1.7 & 1.1 & . 89 & . 74 & . 89 \\
\hline 22 & 1.7 & 1.6 & 18 & 21 & 2.8 & 4.8 & 3.1 & 1.8 & 1.1 & . 84 & . 73 & . 78 \\
\hline 23 & 1.6 & 1.4 & 5.8 & 46 & 2.9 & 15 & 2.9 & 2.3 & 1.0 & . 80 & . 69 & . 82 \\
\hline 24 & 1.7 & 1.3 & 3.9 & 17 & 3.0 & 11 & 2.7 & 2.0 & 12 & . 79 & . 69 & . 85 \\
\hline 25 & 1.7 & 4.1 & 2.9 & 12 & 2.8 & 8.3 & 2.6 & 1.7 & 3.4 & . 93 & . 69 & . 83 \\
\hline 26 & 1.8 & 3.6 & 2.6 & 9.7 & 2.5 & 6.7 & 8.4 & 1.5 & 2.3 & . 88 & . 67 & . 86 \\
\hline 27 & 1.8 & 2.0 & 2.3 & 8.3 & 8.7 & 6.0 & 5.2 & 1.4 & 3.4 & . 91 & . 68 & . 87 \\
\hline 28 & 1.9 & 1.7 & 2.1 & 6.0 & 12 & 5.4 & 51 & 1.4 & 96 & 1.6 & . 71 & . 86 \\
\hline 29 & 2.1 & 1.6 & 2.1 & 4.7 & --- & 4.7 & 21 & 1.3 & 16 & . 97 & . 70 & 1.3 \\
\hline 30 & 2.1 & 1.4 & 2.0 & 4.3 & --- & 4.2 & 12 & 1.2 & 8.7 & . 84 & . 64 & . 97 \\
\hline 31 & 2.3 & --- & 1.9 & 14 & --- & 4.4 & - & 1.5 & --- & . 84 & . 65 & --- \\
\hline TOTAL & 57.4 & 70.7 & 104.6 & 351.4 & 186.3 & 294.5 & 198.5 & 104.3 & 193.6 & 49.41 & 23.36 & 23.87 \\
\hline MEAN & 1.85 & 2.36 & 3.37 & 11.3 & 6.65 & 9.50 & 6.62 & 3.36 & 6.45 & 1.59 & . 75 & . 80 \\
\hline MAX & 6.5 & 7.0 & 18 & 46 & 21 & 22 & 51 & 14 & 96 & 6.1 & 1.4 & 1.3 \\
\hline MIN & 1.0 & 1.1 & 1.1 & 1.7 & 2.5 & 4.2 & 2.6 & 1.2 & 1.0 & . 79 & . 64 & . 64 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1988 - 1999, BY WATER YEAR (WY)
\begin{tabular}{llllllllllllll} 
MEAN & 5.50 & 7.18 & 7.53 & 12.2 & 16.0 & 10.2 & 12.2 & 8.80 & 8.99 & 4.47 & 2.32 & 1.91 \\
MAX & 21.0 & 20.7 & 21.5 & 22.2 & 27.7 & 20.2 & 21.6 & 21.4 & 20.2 & 7.58 & 3.17 & 4.20 \\
(WY) & 1995 & 1995 & 1995 & 1995 & 1989 & 1995 & 1995 & 1990 & 1995 & 1989 & 1990 & 1990 \\
MIN & 1.18 & 2.36 & 2.05 & 8.44 & 6.65 & 5.34 & 6.62 & 2.91 & 1.30 & 1.59 & .75 & .80 \\
(WY) & 1998 & 1999 & 1990 & 1990 & 1999 & 1990 & 1999 & 1988 & 1988 & 1999 & 1999 & 1999
\end{tabular}

SALT RIVER BASIN
03301900 FERN CREEK AT OLD BARDSTOWN ROAD AT LOUISVILLE, KY--Continued

SUMMARY STATISTICS

ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
HIGHESI DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS
e Estimated


LOCATION.--Lat \(38^{\circ} 09^{\prime} 01^{\prime \prime}\), long \(85^{\circ} 41^{\prime} 37\) ", Jefferson County, Hydrologic Unit 05140102 , at bridge on Preston Highway, 0.1 mi above Spring Ditch, and at mile 5.1.
DRAINAGE AREA. \(--11.1 \mathrm{mi}^{2}\).
WATER-DISCHARGE RECORDS
PERIOD OF RECORD.--July 1992 to Oct. 1995, Sept. 1997 to present.
GAGE.--Water-stage recorder. Datum of gage 447.32 ft above sea level.
COOPERATION.--Field determinations were made in cooperations which Louisville and Jefferson County Metropolitan Sewer District personnel.

REMARKS.--Records rated poor due to the orifice being covered by sediment a few times during the year, but the majority of the time the orifice cap was in a different pool from the wire-weight gage and RM5. The control shifts constantly and the June 28 high flow event deposited over 4 feet of debris on top of the control. The orifice line was relocated in March 1998 and in June 1998.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 1.2 & 2.2 & 2.4 & 6.1 & 27 & 13 & 11 & 17 & 15 & 39 & . 66 & . 36 \\
\hline 2 & . 99 & 2.2 & 2.1 & 15 & 28 & 11 & 9.6 & 15 & 77 & 33 & . 95 & . 45 \\
\hline 3 & 16 & 2.4 & 2.2 & 10 & 19 & 8.7 & 11 & 15 & 20 & 23 & . 47 & . 45 \\
\hline 4 & 5.4 & 2.4 & 2.1 & 8.3 & 20 & 11 & 11 & 15 & 15 & 14 & . 35 & . 49 \\
\hline 5 & 3.4 & 2.4 & 2.4 & 9.1 & 11 & 11 & 8.0 & 15 & 13 & 9.2 & . 33 & . 41 \\
\hline 6 & 2.7 & 2.2 & 2.6 & 12 & 14 & 12 & 19 & 11 & 11 & 7.5 & . 30 & . 43 \\
\hline 7 & 47 & 2.4 & 12 & 7.1 & 30 & 12 & 8.3 & 14 & 10 & 5.1 & . 29 & . 40 \\
\hline 8 & 14 & 2.4 & 18 & 18 & 16 & 9.7 & 9.6 & 13 & 7.0 & 4.2 & 1.2 & . 61 \\
\hline 9 & 5.1 & 2.8 & 7.4 & 13 & 13 & 15 & 9.8 & 15 & 7.0 & 3.3 & 1.0 & . 34 \\
\hline 10 & 3.8 & 18 & 4.9 & 13 & 9.8 & 11 & 7.5 & 13 & 6.4 & 2.8 & . 62 & . 21 \\
\hline 11 & 3.3 & 7.3 & 3.9 & 17 & 12 & 14 & 8.8 & 12 & 7.3 & 2.5 & . 42 & . 30 \\
\hline 12 & 3.1 & 3.0 & 3.5 & 24 & 12 & 12 & 6.6 & 12 & 5.6 & 1.9 & . 32 & . 32 \\
\hline 13 & 2.7 & 2.3 & 13 & 27 & 8.8 & 11 & 6.4 & 5.3 & 4.8 & . 64 & . 27 & . 35 \\
\hline 14 & 2.5 & 2.2 & 7.3 & 12 & 8.7 & 8.0 & 6.7 & 5.4 & 17 & . 96 & . 21 & . 60 \\
\hline 15 & 2.5 & 2.2 & 5.3 & 15 & 10 & 17 & 9.1 & 8.9 & 5.8 & 1.3 & . 24 & . 47 \\
\hline 16 & 2.4 & 2.1 & 4.6 & 20 & 11 & 18 & 6.5 & 8.6 & 4.3 & 1.1 & . 18 & . 55 \\
\hline 17 & 2.1 & 1.9 & 4.8 & 15 & 11 & 18 & 5.8 & 4.8 & 3.4 & 2.6 & . 23 & . 37 \\
\hline 18 & 2.6 & 1.7 & 3.9 & 19 & 8.6 & 14 & 7.1 & 5.3 & 2.9 & 1.1 & . 20 & . 38 \\
\hline 19 & 4.5 & 1.8 & 3.8 & 13 & 8.5 & 9.6 & 7.7 & . 35 & 2.5 & . 46 & 2.4 & . 37 \\
\hline 20 & 3.0 & 15 & 3.8 & 14 & 6.9 & 9.5 & 7.9 & . 50 & 2.2 & . 76 & 3.0 & . 46 \\
\hline 21 & 2.5 & 4.8 & 17 & 36 & 6.5 & 10 & 12 & . 84 & 1.8 & 1.1 & 1.3 & . 91 \\
\hline 22 & 2.6 & 3.3 & 11 & 59 & 6.0 & 7.7 & 11 & . 87 & 1.3 & 1.0 & . 92 & . 90 \\
\hline 23 & 2.4 & 2.9 & 9.2 & 72 & 7.1 & 10 & 12 & 1.4 & 1.1 & . 98 & . 89 & . 68 \\
\hline 24 & 2.3 & 2.5 & 10 & 16 & 7.6 & 16 & 9.9 & 1.6 & 19 & . 76 & . 74 & . 70 \\
\hline 25 & 2.5 & 4.0 & 7.0 & 16 & 6.8 & 9.9 & 10 & 2.4 & 3.0 & . 73 & . 68 & . 73 \\
\hline 26 & 2.5 & 9.1 & 6.9 & 15 & 5.6 & 7.7 & 14 & 11 & 1.7 & . 65 & . 83 & . 61 \\
\hline 27 & 2.3 & 3.9 & 6.3 & 19 & 12 & 7.5 & 17 & 20 & 2.9 & . 67 & . 72 & . 74 \\
\hline 28 & 2.2 & 3.1 & 5.7 & 15 & 15 & 7.9 & 16 & 19 & 410 & 1.1 & . 62 & 1.0 \\
\hline 29 & 2.4 & 2.9 & 5.4 & 9.9 & --- & 8.8 & 21 & 17 & 179 & 2.8 & . 56 & 1.5 \\
\hline 30 & 2.4 & 2.7 & 4.9 & 8.3 & --- & 6.7 & 18 & 15 & 50 & . 97 & . 46 & 2.2 \\
\hline 31 & 2.2 & --- & 4.8 & 13 & --- & 7.6 & --- & 14 & --- & . 66 & . 36 & -- \\
\hline TOTAL & 154.59 & 118.1 & 198.2 & 566.8 & 351.9 & 345.3 & 318.3 & 309.26 & 907.0 & 165.84 & 21.72 & 18.29 \\
\hline MEAN & 4.99 & 3.94 & 6.39 & 18.3 & 12.6 & 11.1 & 10.6 & 9.98 & 30.2 & 5.35 & . 70 & . 61 \\
\hline MAX & 47 & 18 & 18 & 72 & 30 & 18 & 21 & 20 & 410 & 39 & 3.0 & 2.2 \\
\hline MIN & . 99 & 1.7 & 2.1 & 6.1 & 5.6 & 6.7 & 5.8 & . 35 & 1.1 & . 46 & . 18 & . 21 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 1999, BY WATER YEAR (WY)
\begin{tabular}{llllllllllllll} 
MEAN & 4.06 & 5.27 & 13.9 & 24.9 & 22.0 & 17.7 & 18.6 & 29.8 & 20.8 & 10.4 & 8.89 & 4.43 \\
MAX & 4.99 & 6.79 & 21.3 & 28.7 & 31.2 & 26.4 & 35.6 & 58.8 & 30.2 & 18.9 & 17.3 & 8.90 \\
(WY) & 1999 & 1995 & 1994 & 1998 & 1998 & 1998 & 1998 & 1995 & 1999 & 1998 & 1995 & 1995 \\
MIN & 2.47 & 3.94 & 6.39 & 18.3 & 12.6 & 11.1 & 9.59 & 9.98 & 6.07 & 5.35 & .70 & .61 \\
(WY) & 1998 & 1999 & 1999 & 1999 & 1999 & 1999 & 1995 & 1999 & 1995 & 1999 & 1999 & 1999
\end{tabular}

SALT RIVER BASIN
03301940 NORTHERN DITCH AT OKOLONA, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN HIGHEST DATLY MEAN HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

FOR 1998 CALENDAR YEAR
\begin{tabular}{ccc}
6510.39 & & \\
17.8 & & \\
& & \\
229 & Apr & 16 \\
.99 & Oct & 2 \\
2.0 & Nov & 13 \\
& & \\
38 & & \\
9.6 & & \\
2.5 & &
\end{tabular}

FOR 1999 WATER YEAR
WATER YEARS 1992 - 1999
\begin{tabular}{rrr}
3475.30 & & \\
9.52 & & \\
& & \\
410 & Jun 28 \\
.18 & Aug 16 \\
.24 & Aug 12 \\
1590 & Jun 28 \\
13.19 & Jun 28 \\
17 & & \\
5.6 & & \\
.56 & &
\end{tabular}
\begin{tabular}{cccc}
14.8 & & & \\
18.5 & & & 1998 \\
9.52 & & & 1999 \\
608 & & May 18 & 1995 \\
.00 & Sep 12 & 1997 \\
.00 & Sep 12 & 1997 \\
1590 & Jun 28 & 1999 \\
13.19 & Jun 28 & 1999 \\
34. & & & \\
8.3 & & & \\
2.1 & & &
\end{tabular}


LOCATION.--Lat \(38^{\circ} 07^{\prime} 11^{\prime \prime}\), long \(85^{\circ} 47^{\prime} 45^{\prime \prime}\), Jefferson County, Hydrologic Unit 05140102, on upstream side of bridge on Manslick Rd, right bank, 0.4 mi south of Third Street \(\mathrm{Rd}, 0.6 \mathrm{mi}\) downstream from Bee Lick Creek, 1.5 mi downstream from confluence of Northern and Southern Ditches, 2.4 mi south of Louisville city limits, and at mile 15.4
DRAINAGE AREA.--64.0 \(\mathrm{mi}^{2}\).
WATER-DISCHARGE RECORDS
PERIOD OF RECORD.--August 1944 to current year.
REVISED RECORDS.--WSP 1705: Drainage area
GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 430.38 ft above sea level. See wDR KY-90-1 for history of changes prior to Nov. 16, 1962

REMARKS.--Records good, except for periods of estimated discharge which are fair.
COOPERATION.--Field determinations were made in cooperation with Louisville and Jefferson County Metropolitan Sewer District personnel.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in January 1937 reached a stage of about 23 ft present datum, backwater from Ohio River, from information by local residents.

PEAKS ABOVE BASE.--Peak discharges above base of \(1,300 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{llllllrr}
\multicolumn{2}{c}{ Date } & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} \\
Jan. & 9 & Unknown & Unknown & Unknown & Jan. 23 & 0650 & 2360
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 7.4 & 5.0 & 5.4 & e15 & 509 & 95 & 47 & 61 & 9.8 & 123 & 15 & 5.0 \\
\hline 2 & 7.2 & 5.1 & 4.9 & e93 & 180 & 62 & 31 & 40 & 431 & 81 & 9.7 & 5.3 \\
\hline 3 & 106 & 9.7 & 5.7 & e380 & 113 & 131 & 49 & 29 & 63 & 50 & 7.7 & 4.8 \\
\hline 4 & 30 & 6.5 & 5.7 & e76 & 80 & 78 & 50 & 24 & 28 & 31 & 7.9 & 5.1 \\
\hline 5 & 14 & 5.0 & 8.2 & e60 & 58 & 56 & 33 & 44 & 24 & 23 & 7.6 & 5.1 \\
\hline 6 & 11 & 4.8 & 6.4 & e40 & 51 & 366 & 110 & 562 & 17 & 20 & 7.2 & 5.3 \\
\hline 7 & 241 & 4.9 & 79 & e36 & 226 & 118 & 54 & 115 & 14 & 16 & 7.2 & 5.6 \\
\hline 8 & 104 & 4.9 & 88 & e960 & 105 & 78 & 37 & 60 & 11 & 13 & 37 & 6.1 \\
\hline 9 & 17 & 5.1 & 34 & e1100 & 72 & 521 & 31 & 39 & 9.7 & 12 & 22 & 5.6 \\
\hline 10 & 10 & 101 & 13 & e130 & 56 & 195 & 25 & 29 & 10 & 11 & 6.4 & 5.5 \\
\hline 11 & 7.5 & 34 & 9.2 & e90 & 48 & 108 & 21 & 24 & 11 & 11 & 4.8 & 5.2 \\
\hline 12 & 6.0 & 9.2 & 7.7 & 124 & 152 & 75 & 18 & 21 & 11 & 10 & 4.2 & 5.1 \\
\hline 13 & 5.2 & 6.3 & 89 & 181 & 89 & 58 & 17 & 55 & 9.5 & 9.9 & 3.5 & 5.6 \\
\hline 14 & 4.5 & 5.3 & 37 & e136 & 61 & 321 & 17 & 25 & 73 & 8.8 & 4.9 & 5.9 \\
\hline 15 & 4.2 & 5.1 & 15 & e91 & 52 & 214 & 41 & 19 & 22 & 9.2 & 8.0 & 5.9 \\
\hline 16 & 4.1 & 4.6 & 11 & 76 & 46 & 119 & 28 & 16 & 12 & 9.0 & 5.9 & 5.7 \\
\hline 17 & 4.0 & 4.6 & 12 & 62 & 60 & 82 & 20 & 18 & 10 & 9.0 & 3.4 & 5.6 \\
\hline 18 & 6.1 & 4.4 & 9.1 & 85 & 44 & 60 & 17 & 68 & 8.9 & 9.8 & 4.3 & 5.5 \\
\hline 19 & 15 & 4.2 & 8.6 & 56 & 34 & 47 & 16 & 27 & 8.7 & 8.5 & 21 & 5.3 \\
\hline 20 & 6.0 & 95 & 9.1 & 71 & 29 & 39 & 17 & 17 & 8.5 & 15 & 7.6 & 4.8 \\
\hline 21 & 4.8 & 18 & 103 & 261 & 26 & 36 & 15 & 15 & 8.8 & 8.5 & 3.8 & 5.6 \\
\hline 22 & 4.8 & 8.7 & e500 & 517 & 23 & 30 & 14 & 13 & 9.1 & 8.5 & 2.9 & 5.5 \\
\hline 23 & 4.3 & 6.8 & e80 & 1480 & 24 & 281 & 13 & 19 & 9.1 & 8.3 & 2.8 & 4.8 \\
\hline 24 & 4.0 & 6.2 & e42 & 247 & 36 & 146 & 12 & 61 & 145 & 8.1 & 3.0 & 4.8 \\
\hline 25 & 3.9 & 20 & 31 & 137 & 26 & 76 & 11 & 19 & 34 & 7.8 & 3.1 & 4.7 \\
\hline 26 & 3.9 & 52 & 25 & 95 & 25 & 57 & 100 & 14 & 18 & 7.9 & 3.2 & 4.5 \\
\hline 27 & 3.9 & 11 & 23 & 75 & 82 & 43 & 52 & 12 & 64 & 8.4 & 4.1 & 3.9 \\
\hline 28 & 4.2 & 7.5 & 22 & 60 & 293 & 35 & 181 & 11 & 1330 & 19 & 4.7 & 40 \\
\hline 29 & 4.8 & 6.4 & 21 & 46 & --- & 31 & 606 & 10 & 1810 & 12 & 5.2 & 27 \\
\hline 30 & 4.6 & 5.6 & 20 & 39 & --- & 26 & 104 & 9.7 & 185 & 8.9 & 5.0 & 9.8 \\
\hline 31 & 5.6 & - & e16 & 217 & - & 30 & --- & 9.7 & - & 7.9 & 4.9 & --- \\
\hline TOTAL & 659.0 & 466.9 & 1341.0 & 7036 & 2600 & 3614 & 1787 & 1486.4 & 4405.1 & 585.5 & 238.0 & 218.6 \\
\hline MEAN & 21.3 & 15.6 & 43.3 & 227 & 92.9 & 117 & 59.6 & 47.9 & 147 & 18.9 & 7.68 & 7.29 \\
\hline MAX & 241 & 101 & 500 & 1480 & 509 & 521 & 606 & 562 & 1810 & 123 & 37 & 40 \\
\hline MIN & 3.9 & 4.2 & 4.9 & 15 & 23 & 26 & 11 & 9.7 & 8.5 & 7.8 & 2.8 & 3.9 \\
\hline CFSM & . 33 & . 24 & . 68 & 3.55 & 1.45 & 1.82 & . 93 & . 75 & 2.29 & . 30 & . 12 & . 11 \\
\hline IN. & . 38 & . 27 & . 78 & 4.09 & 1.51 & 2.10 & 1.04 & . 86 & 2.56 & . 34 & . 14 & 13 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1944 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
\\
MEAN & 27.7 & 58.0 & 97.1 & 132 & 156 & 190 & 134 & 111 & 70.5 & 47.4 & 35.0 & 31.7 \\
MAX & 117 & 256 & 310 & 614 & 454 & 814 & 551 & 505 & 328 & 282 & 186 & 399 \\
(WY) & 1976 & 1974 & 1979 & 1950 & 1989 & 1997 & 1970 & 1983 & 1997 & 1973 & 1992 & 1979 \\
MIN & 1.76 & 2.60 & 4.48 & 8.52 & 10.1 & 11.4 & 22.0 & 10.6 & 4.54 & 2.96 & .78 & 1.15 \\
(WY) & 1947 & 1945 & 1954 & 1977 & 1954 & 1954 & 1954 & 1954 & 1954 & 1952 & 1945 & 1945
\end{tabular}

03302000 POND CREEK NEAR LOUISVILLE, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALENDAR YEAR & FOR 1999 WATER YEAR & WATER YEARS & 1944 & - 1999 \\
\hline ANNUAL TOTAL & 33510.3 & 24437.5 & & & \\
\hline ANNUAL MEAN & 91.8 & 67.0 & 90.7 & & \\
\hline HIGHEST ANNUAL MEAN & & & 159 & & 1950 \\
\hline LOWEST ANNUAL MEAN & & & 11.4 & & 1954 \\
\hline HIGHEST DAILY MEAN & 1540 Apr 16 & 1810 Jun 29 & 7200 & Mar & 21997 \\
\hline LOWEST DAILY MEAN & 3.9 Oct 25 & 2.8 Aug 23 & . 10 & Sep & 31945 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 4.1 Oct 22 & 3.3 Aug 21 & . 19 & Sep 17 & 171945 \\
\hline INSTANTANEOUS PEAK FLOW & & 3960 Jun 28 & 8020 & Mar & 91964 \\
\hline INSTANTANEOUS PEAK STAGE & & 19.72 Jun 28 & 25.74 & Mar & 21997 \\
\hline INSTANTANEOUS LOW FLOW & & & . 10 & Sep & 31945 \\
\hline ANNUAL RUNOFF (CFSM) & 1.43 & 1.05 & 1.42 & & \\
\hline ANNUAL RUNOFF (INCHES) & 19.48 & 14.20 & 19.25 & & \\
\hline 10 PERCENT EXCEEDS & 181 & 123 & 190 & & \\
\hline 50 PERCENT EXCEEDS & 30 & 17 & 26 & & \\
\hline 90 PERCENT EXCEEDS & 6.1 & 4.8 & 5.7 & & \\
\hline
\end{tabular}
e Estimated


03302030 POND CREEK AT PENDELTON ROAD NEAR LOUISVILLE, KY
LOCATION.--Lat \(38^{\circ} 03^{\prime} 15^{\prime \prime}\), long \(85^{\circ} 52^{\prime} 18^{\prime \prime}\), Jefferson County, Hydrologic Unit 05140102 , at bridge on Pendleton Road, 1.3 mi above Brier Crek and at mile 7.1.
DRAINAGE AREA. --80. \(3 \mathrm{mi}^{2}\).
WATER-DISCHARGE RECORDS
PERIOD OF RECORD.--December 1998 to current year.
GAGE.--Water-stage recorder and crest-stage gage.
REMARKS.--Records good, except for periods of estimated discharge which are poor. No peaks above base will be published due to backwater conditions existing Jan. 23-29 from the Ohio River.

COOPERATION.--Field determinations were made in cooperation with Louisville and Jefferson County Metropolitan Sewer District personnel.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & -- & -- & --- & e19 & 946 & 129 & 58 & 78 & e11 & 134 & 29 & 4.6 \\
\hline 2 & --- & --- & --- & 81 & 228 & 89 & 48 & 56 & e540 & 115 & 42 & 5.2 \\
\hline 3 & --- & --- & --- & 502 & 142 & 132 & 54 & 44 & e96 & 95 & 28 & 5.4 \\
\hline 4 & -- & --- & 13 & 99 & 105 & 109 & 68 & 37 & e44 & 68 & 26 & 6.1 \\
\hline 5 & --- & --- & 18 & 83 & 79 & 79 & 49 & 48 & e30 & 57 & 26 & 6.2 \\
\hline 6 & - & -- & 18 & 56 & 69 & 479 & 108 & 864 & e22 & 51 & 25 & 7.6 \\
\hline 7 & --- & --- & 77 & 44 & 245 & 155 & 75 & 149 & e17 & 48 & 23 & 8.7 \\
\hline 8 & - & --- & 112 & 1010 & 135 & 104 & 51 & 77 & e14 & 43 & 24 & 10 \\
\hline 9 & --- & --- & 73 & 2500 & 92 & 799 & 47 & 52 & e13 & 41 & 57 & 12 \\
\hline 10 & -- & --- & 37 & 183 & 75 & 294 & 40 & 40 & e14 & 40 & 17 & 12 \\
\hline 11 & -- & -- & 27 & 115 & 67 & 138 & 34 & 33 & e16 & 39 & 9.9 & 12 \\
\hline 12 & -- & -- & 21 & 123 & 144 & 100 & 30 & 27 & e14 & 37 & 7.6 & 13 \\
\hline 13 & --- & --- & 91 & 187 & 117 & 80 & 27 & 51 & e13 & 36 & 6.5 & 14 \\
\hline 14 & --- & --- & 76 & 271 & 83 & 374 & 26 & e35 & e88 & 34 & 4.2 & 16 \\
\hline 15 & --- & --- & 40 & 124 & 72 & 342 & 42 & e25 & e39 & 32 & 11 & 17 \\
\hline 16 & --- & --- & 30 & 93 & 63 & e220 & 44 & e21 & e17 & 32 & 13 & 17 \\
\hline 17 & --- & --- & 31 & 77 & 77 & e150 & 31 & e18 & e14 & 31 & 8.2 & 17 \\
\hline 18 & --- & --- & 26 & 96 & 64 & e98 & 27 & e85 & e12 & 32 & 5.6 & 15 \\
\hline 19 & --- & --- & 21 & 71 & 55 & e80 & 25 & e41 & e11.5 & 31 & 13 & 16 \\
\hline 20 & --- & --- & 25 & 72 & 49 & 58 & 25 & e23 & e11 & 40 & 31 & 21 \\
\hline 21 & -- & --- & 89 & 271 & 42 & 55 & 23 & e20 & e11.5 & 32 & 9.0 & 28 \\
\hline 22 & --- & --- & 657 & 862 & 39 & 49 & 20 & e18 & e12 & 29 & 6.1 & 33 \\
\hline 23 & --- & --- & 92 & e3000 & 39 & 355 & 19 & e23 & e14 & 28 & 4.9 & 30 \\
\hline 24 & --- & --- & 58 & 1360 & 51 & 230 & 17 & e76 & e170 & 27 & 4.4 & 40 \\
\hline 25 & --- & --- & 42 & e900 & 45 & 99 & 14 & e29 & e62 & 26 & 4.6 & 49 \\
\hline 26 & --- & --- & 34 & e500 & 40 & 74 & 72 & e18 & e25 & 26 & 4.7 & 54 \\
\hline 27 & -- & --- & 29 & e350 & 55 & 59 & 64 & e15 & e73 & 27 & 4.6 & 58 \\
\hline 28 & --- & --- & 27 & e200 & 425 & 53 & 117 & e14 & e1700 & 27 & 4.8 & 67 \\
\hline 29 & --- & --- & 25 & e130 & - & 48 & 1180 & e13 & e2200 & 46 & 4.6 & 88 \\
\hline 30 & --- & --- & 24 & 81 & -- & 43 & 128 & e12 & e300 & 32 & 4.3 & 30 \\
\hline 31 & --- & --- & 21 & 184 & --- & 41 & --- & e11.5 & --- & 28 & 3.9 & --- \\
\hline TOTAL & --- & -- & --- & 13644 & 3643 & 5115 & 2563 & 2053.5 & 5604.0 & 1364 & 462.9 & 712.8 \\
\hline MEAN & --- & --- & --- & 440 & 130 & 165 & 85.4 & 66.2 & 187 & 44.0 & 14.9 & 23.8 \\
\hline MAX & --- & --- & --- & 3000 & 946 & 799 & 1180 & 864 & 2200 & 134 & 57 & 88 \\
\hline MIN & --- & --- & - & 19 & 39 & 41 & 14 & 12 & 11 & 26 & 3.9 & 4.6 \\
\hline STATIS & OF & LY & DATA & WATER & RS 19 & - 1999 & WATE & YEAR (W) & & & & \\
\hline MEAN & --- & --- & -- & 440 & 130 & 165 & 85.4 & 66.2 & 187 & 44.0 & 14.9 & 23.8 \\
\hline MAX & --- & --- & --- & 440 & 130 & 165 & 85.4 & 66.2 & 187 & 44.0 & 14.9 & 23.8 \\
\hline (WY) & --- & --- & --- & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 \\
\hline MIN & --- & -- & --- & 440 & 130 & 165 & 85.4 & 66.2 & 187 & 44.0 & 14.9 & 23.8 \\
\hline (WY) & -- & --- & -- & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 \\
\hline
\end{tabular}
e Estimated


03302050 BRIER CREEK AT PENDLETON ROAD NEAR LOUISVILLE, KY
LOCATION.--Lat \(38^{\circ} 02^{\prime} 52^{\prime \prime}\), long \(85^{\circ} 51^{\prime} 26^{\prime \prime}\), Jefferson County, Hydrologic Unit 05140102 , at bridge on Pendleton Road, 0.4 mi below Headley Hollow, and at mile 1.64
DRAINAGE AREA. \(--4.01 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--January 1999 to September 1999.
GAGE.--Water-stage recorder and crest-stage gage.
COOPERATION.--Field determations were made in cooperation with the Louisville and Jefferson County Metropolitan Sewer District personnel.

REMARKS.--Records good.
PEAKS ABOVE BASE.--Peak discharges above base of \(360 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccccccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 23 & 0135 & 363 & 3.41 & Jun. 28 & 1710 & \(* 2410\) & \(* 5.87\)
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & - & --- & -- & . 50 & 24 & 11 & 3.0 & 5.5 & . 36 & 1.9 & . 10 & . 00 \\
\hline 2 & --- & - & --- & 3.7 & 13 & 7.4 & 2.5 & 3.8 & 7.1 & 1.5 & . 06 & . 00 \\
\hline 3 & --- & - & --- & 5.1 & 7.6 & 7.9 & 2.8 & 2.9 & 1.2 & 1.2 & . 06 & . 00 \\
\hline 4 & --- & --- & --- & 2.0 & 5.2 & 5.8 & 2.9 & 2.3 & . 73 & . 88 & . 06 & . 00 \\
\hline 5 & -- & --- & - & 1.3 & 3.8 & 4.9 & 2.7 & 2.5 & . 57 & . 67 & . 05 & . 00 \\
\hline 6 & - & - & --- & 1.1 & 3.4 & 19 & 4.1 & 37 & . 47 & . 54 & . 06 & . 00 \\
\hline 7 & - & -- & --- & . 96 & 9.8 & 11 & 3.5 & 9.3 & . 40 & . 46 & . 05 & . 00 \\
\hline 8 & --- & --- & --- & 45 & 6.8 & 7.6 & 3.4 & 5.0 & . 35 & . 39 & . 05 & . 00 \\
\hline 9 & - & --- & --- & 26 & 5.4 & 39 & 3.3 & 3.4 & . 32 & . 35 & . 05 & . 00 \\
\hline 10 & - & --- & --- & 5.1 & 4.2 & 18 & 2.6 & 2.6 & . 28 & . 34 & . 04 & . 00 \\
\hline 11 & --- & --- & --- & 3.0 & 3.6 & 11 & 2.4 & 2.1 & . 26 & . 28 & . 04 & . 00 \\
\hline 12 & --- & --- & --- & 3.4 & 6.3 & 7.1 & 2.0 & 1.7 & . 24 & . 27 & . 04 & . 00 \\
\hline 13 & - & --- & --- & 8.0 & 5.3 & 5.5 & 1.8 & 1.8 & . 23 & . 24 & . 03 & . 00 \\
\hline 14 & --- & --- & --- & 10 & 4.4 & 28 & 1.7 & 1.4 & . 69 & . 23 & . 03 & . 00 \\
\hline 15 & --- & --- & --- & 4.8 & 3.8 & 18 & 2.3 & 1.2 & . 32 & . 21 & . 03 & . 00 \\
\hline 16 & --- & --- & --- & 3.2 & 3.5 & 14 & 1.9 & . 96 & . 25 & . 20 & . 02 & . 00 \\
\hline 17 & --- & --- & --- & 2.4 & 3.9 & 9.4 & 1.6 & . 91 & . 23 & . 21 & . 01 & . 00 \\
\hline 18 & --- & --- & --- & 2.6 & 3.2 & 6.2 & 1.4 & 1.1 & . 20 & . 20 & . 01 & . 00 \\
\hline 19 & --- & --- & --- & 2.0 & 2.8 & 4.7 & 1.4 & . 92 & . 19 & . 18 & . 01 & . 00 \\
\hline 20 & --- & --- & --- & 1.8 & 2.5 & 3.9 & 1.4 & . 79 & . 16 & . 17 & . 01 & . 00 \\
\hline 21 & --- & --- & --- & 5.2 & 2.2 & 3.3 & 1.3 & . 64 & . 15 & . 17 & . 00 & . 00 \\
\hline 22 & --- & --- & --- & 41 & 2.0 & 2.7 & 1.2 & . 59 & . 13 & . 14 & . 00 & . 00 \\
\hline 23 & --- & --- & --- & 127 & 2.0 & 14 & 1.1 & . 68 & . 14 & . 13 & . 00 & . 00 \\
\hline 24 & --- & --- & --- & 15 & 2.3 & 12 & . 93 & . 92 & . 32 & . 12 & . 00 & . 00 \\
\hline 25 & --- & --- & --- & 8.0 & 2.1 & 7.0 & . 84 & . 59 & . 41 & . 11 & . 00 & . 00 \\
\hline 26 & --- & --- & --- & 5.2 & 1.9 & 5.0 & 1.3 & . 51 & . 28 & . 11 & . 00 & . 00 \\
\hline 27 & --- & --- & --- & 4.0 & 17 & 3.9 & 1.5 & . 46 & . 37 & . 10 & . 00 & . 00 \\
\hline 28 & --- & --- & --- & 3.2 & 29 & 3.3 & 21 & . 42 & 121 & . 09 & . 00 & . 00 \\
\hline 29 & --- & --- & --- & 2.5 & --- & 2.8 & 33 & . 38 & 8.6 & . 09 & . 00 & . 00 \\
\hline 30 & --- & --- & --- & 2.2 & -- & 2.5 & 9.5 & . 37 & 2.6 & . 09 & . 00 & . 00 \\
\hline 31 & --- & --- & --- & 7.3 & --- & 2.6 & --- & . 37 & --- & . 08 & . 00 & --- \\
\hline MEAN & --- & --- & --- & 11.4 & 6.46 & 9.63 & 4.01 & 3.00 & 4.95 & . 38 & . 026 & . 000 \\
\hline MAX & --- & --- & --- & 127 & 29 & 39 & 33 & 37 & 121 & 1.9 & . 10 & . 00 \\
\hline MIN & --- & --- & --- & . 50 & 1.9 & 2.5 & . 84 & . 37 & . 13 & . 08 & . 00 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lllllllllllllll} 
MEAN & --- & --- & --- & 11.4 & 6.46 & 9.63 & 4.01 & 3.00 & 4.95 & .38 & .026 & .000 \\
MAX & --- & --- & --- & 11.4 & 6.46 & 9.63 & 4.01 & 3.00 & 4.95 & .38 & .026 & .000 \\
(WY) & --- & --- & --- & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 \\
MIN & --- & --- & --- & 11.4 & 6.46 & 9.63 & 4.01 & 3.00 & 4.95 & .38 \\
(WY) & --- & --- & --- & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999
\end{tabular}

SALT RIVER BASIN
03302050 BRIER CREEK AT PENDLETON ROAD NEAR LOUISVILLE, KY--Continued


OTTER CREEK BASIN
03302110 OTTER CREEK AT OTTER CREEK PARK NEAR ROCK HAVEN, KY
LOCATION.--Lat \(37^{\circ} 56^{\prime} 37^{\prime \prime}\), long \(86^{\circ} 01^{\prime \prime} 47\) ", Meade County, Hydrologic Unit 05140104 , at downstream side of bridge on Highway 1638 , 1.4 mi east of Rock Haven, and at mile 3.3.

DRAINAGE AREA. \(--99.2 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--January 1999 to current year.
GAGE.--Water-stage recorder.
COOPERATION.--Field determations were made in cooperation with Louisville and Jefferson County Metropolitan Sewer District personnel.

REMARKS.--Records good.

PEAKS ABOVE BASE.--Peak discharges above base of \(3,900 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{ccccccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} \\
Jan. 23 & 0605 & \(* 5720\) & 7.44 & May 6 & 0640 & 4430
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & --- & --- & --- & 29 & 959 & 126 & 103 & 196 & 39 & 57 & 14 & 6.4 \\
\hline 2 & --- & --- & --- & 95 & 524 & 106 & 91 & 147 & 98 & 47 & 16 & 5.4 \\
\hline 3 & --- & -- & --- & 244 & 329 & 118 & 96 & 119 & 57 & 37 & 14 & 5.6 \\
\hline 4 & -- & --- & --- & 89 & 243 & 111 & 120 & 102 & 42 & 32 & 13 & 5.4 \\
\hline 5 & --- & --- & --- & 55 & 181 & 99 & 101 & 112 & 35 & 31 & 11 & 5.5 \\
\hline 6 & - & --- & -- & 44 & 162 & 167 & 282 & 1700 & 32 & 24 & 9.8 & 4.9 \\
\hline 7 & --- & --- & --- & 39 & 185 & 139 & 221 & 564 & 29 & 23 & 9.1 & 6.3 \\
\hline 8 & --- & - & --- & 509 & 150 & 124 & 165 & 311 & 28 & 21 & 13 & 6.1 \\
\hline 9 & --- & --- & --- & 1240 & 130 & 478 & 147 & 206 & 28 & 21 & 20 & 6.1 \\
\hline 10 & - & --- & -- & 325 & 113 & 378 & 118 & 159 & 27 & 20 & 14 & 5.5 \\
\hline 11 & --- & -- & -- & 185 & 107 & 252 & 101 & 130 & 34 & 21 & 12 & 5.3 \\
\hline 12 & --- & --- & - & 151 & 132 & 196 & 85 & 114 & 23 & 19 & 11 & 5.0 \\
\hline 13 & - & --- & --- & 165 & 132 & 163 & 77 & 430 & 23 & 18 & 9.9 & 5.9 \\
\hline 14 & --- & --- & - & 306 & 113 & 537 & 74 & 158 & 44 & 19 & 11 & 5.6 \\
\hline 15 & --- & --- & --- & 200 & 111 & 481 & 89 & 115 & 28 & 17 & 13 & 5.4 \\
\hline 16 & --- & --- & -- & 154 & 106 & 295 & 85 & 94 & 24 & 15 & 13 & 5.4 \\
\hline 17 & --- & -- & --- & 124 & 110 & 231 & 68 & 81 & 25 & 15 & 11 & 6.1 \\
\hline 18 & -- & --- & -- & 132 & 101 & 185 & 61 & 93 & 24 & 16 & 12 & 5.2 \\
\hline 19 & --- & --- & -- & 110 & 94 & 151 & 58 & 80 & 23 & 14 & 13 & 6.1 \\
\hline 20 & -- & - & -- & 102 & 85 & 131 & 56 & 68 & 22 & 14 & 7.7 & 6.8 \\
\hline 21 & -- & - & -- & 108 & 75 & 121 & 54 & 62 & 21 & 15 & 7.7 & 6.7 \\
\hline 22 & - & --- & --- & 374 & 69 & 106 & 50 & 56 & 19 & 14 & 7.7 & 8.1 \\
\hline 23 & --- & --- & --- & 2760 & 67 & 238 & 46 & 68 & 19 & 14 & 13 & 6.0 \\
\hline 24 & --- & --- & - & 788 & 70 & 269 & 41 & 203 & 36 & 13 & 10 & 5.4 \\
\hline 25 & --- & --- & --- & 411 & 69 & 179 & 39 & 83 & 37 & 18 & 10 & 5.4 \\
\hline 26 & --- & - & --- & 266 & 60 & 146 & 217 & 62 & 24 & 27 & 7.7 & 5.0 \\
\hline 27 & --- & --- & --- & 211 & 66 & 127 & 229 & 53 & 43 & 21 & 6.8 & 5.3 \\
\hline 28 & - & --- & --- & 170 & 163 & 115 & 329 & 46 & 191 & 18 & 6.7 & 5.4 \\
\hline 29 & - & --- & --- & 140 & --- & 103 & 816 & 42 & 190 & 16 & 6.4 & 5.9 \\
\hline 30 & --- & --- & --- & 121 & --- & 92 & 313 & 41 & 72 & 15 & 6.2 & 7.4 \\
\hline 31 & --- & --- & --- & 402 & --- & 91 & --- & 40 & --- & 15 & 7.3 & --- \\
\hline MEAN & - & --- & - & 324 & 168 & 195 & 144 & 185 & 44.6 & 21.5 & 10.9 & 5.82 \\
\hline MAX & --- & --- & --- & 2760 & 959 & 537 & 816 & 1700 & 191 & 57 & 20 & 8.1 \\
\hline MIN & --- & --- & --- & 29 & 60 & 91 & 39 & 40 & 19 & 13 & 6.2 & 4.9 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999 - 1999, BY WATER YEAR (WY)
\begin{tabular}{llllrrrrrrrrrr} 
MEAN & --- & --- & --- & 324 & 168 & 195 & 144 & 185 & 44.6 & 21.5 & 10.9 & 5.82 \\
MAX & --- & --- & -- & 324 & 168 & 195 & 144 & 185 & 44.6 & 21.5 & 10.9 & 5.82 \\
(WY) & --- & --- & -- & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 \\
MIN & --- & --- & --- & 324 & 168 & 195 & 144 & 185 & 44.6 & 21.5 & 10.9 & 5.82 \\
(WY) & --- & --- & --- & 1999 & 1999 & 1999 & 1999 & 1999 & 1999 & 1999
\end{tabular}

OTTER CREEK BASIN
03302110 OTTER CREEK AT OTTER CREEK PARK NEAR ROCK HAVEN, KY--Continued


LOCATION.--Lat \(37^{\circ} 53^{\prime \prime} 58^{\prime \prime}\), long \(86^{\circ} 42^{\prime} 20^{\prime \prime}\), Hancock County, Hydrologic Unit 05140201 , at Cannelton Dam, 0.7 mi upstream from Indian Creek, 3.3 mi upstream from Lead Creek, and at mile 720.8.
DRAINAGE AREA. \(--97,000 \mathrm{mi}^{2}\), approximately.
PERIOD OF RECORD.--October 1975 to current year.
GAGE.--Water-stage recorders. Datum of headwater gage 0.4 mi upstream is 374.0 ft Ohio River datum. Datum of tailwater gage 0.4 mi downstream is 26.0 ft lower.

REMARKS.--Records poor. Daily discharge computed from head, gate openings, and lockages. Flow regulated by Ohio River system of locks, dams, and reservoirs upstream from station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 26300 & 24000 & 26500 & 33000 & 266000 & 140000 & 96300 & 156000 & 36800 & 32400 & 10700 & 8920 \\
\hline 2 & e3850 & 27000 & 17100 & 39800 & 267000 & 167000 & 92100 & 145000 & 47700 & 21300 & 23800 & e3920 \\
\hline 3 & 21900 & 16700 & 23200 & 47700 & 260000 & 190000 & 92800 & 122000 & 34400 & 56300 & 27100 & 16100 \\
\hline 4 & 27800 & 9130 & 20600 & 72000 & 237000 & 214000 & 97500 & 96400 & 37300 & 38200 & 18000 & 18900 \\
\hline 5 & 11800 & 32900 & 22600 & 73900 & 217000 & 244000 & 94200 & 86000 & 35700 & 20500 & e3700 & e3600 \\
\hline 6 & 25200 & 25000 & 6980 & 91200 & 204000 & 279000 & 103000 & 102000 & 28200 & 27200 & 14200 & 4090 \\
\hline 7 & 19600 & 5630 & 32800 & 65200 & 195000 & 298000 & 98600 & 92200 & 23500 & 18800 & 21000 & 17700 \\
\hline 8 & 22700 & 15300 & 28200 & 63300 & 223000 & 285000 & 99200 & 58900 & 22900 & 16100 & 4700 & 20000 \\
\hline 9 & 56500 & 16400 & 36600 & 134000 & 236000 & 275000 & 92400 & 63000 & 31700 & 16700 & 28600 & 11200 \\
\hline 10 & 56100 & 23700 & 38700 & 199000 & 231000 & 257000 & 103000 & 66200 & 33700 & 26000 & 17500 & 16700 \\
\hline 11 & 40100 & 29400 & 42100 & 250000 & 235000 & 251000 & 110000 & 63800 & 7560 & 24500 & 5330 & 12200 \\
\hline 12 & 37100 & 38900 & 46600 & 266000 & 237000 & 279000 & 131000 & 60900 & e6500 & 13500 & 4010 & 13600 \\
\hline 13 & 26700 & 21800 & 38400 & 254000 & 212000 & 267000 & 162000 & 63600 & 34900 & 4250 & 14500 & 10900 \\
\hline 14 & 36000 & 24500 & 44000 & 233000 & 207000 & 236000 & 176000 & 48300 & 10900 & 27400 & 19900 & e3850 \\
\hline 15 & 8950 & 36000 & 36300 & 215000 & 187000 & 207000 & 176000 & 55500 & 41900 & 10900 & 16000 & 4270 \\
\hline 16 & 27000 & 14200 & 59400 & 211000 & 173000 & 202000 & 172000 & 58500 & 14100 & 9680 & 17500 & 22700 \\
\hline 17 & 21800 & 28300 & 56400 & 228000 & 158000 & 241000 & 160000 & 55200 & 24800 & 18300 & 6300 & 7530 \\
\hline 18 & 8450 & 32100 & 41200 & 251000 & 146000 & 263000 & 153000 & 65700 & 18100 & 23000 & 14900 & e3850 \\
\hline 19 & 26300 & 26300 & 49600 & 272000 & 137000 & 268000 & 143000 & 39800 & 27000 & 8040 & 18300 & 22600 \\
\hline 20 & 30500 & 11000 & 20500 & 276000 & 121000 & 263000 & 140000 & 70000 & 6630 & 9690 & 16800 & 5760 \\
\hline 21 & 21700 & 16900 & 26300 & 275000 & 119000 & 253000 & 131000 & 84700 & 10400 & 24600 & 5440 & 12500 \\
\hline 22 & 20800 & 49900 & 95900 & 301000 & 114000 & 252000 & 141000 & 76600 & 24700 & 5620 & 4250 & 22300 \\
\hline 23 & 12700 & 10800 & 107000 & 383000 & 110000 & 240000 & 160000 & 46700 & 16400 & 26500 & 14700 & 6970 \\
\hline 24 & 7380 & 18400 & 103000 & 420000 & 97300 & 213000 & 173000 & 65700 & 26400 & 8930 & 18200 & e3600 \\
\hline 25 & 28300 & 30900 & 112000 & 424000 & 83900 & 183000 & 172000 & 67300 & 10600 & 17100 & 27400 & 3830 \\
\hline 26 & 29600 & 24000 & 94800 & 416000 & 76500 & 173000 & 179000 & 75400 & 12200 & 20900 & 56100 & 11800 \\
\hline 27 & 16200 & 36500 & 65500 & 409000 & 74600 & 161000 & 183000 & 101000 & 17300 & 16400 & 39300 & 18900 \\
\hline 28 & 7840 & 18800 & 40100 & 404000 & 105000 & 141000 & 186000 & 98500 & 45000 & 6850 & 23500 & e3600 \\
\hline 29 & 23500 & 21300 & 46300 & 396000 & --- & 127000 & 184000 & 78600 & 74600 & 36800 & 24900 & 10800 \\
\hline 30 & 18900 & 44700 & 44600 & 372000 & --- & 111000 & 166000 & 56600 & 34800 & 48300 & 25100 & 26100 \\
\hline 31 & 13000 & --- & 37300 & 271000 & -- & 103000 & --- & 46900 & -- & 34700 & 12400 & \\
\hline TOTAL & 734570 & 730460 & 1460580 & 7346100 & 4929300 & 6783000 & 4167100 & 2367000 & 796690 & 669460 & 554130 & 348790 \\
\hline MEAN & 23700 & 24350 & 47120 & 237000 & 176000 & 218800 & 138900 & 76350 & 26560 & 21600 & 17880 & 11630 \\
\hline MAX & 56500 & 49900 & 112000 & 424000 & 267000 & 298000 & 186000 & 156000 & 74600 & 56300 & 56100 & 26100 \\
\hline MIN & 3850 & 5630 & 6980 & 33000 & 74600 & 103000 & 92100 & 39800 & 6500 & 4250 & 3700 & 3600 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1976 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
MEAN & 57780 & 93240 & 157200 & 172100 & 204300 & 241000 & 202000 & 162700 & 105900 & 67020 & 52660 \\
MAX & 155800 & 222400 & 334000 & 368700 & 358600 & 443300 & 360400 & 415100 & 235400 & 125500 & 148200 \\
(WY) & 1980 & 1986 & 1979 & 1991 & 1994 & 1997 & 1994 & 1996 & 1981 & 1998 & 1980 \\
MIN & 13980 & 24350 & 47120 & 36500 & 94740 & 125500 & 72990 & 46020 & 16490 & 18760 & 13130 \\
(WY) & 1992 & 1999 & 1999 & 1977 & 1992 & 1983 & 1986 & 1976 & 1988 & 1988 & 1988
\end{tabular}

SUMMARY STATISTICS
FOR 1998 CALENDAR YEAR
FOR 1999 WATER YEAR
WATER YEARS 1976 - 1999

ANNUAL TOTAL
ANNUAL MEAN
\begin{tabular}{rlr}
48227030 & & \\
132100 & & \\
& & \\
429000 & Apr & 25 \\
3850 & Oct & 2 \\
15700 & Sep & 13 \\
& & \\
314000 & & \\
99400 & &
\end{tabular}
\begin{tabular}{rlr}
30887180 \\
84620 & & \\
& & \\
424000 & Jan 25 \\
3600 & Sep & 5 \\
8500 & Sep 23 \\
426000 & Jan 25 \\
29.34 & Jan 25 \\
238000 & & \\
38200 & & \\
9460 & &
\end{tabular}
\begin{tabular}{rlrr}
129500 & & & \\
188900 & & & 1979 \\
72150 & & & 1988 \\
735000 & & Mar & 8 \\
1997 \\
3180 & Aug & 28 & 1995 \\
7650 & Jul & 12 & 1988 \\
736000 & Mar & 8 & 1997 \\
52.42 & Mar & 8 & 1997 \\
284000 & & & \\
92700 & & & \\
22400 & & &
\end{tabular}

OHIO RIVER MAIN STEM
03303280 OHIO RIVER AT CANNELTON DAM, KY--Continued


(National stream-quality accounting network station)
WATER-QUALITY RECORDS
LOCATION.--Samples are collected \(2.0 \mathrm{mi}^{2}\) upstream from discharge station.
PERIOD OF RECORD.--Water years 1975 to 1986 and 1996 to current water year
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: October 1974 to September 1986 (discontinued).
WATER TEMPERATURES: October 1974 to September 1986 (discontinued).
REMARKS.-- Flow regulated by Ohio River system of locks, dams, and reservoirs.
COOPERATION.--Records of conductance and temperature collected on right bank at Cannelton Dam and furnished by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: Maximum daily, 691 microsiemens, Nov. 14, 1978; minimum daily, 176 microsiemens, Dec. 15,1978
WATER TEMPERATURES: Maximum daily, \(30.0^{\circ} \mathrm{C}\), July 23, 24, 1977, Aug. 5, 1982, several days in July and August, 1983 ; minimum daily, \(0.0^{\circ} \mathrm{C}\), on several days during most winter months.


OHIO RIVER MAIN STEM
03303280 OHIO RIVER AT CANNELTON DAM, KY--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & \\
\hline & & MAGNE- & & POTAS- & \begin{tabular}{l}
BICAR- \\
BONATE
\end{tabular} & ALKALINITY & CHLO- & & FLUO- & SILICA, & \begin{tabular}{l}
SOLIDS, \\
RESIDUE
\end{tabular} & \\
\hline & CALCIUM & SIUM, & SODIUM, & SIUM, & WATER & WAT DIS & RIDE, & SULFATE & RIDE, & DIS- & AT 180 & NITRO \\
\hline & DIS- & DIS- & DIS- & DIS- & DIS IT & TOT IT & DIS- & DIS- & DIS- & SOLVED & DEG. C & GEN, \\
\hline & SOLVED & SOLVED & SOLVED & SOLVED & FIELD & FIELD & SOLVED & SOLVED & SOLVED & (MG/L & DIS- & TOTAL \\
\hline DATE & (MG/L & (MG/L & (MG/L & (MG/L & MG/L AS & MG/L AS & (MG/L & (MG/L & (MG/L & AS & SOLVED & (MG/L \\
\hline & AS CA) & AS MG) & AS NA) & AS K) & HCO3 & CACO3 & AS CL) & AS SO4) & AS F) & SIO2) & (MG/L) & AS N) \\
\hline & (00915) & (00925) & (00930) & (00935) & (00453) & (39086) & (00940) & (00945) & (00950) & (00955) & (70300) & (00600) \\
\hline NOV & & & & & & & & & & & & \\
\hline 23. & 48 & 16 & 42 & 4.6 & 117 & 96 & 48 & 100 & . 48 & 2.1 & 345 & 1.7 \\
\hline DEC & & & & & & & & & & & & \\
\hline 21. & 50 & 16 & 42 & 4.1 & 115 & 95 & 48 & 110 & . 31 & 2.6 & 356 & 1.7 \\
\hline JAN & & & & & & & & & & & & \\
\hline 13. & 45 & 12 & 36 & 3.1 & 94 & 77 & 52 & 84 & . 22 & 3.8 & 317 & 3.2 \\
\hline 13. & <. 002 & <. 001 & <. 025 & -- & -- & -- & -- & -- & -- & <. 020 & -- & -- \\
\hline MAR & & & & & & & & & & & & \\
\hline 15... & 33 & 8.6 & 14 & 2.3 & 76 & 62 & 20 & 47 & . 14 & 5.5 & 187 & 1.9 \\
\hline 15. & 33 & 8.6 & 14 & 2.0 & -- & -- & 21 & 47 & . 12 & 5.5 & 189 & 2.0 \\
\hline APR & & & & & & & & & & & & \\
\hline 05.. & 35 & 9.8 & 18 & 1.8 & 78 & 64 & 25 & 55 & . 11 & 4.8 & 208 & 1.3 \\
\hline 21. & 36 & 10 & 19 & 1.9 & 67 & 55 & 24 & 68 & . 13 & 3.7 & 209 & 1.4 \\
\hline 21.. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline MAY & & & & & & & & & & & & \\
\hline 04.. & 36 & 10 & 16 & 2.1 & 86 & 71 & 21 & 57 & . 14 & 5.1 & 208 & 1.7 \\
\hline 19. & 37 & 11 & 17 & 2.1 & 83 & 68 & 20 & 62 & . 15 & 4.5 & 229 & 1.7 \\
\hline 19. & . 004 & . 001 & <. 025 & -- & -- & -- & -- & -- & -- & <. 020 & -- & -- \\
\hline JUN & & & & & & & & & & & & \\
\hline 10. & 35 & 11 & 21 & 2.4 & 78 & 64 & 24 & 68 & . 14 & 2.0 & 232 & 1.2 \\
\hline 29. & 35 & 11 & 23 & 2.5 & 73 & 60 & 28 & 72 & . 20 & . 97 & 242 & 1.0 \\
\hline 29... & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline AUG & & & & & & & & & & & & \\
\hline 04... & 40 & 14 & 30 & 3.3 & -- & -- & 39 & 86 & . 24 & 2.0 & 276 & 1.5 \\
\hline 25. & 40 & 15 & 30 & 3.4 & -- & -- & 39 & 91 & . 28 & 1.6 & 281 & 1.1 \\
\hline 25... & 41 & 16 & 31 & 3.2 & -- & -- & 40 & 91 & . 27 & 1.6 & 285 & 1.1 \\
\hline SEP & & & & & & & & & & & & \\
\hline 13... & . 004 & \(<.001\) & \(<.025\) & -- & -- & -- & -- & -- & -- & <. 020 & -- & -- \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & NITRO- & & & PHOS- \\
\hline & NITRO- & NITRO- & GEN, & GEN, & GEN, & GEN, & GEN, & GEN, AM- & GEN, AM- & & PHOS- & PHATE, \\
\hline & GEN & GEN, & ORGANIC & NITRITE & NO2+NO3 & AMMONIA & NITRATE & MONIA + & MONIA + & PHOS- & PHORUS & ORTHO, \\
\hline & DIS- & ORGANIC & DIS- & DIS- & DIS- & DIS- & DIS- & ORGANIC & ORGANIC & PHORUS & DIS- & DIS- \\
\hline & SOLVED & TOTAL & SOLVED & SOLVED & SOLVED & SOLVED & SOLVED & DIS. & TOTAL & TOTAL & SOLVED & SOLVED \\
\hline DATE & (MG/L \\
\hline & AS N) & AS P) & AS P) & AS PO4) \\
\hline & (00602) & (00605) & (00607) & (00613) & (00631) & (00608) & (00618) & (00623) & (00625) & (00665) & (00666) & (00660) \\
\hline NOV & & & & & & & & & & & & \\
\hline 23. & 1.7 & . 32 & . 31 & . 025 & 1.26 & . 160 & 1.24 & . 47 & . 48 & . 052 & . 045 & . 06 \\
\hline DEC & & & & & & & & & & & & \\
\hline 21. & 2.0 & . 26 & . 52 & . 020 & 1.27 & . 158 & 1.25 & . 68 & . 42 & . 077 & . 077 & . 22 \\
\hline JAN & & & & & & & & & & & & \\
\hline 13. & 2.0 & 1.5 & . 30 & . 019 & 1.52 & . 180 & 1.51 & . 48 & 1.7 & . 853 & . 051 & . 17 \\
\hline 13. & -- & -- & -- & <. 001 & . 006 & <. 002 & -- & -- & -- & -- & -- & -- \\
\hline MAR & & & & & & & & & & & & \\
\hline 15. & 1.6 & . 50 & . 17 & . 011 & 1.38 & . 050 & 1.37 & . 22 & . 55 & . 146 & . 029 & . 02 \\
\hline 15. & 1.6 & . 52 & . 19 & . 013 & 1.40 & . 040 & 1.38 & . 23 & . 56 & . 144 & . 029 & . 06 \\
\hline APR & & & & & & & & & & & & \\
\hline 05. & 1.3 & . 21 & . 17 & . 014 & 1.04 & . 047 & 1.02 & . 21 & . 25 & . 037 & . 022 & . 02 \\
\hline 21. & 1.2 & -- & -- & . 029 & 1.02 & <. 020 & . 994 & . 15 & . 33 & . 082 & . 024 & . 06 \\
\hline 21. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline MAY & & & & & & & & & & & & \\
\hline 04. & 1.6 & . 25 & . 15 & . 024 & 1.36 & . 053 & 1.34 & . 20 & . 31 & . 060 & . 032 & . 06 \\
\hline 19. & 1.4 & . 43 & . 19 & . 013 & 1.18 & . 047 & 1.16 & . 24 & . 48 & . 035 & . 021 & . 05 \\
\hline 19. & -- & -- & -- & . 017 & 1.13 & . 024 & 1.12 & -- & -- & -- & -- & . 05 \\
\hline JUN & & & & & & & & & & & & \\
\hline 10. & 1.2 & . 24 & . 18 & . 039 & . 945 & . 040 & . 906 & . 22 & . 28 & . 037 & . 014 & . 03 \\
\hline 29. & . 97 & . 26 & . 22 & . 031 & . 706 & . 043 & . 675 & . 26 & . 30 & . 025 & . 007 & -- \\
\hline 29. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline AUG & & & & & & & & & & & & \\
\hline 04. & 1.1 & . 62 & . 21 & . 048 & . 861 & . 051 & . 813 & . 26 & . 67 & . 019 & . 008 & . 00 \\
\hline 25. & 1.0 & . 34 & . 27 & . 093 & . 682 & . 058 & . 589 & . 33 & . 39 & . 020 & . 010 & . 00 \\
\hline 25. & 1.0 & . 36 & . 28 & . 095 & . 683 & . 060 & . 588 & . 34 & . 42 & . 022 & . 011 & . 00 \\
\hline SEP & & & & & & & & & & & & \\
\hline 13... & -- & -- & -- & <. 001 & <. 005 & <. 002 & -- & -- & -- & -- & -- & -- \\
\hline
\end{tabular}

OHIO RIVER MAIN STEM
03303280 OHIO RIVER AT CANNELTON DAM, KY--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


OHIO RIVER MAIN STEM
03303280 OHIO RIVER AT CANNELTON DAM, KY--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DATE} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { VANA- } \\
& \text { DIUM, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS V) } \\
& (01085)
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { ZINC, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS ZN) } \\
(01090 \text { ) }
\end{gathered}
\]} & & & & & & & & & \\
\hline & & & \[
\begin{aligned}
& \text { URANIUM } \\
& \text { NATURAL } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS U) } \\
& (22703)
\end{aligned}
\] & CARBON, ORGANIC DISSOLVED (MG/L AS C) (00681) & \begin{tabular}{l}
CARBON, \\
ORGANIC \\
SUS- \\
PENDED \\
TOTAL \\
(MG/L \\
AS C) \\
(00689)
\end{tabular} & \begin{tabular}{l}
ALA- \\
CHLOR, \\
WATER, \\
DISS, \\
REC, \\
(UG/L) \\
(46342)
\end{tabular} & \begin{tabular}{l}
ACETO- \\
CHLOR, \\
WATER \\
FLTRD REC \\
(UG/L)
\((49260)\)
\end{tabular} & ATRAZINE, WATER, DISS, REC (UG/L) (39632) & \[
\begin{aligned}
& \text { ALPHA } \\
& \text { BHC } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L) } \\
& (34253)
\end{aligned}
\] & \begin{tabular}{l}
BUTYL- \\
ATE, \\
WATER, \\
DISS, \\
REC \\
(UG/L) \\
(04028)
\end{tabular} & \[
\begin{gathered}
\text { CHLOR- } \\
\text { PYRIFOS } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L) } \\
(38933)
\end{gathered}
\] \\
\hline \multicolumn{12}{|l|}{NOV} \\
\hline 23. & \(<10\) & -- & -- & 3.5 & 2.0 & \(<.002\) & . 0165 & . 174 & <. 0020 & <. 0020 & \(<.0040\) \\
\hline \multicolumn{12}{|l|}{DEC} \\
\hline 21. & <10 & 4.7 & \(<1.0\) & 3.2 & . 40 & <. 002 & E. 0051 & . 140 & <. 0020 & <. 0020 & \(<.0040\) \\
\hline \multicolumn{12}{|l|}{JAN} \\
\hline 13. & \(<10\) & 1.4 & <1.0 & 3.2 & >5.0 & \(<.002\) & \(<.0020\) & . 063 & <. 0020 & <. 0020 & <. 0040 \\
\hline 13. & -- & <. 50 & <. 20 & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{MAR} \\
\hline 15. & \(<10\) & -- & -- & 3.0 & 1.6 & \(<.002\) & <. 0020 & . 035 & \(<.0020\) & <. 0020 & <. 0040 \\
\hline 15. & <10 & -- & -- & 2.9 & 1.4 & <. 002 & <. 0020 & . 033 & <. 0020 & <. 0020 & <. 0040 \\
\hline \multicolumn{12}{|l|}{APR} \\
\hline 05. & \(<10\) & 1.4 & \(<1.0\) & 3.8 & . 30 & \(<.002\) & \(<.0020\) & . 027 & \(<.0020\) & \(<.0020\) & \(<.0040\) \\
\hline 21. & <10 & -- & -- & 1.7 & . 70 & <. 002 & <. 0020 & <. 001 & <. 0020 & <. 0020 & <. 0040 \\
\hline 21. & -- & -- & -- & . 30 & <. 20 & <. 002 & . 0159 & . 059 & <. 0020 & <. 0020 & <. 0040 \\
\hline \multicolumn{12}{|l|}{MAY} \\
\hline 04. & <10 & -- & -- & 2.6 & . 40 & <. 002 & . 0297 & . 226 & \(<.0020\) & <. 0020 & \(<.0040\) \\
\hline 19. & <10 & -- & -- & 2.5 & . 40 & <. 002 & . 176 & . 690 & <. 0020 & <. 0020 & <. 0040 \\
\hline 19. & -- & 1.1 & \(<.20\) & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JUN} \\
\hline 10. & \(<10\) & 1.3 & <1.0 & 2.0 & . 40 & E. 003 & . 0174 & . 152 & <. 0020 & <. 0020 & <. 0040 \\
\hline 29. & <10 & -- & -- & 2.7 & . 60 & <. 002 & . 140 & . 301 & <. 0020 & <. 0020 & <. 0040 \\
\hline 29.. & -- & -- & -- & 1.1 & <. 20 & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{AUG} \\
\hline 04. & <10 & 1.3 & <1.0 & 3.3 & . 50 & \(<.002\) & . 0128 & . 241 & \(<.0020\) & <. 0020 & <. 0040 \\
\hline 25 & <10 & -- & -- & 3.7 & . 30 & \(<.002\) & <. 0020 & . 131 & <. 0020 & <. 0020 & <. 0040 \\
\hline 25. & <10 & -- & -- & 3.1 & . 30 & <. 002 & <. 0020 & . 132 & <. 0020 & <. 0020 & <. 0040 \\
\hline \multicolumn{12}{|l|}{SEP} \\
\hline 13... & -- & \(<.50\) & <. 20 & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & DEETHYL & & & & & & & & & \\
\hline DATE & \[
\begin{aligned}
& \text { CYANA- } \\
& \text { ZINE, } \\
& \text { WATER, } \\
& \text { DISS, } \\
& \text { REC } \\
& \text { (UG/L) } \\
& (04041)
\end{aligned}
\] & \[
\begin{aligned}
& \text { ATRA- } \\
& \text { ZINE, } \\
& \text { WATER, } \\
& \text { DISS, } \\
& \text { REC } \\
& \text { (UG/L) } \\
& (04040)
\end{aligned}
\] & \[
\begin{gathered}
\text { DI- } \\
\text { AZINON, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L) } \\
(39572)
\end{gathered}
\] & \[
\begin{gathered}
\text { DI- } \\
\text { ELDRIN } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L) } \\
(39381)
\end{gathered}
\] & \begin{tabular}{l}
FONOFOS \\
WATER \\
DISS \\
REC \\
(UG/L) \\
(04095)
\end{tabular} & \[
\begin{aligned}
& \text { LINDANE } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L) } \\
& (39341)
\end{aligned}
\] & \[
\begin{aligned}
& \text { MALA- } \\
& \text { THION, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L) } \\
& (39532)
\end{aligned}
\] & \[
\begin{aligned}
& \text { METRI- } \\
& \text { BUZIN } \\
& \text { SENCOR } \\
& \text { WATER } \\
& \text { DISSOLV } \\
& \text { (UG/L) } \\
& (82630)
\end{aligned}
\] & \[
\begin{aligned}
& \text { METO- } \\
& \text { LACHLOR } \\
& \text { WATER } \\
& \text { DISSOLV } \\
& \text { (UG/L) } \\
& \text { (39415) }
\end{aligned}
\] & \[
\begin{gathered}
\text { P, } \mathrm{P}^{\prime} \\
\text { DDE } \\
\text { DISSOLV } \\
\text { (UG/L) } \\
(34653)
\end{gathered}
\] & \begin{tabular}{l}
PARA- \\
THION, DISSOLVED (UG/L) (39542)
\end{tabular} \\
\hline \multicolumn{12}{|l|}{NOV} \\
\hline 23. & . 0357 & E. 0386 & <. 002 & \(<.001\) & \(<.0030\) & <. 004 & <. 005 & \(<.004\) & . 078 & <. 0060 & \(<.004\) \\
\hline \multicolumn{12}{|l|}{DEC} \\
\hline 21. & . 0316 & E. 0403 & \(<.002\) & <. 001 & \(<.0030\) & <. 004 & \(<.005\) & \(<.004\) & . 072 & <. 0060 & \(<.004\) \\
\hline \multicolumn{12}{|l|}{JAN} \\
\hline 13. & . 0169 & E. 0192 & \(<.002\) & <. 001 & <. 0030 & \(<.004\) & <. 005 & \(<.004\) & . 034 & <. 0060 & <. 004 \\
\hline 13. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{MAR} \\
\hline 15. & . 0079 & E. 0152 & \(<.002\) & \(<.001\) & \(<.0030\) & \(<.004\) & \(<.005\) & \(<.004\) & . 022 & \(<.0060\) & \(<.004\) \\
\hline 15. & . 0076 & E. 0143 & <. 002 & <. 001 & <. 0030 & <. 004 & <. 005 & <. 004 & . 021 & <. 0060 & <. 004 \\
\hline \multicolumn{12}{|l|}{APR} \\
\hline 05. & . 0048 & E. 0093 & \(<.002\) & \(<.001\) & \(<.0030\) & \(<.004\) & \(<.005\) & \(<.004\) & . 022 & \(<.0060\) & \(<.004\) \\
\hline 21. & <. 0040 & <. 0020 & <. 002 & <. 001 & <. 0030 & \(<.004\) & \(<.005\) & <. 004 & <. 002 & <. 0060 & <. 004 \\
\hline 21 & . 0058 & E. 0080 & E. 001 & <. 001 & <. 0030 & <. 004 & <. 005 & <. 004 & . 051 & <. 0060 & \(<.004\) \\
\hline \multicolumn{12}{|l|}{MAY} \\
\hline 04. & . 0100 & E. 0247 & \(<.002\) & \(<.001\) & <. 0030 & \(<.004\) & \(<.005\) & . 011 & . 084 & <. 0060 & \(<.004\) \\
\hline 19. & . 0674 & E. 0422 & . 006 & <. 001 & <. 0030 & <. 004 & <. 005 & <. 004 & . 166 & <. 0060 & <. 004 \\
\hline 19. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JUN} \\
\hline 10. & . 0194 & E. 0166 & E. 003 & \(<.001\) & <. 0030 & \(<.004\) & \(<.005\) & \(<.004\) & . 049 & <. 0060 & \(<.004\) \\
\hline 29. & . 0119 & E. 0333 & <. 002 & <. 001 & <. 0030 & <. 004 & <. 005 & \(<.004\) & . 031 & <. 0060 & \(<.004\) \\
\hline 29... & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{AUG} \\
\hline 04. & . 0202 & E. 0447 & \(<.004\) & \(<.001\) & \(<.0030\) & \(<.004\) & \(<.005\) & \(<.004\) & . 061 & \(<.0060\) & \(<.004\) \\
\hline 25 & . 0103 & E. 0307 & \(<.002\) & \(<.001\) & <. 0030 & <. 004 & \(<.005\) & <. 004 & . 034 & <. 0060 & <. 004 \\
\hline 25. & . 0109 & E. 0351 & <. 002 & <. 001 & <. 0030 & <. 004 & <. 005 & <. 004 & . 034 & <. 0060 & <. 004 \\
\hline \multicolumn{12}{|l|}{SEP} \\
\hline 13... & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline
\end{tabular}

OHIO RIVER MAIN STEM
03303280 OHIO RIVER AT CANNELTON DAM, KY--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


OHIO RIVER MAIN STEM
03303280 OHIO RIVER AT CANNELTON DAM, KY--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{} & & & & & & & & & & & \\
\hline & \[
\begin{gathered}
\text { PRO- } \\
\text { PANIL }
\end{gathered}
\] & \[
\begin{gathered}
\text { PRO- } \\
\text { PARGITE }
\end{gathered}
\] & TEBUTHIURON & \[
\begin{aligned}
& \text { TER- } \\
& \text { BACIL }
\end{aligned}
\] & \[
\begin{gathered}
\text { TER- } \\
\text { BUFOS }
\end{gathered}
\] & TRIALLATE & TRI-FLUR- & THIOBENCARB & & \begin{tabular}{l}
SEDI- \\
MENT,
\end{tabular} & \[
\begin{aligned}
& \text { SED. } \\
& \text { SUSP. }
\end{aligned}
\] \\
\hline & WATER & WATER & WATER & WATER & WATER & WATER & ALIN & WATER & SEDI- & DIS- & SIEVE \\
\hline & FLTRD & FLTRD & FLTRD & FLTRD & FLTRD & FLTRD & WAT FLT & FLTRD & MENT, & CHARGE, & DIAM. \\
\hline & 0.7 U & SUS- & SUS- & \% FINER \\
\hline DATE & \[
\begin{aligned}
& \text { GF, REC } \\
& \text { (UG/L) }
\end{aligned}
\] & \begin{tabular}{l}
GF, REC \\
(UG/L)
\end{tabular} & GF, REC (UG/L) & \begin{tabular}{l}
GF, REC \\
(UG/L)
\end{tabular} & \[
\begin{aligned}
& \text { GF, REC } \\
& (\mathrm{UG} / \mathrm{L})
\end{aligned}
\] & GF, REC (UG/L) & \[
\begin{aligned}
& \text { GF, REC } \\
& (\mathrm{UG} / \mathrm{L})
\end{aligned}
\] & \begin{tabular}{l}
GF, REC \\
(UG/L)
\end{tabular} & \begin{tabular}{l}
PENDED \\
(MG/L)
\end{tabular} & \[
\begin{aligned}
& \text { PENDED } \\
& \text { (T/DAY) }
\end{aligned}
\] & \[
\begin{gathered}
\text { THAN } \\
.062 \mathrm{MM}
\end{gathered}
\] \\
\hline & (82679) & (82685) & (82670) & (82665) & (82675) & (82678) & (82661) & (82681) & (80154) & (80155) & (70331) \\
\hline \multicolumn{12}{|l|}{NOV} \\
\hline 23. & <. 0040 & <. 0130 & E. 0064 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & <. 0020 & 7 & 57 & 100 \\
\hline \multicolumn{12}{|l|}{DEC} \\
\hline 21 & \(<.0040\) & \(<.0130\) & E. 0066 & <. 0070 & \(<.0130\) & \(<.0010\) & <. 0020 & \(<.0020\) & 5 & 348 & 92 \\
\hline \multicolumn{12}{|l|}{JAN} \\
\hline 13. & \(<.0040\) & \(<.0130\) & E. 0046 & \(<.0070\) & \(<.0130\) & <. 0010 & \(<.0020\) & \(<.0020\) & 463 & 324000 & 95 \\
\hline 13. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{MAR} \\
\hline 15. & \(<.0040\) & \(<.0130\) & \(<.0100\) & \(<.0070\) & \(<.0130\) & \(<.0010\) & \(<.0020\) & \(<.0020\) & 91 & 48400 & 98 \\
\hline 15. & <. 0040 & <. 0130 & <. 0100 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & <. 0020 & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{APR} \\
\hline 05. & <. 0040 & <. 0130 & \(<.0100\) & \(<.0070\) & \(<.0130\) & <. 0010 & <. 0020 & \(<.0020\) & 10 & 2550 & 99 \\
\hline 21. & <. 0040 & <. 0130 & <. 0100 & \(<.0070\) & <. 0130 & <. 0010 & <. 0020 & <. 0020 & 45 & 16200 & 99 \\
\hline 21. & <. 0040 & <. 0130 & <. 0100 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & <. 0020 & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{MAY} \\
\hline 04. & \(<.0040\) & \(<.0130\) & E. 0048 & \(<.0070\) & \(<.0130\) & <. 0010 & \(<.0020\) & \(<.0020\) & 17 & 4530 & 99 \\
\hline 19. & <. 0040 & \(<.0900\) & E. 0091 & \(<.0070\) & \(<.0130\) & \(<.0010\) & \(<.0020\) & \(<.0020\) & 6 & 486 & 99 \\
\hline 19. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JUN} \\
\hline 10. & \(<.0040\) & \(<.0130\) & \(<.0100\) & <. 0070 & \(<.0130\) & <. 0010 & \(<.0020\) & \(<.0020\) & 9 & 812 & 97 \\
\hline 29. & <. 0040 & <. 0130 & <. 0100 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & <. 0020 & 11 & 2020 & 99 \\
\hline 29. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{AUG} \\
\hline 04. & <. 0040 & <. 0130 & E. 0081 & <. 0070 & \(<.0130\) & <. 0010 & <. 0020 & \(<.0020\) & 2 & 82 & 100 \\
\hline 25. & <. 0040 & -- & E. 0073 & <. 0070 & <. 0130 & <. 0010 & \(<.0020\) & \(<.0020\) & 7 & 455 & 89 \\
\hline 25. & <. 0040 & -- & E. 0065 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & <. 0020 & -- & - & -- \\
\hline \multicolumn{12}{|l|}{SEP} \\
\hline 13... & -- & - & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline
\end{tabular}

GREEN RIVER BASIN
03307000 RUSSELL CREEK NEAR COLUMBIA, KY
LOCATION.--Lat \(37^{\circ} 07^{\prime} 09^{\prime \prime}\), long \(85^{\circ} 23^{\prime} 3^{\prime \prime \prime}\), Adair County, Hydrologic Unit 05110001, on left bank at downstream side of bridge on State Highway \(61,0.3 \mathrm{mi}\) upstream from Butlers Fork, 5.0 mi west of Columbia, and at mile 26.9 . Records include flow of Butlers Fork.
DRAINAGE AREA. - \(188 \mathrm{mi}^{2}\) (includes Butlers Fork), of which about \(15 \mathrm{mi}^{\circ}\) does not contribute directly to surface runoff.
PERIOD OF RECORD.--October 1939 to current year. Prior to December 1939, monthly discharge only, published in WSP 1305 .
REVISED RECORDS.--WSP 1275: 1940. WSP 1335: 1953. WSP 1555: Drainage area. WRD KY-75-1: 1949 (M), 1952 (M), 1955 (M), 1962 (M), 1967 (M), 1974 (M).
GAGE.--Water-stage recorder. Datum of gage is 610.96 ft above sea level. Prior to June 25 , 1953 , nonrecording gage at same site and datum.

REMARKS.--Records fair.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in Jan. 1937 reached a stage of about 23 ft, from info. by local residents. PEAKS ABOVE BASE.--Peak discharges above base of \(4,500 \mathrm{ft}^{3} / \mathrm{s}\) and maximun*.
\begin{tabular}{rcccccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & \begin{tabular}{c} 
Time
\end{tabular} & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} \\
Jan. 9 & 1100 & \(* 9430\) & 17.54 & Jan. 23 & 1600 & 5790
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 13 & 20 & 26 & 105 & 1570 & 669 & 106 & 236 & 38 & 130 & 14 & 7.9 \\
\hline 2 & 12 & 19 & 38 & 153 & 1030 & 481 & 107 & 163 & 41 & 90 & 13 & 6.7 \\
\hline 3 & 18 & 20 & 35 & 1000 & 755 & 1420 & 99 & 126 & 50 & 80 & 12 & 5.9 \\
\hline 4 & 22 & 20 & 27 & 515 & 575 & 1090 & 124 & 104 & 50 & 69 & 12 & 5.4 \\
\hline 5 & 27 & 19 & 44 & 295 & 422 & 757 & 112 & 377 & 42 & 64 & 10 & 5.3 \\
\hline 6 & 25 & 20 & 173 & 218 & 354 & 823 & 113 & 1550 & 81 & 59 & 9.3 & 4.9 \\
\hline 7 & 22 & 20 & 100 & 180 & 334 & 738 & 110 & 711 & 67 & 57 & 8.1 & 4.3 \\
\hline 8 & 28 & 21 & 541 & 1460 & 318 & 568 & 93 & 376 & 50 & 45 & 7.4 & 3.9 \\
\hline 9 & 50 & 22 & 430 & 6930 & 262 & 624 & 148 & 236 & 42 & 41 & 6.8 & 3.7 \\
\hline 10 & 31 & 26 & 152 & 1310 & 236 & 609 & 217 & 172 & 38 & 38 & 6.6 & 3.5 \\
\hline 11 & 25 & 41 & 87 & 817 & 213 & 483 & 147 & 135 & 75 & 36 & 9.0 & 2.9 \\
\hline 12 & 21 & 53 & 80 & 621 & 772 & 396 & 119 & 111 & 69 & 34 & 12 & 3.3 \\
\hline 13 & 19 & 30 & 693 & 474 & 876 & 347 & 101 & 109 & 53 & 32 & 11 & 3.5 \\
\hline 14 & 18 & 22 & 471 & 628 & 604 & 1700 & 94 & 107 & 148 & 31 & 9.6 & 4.0 \\
\hline 15 & 17 & 20 & 206 & 702 & 470 & 1600 & 153 & 90 & 153 & 30 & 8.6 & 4.0 \\
\hline 16 & 17 & 18 & 128 & 558 & 388 & 785 & 239 & 80 & 73 & 28 & 8.0 & 4.5 \\
\hline 17 & 16 & 17 & 98 & 445 & 432 & 512 & 158 & 71 & 59 & 27 & 7.1 & 4.1 \\
\hline 18 & 16 & 17 & 82 & 812 & 457 & 381 & 122 & 65 & 49 & 26 & 6.3 & 3.5 \\
\hline 19 & 15 & 16 & 67 & 664 & 370 & 285 & 106 & 64 & 42 & 24 & 5.2 & 3.5 \\
\hline 20 & 15 & 17 & 68 & 508 & 306 & 231 & 101 & 62 & 38 & 23 & 5.1 & 5.7 \\
\hline 21 & 18 & 20 & 69 & 412 & 255 & 206 & 95 & 56 & 36 & 24 & 4.9 & 6.8 \\
\hline 22 & 20 & 20 & 694 & 370 & 220 & 173 & 87 & 52 & 34 & 24 & 4.6 & 9.7 \\
\hline 23 & 18 & 21 & 437 & 4170 & 202 & 147 & 79 & 49 & 32 & 23 & 4.9 & 13 \\
\hline 24 & 17 & 19 & 253 & 1610 & 205 & 160 & 77 & 60 & 34 & 22 & 10 & 9.3 \\
\hline 25 & 17 & 18 & 167 & 880 & 194 & 156 & 72 & 83 & 161 & 21 & 94 & 7.5 \\
\hline 26 & 18 & 20 & 133 & 650 & 179 & 129 & 79 & 57 & 107 & 20 & 62 & 5.8 \\
\hline 27 & 18 & 22 & 124 & 510 & 208 & 113 & 142 & 48 & 71 & 19 & 33 & 5.6 \\
\hline 28 & 18 & 24 & 124 & 409 & 865 & 102 & 273 & 44 & 200 & 17 & 20 & 5.2 \\
\hline 29 & 17 & 21 & 146 & 331 & --- & 94 & 850 & 40 & 710 & 16 & 14 & 7.3 \\
\hline 30 & 17 & 19 & 142 & 272 & --- & 86 & 421 & 38 & 280 & 15 & 11 & 8.2 \\
\hline 31 & 19 & --- & 122 & 379 & --- & 83 & --- & 38 & --- & 15 & 9.1 & --- \\
\hline TOTAL & 624 & 662 & 5957 & 28388 & 13072 & 15948 & 4744 & 5510 & 2923 & 1180 & 448.6 & 168.9 \\
\hline MEAN & 20.1 & 22.1 & 192 & 916 & 467 & 514 & 158 & 178 & 97.4 & 38.1 & 14.5 & 5.63 \\
\hline MAX & 50 & 53 & 694 & 6930 & 1570 & 1700 & 850 & 1550 & 710 & 130 & 94 & 13 \\
\hline MIN & 12 & 16 & 26 & 105 & 179 & 83 & 72 & 38 & 32 & 15 & 4.6 & 2.9 \\
\hline CFSM & . 12 & . 13 & 1.11 & 5.29 & 2.70 & 2.97 & . 91 & 1.03 & . 56 & . 22 & . 08 & . 03 \\
\hline IN. & . 13 & . 14 & 1.28 & 6.10 & 2.81 & 3.43 & 1.02 & 1.18 & . 63 & . 25 & . 10 & . 04 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1940 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 73.8 & 203 & 408 & 485 & 566 & 585 & 394 & 280 & 198 & 128 & 87.8 & 707 \\
MAX & 636 & 1047 & 2540 & 1779 & 1490 & 1787 & 856 & 1464 & 800 & 11902 \\
(WY) & 1976 & 1952 & 1979 & 1950 & 1956 & 1975 & 1972 & 1983 & 1950 & 1967 & 1967 & 1979 \\
MIN & 1.38 & 8.92 & 18.6 & 26.5 & 61.1 & 91.0 & 70.1 & 39.8 & 14.6 & 10.0 & 4.25 & 2.09 \\
(WY) & 1954 & 1954 & 1954 & 1981 & 1941 & 1941 & 1986 & 1941 & 1988 & 1944 & 1991 & 1953
\end{tabular}

GREEN RIVER BASIN
03307000 RUSSELL CREEK NEAR COLUMBIA, KY--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALENDAR YEAR & FOR 1999 WATER YEAR & WATER YEARS & \(1940-1999\) \\
\hline ANNUAL TOTAL & 107619 & 79625.5 & & \\
\hline ANNUAL MEAN & 295 & 218 & 292 & \\
\hline HIGHEST ANNUAL MEAN & & & 651 & 1979 \\
\hline LOWEST ANNUAL MEAN & & & 118 & 1941 \\
\hline HIGHEST DAILY MEAN & 5310 Jun 1 & 6930 Jan 9 & 25000 & Dec 91978 \\
\hline LOWEST DAILY MEAN & 12 Sep 16 & 2.9 Sep 11 & . 40 & Sep 251952 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 13 Sep 12 & 3.5 Sep 8 & . 47 & Oct 191953 \\
\hline INSTANTANEOUS PEAK FLOW & & 9410 Jan 9 & 40600 & Sep 11982 \\
\hline INSTANTANEOUS PEAK STAGE & & 17.53 Jan 9 & 26.12 & Sep 11982 \\
\hline INSTANTANEOUS LOW FLOW & & & 5.7 & Sep 21993 \\
\hline ANNUAL RUNOFF (CFSM) & 1.70 & 1.26 & 1.69 & \\
\hline ANNUAL RUNOFF (INCHES) & 23.14 & 17.12 & 22.91 & \\
\hline 10 PERCENT EXCEEDS & 693 & 614 & 634 & \\
\hline 50 PERCENT EXCEEDS & 124 & 65 & 102 & \\
\hline 90 PERCENT EXCEEDS & 18 & 8.0 & 15 & \\
\hline
\end{tabular}


LOCATION.--Lat \(37^{\circ} 16^{\prime} 05^{\prime \prime}\), long \(85^{\circ} 53^{\prime} 10^{\prime \prime}\), Hart County, Hydrologic Unit 05110001 , on right bank at downstream side of pier of bridge on U.S. Highway 31 W at Munfordville, and at mile 225.9.
DRAINAGE AREA. \(--1,673 \mathrm{mi}^{2}\), of which about \(180 \mathrm{mi}^{2}\) does not contribute directly to surface runoff.
PERIOD OF RECORD.--February 1915 to December 1922, October 1927 to September 1931, December 1936 to February 1937 (in WSP 838 ), October 1937 to current year. Monthly discharge only October 1937 to March 1938, published in WSP 1305. Gage-height records collected at same site since 1924 are contained in reports of National Weather Service.

REVISED RECORDS.--WSP 1555: 1916(M), drainage area. WSP 1909: 1937
GAGE.--Water-stage recorder. Datum of gage is 451.70 ft above sea level. See WDR KY-90-1 for history of changes prior to Nov. 29, 1940.

REMARKS.--Records good except for estimated periods, which are fair. Flow regulated by Green River Lake beginning February 1969 (station 03305990).

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of January 1913 reached a stage of 54.0 ft at former site, discharge, \(67,000 \mathrm{ft} / \mathrm{s}\).
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 194 & 1190 & 480 & 444 & 7290 & 4290 & 996 & 1980 & 302 & 1060 & e188 & 160 \\
\hline 2 & 187 & 1190 & 427 & 438 & 9240 & 3920 & 1080 & 1320 & 322 & 961 & e183 & 155 \\
\hline 3 & 220 & 1190 & 353 & 1740 & 7740 & 5190 & 1050 & 1030 & 334 & 692 & e180 & 152 \\
\hline 4 & 275 & 1190 & 342 & 3800 & 7060 & 9310 & 1100 & 875 & 338 & 502 & e177 & 150 \\
\hline 5 & 326 & 1180 & 323 & 3120 & 6500 & 7390 & 1260 & 976 & 335 & 447 & e173 & 149 \\
\hline 6 & 281 & 1180 & 320 & 3250 & 6350 & 6290 & 1180 & 4060 & 308 & 408 & e168 & 149 \\
\hline 7 & 258 & 1180 & 513 & 3070 & 6110 & 6470 & 1390 & 6820 & 286 & 399 & e162 & 147 \\
\hline 8 & 271 & 1160 & 1090 & 3480 & 5940 & 5690 & 1360 & 4140 & 285 & 383 & e160 & 144 \\
\hline 9 & 278 & 1020 & 2010 & 17100 & 5720 & 5460 & 1200 & 4080 & 302 & 354 & e225 & 143 \\
\hline 10 & 262 & 1020 & 2110 & 22500 & 5500 & 6020 & 1190 & 4140 & 274 & 270 & e325 & 140 \\
\hline 11 & 251 & 1030 & 2100 & 11700 & 5360 & 5680 & 1200 & 3440 & 262 & 243 & 447 & 139 \\
\hline 12 & 253 & 884 & 1910 & 7200 & 6070 & 5130 & 1060 & 1970 & 248 & 237 & 427 & 140 \\
\hline 13 & 240 & 843 & 2280 & 6460 & 8860 & 4730 & 944 & 1440 & 246 & 227 & e350 & 143 \\
\hline 14 & 229 & 877 & 4200 & 6190 & 7020 & 6750 & 874 & 1060 & 382 & 221 & e300 & 144 \\
\hline 15 & 222 & 853 & 3110 & 7300 & 5650 & 13900 & 876 & 966 & 422 & 217 & e270 & 143 \\
\hline 16 & 219 & 832 & 2260 & 7180 & 5040 & 9870 & 1210 & 1030 & 459 & 213 & e240 & 143 \\
\hline 17 & 254 & 816 & 1950 & 6620 & 4320 & 7670 & 1260 & 977 & 392 & 211 & e203 & 142 \\
\hline 18 & 458 & 809 & 1780 & 6400 & 3550 & 6800 & 1070 & 931 & 304 & 204 & e160 & 140 \\
\hline 19 & 473 & 808 & 1480 & 7100 & 3370 & 5870 & 943 & 893 & 266 & 209 & e155 & 142 \\
\hline 20 & 472 & 811 & 903 & 6600 & 3110 & 4480 & 878 & 634 & 247 & 223 & 149 & 154 \\
\hline 21 & 472 & 813 & 822 & 6200 & 2640 & 3070 & 838 & 518 & 236 & 358 & 146 & 159 \\
\hline 22 & 468 & 806 & 730 & 5670 & 1940 & 2260 & 801 & 486 & 226 & 597 & 164 & 167 \\
\hline 23 & 731 & 806 & 2700 & 13800 & 1770 & 1780 & 760 & 466 & 224 & 355 & 155 & 169 \\
\hline 24 & 1150 & 790 & 2080 & 19100 & 1720 & 1690 & 712 & 489 & 246 & 273 & 155 & 157 \\
\hline 25 & 1190 & 546 & 1510 & 9220 & 1630 & 1580 & 678 & 502 & 518 & 239 & 160 & 150 \\
\hline 26 & 1200 & 515 & 1570 & 5690 & 1230 & 1400 & 712 & 478 & 815 & e232 & 154 & 149 \\
\hline 27 & 1200 & 540 & 1430 & 6780 & 1150 & 1240 & 1120 & 448 & 603 & e219 & 261 & 153 \\
\hline 28 & 1200 & 506 & 1350 & 6210 & 2010 & 1130 & 1140 & 395 & 555 & e211 & 243 & 165 \\
\hline 29 & 1200 & 483 & 1310 & 5690 & -- & 1070 & 2220 & 342 & 681 & e205 & 210 & 178 \\
\hline 30 & 1200 & 475 & 1210 & 4930 & --- & 1010 & 3550 & 322 & 1240 & e195 & 184 & 195 \\
\hline 31 & 1200 & - & 610 & 3850 & -- & 965 & --- & 307 & --- & e192 & 168 & \\
\hline TOTAL & 16834 & 26343 & 45263 & 218832 & 133890 & 148105 & 34652 & 47515 & 11658 & 10757 & 6642 & 4561 \\
\hline MEAN & 543 & 878 & 1460 & 7059 & 4782 & 4778 & 1155 & 1533 & 389 & 347 & 214 & 152 \\
\hline MAX & 1200 & 1190 & 4200 & 22500 & 9240 & 13900 & 3550 & 6820 & 1240 & 1060 & 447 & 195 \\
\hline MIN & 187 & 475 & 320 & 438 & 1150 & 965 & 678 & 307 & 224 & 192 & 146 & 139 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
MEAN & 1361 & 2441 & 4132 & 4789 & 5348 & 4981 & 3625 & 3405 & 2391 & 1116 & 877 \\
MAX & 5337 & 5187 & 12800 & 12130 & 10710 & 12040 & 8632 & 13250 & 7209 & 3132 & 3642 \\
(WY) & 1976 & 1978 & 1979 & 1974 & 1991 & 1975 & 1994 & 1983 & 1997 & 1973 & 1977 \\
MIN & 244 & 210 & 545 & 255 & 1952 & 1066 & 552 & 487 & 214 & 280 & 202 \\
(WY) & 1987 & 1972 & 1981 & 1981 & 1992 & 1983 & 1986 & 1988 & 1988 & 1993 & 1993
\end{tabular}

GREEN RIVER BASIN
03308500 GREEN RIVER AT MUNFORDVILLE, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN HIGHEST DATIY MEAN HIGHEST DAILY MEAN
LOWEST DAILY MEAN LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS
e Estimated
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{14}{*}{FOR} & 1998 CA & AR Y & EAR & \multicolumn{3}{|l|}{FOR 1999 WATER YEAR} & WATER YEA & 1970 & O & 1999 \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{4}{*}{\[
\begin{array}{r}
1296965 \\
3553
\end{array}
\]}} & \multicolumn{3}{|l|}{705052} & & & & \\
\hline & & & & \multicolumn{3}{|l|}{} & 2965 & & & \\
\hline & & & & \multicolumn{3}{|l|}{1932} & 5285 & & & 1979 \\
\hline & & & & & & & 1348 & & & 1988 \\
\hline & 20200 & Jan & & 22500 & & n 10 & 62800 & May & 8 & 1984 \\
\hline & 187 & Sep & 16 & 139 & & p 11 & 139 & Sep & 11 & 1999 \\
\hline & \multirow[t]{4}{*}{189} & Sep & & 142 & & P 9 & 142 & Sep & 9 & 1999 \\
\hline & & & & 23200 & & n 10 & 76800 & Mar & 1 & 1962 \\
\hline & & & & 29.16 & Jan & n 10 & 57.72 & Mar & 1 & 1962 \\
\hline & & & & & & & 157 & Jul & 8 & 1988 \\
\hline & \multicolumn{3}{|l|}{8360} & 6140 & & & 7040 & & & \\
\hline & \multicolumn{3}{|l|}{2030} & 815 & & & 1540 & & & \\
\hline & \multicolumn{3}{|l|}{231} & 165 & & & 282 & & & \\
\hline
\end{tabular}


03310300 NOLIN RIVER AT WHITE MILLS, KY
LOCATION.--Lat \(37^{\circ} 33^{\prime} 03^{\prime \prime}\), long \(86^{\circ} 02^{\prime} 43^{\prime \prime}\), Hardin County, Hydrologic Unit 05110001 , on right bank, 0.8 mi southwest of White Mills, 1.6 mi downstream from bridge on State Highway 84, and at mile 78.7.
DRAINAGE AREA. \(-357 \mathrm{mi}^{2}\), of which about \(120 \mathrm{mi}^{2}\) does not contribute directly to surface runoff.
PERIOD OF RECORD.--October 1959 to current year.
GAGE.--Water-stage recorder. Datum of gage is 583.08 ft above sea level. Prior to Jan. 8 , 1960 , nonrecording gage at same site and datum.

REMARKS.--Records fair except for those estimated which are poor.
PEAKS ABOVE BASE.--Peak discharges above base of \(2,500 \mathrm{ft}^{3} / \mathrm{s}\) and maximun*.
\begin{tabular}{rccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 8 & 0515 & \(* 3090\) & 11.73
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 64 & 91 & 71 & 95 & e258 & 616 & 346 & 400 & 138 & 159 & 54 & 35 \\
\hline 2 & 55 & 145 & 60 & 90 & e458 & 530 & 339 & 325 & 158 & 138 & 55 & 35 \\
\hline 3 & 51 & 104 & 59 & 89 & e345 & 522 & 318 & 294 & 153 & 127 & 53 & 35 \\
\hline 4 & 48 & 89 & 106 & 90 & e179 & 551 & 409 & 271 & 139 & e118 & 53 & 35 \\
\hline 5 & 44 & 80 & 79 & 95 & e119 & 488 & 360 & 309 & 130 & e110 & 50 & 35 \\
\hline 6 & 43 & 78 & 69 & 150 & e90 & 506 & 549 & 989 & 123 & e102 & 48 & 34 \\
\hline 7 & 42 & 87 & 65 & 835 & e165 & 539 & 569 & 740 & 119 & 97 & e55 & 33 \\
\hline 8 & 40 & 78 & 63 & 2550 & e330 & 483 & 471 & 535 & 115 & 90 & e63 & 33 \\
\hline 9 & 40 & 72 & 80 & 754 & e690 & 609 & 423 & 434 & 112 & 86 & e69 & 33 \\
\hline 10 & 39 & 68 & 98 & 420 & 553 & 783 & 378 & 380 & 114 & 86 & 70 & 32 \\
\hline 11 & 39 & 65 & 95 & 338 & 542 & 680 & 335 & 336 & 123 & 89 & 65 & 33 \\
\hline 12 & 39 & 63 & 82 & 292 & 601 & 611 & 304 & 304 & 108 & e87 & 57 & 33 \\
\hline 13 & 38 & 81 & 75 & 260 & 702 & 567 & 282 & 362 & 100 & e84 & 53 & 32 \\
\hline 14 & 37 & 89 & 71 & 237 & 624 & 891 & 276 & 349 & 111 & e80 & 49 & 32 \\
\hline 15 & 34 & 78 & 66 & 324 & 574 & 1740 & 294 & 293 & 152 & 74 & e48 & 32 \\
\hline 16 & 30 & 71 & 63 & 394 & 545 & 1150 & 307 & 259 & e105 & 71 & e47 & 32 \\
\hline 17 & 31 & 66 & 62 & 315 & 556 & 915 & 270 & 247 & e88 & 69 & e46 & 32 \\
\hline 18 & 30 & 63 & 59 & 267 & 525 & 759 & 244 & 227 & e95 & 67 & 46 & 32 \\
\hline 19 & 42 & 61 & 57 & 251 & 487 & 655 & 229 & 215 & e92 & 65 & 44 & 31 \\
\hline 20 & 32 & 59 & 55 & 235 & 448 & 582 & 220 & 201 & 91 & 65 & 44 & 45 \\
\hline 21 & 29 & 61 & 55 & 230 & 403 & 541 & 219 & 188 & 88 & e67 & 42 & 46 \\
\hline 22 & 29 & 91 & 106 & 270 & 367 & 493 & 216 & 179 & 87 & e74 & 40 & 42 \\
\hline 23 & 27 & 71 & 85 & 377 & 347 & 455 & 206 & 172 & 86 & e84 & 40 & 40 \\
\hline 24 & 41 & 64 & 161 & 284 & 346 & 547 & 199 & 253 & 95 & e105 & 40 & 37 \\
\hline 25 & 88 & 60 & 224 & 245 & 339 & 483 & 188 & 207 & e470 & 136 & 40 & 35 \\
\hline 26 & 489 & 59 & 142 & 230 & 321 & 421 & 288 & 176 & e795 & 93 & 39 & 35 \\
\hline 27 & 442 & 58 & 175 & e198 & 316 & 390 & 481 & 160 & e450 & 77 & 40 & 35 \\
\hline 28 & 188 & 55 & 152 & e162 & 586 & 374 & 347 & 151 & 157 & 69 & 41 & 36 \\
\hline 29 & 131 & 54 & 128 & e132 & --- & 345 & 1230 & 144 & 247 & 64 & 41 & 46 \\
\hline 30 & 105 & 64 & 117 & e90 & --- & 324 & 509 & 138 & 200 & e61 & 39 & 43 \\
\hline 31 & 90 & --- & 107 & e69 & -- & 312 & --- & 135 & --- & e57 & 36 & --- \\
\hline TOTAL & 2477 & 2225 & 2887 & 10368 & 11816 & 18862 & 10806 & 9373 & 5041 & 2751 & 1507 & 1069 \\
\hline MEAN & 79.9 & 74.2 & 93.1 & 334 & 422 & 608 & 360 & 302 & 168 & 88.7 & 48.6 & 35.6 \\
\hline MAX & 489 & 145 & 224 & 2550 & 702 & 1740 & 1230 & 989 & 795 & 159 & 70 & 46 \\
\hline MIN & 27 & 54 & 55 & 69 & 90 & 312 & 188 & 135 & 86 & 57 & 36 & 31 \\
\hline CFSM & . 34 & . 31 & . 39 & 1.41 & 1.78 & 2.57 & 1.52 & 1.28 & . 71 & . 37 & . 21 & . 15 \\
\hline IN. & . 39 & . 35 & . 45 & 1.63 & 1.85 & 2.96 & 1.70 & 1.47 & . 79 & . 43 & . 24 & . 17 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1960 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
MEAN & 153 & 284 & 622 & 686 & 879 & 997 & 755 & 586 & 350 & 244 & 170 \\
MAX & 692 & 1206 & 2356 & 1603 & 3807 & 3353 & 2447 & 2715 & 1630 & 972 & 1966 \\
(WY) & 1978 & 1989 & 1979 & 1974 & 1989 & 1997 & 1972 & 1983 & 1997 & 1967 & 1967 \\
MIN & 37.0 & 48.6 & 44.7 & 55.5 & 156 & 228 & 200 & 131 & 71.9 & 83.2 & 48.6 \\
(WY) & 1970 & 1964 & 1964 & 1981 & 1964 & 1983 & 1986 & 1976 & 1988 & 1994 & 1999
\end{tabular}

GREEN RIVER BASIN
03310300 NOLIN RIVER AT WHITE MILLS, KY--Continued



03311000 NOLIN RIVER AT KYROCK, KY
LOCATION.--Lat \(37^{\circ} 16^{\prime} 42^{\prime \prime}\), long \(86^{\circ} 14^{\prime} 51^{\prime \prime}\), Edmonson County, Hydrologic Unit 05110001, in intake structure of Nolin River Dam on Nolin River, 0.3 mi upstream from Dismal Creek, 1.1 mi northeast of Kyrock, and at mile 7.8 .
DRAINAGE AREA. \(-703 \mathrm{mi}^{2}\), of which about \(223 \mathrm{mi}^{2}\) does not contribute directly to surface runoff. Area at site used Oct. 1 , 1960 , to Sept. 30, 1973, \(707 \mathrm{mi}^{2}\).

PERIOD OF RECORD.--October 1930 to March 1932, July 1939 to September 1950, October 1960 to current year.
GAGE.--Water-stage recorder and outflow gate dials. Datum of gage 400 ft above sea level. See WDR KY-90-1 for history of changes prior to Sept. 30, 1973.

REMARKS.-Water-discharge records not rated, see COOPERATION. Maximum gage height for period of record affected by backwater from the Green River. Flow regulated since March 1963 by Nolin Lake (station 03310900). Discharge records computed using gate openings.

COOPERATION.--Record of discharge furnished by U.S. Army Corps of Engineers.
EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known since 1854, 26.35 ft , in January 1937 , from floodmarks, at site and datum used in 1939-50.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 264 & 1050 & 478 & 196 & 2640 & 480 & 77 & 49 & 52 & 160 & 52 & 52 \\
\hline 2 & 264 & 1050 & 325 & 197 & 3190 & 792 & 77 & 49 & 52 & 267 & 52 & 52 \\
\hline 3 & 265 & 1040 & 197 & 199 & 3190 & 1160 & 78 & 50 & 52 & 267 & 52 & 52 \\
\hline 4 & 265 & 1040 & 149 & 542 & 3930 & 1410 & 78 & 50 & 52 & 267 & 52 & 52 \\
\hline 5 & 265 & 1030 & 126 & 945 & 4230 & 1410 & 79 & 50 & 52 & 267 & 52 & 52 \\
\hline 6 & 265 & 1030 & 126 & 943 & 4190 & 1410 & 79 & 50 & 52 & 267 & 52 & 52 \\
\hline 7 & 398 & 1030 & 127 & 940 & 4150 & 1400 & 80 & 50 & 52 & 267 & 52 & 52 \\
\hline 8 & 530 & 1020 & 128 & 941 & 4110 & 1120 & 80 & 50 & 52 & 267 & 52 & 52 \\
\hline 9 & 530 & 1020 & 178 & 470 & 4070 & 939 & 80 & 51 & 52 & 234 & 52 & 52 \\
\hline 10 & 529 & 1010 & 385 & 218 & 4020 & 941 & 81 & 51 & 52 & 168 & 52 & 52 \\
\hline 11 & 528 & 1010 & 481 & 224 & 3970 & 943 & 81 & 51 & 52 & 168 & 52 & 52 \\
\hline 12 & 528 & 1010 & 481 & 594 & 3920 & 944 & 81 & 51 & 52 & 168 & 52 & 52 \\
\hline 13 & 527 & 1000 & 482 & 1010 & 3860 & 945 & 81 & 51 & 52 & 168 & 52 & 52 \\
\hline 14 & 526 & 998 & 482 & 2170 & 3180 & 950 & 82 & 51 & 52 & 168 & 52 & 52 \\
\hline 15 & 888 & 994 & 805 & 2980 & 2600 & 482 & 82 & 51 & 52 & 168 & 52 & 134 \\
\hline 16 & 1100 & 990 & 948 & 2960 & 1520 & 245 & 82 & 51 & 52 & 124 & 52 & 168 \\
\hline 17 & 1100 & 986 & 944 & 2930 & 940 & 247 & 82 & 51 & 52 & 90 & 52 & 168 \\
\hline 18 & 1100 & 982 & 786 & 1290 & 939 & 495 & 82 & 51 & 52 & 90 & 52 & 168 \\
\hline 19 & 1090 & 977 & 477 & 347 & 939 & 989 & 82 & 51 & 52 & 90 & 52 & 168 \\
\hline 20 & 1090 & 973 & 325 & 246 & 842 & 989 & 83 & 51 & 52 & 90 & 52 & 168 \\
\hline 21 & 1090 & 969 & 196 & 246 & 707 & 989 & 83 & 51 & 52 & 90 & 52 & 168 \\
\hline 22 & 1090 & 965 & 197 & 247 & 707 & 988 & 63 & 51 & 52 & 77 & 52 & 168 \\
\hline 23 & 1080 & 960 & 198 & 254 & 554 & 484 & 48 & 51 & 52 & 52 & 52 & 168 \\
\hline 24 & 1080 & 956 & 385 & 260 & 476 & 219 & 48 & 51 & 52 & 52 & 52 & 167 \\
\hline 25 & 1080 & 642 & 477 & 264 & 477 & 105 & 48 & 51 & 52 & 52 & 52 & 167 \\
\hline 26 & 1070 & 481 & 477 & 777 & 477 & 108 & 48 & 51 & 52 & 52 & 52 & 167 \\
\hline 27 & 1070 & 480 & 301 & 1780 & 477 & 142 & 49 & 51 & 52 & 52 & 52 & 167 \\
\hline 28 & 1060 & 480 & 196 & 2880 & 478 & 142 & 49 & 51 & 52 & 52 & 52 & 167 \\
\hline 29 & 1060 & 479 & 196 & 3190 & --- & 99 & 49 & 51 & 52 & 52 & 52 & 167 \\
\hline 30 & 1060 & 479 & 196 & 3180 & --- & 77 & 49 & 51 & 52 & 52 & 52 & 167 \\
\hline 31 & 1050 & --- & 196 & 2450 & --- & 77 & --- & 52 & --- & 52 & 52 & --- \\
\hline TOTAL & 23842 & 27131 & 11445 & 35870 & 64783 & 21721 & 2141 & 1572 & 1560 & 4390 & 1612 & 3375 \\
\hline MEAN & 769 & 904 & 369 & 1157 & 2314 & 701 & 71.4 & 50.7 & 52.0 & 142 & 52.0 & 112 \\
\hline MAX & 1100 & 1050 & 948 & 3190 & 4230 & 1410 & 83 & 52 & 52 & 267 & 52 & 168 \\
\hline MIN & 264 & 479 & 126 & 196 & 476 & 77 & 48 & 49 & 52 & 52 & 52 & 52 \\
\hline \multicolumn{2}{|l|}{STATISTICS OF} & NTHLY M & DATA & \multicolumn{6}{|l|}{WATER YEARS 1964 - 1999, BY WATER YEAR (WY)} & & & \\
\hline MEAN & 921 & 1339 & 1239 & 1549 & 1633 & 1229 & 883 & 1070 & 860 & 513 & 286 & 508 \\
\hline MAX & 4959 & 3393 & 4491 & 4852 & 4541 & 5533 & 4777 & 4161 & 4437 & 2009 & 1335 & 2266 \\
\hline (WY) & 1980 & 1973 & 1978 & 1979 & 1985 & 1989 & 1975 & 1984 & 1983 & 1967 & 1967 & 1982 \\
\hline MIN & . 000 & 452 & 1.50 & 122 & 91.4 & 203 & . 63 & . 39 & . 000 & . 000 & . 000 & . 000 \\
\hline (WY) & 1976 & 1964 & 1985 & 1981 & 1992 & 1983 & 1966 & 1964 & 1964 & 1964 & 1964 & 1975 \\
\hline
\end{tabular}

GREEN RIVER BASIN
03311000 NOLIN RIVER AT KYROCK, KY--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALENDAR YEAR & FOR 1999 WATER YEAR & WATER YEARS & 1964 - 1999 \\
\hline ANNUAL TOTAL & 295438 & 199442 & & \\
\hline ANNUAL MEAN & 809 & 546 & 999 & \\
\hline HIGHEST ANNUAL MEAN & & & 1880 & 1989 \\
\hline LOWEST ANNUAL MEAN & & & 546 & 1999 \\
\hline HIGHEST DAILY MEAN & 4010 Jan 13 & 4230 Feb 5 & 10300 & May 281983 \\
\hline LOWEST DAILY MEAN & 49 Apr 9 & 48 Apr 23 & . 00 & May 21964 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 50 Apr 9 & 48 Apr 23 & . 00 & May 21964 \\
\hline INSTANTANEOUS PEAK FLOW & & & 22700 & Jan 301932 \\
\hline INSTANTANEOUS PEAK STAGE & & 29.21 Jan 10 & 59.27 & Mar 21962 \\
\hline 10 PERCENT EXCEEDS & 1920 & 1090 & 2550 & \\
\hline 50 PERCENT EXCEEDS & 529 & 168 & 476 & \\
\hline 90 PERCENT EXCEEDS & 54 & 51 & 52 & \\
\hline
\end{tabular}


LOCATION.--Lat \(37^{\circ} 02^{\prime} 05^{\prime \prime}\), long \(85^{\circ} 54^{\prime} 1^{\prime \prime}\) ", Barren County, Hydrologic Unit 05110002 , on downstream side of bridge on . S. Highway \(31 \mathrm{E}, 2.7 \mathrm{mi}\) northeast of Glasgow, 8.3 mi upstream from Little Beaver Creek, and at mile 23.1 .
DRAINAGE AREA. \(-49.6 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--September 1991 to current year.
GAGE.--Water-stage recorder. Datum of gage is 651.43 ft above sea level.
REMARKS.--Records poor.
PEAKS ABOVE BASE.--
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date & Time & Discharge
\[
\left(\mathrm{ft}^{3} / \mathrm{s}\right)
\] & \begin{tabular}{l}
Gage Height \\
(ft)
\end{tabular} & Date & Time & \[
\begin{aligned}
& \text { Discharge } \\
& \left(\mathrm{ft}^{3} / \mathrm{s}\right)
\end{aligned}
\] & \begin{tabular}{l}
Gage Height \\
(ft)
\end{tabular} \\
\hline Jan. 9 & unknown & unknown & unknown & Mar. 14 & 1230 & *772 & 7.69 \\
\hline Mar. 15 & 0030 & 772 & 7.69 & & & & \\
\hline
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & e9.0 & 12 & e19 & e36 & e400 & 318 & e52 & 18 & 11 & 23 & 5.5 & 3.2 \\
\hline 2 & e9.8 & e12 & e23 & e60 & e250 & e250 & e45 & 17 & 13 & 20 & 6.3 & 3.3 \\
\hline 3 & e11 & e13 & e21 & 258 & e170 & 680 & e42 & 16 & 14 & 18 & 5.5 & 3.2 \\
\hline 4 & e12 & e14 & e18 & 170 & e230 & 589 & e40 & 16 & 11 & 14 & 4.1 & 3.2 \\
\hline 5 & e13 & e15 & e25 & e110 & e350 & 408 & e52 & 105 & 11 & 11 & 4.4 & 3.3 \\
\hline 6 & e12 & e16 & 43 & e74 & e200 & 395 & e48 & 294 & 11 & 12 & 4.5 & 3.2 \\
\hline 7 & e11 & e17 & 48 & e160 & e160 & 347 & e45 & e150 & 13 & 12 & 4.4 & 3.0 \\
\hline 8 & e17 & e18 & 112 & e500 & e110 & 315 & e43 & e91 & 14 & 13 & 4.5 & 3.1 \\
\hline 9 & e22 & e19 & 68 & e1800 & e84 & 322 & e61 & e69 & 14 & 13 & 8.1 & 3.3 \\
\hline 10 & e17 & e23 & 32 & e700 & e64 & e300 & e88 & e47 & 15 & 13 & 6.8 & 4.0 \\
\hline 11 & e12 & 35 & 22 & 396 & e58 & e240 & e60 & e36 & 14 & 16 & 5.2 & 4.0 \\
\hline 12 & e10 & 34 & 21 & 301 & e700 & e200 & e50 & 32 & 13 & 15 & 4.6 & 4.2 \\
\hline 13 & e7. 6 & e26 & 144 & 248 & 507 & e280 & e44 & 30 & 14 & 15 & 4.1 & 4.6 \\
\hline 14 & e6.0 & e19 & 87 & 328 & 360 & e1100 & e40 & 29 & 20 & 16 & 3.6 & 5.5 \\
\hline 15 & 5.8 & e17 & 45 & 257 & e200 & e800 & e57 & 24 & 19 & 15 & 3.9 & 5.6 \\
\hline 16 & 5.9 & e14 & 31 & 205 & e90 & 518 & e96 & 21 & 17 & 13 & 4.5 & 5.6 \\
\hline 17 & 6.3 & e13 & 25 & 168 & e100 & 391 & e71 & 18 & 16 & 14 & 4.0 & 5.5 \\
\hline 18 & 5.6 & e12 & 19 & e260 & e140 & e250 & e59 & 17 & 15 & 13 & 3.3 & 5.5 \\
\hline 19 & 7.8 & e13 & 16 & e180 & e120 & e180 & e50 & 17 & 15 & 9.9 & 3.6 & 5.5 \\
\hline 20 & 8.5 & e15 & 15 & e140 & e100 & e140 & e42 & 15 & 14 & 11 & 3.8 & 7.8 \\
\hline 21 & 8.7 & e16 & 14 & e110 & e80 & e98 & e36 & 14 & 13 & 12 & 3.3 & 9.1 \\
\hline 22 & 8.5 & e14 & 288 & e86 & e90 & e82 & e32 & 14 & 13 & 14 & 3.7 & 8.8 \\
\hline 23 & 9.1 & e17 & 192 & e1000 & e110 & e68 & e28 & 13 & 15 & 10 & 3.5 & 8.0 \\
\hline 24 & 9.4 & e15 & e130 & e540 & e92 & e90 & e26 & 18 & 89 & 8.7 & 3.2 & 7.9 \\
\hline 25 & 9.9 & e14 & e90 & 417 & e100 & e72 & e24 & 15 & 64 & 8.1 & 3.4 & 8.0 \\
\hline 26 & 9.3 & e15 & e60 & 301 & e78 & e61 & e23 & 13 & 29 & 7.0 & 3.8 & 7.8 \\
\hline 27 & 8.4 & e17 & e37 & 232 & e200 & e52 & e22 & 12 & 22 & 6.0 & 3.8 & 8.3 \\
\hline 28 & 9.7 & e19 & e45 & e140 & 359 & e48 & e21 & 12 & 25 & 5.1 & 3.7 & 9.1 \\
\hline 29 & 10 & e17 & e56 & e96 & --- & e45 & 26 & 11 & 62 & 5.6 & 3.6 & 12 \\
\hline 30 & 12 & e17 & e70 & e82 & - & e42 & 21 & 11 & 37 & 5.5 & 3.5 & 15 \\
\hline 31 & 12 & -- & e50 & e150 & --- & e40 & --- & 11 & --- & 4.8 & 3.2 & -- \\
\hline TOTAL & 316.3 & 518 & 1866 & 9505 & 5502 & 8721 & 1344 & 1206 & 653 & 373.7 & 133.4 & 180.6 \\
\hline MEAN & 10.2 & 17.3 & 60.2 & 307 & 196 & 281 & 44.8 & 38.9 & 21.8 & 12.1 & 4.30 & 6.02 \\
\hline MAX & 22 & 35 & 288 & 1800 & 700 & 1100 & 96 & 294 & 89 & 23 & 8.1 & 15 \\
\hline MIN & 5.6 & 12 & 14 & 36 & 58 & 40 & 21 & 11 & 11 & 4.8 & 3.2 & 3.0 \\
\hline CFSM & . 21 & . 35 & 1.21 & 6.18 & 3.96 & 5.67 & . 90 & . 78 & . 44 & . 24 & . 09 & . 12 \\
\hline IN. & . 24 & . 39 & 1.40 & 7.13 & 4.13 & 6.54 & 1.01 & . 90 & . 49 & . 28 & . 10 & . 14 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
MEAN & 16.2 & 46.9 & 101 & 163 & 182 & 260 & 131 & 96.0 & 113 & 30.6 & 15.8 \\
MAX & 39.6 & 169 & 246 & 307 & 489 & 477 & 307 & 381 & 250 & 79.5 & 39.2 \\
(WY) & 1997 & 1997 & 1997 & 1999 & 1994 & 1997 & 1994 & 1995 & 1997 & 1998 & 1994 \\
MIN & 5.98 & 8.53 & 22.8 & 50.3 & 78.8 & 95.0 & 44.8 & 38.8 & 19.9 & 7.41 & 4.30 \\
(WY) & 1998 & 1998 & 1998 & 1998 & 1992 & 1998 & 1999 & 1994 & 1993 & 1993 & 1999
\end{tabular}

GREEN RIVER BASIN
03312765 BEAVER CREEK AT HWY 31 E NEAR GLASGOW, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & AR YEAR & FOR 1999 WAT & \multicolumn{2}{|l|}{YEAR} & WATER YEARS & 1992 - & 1999 \\
\hline ANNUAL TOTAL & 31230.1 & & 30319.0 & & & & & \\
\hline ANNUAL MEAN & 85.6 & & 83.1 & & & 97.5 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & & 142 & & 1994 \\
\hline LOWEST ANNUAL MEAN & & & & & & 49.7 & & 1993 \\
\hline HIGHEST DAILY MEAN & 1810 & Apr 16 & 1800 & Jan & 9 & 2930 & Mar 9 & 1994 \\
\hline LOWEST DAILY MEAN & 5.6 & Oct 18 & 3.0 & Sep & 7 & 1.7 & Sep 14 & 1993 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 6.4 & Oct 13 & 3.2 & Sep & 2 & 1.8 & Sep 8 & 1993 \\
\hline INSTANTANEOUS PEAK FLOW & & & & & & 6620 & Jun 18 & 1992 \\
\hline INSTANTANEOUS PEAK STAGE & & & & & & 15.10 & Jun 18 & 1992 \\
\hline ANNUAL RUNOFF (CFSM) & 1.73 & & 1.67 & & & 1.97 & & \\
\hline ANNUAL RUNOFF (INCHES) & 23.42 & & 22.74 & & & 26.72 & & \\
\hline 10 PERCENT EXCEEDS & 190 & & 250 & & & 216 & & \\
\hline 50 PERCENT EXCEEDS & 32 & & 18 & & & 34 & & \\
\hline 90 PERCENT EXCEEDS & 12 & & 4.6 & & & 6.8 & & \\
\hline
\end{tabular}


LOCATION.--Lat \(36^{\circ} 43^{\prime} 24^{\prime \prime}\), long \(86^{\circ} 33^{\prime} 08^{\prime \prime}\), Simpson County, Hydrologic Unit 05110002, near left bank at upstream side of city of Franklin pumping plant intake, 20 ft upstream from dam, 0.8 mi downstream from bridge on State Highways 73 and 100 , 1.5 mi east of Franklin, 3.3 mi downstream from Sharps Branch, and at mile 46.7.
DRAINAGE AREA. \(-110 \mathrm{mi}^{2}\), of which about \(19 \mathrm{mi}^{2}\) does not contribute directly to surface runoff.
PERIOD OF RECORD.--June 1968 to current year.
GAGE.--Water-stage recorder and broad-crested weir. Datum of gage is 581.54 ft above sea level. Prior to Oct. 1 , 1981 , at site 0.8 mi upstream at datum 8.05 ft lower.

REMARKS.--Records good except for periods of estimated record, which are fair. Subsequent to Apr. 24 , 1976 , records of daily discharge less than about \(300 \mathrm{ft}^{3} / \mathrm{s}\) does not include approximately \(3 \mathrm{ft} 3 / \mathrm{s}\) which is diverted by city of Franklin for municipal supply.

PEAKS ABOVE BASE.--Peak discharges above base of \(2,500 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{rcccccc} 
\\
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & \begin{tabular}{c} 
Time \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} \\
Jan. 9 & 0800 & 3890 & 10.04 & Jan. 23 & 0900 & \(* 6470\)
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & e5.0 & 5.9 & 17 & 52 & 875 & 768 & 125 & 77 & 33 & 61 & 11 & e3.2 \\
\hline 2 & e4.8 & 5.9 & 16 & 76 & 582 & 500 & 118 & 70 & 34 & 668 & 11 & e3.1 \\
\hline 3 & 29 & 7.1 & 16 & 432 & 405 & 1430 & 204 & 64 & 33 & 402 & 8.6 & e3.4 \\
\hline 4 & 49 & 8.0 & 12 & 273 & 325 & 951 & 246 & 60 & 32 & 197 & 6.7 & e3.5 \\
\hline 5 & 33 & 8.0 & 79 & 188 & 249 & 663 & 203 & 718 & 33 & 138 & 6.9 & e3.0 \\
\hline 6 & 20 & 7.9 & 101 & 148 & 217 & 781 & 190 & 1500 & 33 & 97 & 6.3 & e2. 8 \\
\hline 7 & 18 & 9.7 & 74 & 126 & 223 & 586 & 180 & 787 & 36 & 78 & 6.3 & e2.7 \\
\hline 8 & 19 & 13 & 489 & 868 & 204 & 444 & 160 & 417 & 40 & 64 & 11 & e2.5 \\
\hline 9 & 19 & 13 & 327 & 2540 & 176 & 434 & 401 & 283 & 35 & 57 & 13 & e2.3 \\
\hline 10 & 16 & 22 & 167 & 981 & 155 & 382 & 327 & 213 & 32 & 95 & 11 & e2. 4 \\
\hline 11 & 13 & 20 & 111 & 560 & 145 & 296 & 235 & 161 & 29 & 96 & 10 & e2. 5 \\
\hline 12 & 13 & 23 & 109 & 398 & 544 & 241 & 173 & 133 & 26 & 64 & 9.4 & e2. 6 \\
\hline 13 & 11 & 22 & 525 & 327 & 517 & 242 & 142 & 117 & 26 & 54 & 12 & e2.7 \\
\hline 14 & 10 & 20 & 348 & 444 & 357 & 1150 & 130 & 105 & 29 & 49 & 22 & e2.9 \\
\hline 15 & 10 & 18 & 217 & 361 & 290 & 1350 & 211 & 93 & 45 & 45 & 17 & e2.7 \\
\hline 16 & 8.6 & 18 & 160 & 299 & 244 & 1030 & 229 & 83 & 38 & 43 & 12 & e2. 8 \\
\hline 17 & 7.4 & 17 & 124 & 251 & 247 & 763 & 169 & 71 & 31 & 37 & 9.0 & e2.9 \\
\hline 18 & 7.9 & 14 & 97 & 305 & 223 & 539 & 141 & 62 & 27 & 35 & 7.3 & e2.7 \\
\hline 19 & 8.3 & 13 & 82 & 260 & 199 & 403 & 123 & 58 & 24 & 32 & 6.5 & e2. 6 \\
\hline 20 & 8.1 & 12 & 71 & 227 & 173 & 320 & 123 & 53 & 23 & 30 & 5.4 & e2.9 \\
\hline 21 & 7.8 & 13 & 69 & 198 & 149 & 253 & 116 & 48 & 22 & 28 & 5.1 & e3.3 \\
\hline 22 & 6.6 & 15 & 135 & 370 & 131 & 203 & 101 & 45 & 21 & 26 & 6.2 & e4.5 \\
\hline 23 & 5.7 & 15 & 123 & 4180 & 122 & 176 & 90 & 45 & 22 & 24 & 5.6 & e3. 8 \\
\hline 24 & 6.3 & 15 & 103 & 1340 & 118 & 174 & 81 & 74 & 108 & 24 & 4.6 & e3.2 \\
\hline 25 & 7.4 & 15 & 86 & 816 & 111 & 153 & 72 & 59 & 281 & 22 & 3.7 & e2. 8 \\
\hline 26 & 8.6 & 17 & 76 & 508 & 102 & 133 & 76 & 47 & 113 & 19 & e3.4 & e2. 6 \\
\hline 27 & 8.7 & 17 & 70 & 391 & 176 & 120 & 85 & 42 & 80 & 16 & e3.0 & e2.5 \\
\hline 28 & 8.0 & 16 & 68 & 315 & 1410 & 108 & 99 & 38 & 69 & 16 & e2.9 & e2.4 \\
\hline 29 & 7.5 & 17 & 67 & 246 & --- & 103 & 94 & 36 & 91 & 17 & e2.8 & e2.3 \\
\hline 30 & 7.3 & 18 & 64 & 211 & --- & 96 & 86 & 34 & 85 & 14 & e2.9 & e2.2 \\
\hline 31 & 6.4 & --- & 57 & 551 & --- & 99 & --- & 33 & --- & 13 & e3.0 & --- \\
\hline TOTAL & 390.4 & 435.5 & 4060 & 18242 & 8669 & 14891 & 4730 & 5626 & 1531 & 2561 & 245.6 & 85.8 \\
\hline MEAN & 12.6 & 14.5 & 131 & 588 & 310 & 480 & 158 & 181 & 51.0 & 82.6 & 7.92 & 2.86 \\
\hline MAX & 49 & 23 & 525 & 4180 & 1410 & 1430 & 401 & 1500 & 281 & 668 & 22 & 4.5 \\
\hline MIN & 4.8 & 5.9 & 12 & 52 & 102 & 96 & 72 & 33 & 21 & 13 & 2.8 & 2.2 \\
\hline CFSM & . 14 & . 16 & 1.44 & 6.47 & 3.40 & 5.28 & 1.73 & 1.99 & . 56 & . 91 & . 09 & . 03 \\
\hline IN. & . 16 & . 18 & 1.66 & 7.46 & 3.54 & 6.09 & 1.93 & 2.30 & . 63 & 1.05 & . 10 & . 04 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
MEAN & 44.0 & 133 & 295 & 309 & 365 & 394 & 255 & 219 & 164 & 67.5 & 34.0 \\
MAX & 219 & 474 & 971 & 867 & 1356 & 1412 & 568 & 982 & 795 & 251 & 142 \\
(WY) & 1976 & 1980 & 1979 & 1974 & 1989 & 1975 & 1979 & 1983 & 1998 & 1989 & 1971 \\
MIN & 1.87 & 14.5 & 11.8 & 10.4 & 138 & 113 & 38.3 & 22.8 & 18.8 & 5.47 & 2.80 \\
(WY) & 1988 & 1988 & 1981 & 1981 & 1980 & 1998 & 1986 & 1988 & 1985 & 1985 & 1986
\end{tabular}

GREEN RIVER BASIN
03313700 WEST FORK DRAKES CREEK NEAR FRANKLIN, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & R YEAR & FOR 1999 WAT & R YEAR & WATER YEARS & \multicolumn{2}{|l|}{\(1968-1999\)} \\
\hline ANNUAL TOTAL & 82288.7 & & 61467.3 & & & & \\
\hline ANNUAL MEAN & 225 & & 168 & & 194 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 351 & & 1989 \\
\hline LOWEST ANNUAL MEAN & & & & & 87.8 & & 1986 \\
\hline HIGHEST DAILY MEAN & 3170 & Jun 9 & 4180 & Jan 23 & 12800 & Mar 12 & 1975 \\
\hline LOWEST DAILY MEAN & 4.8 & Oct 2 & 2.2 & Sep 30 & . 00 & Sep 19 & 1985 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 5.7 & Sep 26 & 2.5 & Sep 7 & . 00 & Aug 13 & 1988 \\
\hline INSTANTANEOUS PEAK FLOW & & & 6470 & Jan 23 & 27300 & Mar 12 & 1975 \\
\hline INSTANTANEOUS PEAK STAGE & & & 11.07 & Jan 23 & 23.20 & Mar 12 & 1975 \\
\hline ANNUAL RUNOFF (CFSM) & 2.48 & & 1.85 & & 2.14 & & \\
\hline ANNUAL RUNOFF (INCHES) & 33.64 & & 25.13 & & 29.02 & & \\
\hline 10 PERCENT EXCEEDS & 544 & & 423 & & 435 & & \\
\hline 50 PERCENT EXCEEDS & 111 & & 59 & & 72 & & \\
\hline 90 PERCENT EXCEEDS & 9.7 & & 4.2 & & 8.8 & & \\
\hline
\end{tabular}


LOCATION.--Lat \(37^{\circ} 15^{\prime} 50^{\prime \prime}\), long \(86^{\circ} 58^{\prime} 40^{\prime \prime}\), Muhlenberg County, Hydrologic Unit 05110003, on left bank of reservation of Tennessee Valley Authority generating plant, 0.4 mi southeast of Paradise, 1.1 mi downstream from Jacobs Creek, 2.8 mi upstream from Pond Creek, and at mile 98.8.
DRAINAGE AREA. \(--6,183 \mathrm{mi}^{2}\), of which about \(1,380 \mathrm{mi}^{2}\) does not contribute directly to surface runoff.
PERIOD OF RECORD.--October 1939 to September 1950 (published as "at Green River"), October 1959 to September 1960 (low-water records only), October 1960 to September 1981 and July 1991 to current year.

GAGE.--Water-stage recorder. Datum of gage is 363.19 ft above sea level (levels by Tennessee Valley Authority). See WDR KY-81-1 for history of changes prior to October 31, 1979. Auxiliary water-stage recorder on U.S. Highway 62 bridge at Rockport, 4.4 mi downstream.

REMARKS.--Records fair except for period of estimated record, which is poor. Flow regulated by Green River Lake beginning February 1969, Nolin River Lake beginning March 1963, and Barren River Lake beginning March 1964.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 853 & 4750 & 2750 & 3100 & 21900 & 14300 & 3820 & 4160 & 1100 & 4300 & 794 & 406 \\
\hline 2 & 830 & 4740 & 2550 & 3090 & 22700 & 15000 & 4220 & 4180 & 1570 & 4380 & 798 & 408 \\
\hline 3 & 1120 & 4800 & 2360 & 4690 & 24200 & 14900 & 4810 & 3360 & 1780 & 4600 & 743 & 410 \\
\hline 4 & 1410 & 4820 & 2000 & 6660 & 23600 & 16600 & 7140 & 2720 & 1520 & 5800 & 688 & 375 \\
\hline 5 & 1410 & 4790 & 1880 & 8080 & 21900 & 20500 & 7780 & 2750 & 1560 & 5820 & 658 & 349 \\
\hline 6 & 1420 & 4740 & 1920 & 8240 & 20500 & 20500 & 8560 & 10800 & 1340 & 5320 & 642 & 342 \\
\hline 7 & 2050 & 4720 & 2300 & 8110 & 19200 & 19200 & 9540 & 16900 & 1330 & 4860 & 620 & 352 \\
\hline 8 & 2600 & 4700 & 3850 & 8730 & 18000 & 18000 & 8390 & 16200 & 1260 & 4260 & 601 & 349 \\
\hline 9 & 2030 & 4710 & 5590 & 22500 & 17200 & 16800 & 7140 & 12800 & 1110 & 3520 & 592 & 376 \\
\hline 10 & 1780 & 4710 & 6810 & 33500 & 16700 & 16600 & 6070 & 10200 & 1020 & 2780 & 548 & 367 \\
\hline 11 & 1750 & 4790 & 6510 & 37600 & 15900 & 16100 & 5770 & 9080 & 950 & 2120 & 540 & 369 \\
\hline 12 & 1790 & 4730 & 5770 & 38100 & 16400 & 15200 & 5260 & 7210 & 878 & 1730 & 524 & 375 \\
\hline 13 & 1830 & 4680 & 5660 & 31600 & 17900 & 14500 & 4510 & 5410 & 843 & 1590 & 523 & 388 \\
\hline 14 & 1810 & 4710 & 6980 & 22900 & 20400 & 16800 & 3890 & 4000 & 1020 & 1480 & 526 & 366 \\
\hline 15 & 1710 & 4800 & 8410 & 18900 & 19300 & 26700 & 3700 & 3170 & 963 & 1390 & 532 & 369 \\
\hline 16 & 1660 & 4770 & 8220 & 18600 & 16600 & 30800 & 3800 & 2650 & 925 & 1320 & 496 & 409 \\
\hline 17 & 2190 & 4720 & 7080 & 18100 & 14800 & 30900 & 3980 & 2320 & 968 & 1240 & 483 & 389 \\
\hline 18 & 3090 & 4620 & 6110 & 17800 & 13900 & 26100 & 4010 & 2290 & 972 & 1180 & 469 & 411 \\
\hline 19 & 3660 & 4590 & 5500 & 16200 & 13000 & 20900 & 3710 & 2180 & 980 & 1100 & 470 & 462 \\
\hline 20 & 3860 & 4650 & 4920 & 14700 & 12300 & 17800 & 3320 & 2010 & 952 & 993 & 513 & 579 \\
\hline 21 & 3950 & 4630 & 4440 & 14000 & 11500 & 15400 & e3000 & 1870 & 884 & 938 & 488 & 729 \\
\hline 22 & 4000 & 4550 & 4950 & 15100 & 10600 & 13100 & e2700 & 1720 & 788 & 927 & 448 & 774 \\
\hline 23 & 3960 & 4490 & 4840 & 33800 & 9680 & 11300 & 2620 & 1550 & 716 & 889 & 429 & 741 \\
\hline 24 & 3950 & 4500 & 5360 & 45700 & 9000 & 10100 & 2450 & 1540 & 807 & 908 & 414 & 730 \\
\hline 25 & 4140 & 4470 & 5900 & 50200 & 8440 & 9030 & 2220 & 1500 & 892 & 939 & 424 & 724 \\
\hline 26 & 4400 & 4360 & 5720 & 50600 & 8010 & 8340 & 2130 & 1610 & 1130 & 900 & 407 & 721 \\
\hline 27 & 4500 & 3830 & 5250 & 48000 & 8070 & 7420 & 2380 & 1580 & 4690 & 836 & 386 & 740 \\
\hline 28 & 4500 & 3340 & 4580 & 41900 & 11800 & 6390 & 3210 & 1450 & 4720 & 762 & 364 & 736 \\
\hline 29 & 4490 & 3070 & 3890 & 34600 & --- & 5400 & 3880 & 1350 & 4280 & 705 & 364 & 804 \\
\hline 30 & 4640 & 2840 & 3490 & 27600 & --- & 4450 & 3640 & 1260 & 3740 & 677 & 376 & 796 \\
\hline 31 & 4740 & --- & 3300 & 23100 & --- & 3750 & --- & 1180 & --- & 750 & 398 & --- \\
\hline TOTAL & 86123 & 134620 & 148890 & 725800 & 443500 & 482880 & 137650 & 141000 & 45688 & 69014 & 16258 & 15346 \\
\hline MEAN & 2778 & 4487 & 4803 & 23410 & 15840 & 15580 & 4588 & 4548 & 1523 & 2226 & 524 & 512 \\
\hline MAX & 4740 & 4820 & 8410 & 50600 & 24200 & 30900 & 9540 & 16900 & 4720 & 5820 & 798 & 804 \\
\hline MIN & 830 & 2840 & 1880 & 3090 & 8010 & 3750 & 2130 & 1180 & 716 & 677 & 364 & 342 \\
\hline \multicolumn{2}{|l|}{STATISTICS OF} & \multicolumn{2}{|l|}{MONTHLY MEAN DATA} & FOR WATER & \multicolumn{2}{|l|}{YEARS 1970 - 1999} & \multicolumn{3}{|l|}{BY WATER YEAR (WY)} & & & \\
\hline MEAN & 5077 & 8227 & 13490 & 16930 & 16350 & 18060 & 13840 & 10470 & 8170 & 4106 & 2724 & 3710 \\
\hline MAX & 16950 & 19310 & 42250 & 36020 & 26410 & 41520 & 34210 & 25950 & 20190 & 8811 & 8743 & 22540 \\
\hline (WY) & 1980 & 1980 & 1979 & 1974 & 1994 & 1997 & 1979 & 1995 & 1981 & 1973 & 1971 & 1979 \\
\hline MIN & 2463 & 4030 & 2103 & 954 & 6083 & 6150 & 4441 & 2492 & 1523 & 1702 & 524 & 512 \\
\hline (WY) & 1981 & 1972 & 1981 & 1981 & 1977 & 1981 & 1978 & 1976 & 1999 & 1993 & 1999 & 1999 \\
\hline
\end{tabular}

03316500 GREEN RIVER AT PARADISE, KY--Continued



LOCATION.--Lat \(37^{\circ} 32^{\prime} 02^{\prime \prime}\), long \(87^{\circ} 1^{\prime} 5^{\prime \prime} 0^{\prime \prime}\), McLean County, Hydrologic Unit 05110005, 870 ft upstream from lock and dam 2 , on right bank 0.2 mi downstream from bridge on State Highway 81 at Calhoun, 0.2 mi upstream from Long Falls Creek, and at mile 63.3 .
DRAINAGE AREA. \(--7,566 \mathrm{mi}^{2}\), of which about \(1,540 \mathrm{mi}^{2}\) does not contribute directly to surface runoff.
PERIOD OF RECORD.--March 1930 to current year. Prior to October 1958, published as "at Livermore."
REVISED RECORDS.--WSP 1385: 1939. WDR KY-82-1: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 353.95 ft above sea level. Auxiliary water-stage recorder at Livermore, 8.0 mi upstream at datum 360.11 ft above sea level. See WDR KY-88-1 for history of changes prior to Sept. 30 , 1958 .
REMARKS.--Records good except for discharges below \(1000 \mathrm{ft}^{3} / \mathrm{s}\), which are fair. Flow regulated by Green River Lake beginning February 1969, Nolin Lake beginning March 1963, Barren River Lake beginning March 1964, and Rough River Lake, October 1959.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 875 & 5810 & 3200 & 3430 & 31000 & 16700 & 4040 & 4800 & 1200 & 5820 & 697 & 250 \\
\hline 2 & 902 & 5810 & 3040 & 3400 & 31200 & 17400 & 4560 & 4850 & 1620 & 5370 & 656 & 252 \\
\hline 3 & 1270 & 5790 & 2710 & 5610 & 32200 & 17300 & 5210 & 3910 & 1890 & 5230 & 596 & 240 \\
\hline 4 & 1620 & 5790 & 2290 & 8350 & 32200 & 17900 & 8150 & 3110 & 1600 & 6590 & 542 & 220 \\
\hline 5 & 1650 & 5720 & 2170 & 10100 & 30200 & 21200 & 9550 & 3170 & 1680 & 6740 & 503 & 190 \\
\hline 6 & 1620 & 5730 & 2240 & 10300 & 28100 & 23700 & 10500 & 15100 & 1440 & 6050 & 506 & 162 \\
\hline 7 & 2350 & 5690 & 2430 & 10000 & 24800 & 22400 & 11800 & 21000 & 1420 & 5380 & 498 & 182 \\
\hline 8 & 3140 & 5690 & 4130 & 11200 & 21500 & 20800 & 10900 & 20800 & 1340 & 4720 & 455 & 183 \\
\hline 9 & 2280 & 5770 & 6490 & 23300 & 20000 & 20900 & 8850 & 17700 & 1150 & 3950 & 422 & 182 \\
\hline 10 & 2000 & 5860 & 8150 & 34100 & 19300 & 20300 & 7380 & 15000 & 1060 & 2990 & 398 & 199 \\
\hline 11 & 1980 & 5850 & 7870 & 36500 & 18700 & 19500 & 6610 & 11600 & 968 & 2250 & 371 & 206 \\
\hline 12 & 2030 & 5810 & 6870 & 38700 & 19100 & 18700 & 5950 & 8670 & 909 & 1760 & 400 & 227 \\
\hline 13 & 2000 & 5740 & 6530 & 38000 & 20000 & 17600 & 5010 & 6360 & 885 & 1630 & 351 & 207 \\
\hline 14 & 1990 & 5770 & 7990 & 31000 & 22500 & 19100 & 4270 & 4470 & 993 & 1550 & 345 & 186 \\
\hline 15 & 1920 & 5820 & 9750 & 23500 & 22600 & 28300 & 4050 & 3550 & 934 & 1460 & 342 & 186 \\
\hline 16 & 1850 & 5870 & 9860 & 20500 & 20000 & 33300 & 4090 & 2910 & 862 & 1390 & 338 & 193 \\
\hline 17 & 2380 & 5740 & 8570 & 19800 & 17800 & 34800 & 4310 & 2550 & 902 & 1320 & 324 & 205 \\
\hline 18 & 3510 & 5660 & 7440 & 19500 & 16600 & 32200 & 4400 & 2370 & 950 & 1240 & 302 & 237 \\
\hline 19 & 4320 & 5570 & 6540 & 18200 & 15800 & 25400 & 4100 & 2280 & 974 & 1140 & 287 & 285 \\
\hline 20 & 4690 & 5630 & 5730 & 16700 & 14800 & 20500 & 3670 & 2180 & 948 & 1000 & 310 & 393 \\
\hline 21 & 4760 & 5670 & 5060 & 16200 & 13800 & 17300 & 3340 & 2020 & 880 & 929 & 309 & 534 \\
\hline 22 & 4770 & 5600 & 6190 & 20800 & 12800 & 14400 & 3030 & 1810 & 782 & 926 & 273 & 606 \\
\hline 23 & 4770 & 5490 & 6040 & 37100 & 11900 & 12400 & 2780 & 1630 & 737 & 877 & 279 & 621 \\
\hline 24 & 4770 & 5450 & 6510 & 43700 & 11100 & 11300 & 2650 & 1530 & 812 & 898 & 252 & 607 \\
\hline 25 & 4980 & 5460 & 7110 & 45800 & 10200 & 10100 & 2420 & 1540 & 896 & 924 & 235 & 601 \\
\hline 26 & 5320 & 5250 & 6920 & 47500 & 9390 & 9370 & 2290 & 1600 & 1170 & 880 & 222 & 635 \\
\hline 27 & 5530 & 4610 & 6210 & 48800 & 9710 & 8400 & 2740 & 1630 & 6470 & 785 & 215 & 663 \\
\hline 28 & 5560 & 4020 & 5320 & 48400 & 14000 & 7250 & 4020 & 1510 & 6780 & 692 & 192 & 658 \\
\hline 29 & 5540 & 3700 & 4270 & 44800 & - & 5960 & 4860 & 1410 & 5680 & 614 & 185 & 638 \\
\hline 30 & 5680 & 3400 & 3850 & 39000 & --- & 4850 & 4470 & 1330 & 4550 & 587 & 191 & 675 \\
\hline 31 & 5760 & --- & 3600 & 33000 & --- & 4040 & --- & 1270 & --- & 666 & 231 & --- \\
\hline TOTAL & 101817 & 163770 & 175080 & 807290 & 551300 & 553370 & 160000 & 173660 & 52482 & 76358 & 11227 & 10623 \\
\hline MEAN & 3284 & 5459 & 5648 & 26040 & 19690 & 17850 & 5333 & 5602 & 1749 & 2463 & 362 & 354 \\
\hline MAX & 5760 & 5870 & 9860 & 48800 & 32200 & 34800 & 11800 & 21000 & 6780 & 6740 & 697 & 675 \\
\hline MIN & 875 & 3400 & 2170 & 3400 & 9390 & 4040 & 2290 & 1270 & 737 & 587 & 185 & 162 \\
\hline \multicolumn{2}{|l|}{STATISTICS OF} & \multicolumn{2}{|l|}{MONTHLY MEAN DATA} & OR WATER & \multicolumn{2}{|l|}{YEARS 1970 - 1999} & \multicolumn{3}{|l|}{BY WATER YEAR (WY)} & & & \\
\hline MEAN & 5506 & 10480 & 16650 & 19460 & 22540 & 20540 & 15770 & 13420 & 9081 & 4790 & 2842 & 4187 \\
\hline MAX & 19100 & 22770 & 46530 & 41100 & 52100 & 53330 & 42430 & 50460 & 23850 & 12260 & 8763 & 27360 \\
\hline (WY) & 1980 & 1980 & 1979 & 1974 & 1989 & 1997 & 1979 & 1983 & 1981 & 1989 & 1971 & 1979 \\
\hline MIN & 2138 & 4874 & 2496 & 1223 & 7116 & 7479 & 2260 & 1706 & 541 & 1386 & 362 & 354 \\
\hline (WY) & 1988 & 1972 & 1981 & 1981 & 1977 & 1981 & 1986 & 1988 & 1988 & 1988 & 1999 & 1999 \\
\hline
\end{tabular}

GREEN RIVER BASIN
03320000 GREEN RIVER AT LOCK 2, AT CALHOUN, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALENDAR YEAR & FOR 1999 WATER YEAR & WATER YEARS & 1970 - & 1999 \\
\hline ANNUAL TOTAL & 3808792 & 2836977 & & & \\
\hline ANNUAL MEAN & 10440 & 7773 & 12050 & & \\
\hline HIGHEST ANNUAL MEAN & & & 22070 & & 1979 \\
\hline LOWEST ANNUAL MEAN & & & 7249 & & 1986 \\
\hline HIGHEST DAILY MEAN & 43800 Apr 21 & 48800 Jan 27 & 85200 & Mar 7 & 1997 \\
\hline LOWEST DAILY MEAN & 556 Sep 16 & 162 Sep 6 & 162 & Sep 6 & 1999 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 583 Sep 11 & 186 Sep 5 & 186 & Sep 5 & 1999 \\
\hline INSTANTANEOUS PEAK FLOW & & 49300 Jan 27 & 208000 & Jan 27 & 1937 \\
\hline INSTANTANEOUS PEAK STAGE & & 27.47 Jan 28 & 42.40 & Jan 30 & 1937 \\
\hline INSTANTANEOUS LOW FLOW & & & 107 & Sep 14 & 1999 \\
\hline 10 PERCENT EXCEEDS & 25600 & 20800 & 30500 & & \\
\hline 50 PERCENT EXCEEDS & 7020 & 4470 & 7430 & & \\
\hline 90 PERCENT EXCEEDS & 990 & 344 & 1430 & & \\
\hline
\end{tabular}


03320500 POND RIVER NEAR APEX, KY
LOCATION.--Lat \(37^{\circ} 07^{\prime} 20^{\prime \prime}\), long \(87^{\circ} 1^{\prime} 1^{\prime \prime \prime}\), Muhlenberg County, Hydrologic Unit 05110006 , on downstream side of right pier f bridge on State Highway 189, 1.1 mi downstream from Coal Creek, 2.1 mi northeast of Apex, 5.7 mi upstream from West Fork, and at mile 62.8 .
DRAINAGE AREA. \(--194 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--August 1940 to current year. October 1953 to September 1971, published as "East Fork Pond River near Apex." REVISED RECORDS.--WSP 1083: 1942-46. WSP 1555: 1945-46(P), drainage area, WRD KY-93: 1989-91 (P), WRD KY-96: 1989-96(P).

GAGE.--Water-stage recorder. Datum of gage is 384.53 ft above sea level. Prior to Aug. 21 , 1942 , nonrecording gage at same site. Prior to Oct. 1, 1974, at datum 6.11 ft higher.

REMARKS.--Records fair except for periods of estimated record, which are poor.
PEAKS ABOVE BASE.--Peak discharges above base of \(2,700 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{ccccccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & \begin{tabular}{c} 
Time
\end{tabular} & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} \\
Jan. 23 & 0600 & \(* 7860\) & 19.80 & May 6 & 0400 & 2910
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & e. 66 & 2.0 & e5. 5 & e84 & 1670 & 991 & 157 & 168 & 6.1 & 94 & 4.2 & e. 03 \\
\hline 2 & e. 72 & 2.4 & e5.7 & e82 & e1300 & 742 & 191 & 123 & 7.8 & e260 & 3.7 & e. 02 \\
\hline 3 & e. 96 & 2.2 & e6.4 & e110 & e900 & 511 & 282 & 102 & 7.7 & 158 & 3.1 & e. 01 \\
\hline 4 & e. 82 & 1.9 & e7.4 & e180 & e540 & 421 & 756 & 86 & 7.1 & 107 & 2.7 & e. 00 \\
\hline 5 & e. 90 & 2.0 & e17 & e170 & e340 & 296 & 725 & 248 & 44 & 75 & 2.2 & e. 00 \\
\hline 6 & e. 98 & 1.9 & e100 & e160 & 236 & 476 & 935 & 2780 & 41 & 55 & e1.8 & e. 00 \\
\hline 7 & e100 & e2.0 & e150 & e150 & 194 & 604 & 888 & e2000 & 63 & 41 & e1. 6 & e. 00 \\
\hline 8 & 336 & e2.2 & e130 & e190 & 183 & 397 & 617 & e1400 & 108 & 28 & e1.4 & e. 00 \\
\hline 9 & 221 & e2.8 & e170 & e1300 & 169 & 465 & 391 & e800 & 57 & 19 & e1.2 & e. 00 \\
\hline 10 & 124 & e3.6 & e180 & e1100 & 146 & e580 & 276 & e400 & 32 & 15 & e1.0 & e. 00 \\
\hline 11 & 76 & e8.0 & e130 & e1000 & 129 & e410 & 224 & e230 & 21 & 12 & e. 90 & e. 00 \\
\hline 12 & 48 & e70 & e110 & e900 & 155 & 267 & 196 & 181 & 15 & 9.3 & e1.6 & e. 00 \\
\hline 13 & 30 & e50 & e92 & e660 & 223 & 207 & 165 & 141 & 12 & 7.8 & 3.2 & . 00 \\
\hline 14 & 18 & e30 & e110 & e500 & 189 & e530 & 147 & 112 & 12 & 7.1 & e1.8 & . 00 \\
\hline 15 & 10 & e20 & e140 & e400 & 157 & e1400 & 197 & 94 & 11 & 6.4 & e1.4 & . 00 \\
\hline 16 & 6.2 & e14 & e130 & e320 & 137 & e1100 & 227 & 82 & 8.7 & 6.0 & e. 90 & . 00 \\
\hline 17 & 5.2 & e11 & e100 & e240 & 134 & e800 & e180 & 71 & 7.0 & 5.6 & e. 60 & . 00 \\
\hline 18 & 4.7 & e9.4 & e82 & 442 & 134 & e480 & e130 & 61 & 5.5 & 5.4 & e. 50 & . 00 \\
\hline 19 & 4.7 & e8.0 & e68 & 456 & 126 & 326 & e110 & 52 & 4.1 & 5.1 & e. 40 & . 00 \\
\hline 20 & 4.3 & e8.4 & e58 & 310 & 113 & 230 & e100 & 45 & 3.7 & 4.8 & e. 30 & . 00 \\
\hline 21 & 4.0 & e9.0 & e60 & 235 & 101 & 185 & e90 & 37 & 3.0 & 4.6 & e. 24 & . 00 \\
\hline 22 & 3.8 & e8.0 & e400 & 3070 & 90 & 156 & e80 & 31 & 2.5 & 4.2 & e. 20 & . 00 \\
\hline 23 & 3.4 & e9.0 & e700 & e5000 & 83 & 143 & e74 & 26 & 3.9 & 4.0 & e. 16 & . 00 \\
\hline 24 & 3.4 & e10 & e520 & e3400 & 90 & 154 & e70 & 23 & 18 & 7.4 & e. 12 & . 00 \\
\hline 25 & 3.2 & e11 & e230 & e2000 & 100 & 145 & e66 & 19 & 34 & 8.5 & e. 10 & . 00 \\
\hline 26 & 3.0 & e9.0 & e160 & e1500 & 102 & 126 & e62 & 17 & 36 & 8.0 & e. 09 & . 00 \\
\hline 27 & 2.9 & e8.0 & e130 & e1100 & 331 & 110 & 138 & 14 & e540 & 7.2 & e. 08 & . 00 \\
\hline 28 & 2.7 & e7.0 & e110 & e900 & 1230 & 101 & 680 & 11 & e400 & 6.5 & e. 07 & . 00 \\
\hline 29 & 2.5 & e6.0 & e100 & e600 & --- & 93 & 870 & 9.1 & e160 & 5.9 & e. 06 & . 00 \\
\hline 30 & 2.3 & e5.3 & e96 & 368 & --- & 94 & 339 & 7.4 & 82 & 5.3 & e. 05 & . 00 \\
\hline 31 & 2.2 & - & e86 & 1230 & --- & 90 & & 6.8 & - & 4.8 & e. 04 & --- \\
\hline TOTAL & 1026.54 & 334.1 & 4384.0 & 28157 & 9302 & 12630 & 9363 & 9377.3 & 1753.1 & 987.9 & 35.71 & 0.06 \\
\hline MEAN & 33.1 & 11.1 & 141 & 908 & 332 & 407 & 312 & 302 & 58.4 & 31.9 & 1.15 & . 002 \\
\hline MAX & 336 & 70 & 700 & 5000 & 1670 & 1400 & 935 & 2780 & 540 & 260 & 4.2 & . 03 \\
\hline MIN & . 66 & 1.9 & 5.5 & 82 & 83 & 90 & 62 & 6.8 & 2.5 & 4.0 & . 04 & . 00 \\
\hline CFSM & . 17 & . 06 & . 73 & 4.68 & 1.71 & 2.10 & 1.61 & 1.56 & . 30 & . 16 & . 01 & . 00 \\
\hline IN. & . 20 & . 06 & . 84 & 5.40 & 1.78 & 2.42 & 1.80 & 1.80 & . 34 & . 19 & . 01 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1941 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 22.3 & 171 & 396 & 463 & 623 & 617 & 434 & 318 & 121 & 60.1 & 31.0 & 57.6 \\
MAX & 208 & 1430 & 2167 & 2024 & 3988 & 2519 & 1822 & 2607 & 900 & 440 & 239 & 988 \\
(WY) & 1986 & 1958 & 1979 & 1950 & 1989 & 1997 & 1979 & 1984 & 1969 & 1989 & 1984 & 1979 \\
MIN & .000 & .000 & .000 & 3.56 & 42.6 & 35.2 & 39.2 & 6.46 & 1.37 & .44 & .19 & .000 \\
(WY) & 1954 & 1954 & 1964 & 1981 & 1941 & 1941 & 1986 & 1941 & 1964 & 1964 & 1993 & 1953
\end{tabular}

GREEN RIVER BASIN
03320500 POND RIVER NEAR APEX, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & AR YEAR & \multicolumn{2}{|l|}{FOR 1999 WATER YEAR} & \multicolumn{3}{|l|}{WATER YEARS 1941 - 1999} \\
\hline ANNUAL TOTAL & 77016.04 & & 77350.71 & & & & \\
\hline ANNUAL MEAN & 211 & & 212 & & 274 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 643 & & 1979 \\
\hline LOWEST ANNUAL MEAN & & & & & 59.8 & & 1941 \\
\hline HIGHEST DAILY MEAN & 4510 & Jun 10 & 5000 & Jan 23 & 28400 & Feb 15 & 1989 \\
\hline LOWEST DAILY MEAN & . 50 & Sep 11 & . 00 & Sep 4 & . 00 & Oct 21 & 1940 \\
\hline ANNUAL SEVEN-DAY MINIMUM & . 60 & Sep 11 & . 00 & Sep 4 & . 00 & Oct 21 & 1940 \\
\hline INSTANTANEOUS PEAK FLOW & & & 7860 & Jan 23 & 35700 & May 7 & 1984 \\
\hline INSTANTANEOUS PEAK STAGE & & & 19.87 & Jan 23 & 26.81 & Nov 19 & 1957 \\
\hline ANNUAL RUNOFF (CFSM) & 1.09 & & 1.09 & & 1.41 & & \\
\hline ANNUAL RUNOFF (INCHES) & 14.77 & & 14.83 & & 19.22 & & \\
\hline 10 PERCENT EXCEEDS & 612 & & 588 & & 724 & & \\
\hline 50 PERCENT EXCEEDS & 65 & & 55 & & 47 & & \\
\hline 90 PERCENT EXCEEDS & 1.7 & & . 10 & & . 70 & & \\
\hline
\end{tabular}


\section*{GREEN RIVER BASIN}

03321060 POND RIVER NEAR MADISONVILLE, KY
LOCATION.--Lat \(37^{\circ} 19^{\prime} 02^{\prime \prime}\), long \(87^{\circ} 22^{\prime \prime} 09^{\prime \prime}\), Hopkins County, Hydrologic Unit 05110006, on left bank 3 ft downstream from bridge on State Highway 70, \(4.2^{\prime} \mathrm{mi}\) downstream from Flat Creek, 5.0 mi upstream from Earle Creek, 6.3 mi east of Madisonville, and at mile 25.9.
DRAINAGE AREA. \(--469 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--July 1991 to September 1996 discharge records. October 1996 to current year, gage height only.
GAGE.--Water-stage recorder. Datum of gage is 361.80 ft above sea level.
REMARKS.--Records fair.
GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 4.22 & -- & --- & --- & -- & -- & --- & 13.22 & 4.56 & -- & --- & 3.76 \\
\hline 2 & 4.25 & --- & --- & --- & --- & --- & --- & 13.39 & 5.11 & - & --- & 3.74 \\
\hline 3 & 4.31 & --- & --- & --- & --- & --- & -- & 12.74 & 5.10 & -- & --- & 3.75 \\
\hline 4 & 4.33 & --- & --- & --- & --- & --- & --- & 11.14 & 4.98 & --- & --- & 3.75 \\
\hline 5 & 4.32 & --- & --- & --- & --- & e15.00 & -- & 9.17 & 5.07 & - & e4.04 & 3.74 \\
\hline 6 & 4.35 & --- & --- & --- & --- & --- & - & 11.99 & 5.16 & --- & 4.01 & 3.74 \\
\hline 7 & 4.86 & --- & --- & --- & --- & --- & - & 14.05 & 5.34 & --- & 3.99 & 3.75 \\
\hline 8 & 6.41 & --- & --- & --- & -- & --- & -- & 16.50 & 5.34 & -- & 4.00 & 3.74 \\
\hline 9 & 8.96 & --- & --- & --- & --- & --- & --- & 17.64 & --- & --- & 4.01 & 3.72 \\
\hline 10 & 8.81 & --- & --- & --- & - & --- & --- & 17.94 & --- & -- & 3.99 & 3.73 \\
\hline 11 & 7.40 & --- & --- & --- & --- & --- & - & 17.73 & --- & --- & 3.98 & 3.73 \\
\hline 12 & 6.25 & --- & --- & - & --- & --- & --- & 17.21 & --- & -- & 3.98 & 3.72 \\
\hline 13 & 5.55 & --- & --- & --- & --- & --- & --- & 16.49 & --- & -- & 3.98 & 3.72 \\
\hline 14 & 5.20 & --- & --- & e17.70 & --- & --- & --- & 15.46 & --- & --- & 3.98 & 3.74 \\
\hline 15 & 4.95 & -- & -- & 17.61 & --- & -- & --- & 14.19 & --- & --- & 3.97 & 3.77 \\
\hline 16 & e4.80 & --- & --- & 17.27 & --- & --- & -- & 12.62 & --- & --- & 3.97 & 3.78 \\
\hline 17 & --- & --- & --- & 16.83 & --- & --- & --- & 10.24 & --- & --- & 3.95 & 3.78 \\
\hline 18 & --- & --- & --- & 16.25 & --- & --- & --- & 7.82 & --- & --- & 3.93 & 3.78 \\
\hline 19 & -- & --- & --- & 15.53 & --- & --- & -- & 6.73 & -- & - & 3.91 & 3.77 \\
\hline 20 & --- & --- & --- & 14.84 & -- & --- & e8.85 & 6.21 & --- & --- & 3.91 & 3.77 \\
\hline 21 & e4.45 & - & --- & 14.22 & -- & --- & 8.29 & 5.83 & -- & --- & 3.89 & 3.78 \\
\hline 22 & 4.45 & --- & --- & 14.40 & - & --- & 7.77 & 5.55 & -- & --- & 3.86 & 3.78 \\
\hline 23 & 4.41 & --- & --- & 17.55 & --- & --- & 7.41 & 5.33 & --- & --- & 3.84 & 3.78 \\
\hline 24 & 4.39 & e8. 25 & --- & 20.92 & --- & --- & 7.09 & 5.26 & --- & --- & 3.85 & 3.78 \\
\hline 25 & 4.37 & 8.21 & - & 22.40 & --- & - & 6.81 & 5.14 & --- & --- & 3.83 & 3.77 \\
\hline 26 & 4.34 & 8.20 & -- & 22.51 & -- & - & 6.66 & 5.04 & --- & --- & 3.81 & 3.77 \\
\hline 27 & e4.35 & e8.18 & --- & 22.05 & --- & --- & 6.66 & 4.93 & --- & --- & 3.81 & 3.76 \\
\hline 28 & --- & --- & --- & e21.51 & --- & --- & 7.89 & 4.83 & --- & --- & 3.80 & 3.75 \\
\hline 29 & --- & --- & --- & - & --- & --- & 10.55 & 4.72 & --- & e4.19 & 3.77 & 3.78 \\
\hline 30 & --- & --- & --- & --- & --- & --- & 12.14 & 4.66 & --- & -- & 3.76 & 3.78 \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & 4.62 & --- & --- & 3.76 & - \\
\hline MEAN & -- & --- & --- & --- & -- & - & -- & 10.27 & --- & --- & --- & 3.76 \\
\hline MAX & - & --- & --- & -- & - & --- & --- & 17.94 & --- & -- & --- & 3.78 \\
\hline MIN & --- & --- & --- & --- & --- & --- & --- & 4.62 & --- & --- & --- & 3.72 \\
\hline
\end{tabular}
e Estimated

GREEN RIVER BASIN
03321060 POND RIVER NEAR MADISONVILLE, KY--Continued


WABASH RIVER BASIN
03378500 WABASH RIVER AT NEW HARMONY, IN
(National stream-quality accounting network station)
LOCATION.--Lat \(38^{\circ} 07{ }^{\prime} 55^{\prime}\), long \(87^{\circ} 56^{\prime} \mathbf{2 5 '}^{\prime \prime}\), Posey County, Hydrologic Unit 05120113, at bridge on U.S. Highway 66 at New Harmony, and at mile 51.5.
DRAINAGE AREA. --29, \(234 \mathrm{mi}^{2}\)
WATER-QUALITY RECORDS
PERIOD OF RECORD.--
CHEMICAL ANALYSES: October 1974 to 1986,1997 to current water year.
SEDIMENT DISCHARGE: Partial record station--October 1974 to 1985
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: October 1974 to September 1980.
WATER TEMPERATURE: October 1974 to September 1980.
REMARKS.--Water discharge obtained from station Wabash River at Mount Carmel, IL. (03377500).
EXTREMES FOR PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 805 microsiemens Feb. 15, 1977; minimum, 200 micorsiemens Mar. 3, 1979.
WATER TEMPERATURE: Maximum, \(32.0^{\circ} \mathrm{C}\) June 28, 1978, July \(14-18,1980\); minimum, freezing point on many days during winter period.


WABASH RIVER BASIN
03378500 WABASH RIVER AT NEW HARMONY, IN--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & \\
\hline & & AGNE- & & POTAS- & \begin{tabular}{l}
BICAR- \\
BONATE
\end{tabular} & ALKALTNITY & CHLO- & & FLUO- & SI & SOLIDS, RESIDUE & \\
\hline & CALCIUM & SIUM, & SODIUM, & SIUM, & WATER & WAT DIS & RIDE, & SULFATE & RIDE, & DIS- & AT 180 & NITRO- \\
\hline & DIS- & DIS- & DIS- & DIS- & DIS IT & TOT IT & DIS- & DIS- & DIS- & SOLVED & DEG. C & GEN, \\
\hline & SOLVED & SOLVED & SOLVED & SOLVED & FIELD & FIELD & SOLVED & SOLVED & SOLVED & (MG/L & DIS- & TOTAL \\
\hline DATE & (MG/L & (MG/L & (MG/L & (MG/L & MG/L AS & MG/L AS & (MG/L & (MG/L & (MG/L & AS & SOLVED & (MG/L \\
\hline & AS CA) & AS MG) & AS NA) & AS K) & HCO3 & CACO3 & AS CL) & AS SO4) & AS F) & SIO2) & (MG/L) & AS N) \\
\hline & (00915) & (00925) & (00930) & (00935) & (00453) & (39086) & (00940) & (00945) & (00950) & (00955) & (70300) & (00600) \\
\hline NOV & & & & & & & & & & & & \\
\hline 12.. & 71 & 24 & 26 & 4.6 & 227 & 186 & 35 & 71 & . 27 & 4.6 & 391 & 2.4 \\
\hline DEC & & & & & & & & & & & & \\
\hline 16.. & 78 & 25 & 28 & 3.7 & 285 & 234 & 38 & 75 & . 23 & 2.9 & 400 & 2.5 \\
\hline 16. & . 018 & . 003 & <. 025 & -- & -- & -- & -- & -- & -- & <. 020 & -- & -- \\
\hline JAN & & & & & & & & & & & & \\
\hline 27... & 28 & 7.7 & 7.3 & 3.4 & -- & 68 & 13 & 22 & . 14 & 5.4 & 153 & 3.5 \\
\hline MAR & & & & & & & & & & & & \\
\hline 15.. & 51 & 15 & 11 & 2.4 & 137 & 112 & 20 & 41 & . 15 & 6.3 & 263 & 4.6 \\
\hline 15. & 50 & 15 & 11 & 2.4 & 158 & 130 & 20 & 40 & . 15 & 6.3 & 261 & 4.6 \\
\hline APR & & & & & & & & & & & & \\
\hline 13... & 57 & 18 & 15 & 2.8 & 178 & 146 & 24 & 57 & . 17 & 3.3 & 298 & 2.8 \\
\hline 26. & 60 & 20 & 12 & 2.5 & 167 & 137 & 22 & 38 & . 19 & 6.6 & 291 & 7.5 \\
\hline 26. & . 012 & . 001 & . 032 & -- & -- & -- & -- & -- & -- & . 039 & -- & -- \\
\hline MAY & & & & & & & & & & & & \\
\hline 11.. & 66 & 21 & 14 & 2.4 & 203 & 167 & 23 & 55 & . 19 & 3.4 & 324 & 4.2 \\
\hline 11. & - & -- & -- & -- & -- & -- & - & - & -- & - & -- & - \\
\hline 26. & 63 & 21 & 16 & 2.8 & 223 & 183 & 26 & 57 & . 20 & 3.6 & 340 & 4.7 \\
\hline JUN & & & & & & & & & & & & \\
\hline 08. & 47 & 15 & 9.8 & 3.8 & 140 & 115 & 19 & 37 & . 22 & 6.7 & 275 & 7.5 \\
\hline 08. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 22. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 22. & . 006 & <. 001 & \(<.025\) & -- & -- & -- & -- & -- & -- & <. 020 & -- & -- \\
\hline JUL & & & & & & & & & & & & \\
\hline 21. & 41 & 24 & 24 & 2.9 & -- & -- & 37 & 62 & . 17 & . 24 & 284 & -- \\
\hline 21. & 41 & 25 & 25 & 3.0 & -- & -- & 36 & 62 & . 16 & . 21 & 287 & -- \\
\hline AUG & & & & & & & & & & & & \\
\hline 24... & 48 & 27 & 39 & 3.5 & -- & -- & 52 & 80 & . 24 & . 16 & 355 & -- \\
\hline
\end{tabular}
NITRO-

WABASH RIVER BASIN
03378500 WABASH RIVER AT NEW HARMONY, IN--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DATE & ```
    NITRO-
    GEN,
AMMONIA
    DIS-
    SOLVED
    (MG/L
AS NH4)
(71846)
``` & \[
\begin{gathered}
\text { NITRO- } \\
\text { GEN, } \\
\text { NITRATE } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (MG/L } \\
\text { AS NO3) } \\
\text { (71851) }
\end{gathered}
\] & \[
\begin{gathered}
\text { NITRO- } \\
\text { GEN, } \\
\text { NITRITE } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (MG/L } \\
\text { AS NO2) } \\
(71856)
\end{gathered}
\] & \[
\begin{aligned}
& \text { PHOS- } \\
& \text { PHORUS } \\
& \text { ORTHO, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (MG/L } \\
& \text { AS P) } \\
& (00671)
\end{aligned}
\] & \[
\begin{gathered}
\text { ALUM- } \\
\text { INUM, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS AL) } \\
(01106 \text { ) }
\end{gathered}
\] & \[
\begin{gathered}
\text { ANTI- } \\
\text { MONY, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS SB) } \\
(01095 \text { ) }
\end{gathered}
\] & \[
\begin{gathered}
\text { ARSENIC } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS AS) } \\
(01000)
\end{gathered}
\] & \[
\begin{aligned}
& \text { BARIUM, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS BA) } \\
& (01005 \text { ) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { BERYL- } \\
& \text { LIUM, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS BE) } \\
& (01010)
\end{aligned}
\] & \[
\begin{aligned}
& \text { BORON, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS B) } \\
& (01020)
\end{aligned}
\] & \[
\begin{aligned}
& \text { CADMIUM } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS CD) } \\
& (01025 \text { ) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CHRO- } \\
& \text { MIUM, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS CR) } \\
& (01030)
\end{aligned}
\] \\
\hline \multicolumn{13}{|l|}{NOV} \\
\hline 12. & . 03 & 6.6 & . 05 & . 074 & 1.4 & \(<1.0\) & 3 & 53 & \(<1.0\) & 130 & \(<1.0\) & 2.0 \\
\hline \multicolumn{13}{|l|}{DEC} \\
\hline 16. & . 04 & 7.5 & . 06 & . 042 & 2.7 & <1.0 & 2 & 55 & <1.0 & 138 & \(<1.0\) & <1.0 \\
\hline 16. & . 00 & -- & -- & . 001 & \(<.30\) & <. 20 & -- & <. 20 & <. 20 & <2.0 & \(<.30\) & <. 20 \\
\hline \multicolumn{13}{|l|}{JAN} \\
\hline \multicolumn{13}{|l|}{MAR} \\
\hline 15. & . 03 & 17 & . 04 & . 052 & -- & -- & 1 & -- & -- & 36 & -- & -- \\
\hline 15. & . 04 & 17 & . 04 & . 051 & -- & -- & 1 & -- & -- & 37 & -- & -- \\
\hline \multicolumn{13}{|l|}{APR} \\
\hline 13. & -- & -- & -- & . 038 & 5.5 & <1.0 & <1 & 46 & \(<1.0\) & 64 & \(<1.0\) & \(<1.0\) \\
\hline 26.. & -- & 29 & . 10 & . 063 & -- & -- & <1 & -- & -- & 49 & -- & -- \\
\hline 26. & . 01 & -- & -- & . 002 & \(<.30\) & \(<.20\) & -- & \(<.20\) & \(<.20\) & <2.0 & \(<.30\) & \(<.20\) \\
\hline \multicolumn{13}{|l|}{MAY} \\
\hline 11. & -- & 14 & . 04 & . 023 & -- & -- & 1 & -- & -- & 72 & -- & -- \\
\hline 11.. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 26. & -- & 15 & . 04 & . 032 & -- & -- & 1 & -- & -- & 82 & -- & -- \\
\hline \multicolumn{13}{|l|}{JUN} \\
\hline 08. & -- & 26 & . 26 & . 094 & 4.3 & <1.0 & 1 & 46 & \(<1.0\) & 55 & \(<1.0\) & <1.0 \\
\hline 08.. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 22. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 22. & . 01 & -- & -- & . 001 & \(<.30\) & \(<.20\) & -- & <. 20 & \(<.20\) & <2.0 & \(<.30\) & \(<.20\) \\
\hline \multicolumn{13}{|l|}{JUL} \\
\hline 21. & -- & -- & -- & \(<.001\) & -- & -- & <1 & -- & -- & 121 & -- & -- \\
\hline 21. & -- & -- & -- & \(<.001\) & -- & -- & <1 & -- & -- & 128 & -- & -- \\
\hline \multicolumn{13}{|l|}{AUG} \\
\hline \multirow[t]{2}{*}{24.} & -- & -- & -- & \(<.001\) & 7.0 & <1.0 & 1 & 57 & <1.0 & 178 & <1.0 & \(<1.0\) \\
\hline & \[
\begin{gathered}
\text { COBALT, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS CO) } \\
(01035 \text { ) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { COPPER, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS CU) } \\
& (01040 \text { ) }
\end{aligned}
\] & \[
\begin{gathered}
\text { IRON, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS FE) } \\
(01046 \text { ) }
\end{gathered}
\] & \[
\begin{gathered}
\text { LEAD, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS PB) } \\
(01049 \text { ) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { LITHIUM } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS LI) } \\
& (01130)
\end{aligned}
\] & \[
\begin{aligned}
& \text { MANGA- } \\
& \text { NESE, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS MN) } \\
& (01056 \text { ) }
\end{aligned}
\] & \[
\begin{gathered}
\text { MOLYB- } \\
\text { DENUM, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS MO) } \\
(01060)
\end{gathered}
\] & \[
\begin{aligned}
& \text { NICKEL, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS NI) } \\
& (01065)
\end{aligned}
\] & \[
\begin{aligned}
& \text { SELE- } \\
& \text { NIUM, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS SE) } \\
& (01145 \text { ) }
\end{aligned}
\] & \[
\begin{gathered}
\text { SILVER, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS AG) } \\
(01075 \text { ) }
\end{gathered}
\] & \[
\begin{gathered}
\text { STRON- } \\
\text { TIUM, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS SR) } \\
(01080)
\end{gathered}
\] & \[
\begin{gathered}
\text { THAL- } \\
\text { LIUM, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS TL) } \\
(01057)
\end{gathered}
\] \\
\hline \multicolumn{13}{|l|}{NOV} \\
\hline \multicolumn{13}{|l|}{DEC} \\
\hline 16.. & \(<1.0\) & 1.4 & \(<10\) & \(<1.0\) & 6 & 4.8 & 5.9 & 3.3 & <1 & \(<1.0\) & 289 & -- \\
\hline 16.. & <. 20 & <. 20 & <3.0 & \(<.30\) & -- & \(<.10\) & <. 20 & \(<.50\) & -- & <. 20 & \(<.10\) & \(<.10\) \\
\hline \multicolumn{13}{|l|}{JAN} \\
\hline 27.. & <1.0 & 1.5 & 21 & \(<1.0\) & \(<6\) & 7.7 & 1.0 & 1.7 & <1 & <1.0 & 72 & -- \\
\hline \multicolumn{13}{|l|}{MAR} \\
\hline 15... & -- & -- & E7. 3 & -- & <6 & -- & -- & -- & 1 & -- & 146 & -- \\
\hline 15... & -- & - & E6. 8 & -- & <6 & -- & -- & -- & 2 & -- & 145 & -- \\
\hline \multicolumn{13}{|l|}{APR} \\
\hline 13... & \(<1.0\) & 1.7 & \(<10\) & \(<1.0\) & E5 & 2.3 & 3.2 & 2.5 & \(<1\) & \(<1.0\) & 168 & -- \\
\hline 26... & -- & -- & \(<10\) & -- & 10 & -- & -- & -- & <1 & -- & 171 & -- \\
\hline 26.. & \(<.20\) & . 52 & \(<3.0\) & \(<.30\) & -- & . 13 & <. 20 & \(<.50\) & -- & <. 20 & <. 10 & \(<.10\) \\
\hline \multicolumn{13}{|l|}{MAY} \\
\hline 11... & -- & -- & \(<10\) & -- & <6 & -- & -- & -- & <1 & -- & 191 & -- \\
\hline 11... & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 26... & -- & -- & <10 & -- & E4 & -- & -- & -- & 1 & -- & 187 & -- \\
\hline \multicolumn{13}{|l|}{JUN} \\
\hline 08... & \(<1.0\) & 1.9 & \(<10\) & \(<1.0\) & <6 & <1.0 & 2.7 & 1.7 & 1 & \(<1.0\) & 140 & -- \\
\hline 08... & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 22... & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 22... & <. 20 & <. 20 & <3.0 & <. 30 & -- & <. 10 & <. 20 & <. 50 & -- & <. 20 & <. 10 & <. 10 \\
\hline \multicolumn{13}{|l|}{JUL} \\
\hline 21... & -- & -- & E6. 2 & -- & E4 & -- & -- & - & \(<1\) & -- & 173 & -- \\
\hline 21... & -- & -- & 10 & -- & <6 & -- & - & -- & <1 & -- & 180 & -- \\
\hline \multicolumn{13}{|l|}{AUG} \\
\hline 24... & \(<1.0\) & 1.5 & <10 & \(<1.0\) & 9 & \(<1.0\) & 11 & 2.8 & <1 & \(<1.0\) & 209 & -- \\
\hline
\end{tabular}

WABASH RIVER BASIN
03378500 WABASH RIVER AT NEW HARMONY, IN--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DATE} & & & & & CARBON, & & & & & & \\
\hline & \[
\begin{aligned}
& \text { VANA- } \\
& \text { DIUM, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS V) } \\
& (01085)
\end{aligned}
\] & \[
\begin{aligned}
& \text { ZINC, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS ZN) } \\
& (01090)
\end{aligned}
\] & URANIUM NATURAL DISSOLVED (UG/L AS U) (22703) & \[
\begin{aligned}
& \text { CARBON, } \\
& \text { ORGANIC } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (MG/L } \\
& \text { AS C) } \\
& (00681)
\end{aligned}
\] & \[
\begin{gathered}
\text { ORGANIC } \\
\text { SUS- } \\
\text { PENDED } \\
\text { TOTAL } \\
\text { (MG/L } \\
\text { AS C) } \\
(00689)
\end{gathered}
\] & \begin{tabular}{l}
ALA- \\
CHLOR, \\
WATER, \\
DISS, \\
REC, \\
(UG/L) \\
(46342)
\end{tabular} & ACETOCHLOR, WATER FLTRD REC (UG/L) (49260) & \[
\begin{aligned}
& \text { ATRA- } \\
& \text { ZINE, } \\
& \text { WATER, } \\
& \text { DISS, } \\
& \text { REC } \\
& \text { (UG/L) } \\
& (39632)
\end{aligned}
\] & \[
\begin{aligned}
& \text { ALPHA } \\
& \text { BHC } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L) } \\
& (34253)
\end{aligned}
\] & \begin{tabular}{l}
BUTYL- \\
ATE, WATER, DISS, REC (UG/L) (04028)
\end{tabular} & \[
\begin{gathered}
\text { CHLOR- } \\
\text { PYRIFOS } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L) } \\
(38933)
\end{gathered}
\] \\
\hline \multicolumn{12}{|l|}{NOV} \\
\hline 12. & \(<10\) & 2.6 & \(<1.0\) & 3.9 & 2.9 & E. 004 & . 0149 & . 470 & <. 0020 & \(<.0020\) & \(<.0040\) \\
\hline \multicolumn{12}{|l|}{DEC} \\
\hline 16. & <10 & 3.7 & 1.1 & 3.2 & 2.8 & E. 002 & . 0078 & . 223 & <. 0020 & <. 0020 & \(<.0040\) \\
\hline 16. & -- & . 64 & <. 20 & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JAN} \\
\hline 27. & \(<10\) & 1.6 & \(<1.0\) & 4.6 & 3.9 & \(<.010\) & . 0156 & . 141 & <. 0020 & <. 0020 & <. 0040 \\
\hline \multicolumn{12}{|l|}{MAR} \\
\hline 15. & \(<10\) & -- & -- & 3.6 & 1.1 & \(<.007\) & . 0077 & . 091 & <. 0020 & <. 0020 & E. 0027 \\
\hline 15. & <10 & -- & -- & 3.5 & . 50 & . 005 & . 0073 & . 090 & <. 0020 & <. 0020 & E. 0021 \\
\hline \multicolumn{12}{|l|}{APR} \\
\hline 13. & \(<10\) & 4.7 & 1.0 & 3.5 & -- & \(<.002\) & . 0166 & 1.22 & \(<.0020\) & <. 0020 & <. 0040 \\
\hline 26. & <10 & -- & -- & 4.3 & -- & . 029 & . 288 & 2.24 & <. 0020 & <. 0020 & . 0080 \\
\hline 26. & -- & 4.8 & <. 20 & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{MAY} \\
\hline 11. & <10 & -- & -- & 3.5 & 3.2 & . 009 & . 261 & 2.31 & \(<.0020\) & <. 0020 & \(<.0040\) \\
\hline 11. & -- & -- & -- & <. 10 & . 20 & \(<.002\) & <. 0020 & <. 001 & <. 0020 & <. 0020 & <. 0040 \\
\hline 26. & \(<10\) & -- & -- & 3.2 & 3.3 & . 078 & . 703 & 3.82 & <. 0020 & <. 0020 & . 0154 \\
\hline \multicolumn{12}{|l|}{JUN} \\
\hline 08. & \(<10\) & 1.0 & \(<1.0\) & 4.4 & 3.8 & . 089 & 1.60 & 11.6 & \(<.0020\) & <. 0020 & E. 0132 \\
\hline 08. & -- & -- & -- & <. 10 & <. 20 & -- & -- & -- & -- & -- & -- \\
\hline 22. & - & -- & -- & 3.5 & 4.4 & . 019 & . 164 & 2.83 & <. 0020 & \(<.0020\) & \(<.0040\) \\
\hline 22. & -- & . 95 & <. 20 & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JUL} \\
\hline 21. & \(<10\) & -- & -- & 3.4 & \(>5.0\) & \(<.002\) & <. 0020 & . 689 & \(<.0020\) & \(<.0020\) & \(<.0040\) \\
\hline 21... & <10 & -- & -- & 3.5 & \(>5.0\) & <. 002 & . 0146 & . 687 & <. 0020 & <. 0020 & <. 0040 \\
\hline \multicolumn{12}{|l|}{AUG} \\
\hline 24... & \(<10\) & 1.3 & <1.0 & 3.7 & 4.9 & \(<.002\) & <. 0020 & . 370 & <. 0020 & <. 0020 & \(<.0040\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & DEETHYL & & & & & & & & & \\
\hline DATE & \[
\begin{aligned}
& \text { CYANA- } \\
& \text { ZINE, } \\
& \text { WATER, } \\
& \text { DISS, } \\
& \text { REC } \\
& \text { (UG/L) } \\
& (04041)
\end{aligned}
\] & \[
\begin{aligned}
& \text { ATRA- } \\
& \text { ZINE, } \\
& \text { WATER, } \\
& \text { DISS, } \\
& \text { REC } \\
& \text { (UG/L) } \\
& (04040)
\end{aligned}
\] & \[
\begin{gathered}
\text { DI- } \\
\text { AZINON, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L) } \\
(39572)
\end{gathered}
\] & \[
\begin{aligned}
& \text { DI- } \\
& \text { ELDRIN } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L) } \\
& (39381)
\end{aligned}
\] & \begin{tabular}{l}
FONOFOS \\
WATER \\
DISS \\
REC \\
(UG/L) \\
(04095)
\end{tabular} & \[
\begin{aligned}
& \text { LINDANE } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L) } \\
& (39341)
\end{aligned}
\] & \[
\begin{aligned}
& \text { MALA- } \\
& \text { THION, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L) } \\
& (39532)
\end{aligned}
\] & \begin{tabular}{l}
METRI- \\
BUZIN \\
SENCOR \\
WATER \\
DISSOLV \\
(UG/L) \\
(82630)
\end{tabular} & \[
\begin{aligned}
& \text { METO- } \\
& \text { LACHLOR } \\
& \text { WATER } \\
& \text { DISSOLV } \\
& \text { (UG/L) } \\
& (39415)
\end{aligned}
\] & \[
\begin{aligned}
& \text { P, P' } \\
& \text { DDE } \\
& \text { DISSOLV } \\
& \text { (UG/L) } \\
& (34653)
\end{aligned}
\] & \[
\begin{aligned}
& \text { PARA- } \\
& \text { THION, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L) } \\
& (39542)
\end{aligned}
\] \\
\hline \multicolumn{12}{|l|}{NOV} \\
\hline 12. & . 161 & E. 143 & <. 002 & \(<.001\) & <. 0030 & <. 004 & <. 005 & <. 004 & . 154 & <. 0060 & <. 004 \\
\hline \multicolumn{12}{|l|}{DEC} \\
\hline 16. & . 0683 & E. 0866 & \(<.002\) & <. 001 & <. 0030 & <. 004 & <. 005 & . 010 & . 087 & <. 0060 & \(<.004\) \\
\hline 16. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JAN} \\
\hline 27. & . 0272 & E. 0443 & \(<.002\) & <. 001 & <. 0030 & \(<.004\) & <. 005 & . 036 & . 075 & <. 0060 & \(<.004\) \\
\hline \multicolumn{12}{|l|}{MAR} \\
\hline 15. & . 0153 & E. 0383 & \(<.002\) & \(<.001\) & \(<.0030\) & \(<.004\) & \(<.005\) & <. 004 & . 050 & <. 0060 & \(<.004\) \\
\hline 15. & . 0133 & E. 0348 & \(<.002\) & \(<.001\) & <. 0030 & \(<.004\) & \(<.005\) & . 005 & . 041 & \(<.0060\) & \(<.004\) \\
\hline \multicolumn{12}{|l|}{APR} \\
\hline 13. & . 0934 & E. 0749 & <. 002 & \(<.001\) & <. 0030 & \(<.004\) & \(<.005\) & . 039 & . 120 & <. 0060 & \(<.004\) \\
\hline 26. & . 157 & E. 125 & E. 003 & <. 001 & <. 0030 & <. 004 & <. 005 & . 116 & . 948 & <. 0060 & <. 004 \\
\hline 26. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{MAY} \\
\hline 11. & . 170 & E. 165 & E. 004 & \(<.001\) & \(<.0030\) & \(<.004\) & \(<.005\) & . 047 & . 415 & \(<.0060\) & \(<.004\) \\
\hline 11. & <. 0040 & <. 0020 & <. 002 & \(<.001\) & <. 0030 & \(<.004\) & \(<.005\) & <. 004 & \(<.002\) & <. 0060 & \(<.004\) \\
\hline 26. & . 354 & E. 281 & E. 004 & <. 001 & <. 0030 & <. 004 & <. 005 & . 032 & 1.05 & <. 0060 & <. 004 \\
\hline \multicolumn{12}{|l|}{JUN} \\
\hline 08. & . 560 & E. 836 & . 007 & \(<.001\) & \(<.0030\) & \(<.004\) & \(<.005\) & . 087 & 2.48 & \(<.0060\) & \(<.004\) \\
\hline 08. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 22. & E. 127 & E. 364 & \(<.002\) & \(<.001\) & <. 0030 & <. 004 & <. 005 & . 012 & . 704 & <. 0060 & \(<.004\) \\
\hline 22. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JUL} \\
\hline 21. & . 0564 & E. 143 & \(<.002\) & \(<.001\) & <. 0030 & <. 004 & \(<.005\) & <. 004 & . 113 & <. 0060 & <. 004 \\
\hline 21. & . 0527 & E. 144 & <. 002 & <. 001 & <. 0030 & <. 004 & <. 005 & <. 004 & . 105 & <. 0060 & <. 004 \\
\hline \multicolumn{12}{|l|}{AUG} \\
\hline 24.. & . 0343 & E. 0811 & \(<.002\) & \(<.015\) & <. 0030 & \(<.004\) & \(<.005\) & <. 004 & . 057 & <. 0060 & \(<.004\) \\
\hline
\end{tabular}

03378500 WABASH RIVER AT NEW HARMONY, IN--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DATE & \[
\begin{aligned}
& \text { PROP- } \\
& \text { CHLOR, } \\
& \text { WATER, } \\
& \text { DISS, } \\
& \text { REC } \\
& \text { (UG/L) } \\
& (04024)
\end{aligned}
\] & PROMETON, WATER, DISS, REC (UG/L) (04037) & \[
\begin{aligned}
& \text { SI- } \\
& \text { MAZINE, } \\
& \text { WATER, } \\
& \text { DISS, } \\
& \text { REC } \\
& \text { (UG/L) } \\
& (04035)
\end{aligned}
\] & \[
\begin{gathered}
\text { BEN- } \\
\text { FLUR- } \\
\text { ALIN } \\
\text { WAT FLD } \\
0.7 \text { U } \\
\text { GF, REC } \\
\text { (UG/L) } \\
(82673)
\end{gathered}
\] & \[
\begin{aligned}
& \text { CAR- } \\
& \text { BARYL } \\
& \text { WATER } \\
& \text { FLTRD } \\
& 0.7 \text { U } \\
& \text { GF, REC } \\
& \text { (UG/L) } \\
& (82680)
\end{aligned}
\] & \begin{tabular}{l}
CARBO- \\
FURAN \\
WATER \\
FLTRD \\
0.7 U \\
GF, REC \\
(UG/L) \\
(82674)
\end{tabular} & \begin{tabular}{l}
DCPA \\
WATER \\
FLTRD \\
0.7 U \\
GF, REC \\
(UG/L) \\
(82682)
\end{tabular} & \[
\begin{gathered}
2,6-\mathrm{DI}- \\
\text { ETHYL } \\
\text { ANILINE } \\
\text { WAT FLT } \\
0.7 \text { U } \\
\text { GF, REC } \\
\text { (UG/L) } \\
(82660)
\end{gathered}
\] & \[
\begin{aligned}
& \text { DISUL- } \\
& \text { FOTON } \\
& \text { WATER } \\
& \text { FLTRD } \\
& 0.7 \text { U } \\
& \text { GF, REC } \\
& \text { (UG/L) } \\
& (82677)
\end{aligned}
\] & \begin{tabular}{l}
ETHAL- \\
FLUR- \\
ALIN \\
WAT FLT \\
0.7 U \\
GF, REC \\
(UG/L) \\
(82663)
\end{tabular} & \begin{tabular}{l}
PENDI- \\
METH- \\
ALIN \\
WAT FLT \\
0.7 U \\
GF, REC \\
(UG/L) \\
(82683)
\end{tabular} \\
\hline \multicolumn{12}{|l|}{NOV} \\
\hline 12. & <. 0070 & . 0213 & . 0746 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & \(<.0030\) & <. 0170 & <. 0040 & <. 0040 \\
\hline \multicolumn{12}{|l|}{DEC} \\
\hline 16. & <. 0070 & E. 0112 & . 0277 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & \(<.0030\) & <. 0170 & <. 0040 & <. 0040 \\
\hline 16. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JAN} \\
\hline 27. & <. 0070 & <. 0180 & . 107 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & <. 0030 & <. 0170 & <. 0040 & <. 0040 \\
\hline \multicolumn{12}{|l|}{MAR} \\
\hline 15. & \(<.0070\) & E. 0051 & . 0197 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & \(<.0030\) & <. 0170 & <. 0040 & <. 0040 \\
\hline 15. & <. 0070 & <. 0180 & . 0198 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & <. 0030 & <. 0170 & <. 0040 & <. 0040 \\
\hline \multicolumn{12}{|l|}{APR} \\
\hline 13. & \(<.0070\) & E. 0075 & . 506 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & \(<.0030\) & \(<.0170\) & \(<.0040\) & \(<.0040\) \\
\hline 26. & \(<.0070\) & E. 0118 & . 148 & <. 0020 & \(<.0030\) & \(<.0030\) & \(<.0020\) & \(<.0030\) & \(<.0170\) & <. 0040 & <. 0040 \\
\hline 26. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{MAY} \\
\hline 11. & \(<.0070\) & E. 0171 & . 346 & \(<.0020\) & \(<.0030\) & \(<.0030\) & \(<.0020\) & \(<.0030\) & \(<.0170\) & \(<.0040\) & \(<.0040\) \\
\hline 11 & <. 0070 & <. 0180 & <. 0050 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & <. 0030 & <. 0170 & <. 0040 & <. 0040 \\
\hline 26. & <. 0070 & . 0262 & . 333 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & <. 0030 & <. 0170 & <. 0040 & <. 0040 \\
\hline \multicolumn{12}{|l|}{JUN} \\
\hline 08. & <. 0070 & . 0351 & 1.00 & <. 0020 & \(<.0030\) & <. 0030 & \(<.0020\) & \(<.0030\) & <. 0170 & <. 0040 & . 0150 \\
\hline 08. & -- & -- & -- & -- & -- & -- & -- & -- & -- & - & -- \\
\hline 22. & \(<.0070\) & . 0422 & . 159 & <. 0020 & \(<.0030\) & \(<.0030\) & <. 0020 & \(<.0030\) & <. 0170 & \(<.0040\) & <. 0040 \\
\hline 22 & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JUL} \\
\hline 21. & \(<.0070\) & . 0400 & . 0617 & <. 0020 & \(<.0030\) & \(<.0030\) & \(<.0020\) & \(<.0030\) & <. 0170 & <. 0040 & \(<.0040\) \\
\hline 21 & <. 0070 & . 0405 & . 0624 & <. 0020 & <. 0030 & \(<.0030\) & <. 0020 & \(<.0030\) & <. 0170 & <. 0040 & <. 0040 \\
\hline \multicolumn{12}{|l|}{AUG} \\
\hline 24.. & <. 0070 & . 0371 & . 0386 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & <. 0030 & <. 0170 & <. 0040 & <. 0040 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{} & & & & & & & & & & & \\
\hline & \[
\begin{aligned}
& \text { ETHO- } \\
& \text { PROP }
\end{aligned}
\] & EPTC & \[
\begin{aligned}
& \text { LIN- } \\
& \text { URON }
\end{aligned}
\] & \[
\begin{aligned}
& \text { METHYL } \\
& \text { AZIN- }
\end{aligned}
\] & METHYL PARA- & \[
\begin{gathered}
\text { MOL- } \\
\text { INATE }
\end{gathered}
\] & \[
\begin{aligned}
& \text { NAPROP- } \\
& \text { AMIDE }
\end{aligned}
\] & \[
\begin{gathered}
\text { PEB- } \\
\text { ULATE }
\end{gathered}
\] & PERMETHRIN & PHORATE & PRONAMIDE \\
\hline & WATER & WATER & WATER & PHOS & THION & WATER & WATER & WATER & CIS & WATER & WATER \\
\hline & FLTRD & FLTRD & FLTRD & WAT FLT & WAT FLT & FLTRD & FLTRD & FILTRD & WAT FLT & FLTRD & FLTRD \\
\hline & 0.7 U \\
\hline DATE & \begin{tabular}{l}
GF, REC \\
(UG/L)
\end{tabular} & GF, REC (UG/L) & \[
\begin{aligned}
& \text { GF, REC } \\
& \text { (UG/L) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { GF, REC } \\
& \text { (UG/L) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { GF, REC } \\
& \text { (UG/L) }
\end{aligned}
\] & \begin{tabular}{l}
GF, REC \\
(UG/L)
\end{tabular} & \begin{tabular}{l}
GF, REC \\
(UG/L)
\end{tabular} & \[
\begin{aligned}
& \text { GF, REC } \\
& \text { (UG/L) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { GF, REC } \\
& \text { (UG/L) }
\end{aligned}
\] & GF, REC (UG/L) & \begin{tabular}{l}
GF, REC \\
(UG/L)
\end{tabular} \\
\hline & (82672) & (82668) & (82666) & (82686) & (82667) & (82671) & (82684) & (82669) & (82687) & (82664) & (82676) \\
\hline \multicolumn{12}{|l|}{NOV} \\
\hline 12. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{DEC} \\
\hline 16. & \(<.0030\) & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & \(<.0030\) \\
\hline 16. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JAN} \\
\hline 27. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{MAR} \\
\hline 15. & <. 0030 & <. 0020 & \(<.0020\) & <. 0010 & <. 0060 & \(<.0040\) & <. 0030 & <. 0040 & <. 0050 & <. 0020 & \(<.0030\) \\
\hline 15 & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{APR} \\
\hline 13. & \(<.0030\) & <. 0020 & <. 0020 & <. 0010 & \(<.0060\) & \(<.0040\) & \(<.0030\) & <. 0040 & <. 0050 & <. 0020 & \(<.0030\) \\
\hline 26. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 26. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{MAY} \\
\hline 11. & <. 0030 & E. 0010 & <. 0020 & <. 0010 & <. 0060 & \(<.0040\) & <. 0030 & <. 0040 & <. 0050 & <. 0020 & \(<.0030\) \\
\hline 11. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 26. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{JUN} \\
\hline 08. & \(<.0030\) & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & \(<.0040\) & <. 0050 & \(<.0020\) & \(<.0030\) \\
\hline 08. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 22. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & \(<.0060\) & <. 0040 & <. 0030 & \(<.0040\) & <. 0050 & <. 0020 & \(<.0030\) \\
\hline 22. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JUL} \\
\hline 21. & \(<.0030\) & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & \(<.0030\) \\
\hline 21. & \(<.0030\) & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{AUG} \\
\hline 24. & \(<.0030\) & \(<.0020\) & \(<.0020\) & \(<.0010\) & \(<.0060\) & \(<.0040\) & \(<.0030\) & \(<.0040\) & \(<.0050\) & \(<.0020\) & \(<.0030\) \\
\hline
\end{tabular}

WABASH RIVER BASIN
03378500 WABASH RIVER AT NEW HARMONY, IN--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{} & & & & & & & & & & & \\
\hline & \[
\begin{gathered}
\text { PRO- } \\
\text { PANIL }
\end{gathered}
\] & \[
\begin{gathered}
\text { PRO- } \\
\text { PARGITE }
\end{gathered}
\] & TEBUTHIURON & \[
\begin{aligned}
& \text { TER- } \\
& \text { BACIL }
\end{aligned}
\] & \[
\begin{aligned}
& \text { TER- } \\
& \text { BUFOS }
\end{aligned}
\] & \[
\begin{aligned}
& \text { TRIAL- } \\
& \text { LATE }
\end{aligned}
\] & TRI-FLUR- & THIOBENCARB & & \begin{tabular}{l}
SEDI- \\
MENT,
\end{tabular} & \[
\begin{aligned}
& \text { SED. } \\
& \text { SUSP. }
\end{aligned}
\] \\
\hline & WATER & WATER & WATER & WATER & WATER & WATER & ALIN & WATER & SEDI- & DIS- & SIEVE \\
\hline & FLTRD & FLTRD & FLTRD & FLTRD & FLTRD & FLTRD & WAT FLT & FLTRD & MENT, & CHARGE, & DIAM. \\
\hline & 0.7 U & SUS- & SUS- & \% FINER \\
\hline DATE & \[
\begin{aligned}
& \text { GF, REC } \\
& \text { (UG/L) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { GF, REC } \\
& \text { (UG/L) }
\end{aligned}
\] & GF, REC (UG/L) & \[
\begin{aligned}
& \text { GF, REC } \\
& \text { (UG/L) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { GF, REC } \\
& \text { (UG/L) }
\end{aligned}
\] & GF, REC (UG/L) & \[
\begin{aligned}
& \text { GF, REC } \\
& \text { (UG/L) }
\end{aligned}
\] & \begin{tabular}{l}
GF, REC \\
(UG/L)
\end{tabular} & \[
\begin{aligned}
& \text { PENDED } \\
& \text { (MG/L) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { PENDED } \\
& \text { (T/DAY) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { THAN } \\
& .062 \mathrm{MM}
\end{aligned}
\] \\
\hline & (82679) & (82685) & (82670) & (82665) & (82675) & (82678) & (82661) & (82681) & (80154) & (80155) & (70331) \\
\hline \multicolumn{12}{|l|}{NOV} \\
\hline 12 & <. 0040 & <. 0130 & . 0122 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & <. 0020 & 70 & 2550 & 99 \\
\hline \multicolumn{12}{|l|}{DEC} \\
\hline 16. & <. 0040 & <. 0130 & E. 0067 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & <. 0020 & 17 & 358 & 96 \\
\hline 16. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JAN} \\
\hline 27. & <. 0040 & <. 0130 & E. 0048 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & <. 0020 & 247 & 96700 & 84 \\
\hline \multicolumn{12}{|l|}{MAR} \\
\hline 15. & <. 0040 & <. 0130 & E. 0098 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & \(<.0020\) & 85 & 14600 & 85 \\
\hline 15. & <. 0040 & <. 0130 & E. 0071 & <. 0070 & <. 0130 & <. 0010 & E. 0016 & <. 0020 & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{APR} \\
\hline 13. & \(<.0040\) & \(<.0130\) & \(<.0100\) & \(<.0070\) & \(<.0130\) & \(<.0010\) & \(<.0020\) & \(<.0020\) & 142 & 10700 & 99 \\
\hline 26. & <. 0040 & <. 0130 & . 0102 & <. 0070 & <. 0130 & <. 0010 & E. 0015 & <. 0020 & 136 & 21100 & 93 \\
\hline 26. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{MAY} \\
\hline 11. & <. 0040 & \(<.0130\) & E. 0074 & <. 0070 & \(<.0130\) & <. 0010 & <. 0020 & <. 0020 & 121 & 8690 & 97 \\
\hline 11. & <. 0040 & <. 0130 & <. 0100 & \(<.0070\) & <. 0130 & <. 0010 & <. 0020 & <. 0020 & -- & -- & -- \\
\hline 26. & <. 0040 & \(<.0130\) & E. 0070 & \(<.0070\) & \(<.0130\) & <. 0010 & <. 0020 & \(<.0020\) & 129 & 8220 & 98 \\
\hline \multicolumn{12}{|l|}{JUN} \\
\hline 08. & \(<.0040\) & <. 0900 & . 0120 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & \(<.0020\) & 248 & 33300 & 98 \\
\hline 08. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 22. & <. 0040 & <. 0130 & E. 0085 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & <. 0020 & 116 & 4290 & 99 \\
\hline 22. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JUL} \\
\hline 21. & <. 0040 & \(<.0130\) & E. 0105 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & \(<.0020\) & 23 & 470 & 98 \\
\hline 21. & <. 0040 & <. 0130 & E. 0105 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & <. 0020 & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{AUG} \\
\hline 24.. & <. 0040 & <. 0130 & <. 0100 & <. 0070 & <. 0130 & <. 0010 & <. 0020 & <. 0020 & 45 & 525 & 99 \\
\hline
\end{tabular}

03383000 TRADEWATER RIVER AT OLNEY, KY
LOCATION.--Lat \(37^{\circ} 13^{\prime} \mathbf{2 6 "}^{\prime \prime}\), long \(87^{\circ} 46^{\prime} 5^{\prime \prime}\), Caldwell County, Hydrologic Unit 05140205, on left bank at downstream side of bridge on State Highway \(1220^{\prime}\) at Olney, 0.9 mi upstream from Cave Creek, 5.4 mi downstream from Flynn Creek, 9.5 mi northeast of Princeton, and at mile 72.7 .
DRAINAGE AREA. \(--255 \mathrm{mi}^{2}\), of which about \(9 \mathrm{mi}^{2}\) does not contribute directly to surface runoff.
PERIOD OF RECORD.--August 1940 to May 1984, March 1985 to current year.
GAGE.--Water-stage recorder. Datum of gage is 362.80 ft above sea level. Prior to July 31 , 1942 , nonrecording gage at same site and datum.

REMARKS.--Records fair except for periods of estimated record, which are poor.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of January 1937 reached a stage of 19.27 ft , from floodmarks, discharge, 17,000 ft \({ }^{3} / \mathrm{s}\) by slope-area measurement from U.S. Army Corp of Engineers.

PEAKS ABOVE BASE.--Peak discharges above base of \(2000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 25 & 0500 & \(* 5000\) & 16.26
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & e1.0 & e2.1 & e8.0 & e88 & 1320 & 1220 & 121 & 238 & 11 & 1030 & 5.4 & . 64 \\
\hline 2 & e. 98 & e2.0 & e7. 8 & e86 & e1100 & 1040 & 189 & 180 & 13 & 1770 & 3.9 & . 63 \\
\hline 3 & e1.0 & e2.0 & e8.4 & e120 & e800 & 809 & 263 & 150 & e12 & 1690 & 3.2 & . 56 \\
\hline 4 & e1.2 & e1.9 & e9.2 & e200 & e500 & 623 & 971 & 130 & e11 & 1070 & 3.1 & . 53 \\
\hline 5 & e6.0 & e1.8 & e20 & e180 & 309 & 400 & 1330 & 142 & e20 & 388 & 2.8 & . 47 \\
\hline 6 & 17 & e1.9 & e120 & e170 & 200 & 818 & e1500 & 1180 & e60 & 215 & 2.3 & . 42 \\
\hline 7 & 22 & e2.0 & 168 & 152 & 162 & 1140 & e1600 & 1700 & 71 & 167 & 2.2 & . 38 \\
\hline 8 & 29 & e2.4 & 146 & 198 & 158 & 854 & e1200 & e1600 & 61 & 135 & 4.0 & . 36 \\
\hline 9 & 50 & e3.0 & 185 & 1190 & 149 & 737 & e800 & e1400 & 96 & 110 & 4.3 & . 33 \\
\hline 10 & 53 & e4.0 & 188 & 1460 & 133 & 1030 & 511 & e900 & 70 & 89 & 3.4 & . 29 \\
\hline 11 & 49 & e10 & 143 & e1300 & 117 & 905 & 320 & e400 & 44 & 72 & 2.9 & . 34 \\
\hline 12 & 33 & e100 & 111 & e1000 & 118 & 557 & 234 & e215 & 29 & 58 & 2.3 & . 56 \\
\hline 13 & 23 & 61 & 97 & e700 & 171 & 323 & 190 & e177 & 23 & 45 & 2.6 & . 60 \\
\hline 14 & 14 & 39 & 119 & 453 & 196 & 692 & 168 & 155 & 101 & 33 & 2.3 & . 48 \\
\hline 15 & 9.3 & 25 & 163 & 379 & 155 & 1450 & 228 & 140 & 96 & 25 & 1.7 & . 43 \\
\hline 16 & 6.3 & 18 & 135 & 328 & 134 & e1300 & 386 & 121 & 47 & 19 & 1.2 & . 57 \\
\hline 17 & 4.4 & e15 & 108 & 237 & 124 & e900 & 353 & 106 & 27 & 16 & . 87 & . 77 \\
\hline 18 & e4.0 & e12 & 88 & 335 & 121 & e500 & 256 & 101 & 17 & 13 & . 75 & . 62 \\
\hline 19 & e3. 8 & e10 & 73 & 432 & 115 & 299 & 204 & 103 & 11 & 10 & . 75 & . 51 \\
\hline 20 & e4.1 & e11 & 62 & 339 & 104 & 199 & 176 & 92 & 8.6 & 7.9 & . 75 & . 47 \\
\hline 21 & e4.0 & e11 & 62 & 239 & 91 & 159 & 159 & 77 & 6.7 & 6.5 & . 64 & . 62 \\
\hline 22 & e3.9 & e10 & 335 & 1090 & 79 & 136 & 146 & 66 & 13 & 5.6 & . 53 & . 61 \\
\hline 23 & e3. 6 & e11 & 799 & 3810 & 71 & 131 & 131 & 57 & 15 & 4.9 & . 55 & . 51 \\
\hline 24 & e3.4 & e12 & 589 & 4580 & 74 & 218 & 116 & 48 & 31 & 4.6 & . 66 & . 38 \\
\hline 25 & e3.2 & e13 & 259 & e4000 & 96 & 217 & 102 & 39 & 163 & 4.2 & . 69 & . 23 \\
\hline 26 & e3.0 & e11 & 169 & e3000 & 108 & 170 & 92 & 33 & 122 & 3.7 & . 61 & . 22 \\
\hline 27 & e2. 8 & e10 & 140 & e2400 & 190 & 140 & 221 & 27 & 497 & 3.5 & . 50 & . 22 \\
\hline 28 & e2.7 & e9.2 & 122 & e1900 & 1040 & 120 & 699 & 21 & 531 & 3.4 & . 43 & . 22 \\
\hline 29 & e2. 6 & e8.4 & 111 & e1500 & --- & 107 & 753 & 17 & 234 & 3.7 & . 47 & . 24 \\
\hline 30 & e2.5 & e7.8 & 103 & e1200 & --- & 96 & 403 & 14 & 168 & 3.8 & . 38 & . 24 \\
\hline 31 & e2.2 & --- & e90 & e900 & --- & 90 & --- & 13 & --- & 4.6 & . 63 & --- \\
\hline TOTAL & 365.98 & 427.5 & 4738.4 & 33966 & 7935 & 17380 & 13822 & 9642 & 2609.3 & 7011.4 & 56.81 & 13.45 \\
\hline MEAN & 11.8 & 14.2 & 153 & 1096 & 283 & 561 & 461 & 311 & 87.0 & 226 & 1.83 & . 45 \\
\hline MAX & 53 & 100 & 799 & 4580 & 1320 & 1450 & 1600 & 1700 & 531 & 1770 & 5.4 & . 77 \\
\hline MIN & . 98 & 1.8 & 7.8 & 86 & 71 & 90 & 92 & 13 & 6.7 & 3.4 & . 38 & . 22 \\
\hline CFSM & . 05 & . 06 & . 62 & 4.45 & 1.15 & 2.28 & 1.87 & 1.26 & . 35 & . 92 & . 01 & . 00 \\
\hline IN. & . 06 & . 06 & . 72 & 5.14 & 1.20 & 2.63 & 2.09 & 1.46 & . 39 & 1.06 & . 01 & . 00 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1941 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 29.3 & 207 & 441 & 570 & 731 & 778 & 594 & 396 & 153 & 92.2 & 36.5 & 50.2 \\
MAX & 324 & 2178 & 1963 & 2268 & 3529 & 2360 & 1851 & 1878 & 949 & 946 & 275 & 798 \\
(WY) & 1997 & 1958 & 1979 & 1950 & 1989 & 1997 & 1979 & 1983 & 1969 & 1989 \\
MIN & .000 & .000 & .96 & 4.85 & 19.2 & 61.9 & 53.7 & 7.09 & 1.18 & .003 & .000 & 1950 \\
(WY) & 1941 & 1954 & 1964 & 1964 & 1964 & 1941 & 1986 & 1941 & 1944 & 1952 & 1952 & 1900 \\
& & & & & 1953
\end{tabular}

TRADEWATER RIVER BASIN
03383000 TRADEWATER RIVER AT OLNEY, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & R YEAR & FOR 1999 WAT & R YEAR & WATER YEA & \multicolumn{2}{|l|}{1941-1999} \\
\hline ANNUAL TOTAL & 87467.28 & & 97967.84 & & & & \\
\hline ANNUAL MEAN & 240 & & 268 & & 334 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 701 & & 1989 \\
\hline LOWEST ANNUAL MEAN & & & & & 61.6 & & 1941 \\
\hline HIGHEST DAILY MEAN & 3210 & Jun 13 & 4580 & Jan 24 & 14000 & Feb 16 & 1989 \\
\hline LOWEST DAILY MEAN & . 82 & Sep 11 & . 22 & Sep 26 & . 00 & Oct 1 & 1940 \\
\hline ANNUAL SEVEN-DAY MINIMUM & . 96 & Sep 11 & . 25 & Sep 24 & . 00 & Oct & 1940 \\
\hline INSTANTANEOUS PEAK FLOW & & & 5000 & Jan 25 & 14600 & Feb 16 & 1989 \\
\hline INSTANTANEOUS PEAK STAGE & & & 16.26 & Jan 25 & 18.85 & Feb 16 & 1989 \\
\hline ANNUAL RUNOFF (CFSM) & . 97 & & 1.09 & & 1.36 & & \\
\hline ANNUAL RUNOFF (INCHES) & 13.23 & & 14.81 & & 18.44 & & \\
\hline 10 PERCENT EXCEEDS & 700 & & 902 & & 1130 & & \\
\hline 50 PERCENT EXCEEDS & 68 & & 74 & & 62 & & \\
\hline 90 PERCENT EXCEEDS & 1.9 & & . 64 & & 1.1 & & \\
\hline
\end{tabular}


LOCATION.--Lat \(37^{\circ} 09^{\prime} 30^{\prime \prime}\), long \(88^{\circ} 25^{\prime} 3^{\prime \prime}\), Livingston County, Hydrologic Unit 05140203, 2400 ft below Smithland Dam, 1.1 mi upstream from Cumberland Island, 1.8 mi niorthwest of Smithland, and at mile 919.0

DRAINAGE AREA. \(--144,000 \mathrm{mi}^{2}\), approximately.
PERIOD OF RECORD.--October 1993 to current year.
GAGE.--Gate opening, lockage and water-stage recorders. Datum of headwater gage is 311.94 ft above sea level. Datum of tailwater gage 0.8 mi downstream is 289.98 ft above sea level.

REMARKS.--Records fair. Daily discharge computed from tailwater elevation, head, gate openings, and lockages. Flow regulated by Ohio River system of locks, dams, and reserviors upstream from station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 36900 & 28300 & 38400 & 47200 & 626000 & 169000 & 129000 & 254000 & 57600 & 66200 & 20500 & 8310 \\
\hline 2 & 18400 & 33100 & 29500 & 63200 & 620000 & 203000 & 129000 & 235000 & 83100 & 79600 & 27100 & 7670 \\
\hline 3 & 14100 & 33300 & 19900 & 62400 & 611000 & 231000 & 125000 & 218000 & 94300 & 83700 & 23400 & 6600 \\
\hline 4 & 37800 & 24800 & 33400 & 87700 & 601000 & 256000 & 151000 & 185000 & 71300 & 115000 & 34700 & 25700 \\
\hline 5 & 13100 & 24700 & 21600 & 87000 & 584000 & 278000 & 170000 & 162000 & 95400 & 66300 & 3090 & 10100 \\
\hline 6 & 24100 & 35300 & 23200 & 87800 & 561000 & 309000 & 184000 & 168000 & 77600 & 88900 & 9160 & 6080 \\
\hline 7 & 24600 & 38300 & 28700 & 103000 & 533000 & 332000 & 189000 & 187000 & 105000 & 46500 & 22800 & 7270 \\
\hline 8 & 52100 & 16600 & 46000 & 80400 & 494000 & 350000 & 188000 & 176000 & 66400 & 67900 & 14000 & 26300 \\
\hline 9 & 53300 & 27400 & 45400 & 101000 & 463000 & 373000 & 176000 & 135000 & 97400 & 36600 & 23500 & 7200 \\
\hline 10 & 74100 & 29700 & 42500 & 171000 & 442000 & 396000 & 164000 & 127000 & 77000 & 73500 & 19600 & 10900 \\
\hline 11 & 59200 & 34300 & 48000 & 226000 & 419000 & 411000 & 163000 & 123000 & 69300 & 36100 & 8470 & 15800 \\
\hline 12 & 45600 & 46300 & 63600 & 267000 & 406000 & 421000 & 164000 & 112000 & 37200 & 51200 & 8040 & 14800 \\
\hline 13 & 40600 & 37200 & 54600 & 294000 & 397000 & 422000 & 179000 & 103000 & 36500 & 25900 & 10600 & 13800 \\
\hline 14 & 35300 & 40900 & 49200 & 311000 & 389000 & 424000 & 203000 & 99700 & 73700 & 35300 & 28500 & 9010 \\
\hline 15 & 27200 & 43600 & 50000 & 310000 & 380000 & 429000 & 221000 & 74400 & 46800 & 39300 & 12600 & 9300 \\
\hline 16 & 21500 & 43800 & 52100 & 298000 & 367000 & 421000 & 219000 & 90800 & 49200 & 27000 & 21900 & 15900 \\
\hline 17 & 32600 & 37600 & 69100 & 283000 & 351000 & 410000 & 218000 & 74900 & 42800 & 28000 & 15600 & 16000 \\
\hline 18 & 25700 & 45600 & 58300 & 288000 & 332000 & 398000 & 208000 & 94600 & 40600 & 15500 & 11100 & 6850 \\
\hline 19 & 26600 & 38900 & 58600 & 312000 & 299000 & 391000 & 192000 & 77900 & 53000 & 27000 & 13300 & 13600 \\
\hline 20 & 34500 & 33300 & 47200 & 329000 & 276000 & 386000 & 184000 & 76200 & 26700 & 12700 & 17100 & 14000 \\
\hline 21 & 27000 & 29000 & 27000 & 347000 & 253000 & 367000 & 181000 & 94600 & 34100 & 34000 & 15900 & 11900 \\
\hline 22 & 27900 & 47100 & 82600 & 384000 & 235000 & 353000 & 186000 & 101000 & 37700 & 17300 & 10700 & 18700 \\
\hline 23 & 38100 & 35400 & 143000 & 441000 & 211000 & 337000 & 185000 & 89500 & 40100 & 18400 & 10600 & 13500 \\
\hline 24 & 20400 & 25300 & 131000 & 505000 & 200000 & 320000 & 203000 & 66900 & 35900 & 26700 & 15200 & 10000 \\
\hline 25 & 21800 & 37500 & 124000 & 564000 & 177000 & 309000 & 217000 & 95300 & 31500 & 20800 & 22400 & 7790 \\
\hline 26 & 33300 & 25800 & 127000 & 598000 & 154000 & 279000 & 226000 & 88700 & 26900 & 36000 & 41000 & 9290 \\
\hline 27 & 27500 & 46400 & 101000 & 600000 & 134000 & 250000 & 240000 & 102000 & 39300 & 31900 & 45400 & 16500 \\
\hline 28 & 16800 & 34200 & 74000 & 592000 & 141000 & 221000 & 258000 & 116000 & 53900 & 15900 & 35400 & 10500 \\
\hline 29 & 26800 & 24900 & 54500 & 587000 & --- & 193000 & 275000 & 115000 & 105000 & 33300 & 18900 & 8610 \\
\hline 30 & 27600 & 45300 & 52300 & 597000 & --- & 163000 & 271000 & 90000 & 96800 & 39300 & 22000 & 22600 \\
\hline 31 & 27600 & --- & 47100 & 616000 & --- & 148000 & --- & 70100 & --- & 40700 & 12400 & --- \\
\hline TOTAL & 992100 & 1043900 & 1842800 & 9639700 & 10656000 & 9950000 & 5798000 & 3802600 & 1802100 & 1336500 & 594960 & 374580 \\
\hline MEAN & 32000 & 34800 & 59450 & 311000 & 380600 & 321000 & 193300 & 122700 & 60070 & 43110 & 19190 & 12490 \\
\hline MAX & 74100 & 47100 & 143000 & 616000 & 626000 & 429000 & 275000 & 254000 & 105000 & 115000 & 45400 & 26300 \\
\hline MIN & 13100 & 16600 & 19900 & 47200 & 134000 & 148000 & 125000 & 66900 & 26700 & 12700 & 3090 & 6080 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1994 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
MEAN & 55560 & 113400 & 178600 & 251700 & 343600 & 408800 & 304100 & 320600 & 230500 & 95080 & 67480 \\
MAX & 107500 & 226400 & 379200 & 311000 & 536200 & 700900 & 594100 & 562200 & 376000 & 203600 & 88600 \\
(WY) & 1997 & 1994 & 1997 & 1999 & 1994 & 1997 & 1994 & 1996 & 1997 & 1998 & 1996 \\
MIN & 29390 & 34800 & 59450 & 224200 & 213000 & 266700 & 150000 & 122700 & 60070 & 43110 & 19190 \\
(WY) & 1998 & 1999 & 1999 & 1997 & 1995 & 1995 & 1995 & 1999 & 1999 & 1999 & 1999
\end{tabular}

OHIO RIVER MAIN STEM
03399800 OHIO RIVER AT SMITHLAND DAM, SMITHLAND, KY--Continued



03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY

\section*{WATER-QUALITY RECORDS}

PERIOD OF RECORD.--October 1979 to current year.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: October 1979 to current year.
pH: October 1979 to current year.
WATER TEMPERATURE: October 1979 to current year.
DISSOLVED OXYGEN: October 1979 to current year.
INSTRUMENTATION.--Water-quality monitor since October 1979.
REMARKS.--Four submersible pumps are located on Martins Fork Dam, at four different elevations referenced to sea level. Pump 1 is located near the bottom of the lake, at an elevation of \(1,272 \mathrm{ft}\); pump 2 is at an elevation of 1,285 ft; pump 3 at an elevation of \(1,298 \mathrm{ft}\); and pump 4 at an elevation of \(1,308 \mathrm{ft}\), occasional operation. Each lake level is sampled once every four hours, or six times per day. A maximum and minimum value for pH and a maximum, minimum, and mean value for temperature, specific conductance, and dissolved oxygen are determined for each level. The monitor was shut down Nov. 24 to Mar. 23.

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & MBER & & & MBER & & & JANUARY & \\
\hline 1 & 143 & 138 & 140 & 164 & 159 & 163 & - & --- & -- & -- & --- & \\
\hline 2 & 147 & 143 & 145 & 164 & 160 & 164 & --- & --- & --- & --- & --- & --- \\
\hline 3 & 153 & 140 & 146 & 165 & 161 & 162 & --- & --- & --- & --- & --- & --- \\
\hline 4 & 154 & 145 & 148 & 166 & 161 & 163 & - & --- & --- & -- & --- & - \\
\hline 5 & 151 & 146 & 149 & 167 & 166 & 166 & --- & --- & -- & --- & --- & --- \\
\hline 6 & 156 & 148 & 151 & 167 & 147 & 158 & -- & - & --- & --- & --- & - \\
\hline 7 & 153 & 145 & 150 & 156 & 152 & 154 & --- & --- & --- & --- & --- & - \\
\hline 8 & 150 & 149 & 150 & 153 & 152 & 152 & - & - & --- & --- & --- & --- \\
\hline 9 & 150 & 146 & 148 & 153 & 149 & 150 & - & - & --- & --- & --- & - \\
\hline 10 & 155 & 147 & 150 & 154 & 149 & 150 & --- & - & - & --- & -- & - \\
\hline 11 & 152 & 148 & 150 & 151 & 150 & 150 & --- & - & -- & --- & --- & --- \\
\hline 12 & 153 & 149 & 152 & 155 & 151 & 152 & --- & --- & --- & --- & --- & --- \\
\hline 13 & 157 & 149 & 152 & 163 & 156 & 160 & --- & -- & --- & --- & --- & -- \\
\hline 14 & 162 & 154 & 158 & 160 & 156 & 158 & -- & --- & --- & -- & --- & - \\
\hline 15 & 154 & 153 & 153 & 161 & 157 & 159 & - & - & --- & --- & --- & - \\
\hline 16 & 154 & 154 & 154 & 158 & 154 & 156 & --- & --- & --- & --- & --- & --- \\
\hline 17 & 158 & 154 & 155 & 158 & 154 & 156 & --- & - & -- & --- & --- & - \\
\hline 18 & 155 & 151 & 154 & 159 & 151 & 155 & --- & --- & --- & --- & --- & --- \\
\hline 19 & 163 & 155 & 157 & 160 & 155 & 158 & --- & --- & --- & --- & --- & --- \\
\hline 20 & 156 & 152 & 154 & 160 & 156 & 157 & --- & --- & --- & --- & --- & --- \\
\hline 21 & 156 & 152 & 154 & 157 & 153 & 156 & --- & --- & - & --- & --- & - \\
\hline 22 & 157 & 153 & 155 & 162 & 157 & 158 & -- & - & -- & - & --- & --- \\
\hline 23 & 157 & 153 & 156 & 158 & 154 & 156 & --- & --- & --- & - & --- & --- \\
\hline 24 & 158 & 150 & 154 & --- & --- & --- & - & - & -- & --- & -- & - \\
\hline 25 & 159 & 146 & 154 & --- & --- & --- & --- & --- & --- & -- & --- & -- \\
\hline 26 & 163 & 155 & 159 & --- & --- & --- & --- & --- & --- & --- & - & --- \\
\hline 27 & 164 & 156 & 158 & --- & --- & --- & --- & --- & --- & - & --- & --- \\
\hline 28 & 165 & 153 & 160 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & 161 & 157 & 160 & --- & --- & - & --- & --- & --- & --- & --- & - \\
\hline 30 & 162 & 158 & 160 & --- & --- & --- & -- & --- & --- & --- & --- & --- \\
\hline 31 & 163 & 159 & 162 & --- & - & --- & --- & --- & --- & - & --- & --- \\
\hline MONTH & 165 & 138 & 153 & 167 & 147 & 157 & --- & --- & - & --- & --- & --- \\
\hline
\end{tabular}

03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


CUMBERLAND RIVER BASIN
03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{JUNE} & \multicolumn{2}{|r|}{JULY} & \multicolumn{4}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & 104 & 103 & 104 & 112 & 109 & 110 & 123 & 119 & 122 & --- & --- & --- \\
\hline 2 & 105 & 103 & 104 & 115 & 112 & 114 & 123 & 122 & 123 & --- & --- & --- \\
\hline 3 & 104 & 103 & 104 & 115 & 112 & 113 & 122 & 121 & 122 & --- & --- & --- \\
\hline 4 & 105 & 104 & 104 & 117 & 113 & 115 & 123 & 121 & 122 & --- & --- & --- \\
\hline 5 & 104 & 104 & 104 & 115 & 113 & 114 & 122 & 122 & 122 & --- & --- & --- \\
\hline 6 & 104 & 103 & 104 & 115 & 113 & 113 & 123 & 121 & 122 & --- & --- & --- \\
\hline 7 & 104 & 104 & 104 & 117 & 111 & 113 & 123 & 121 & 122 & --- & --- & --- \\
\hline 8 & 105 & 104 & 105 & 113 & 111 & 112 & 124 & 123 & 124 & 142 & 137 & 139 \\
\hline 9 & 105 & 103 & 104 & 114 & 111 & 113 & 123 & 122 & 123 & 150 & 139 & 143 \\
\hline 10 & 105 & 103 & 104 & 115 & 113 & 114 & 123 & 123 & 123 & 147 & 138 & 141 \\
\hline 11 & 105 & 103 & 104 & 115 & 114 & 114 & 126 & 124 & 125 & 148 & 142 & 146 \\
\hline 12 & 105 & 103 & 104 & 115 & 114 & 114 & 127 & 127 & 127 & 149 & 145 & 146 \\
\hline 13 & 105 & 103 & 104 & 115 & 115 & 115 & 127 & 124 & 126 & 147 & 146 & 147 \\
\hline 14 & 105 & 104 & 104 & 115 & 114 & 115 & 129 & 127 & 128 & 147 & 145 & 146 \\
\hline 15 & 105 & 104 & 104 & 128 & 114 & 120 & 130 & 128 & 129 & 147 & 147 & 147 \\
\hline 16 & 106 & 104 & 105 & 128 & 126 & 127 & 129 & 128 & 128 & 149 & 146 & 148 \\
\hline 17 & 107 & 104 & 105 & 128 & 126 & 127 & 133 & 131 & 132 & 149 & 148 & 148 \\
\hline 18 & 106 & 104 & 105 & 128 & 127 & 127 & 131 & 130 & 130 & 150 & 148 & 149 \\
\hline 19 & 107 & 104 & 105 & 129 & 126 & 127 & 132 & 131 & 131 & 150 & 149 & 149 \\
\hline 20 & 107 & 105 & 106 & 126 & 125 & 125 & 134 & 132 & 133 & 150 & 150 & 150 \\
\hline 21 & 107 & 105 & 106 & 128 & 126 & 127 & --- & --- & - & 151 & 150 & 150 \\
\hline 22 & 108 & 106 & 107 & 126 & 125 & 126 & --- & --- & -- & 150 & 150 & 150 \\
\hline 23 & 109 & 106 & 107 & 127 & 126 & 126 & --- & --- & --- & 150 & 150 & 150 \\
\hline 24 & 110 & 108 & 108 & 129 & 118 & 123 & --- & --- & --- & 151 & 150 & 150 \\
\hline 25 & 110 & 108 & 109 & 122 & 116 & 119 & - & --- & -- & 151 & 151 & 151 \\
\hline 26 & 110 & 107 & 109 & 116 & 114 & 115 & --- & --- & --- & 152 & 151 & 152 \\
\hline 27 & 109 & 108 & 109 & 116 & 114 & 115 & - & --- & --- & 152 & 152 & 152 \\
\hline 28 & 112 & 108 & 110 & 115 & 113 & 114 & --- & --- & - & 153 & 152 & 153 \\
\hline 29 & 112 & 109 & 111 & 118 & 115 & 117 & --- & --- & --- & 154 & 152 & 153 \\
\hline 30 & 112 & 109 & 110 & 118 & 116 & 117 & --- & --- & --- & 153 & 152 & 152 \\
\hline 31 & --- & & & 120 & 118 & 119 & --- & --- & --- & & --- & \\
\hline MONTH & 112 & 103 & 106 & 129 & 109 & 118 & 134 & 119 & 126 & 154 & 137 & 148 \\
\hline YEAR & 163 & 103 & 127 & & & & & & & & & \\
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & EMBER & & & MBER & & & JANUARY & \\
\hline 1 & 155 & 150 & 152 & 152 & 147 & 151 & --- & --- & --- & --- & --- & --- \\
\hline 2 & 155 & 151 & 153 & 152 & 148 & 151 & --- & --- & --- & --- & --- & --- \\
\hline 3 & 156 & 152 & 153 & 153 & 148 & 152 & --- & --- & --- & --- & --- & --- \\
\hline 4 & 158 & 153 & 156 & 154 & 149 & 153 & --- & --- & --- & --- & --- & --- \\
\hline 5 & 159 & 154 & 158 & 158 & 154 & 155 & --- & --- & --- & --- & --- & --- \\
\hline 6 & 160 & 156 & 158 & 159 & 155 & 157 & --- & --- & --- & --- & --- & --- \\
\hline 7 & 161 & 153 & 156 & 160 & 156 & 158 & --- & --- & --- & --- & --- & --- \\
\hline 8 & 158 & 149 & 154 & 160 & 156 & 158 & --- & --- & --- & --- & --- & --- \\
\hline 9 & --- & --- & --- & 157 & 153 & 154 & --- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & --- & 154 & 149 & 152 & --- & --- & --- & --- & --- & --- \\
\hline 11 & --- & --- & --- & 154 & 150 & 152 & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & --- & 155 & 151 & 153 & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & 163 & 156 & 158 & --- & --- & --- & --- & --- & --- \\
\hline 14 & 157 & 153 & 156 & 156 & 152 & 155 & --- & --- & --- & --- & --- & --- \\
\hline 15 & 154 & 149 & 153 & 157 & 157 & 157 & --- & --- & --- & --- & --- & --- \\
\hline 16 & 154 & 150 & 151 & 158 & 153 & 156 & --- & --- & --- & --- & --- & --- \\
\hline 17 & 155 & 150 & 152 & 158 & 154 & 157 & --- & --- & --- & --- & --- & --- \\
\hline 18 & 155 & 151 & 154 & 163 & 155 & 159 & --- & --- & --- & --- & --- & --- \\
\hline 19 & 159 & 155 & 156 & 160 & 155 & 159 & --- & --- & --- & --- & --- & --- \\
\hline 20 & 156 & 152 & 154 & 164 & 156 & 160 & --- & --- & --- & --- & --- & --- \\
\hline 21 & 156 & 152 & 153 & 165 & 157 & 162 & --- & --- & --- & --- & --- & --- \\
\hline 22 & 153 & 149 & 152 & 165 & 157 & 161 & --- & --- & --- & --- & --- & --- \\
\hline 23 & 153 & 149 & 152 & 162 & 153 & 159 & --- & --- & --- & --- & --- & --- \\
\hline 24 & 154 & 149 & 150 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & 151 & 146 & 148 & - & - & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & 151 & 147 & 150 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & 152 & 148 & 150 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & 153 & 148 & 150 & --- & --- & --- & -- & --- & --- & --- & --- & --- \\
\hline 29 & 153 & 149 & 150 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 30 & 154 & 146 & 149 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & 155 & 147 & 151 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline MONTH & 161 & 146 & 153 & 165 & 147 & 156 & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{FEBRUARY} & \multicolumn{3}{|c|}{MARCH} & \multicolumn{3}{|c|}{APRIL} & \multicolumn{3}{|c|}{MAY} \\
\hline 1 & -- & - & - & --- & --- & --- & 114 & 106 & 110 & 117 & 116 & 117 \\
\hline 2 & - & -- & --- & - & --- & --- & 114 & 110 & 112 & 123 & 117 & 119 \\
\hline 3 & - & --- & --- & --- & --- & -- & 118 & 114 & 115 & 129 & 117 & 122 \\
\hline 4 & -- & - & - & - & --- & -- & 118 & 110 & 113 & 126 & 119 & 122 \\
\hline 5 & --- & --- & --- & --- & --- & --- & 118 & 110 & 114 & 124 & 119 & 121 \\
\hline 6 & -- & --- & --- & --- & --- & - & 118 & 110 & 114 & 126 & 118 & 121 \\
\hline 7 & -- & --- & --- & --- & --- & --- & 118 & 110 & 114 & 136 & 122 & 128 \\
\hline 8 & - & --- & --- & --- & --- & --- & 114 & 110 & 113 & 125 & 120 & 123 \\
\hline 9 & --- & - & --- & --- & - & --- & 114 & 110 & 113 & 123 & 120 & 122 \\
\hline 10 & --- & --- & --- & --- & --- & --- & 118 & 114 & 115 & 123 & 114 & 121 \\
\hline 11 & -- & --- & --- & - & -- & --- & 118 & 114 & 115 & 121 & 116 & 118 \\
\hline 12 & --- & --- & --- & --- & --- & --- & 118 & 114 & 117 & 126 & 115 & 118 \\
\hline 13 & --- & --- & --- & --- & --- & --- & 118 & 114 & 117 & 126 & 114 & 120 \\
\hline 14 & --- & --- & --- & --- & --- & --- & 118 & 114 & 115 & 128 & 115 & 124 \\
\hline 15 & --- & --- & --- & --- & --- & --- & 118 & 114 & 116 & 127 & 112 & 120 \\
\hline 16 & - & --- & --- & --- & --- & - & 118 & 118 & 118 & 129 & 124 & 127 \\
\hline 17 & --- & - & --- & --- & --- & --- & 118 & 114 & 117 & 130 & 119 & 124 \\
\hline 18 & --- & --- & --- & --- & --- & --- & 122 & 118 & 119 & 133 & 124 & 128 \\
\hline 19 & --- & --- & --- & --- & --- & --- & 122 & 118 & 119 & 134 & 124 & 131 \\
\hline 20 & --- & --- & --- & --- & --- & --- & 122 & 118 & 119 & 131 & 121 & 129 \\
\hline 21 & --- & --- & --- & --- & --- & --- & 122 & 118 & 119 & 132 & 115 & 129 \\
\hline 22 & --- & --- & --- & --- & --- & --- & 122 & 118 & 120 & 135 & 111 & 129 \\
\hline 23 & -- & --- & --- & - & -- & --- & 122 & 118 & 119 & 134 & 125 & 132 \\
\hline 24 & -- & --- & --- & --- & --- & --- & 126 & 118 & 121 & 132 & 130 & 132 \\
\hline 25 & --- & --- & - & 115 & 107 & 110 & 122 & 118 & 120 & 132 & 120 & 128 \\
\hline 26 & --- & --- & --- & 107 & 103 & 106 & 126 & 118 & 121 & 132 & 126 & 130 \\
\hline 27 & -- & - & - & 111 & 103 & 107 & 126 & 118 & 122 & 131 & 128 & 130 \\
\hline 28 & --- & --- & --- & 111 & 107 & 110 & 122 & 118 & 120 & 132 & 131 & 131 \\
\hline 29 & --- & --- & --- & 111 & 107 & 108 & --- & -- & - & 131 & 131 & 131 \\
\hline 30 & -- & - & - & 111 & 107 & 108 & - & -- & -- & 132 & 122 & 130 \\
\hline 31 & -- & --- & --- & 110 & 106 & 109 & --- & --- & --- & 132 & 131 & 132 \\
\hline MONTH & --- & --- & --- & 115 & 103 & 108 & 126 & 106 & 117 & 136 & 111 & 125 \\
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{JUNE} & \multicolumn{3}{|c|}{JULY} & \multicolumn{3}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & 133 & 131 & 132 & 145 & 136 & 140 & 143 & 142 & 143 & 143 & 143 & 143 \\
\hline 2 & 135 & 132 & 133 & 143 & 135 & 139 & 142 & 140 & 141 & 143 & 143 & 143 \\
\hline 3 & 135 & 127 & 131 & 143 & 139 & 140 & 142 & 140 & 140 & 145 & 143 & 144 \\
\hline 4 & 136 & 127 & 134 & 142 & 139 & 140 & 141 & 140 & 140 & 145 & 144 & 145 \\
\hline 5 & 138 & 134 & 137 & 142 & 140 & 141 & 142 & 140 & 141 & 146 & 145 & 145 \\
\hline 6 & 138 & 136 & 137 & 141 & 139 & 140 & 142 & 142 & 142 & 146 & 146 & 146 \\
\hline 7 & 138 & 137 & 138 & 140 & 140 & 140 & 143 & 139 & 142 & 147 & 146 & 146 \\
\hline 8 & 138 & 136 & 137 & 142 & 140 & 141 & 144 & 144 & 144 & 146 & 145 & 146 \\
\hline 9 & 138 & 136 & 138 & 142 & 136 & 139 & 145 & 143 & 144 & 147 & 146 & 146 \\
\hline 10 & 138 & 137 & 138 & 148 & 136 & 141 & 143 & 141 & 142 & 147 & 147 & 147 \\
\hline 11 & 138 & 136 & 138 & 145 & 143 & 144 & 140 & 136 & 138 & 147 & 146 & 146 \\
\hline 12 & 139 & 138 & 139 & 144 & 141 & 143 & 136 & 134 & 135 & 148 & 147 & 147 \\
\hline 13 & 140 & 136 & 138 & 141 & 140 & 140 & 148 & 142 & 147 & 148 & 147 & 147 \\
\hline 14 & 140 & 139 & 140 & 141 & 136 & 140 & 147 & 143 & 144 & 148 & 147 & 147 \\
\hline 15 & 140 & 138 & 140 & 140 & 137 & 139 & 144 & 142 & 143 & 148 & 148 & 148 \\
\hline 16 & 140 & 140 & 140 & 141 & 135 & 140 & 141 & 138 & 140 & 148 & 148 & 148 \\
\hline 17 & 141 & 138 & 140 & 141 & 137 & 140 & 143 & 142 & 143 & 149 & 148 & 148 \\
\hline 18 & 141 & 139 & 140 & 140 & 138 & 139 & 143 & 142 & 142 & 149 & 149 & 149 \\
\hline 19 & 140 & 139 & 140 & 140 & 134 & 139 & 143 & 143 & 143 & 149 & 148 & 149 \\
\hline 20 & 140 & 139 & 139 & 141 & 136 & 139 & 145 & 143 & 144 & 150 & 148 & 149 \\
\hline 21 & 140 & 140 & 140 & 142 & 140 & 141 & 144 & 144 & 144 & 150 & 149 & 149 \\
\hline 22 & 140 & 138 & 140 & 142 & 138 & 140 & 143 & 143 & 143 & 150 & 150 & 150 \\
\hline 23 & 140 & 131 & 138 & 143 & 139 & 141 & 143 & 143 & 143 & 151 & 150 & 150 \\
\hline 24 & 139 & 137 & 139 & 142 & 138 & 140 & 144 & 143 & 143 & 151 & 150 & 151 \\
\hline 25 & 138 & 137 & 138 & 141 & 138 & 140 & 144 & 142 & 143 & 151 & 150 & 151 \\
\hline 26 & 137 & 136 & 137 & 143 & 139 & 141 & 143 & 142 & 143 & 152 & 150 & 150 \\
\hline 27 & 138 & 136 & 137 & 141 & 137 & 140 & 143 & 143 & 143 & 151 & 149 & 150 \\
\hline 28 & 144 & 136 & 138 & 140 & 138 & 139 & 143 & 142 & 143 & 152 & 149 & 150 \\
\hline 29 & 144 & 138 & 141 & 144 & 139 & 141 & 143 & 143 & 143 & 151 & 147 & 149 \\
\hline 30 & 143 & 137 & 141 & 142 & 138 & 141 & 143 & 142 & 142 & 152 & 150 & 151 \\
\hline 31 & , & --- & , & 143 & 139 & 142 & 142 & 141 & 142 & --- & , & - \\
\hline MONTH & 144 & 127 & 138 & 148 & 134 & 140 & 148 & 134 & 142 & 152 & 143 & 148 \\
\hline YEAR & 165 & 103 & 138 & & & & & & & & & \\
\hline
\end{tabular}

CUMBERLAND RIVER BASIN
03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued

PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN \\
\hline & \multicolumn{2}{|r|}{OCTOBER} & \multicolumn{2}{|l|}{NOVEMBER} & \multicolumn{2}{|l|}{DECEMBER} & \multicolumn{2}{|r|}{JANUARY} & \multicolumn{2}{|l|}{FEBRUARY} & \multicolumn{2}{|c|}{MARCH} \\
\hline 1 & 6.6 & 6.5 & 6.8 & 6.7 & --- & --- & --- & - & - & --- & --- & --- \\
\hline 2 & 6.6 & 6.5 & 6.8 & 6.7 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & 6.6 & 6.5 & 6.8 & 6.7 & - & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & 6.6 & 6.6 & 6.8 & 6.7 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & 6.6 & 6.6 & 6.7 & 6.7 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & 6.6 & 6.5 & 6.7 & 6.6 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & 6.7 & 6.5 & 6.8 & 6.7 & - & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & 6.7 & 6.6 & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & 6.7 & 6.6 & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 10 & 6.7 & 6.6 & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & 6.7 & 6.6 & 6.8 & 6.7 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & 6.6 & 6.6 & 6.8 & 6.7 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & 6.7 & 6.6 & 6.8 & 6.7 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & 6.7 & 6.6 & 6.8 & 6.7 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & 6.7 & 6.7 & 6.7 & 6.7 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & 6.7 & 6.7 & 6.8 & 6.7 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & 6.7 & 6.7 & 6.8 & 6.7 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & 6.7 & 6.7 & 6.8 & 6.7 & -- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & 6.7 & 6.7 & 6.8 & 6.7 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & 6.7 & 6.7 & 6.8 & 6.7 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & 6.7 & 6.7 & 6.9 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & 6.7 & 6.7 & 6.9 & 6.9 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & 6.7 & 6.7 & 6.9 & 6.9 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & 6.7 & 6.7 & -- & - & --- & --- & --- & --- & --- & --- & 6.5 & 6.4 \\
\hline 25 & 6.7 & 6.7 & - & --- & --- & --- & --- & --- & --- & -- & 6.4 & 6.2 \\
\hline 26 & 6.7 & 6.7 & --- & --- & --- & --- & --- & --- & --- & --- & 6.4 & 6.2 \\
\hline 27 & 6.7 & 6.7 & --- & - & --- & --- & --- & --- & --- & --- & 7.1 & 6.4 \\
\hline 28 & 6.7 & 6.6 & --- & --- & --- & --- & --- & --- & --- & --- & 7.0 & 7.0 \\
\hline 29 & 6.7 & 6.6 & --- & --- & --- & --- & --- & --- & --- & --- & 7.0 & 6.9 \\
\hline 30 & 6.7 & 6.6 & --- & --- & --- & --- & --- & --- & --- & --- & 7.0 & 6.9 \\
\hline 31 & 6.7 & 6.6 & --- & --- & --- & --- & --- & --- & --- & --- & 6.9 & 6.9 \\
\hline MONTH & 6.7 & 6.5 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN \\
\hline & \multicolumn{2}{|c|}{APRIL} & \multicolumn{2}{|c|}{MAY} & \multicolumn{2}{|c|}{JUNE} & \multicolumn{2}{|c|}{JULY} & \multicolumn{2}{|c|}{AUGUST} & \multicolumn{2}{|l|}{SEPTEMBER} \\
\hline 1 & 7.0 & 6.9 & 6.4 & 6.4 & 6.4 & 6.4 & 6.5 & 6.5 & 6.3 & 6.3 & --- & --- \\
\hline 2 & 6.9 & 6.8 & 6.4 & 6.4 & 6.4 & 6.4 & 6.5 & 6.4 & 6.3 & 6.3 & --- & --- \\
\hline 3 & 6.9 & 6.8 & 6.4 & 6.4 & 6.5 & 6.4 & 6.5 & 6.5 & 6.3 & 6.3 & --- & --- \\
\hline 4 & 6.8 & 6.7 & 6.5 & 6.4 & 6.5 & 6.5 & 6.5 & 6.5 & 6.3 & 6.3 & --- & --- \\
\hline 5 & 6.8 & 6.7 & 6.5 & 6.4 & 6.5 & 6.5 & 6.5 & 6.5 & 6.3 & 6.3 & --- & --- \\
\hline 6 & 6.9 & 6.8 & 6.5 & 6.5 & 6.5 & 6.5 & 6.5 & 6.5 & 6.3 & 6.3 & --- & --- \\
\hline 7 & --- & & 6.6 & 6.5 & 6.5 & 6.4 & 6.5 & 6.4 & 6.3 & 6.3 & --- & --- \\
\hline 8 & --- & --- & 6.5 & 6.5 & 6.5 & 6.4 & 6.4 & 6.4 & 6.3 & 6.3 & 6.4 & 6.4 \\
\hline 9 & --- & - & 6.6 & 6.5 & 6.5 & 6.4 & 6.4 & 6.4 & 6.3 & 6.3 & 6.4 & 6.4 \\
\hline 10 & --- & --- & 6.5 & 6.5 & 6.5 & 6.5 & 6.4 & 6.4 & 6.3 & 6.3 & 6.4 & 6.4 \\
\hline 11 & --- & --- & 6.5 & 6.5 & 6.5 & 6.5 & 6.4 & 6.3 & 6.4 & 6.4 & 6.4 & 6.4 \\
\hline 12 & --- & --- & 6.6 & 6.5 & 6.5 & 6.5 & 6.3 & 6.3 & 6.4 & 6.4 & 6.4 & 6.4 \\
\hline 13 & --- & --- & 6.4 & 6.4 & 6.5 & 6.5 & 6.3 & 6.3 & 6.5 & 6.4 & 6.4 & 6.3 \\
\hline 14 & - & -- & 6.5 & 6.4 & 6.5 & 6.5 & 6.4 & 6.3 & 6.5 & 6.4 & 6.4 & 6.4 \\
\hline 15 & --- & --- & 6.5 & 6.4 & 6.5 & 6.5 & 6.4 & 6.3 & 6.5 & 6.4 & 6.4 & 6.3 \\
\hline 16 & -- & -- & 6.5 & 6.4 & 6.5 & 6.5 & 6.4 & 6.3 & 6.4 & 6.3 & 6.4 & 6.3 \\
\hline 17 & --- & --- & 6.5 & 6.4 & 6.5 & 6.5 & 6.4 & 6.3 & 6.3 & 6.3 & 6.4 & 6.3 \\
\hline 18 & --- & --- & 6.4 & 6.4 & 6.5 & 6.5 & 6.4 & 6.4 & 6.3 & 6.2 & 6.4 & 6.3 \\
\hline 19 & --- & --- & 6.5 & 6.5 & 6.5 & 6.5 & 6.4 & 6.3 & 6.2 & 6.2 & 6.3 & 6.3 \\
\hline 20 & --- & --- & 6.5 & 6.5 & 6.5 & 6.5 & 6.3 & 6.3 & 6.2 & 6.2 & 6.4 & 6.3 \\
\hline 21 & -- & - & 6.5 & 6.4 & 6.5 & 6.5 & 6.3 & 6.3 & --- & -- & 6.3 & 6.3 \\
\hline 22 & --- & --- & 6.5 & 6.4 & 6.5 & 6.5 & 6.3 & 6.3 & --- & --- & 6.5 & 6.3 \\
\hline 23 & --- & --- & 6.5 & 6.4 & 6.6 & 6.5 & 6.3 & 6.3 & -- & --- & 6.5 & 6.4 \\
\hline 24 & --- & --- & 6.5 & 6.4 & 6.6 & 6.5 & 6.3 & 6.3 & - & --- & 6.5 & 6.5 \\
\hline 25 & -- & - & 6.5 & 6.4 & 6.6 & 6.6 & 6.3 & 6.3 & --- & --- & 6.5 & 6.4 \\
\hline 26 & --- & --- & 6.5 & 6.4 & 6.6 & 6.6 & 6.3 & 6.3 & --- & --- & 6.5 & 6.4 \\
\hline 27 & -- & -- & 6.4 & 6.4 & 6.6 & 6.6 & 6.3 & 6.3 & --- & --- & 6.4 & 6.4 \\
\hline 28 & --- & -- & 6.4 & 6.4 & 6.6 & 6.6 & 6.3 & 6.3 & --- & -- & 6.4 & 6.4 \\
\hline 29 & --- & --- & 6.4 & 6.4 & 6.6 & 6.6 & 6.3 & 6.3 & --- & --- & 6.4 & 6.4 \\
\hline 30 & 6.4 & 6.4 & 6.4 & 6.4 & 6.6 & 6.4 & 6.3 & 6.3 & --- & --- & 6.4 & 6.3 \\
\hline 31 & --- & --- & 6.4 & 6.4 & --- & --- & 6.3 & 6.3 & --- & --- & --- & --- \\
\hline MONTH & --- & --- & 6.6 & 6.4 & 6.6 & 6.4 & 6.5 & 6.3 & --- & --- & --- & --- \\
\hline
\end{tabular}

CUMBERLAND RIVER BASIN
03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued

PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN \\
\hline & \multicolumn{2}{|r|}{OCTOBER} & \multicolumn{2}{|l|}{NOVEMBER} & \multicolumn{2}{|l|}{DECEMBER} & \multicolumn{2}{|r|}{JANUARY} & \multicolumn{2}{|l|}{FEBRUARY} & \multicolumn{2}{|c|}{MARCH} \\
\hline 1 & 6.5 & 6.4 & 6.6 & 6.5 & --- & --- & - & --- & --- & --- & --- & --- \\
\hline 2 & 6.5 & 6.4 & 6.6 & 6.5 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & 6.5 & 6.4 & 6.6 & 6.5 & -- & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & 6.5 & 6.5 & 6.6 & 6.6 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & 6.5 & 6.4 & 6.6 & 6.5 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & 6.6 & 6.4 & 6.7 & 6.6 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & 6.6 & 6.5 & 6.8 & 6.7 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & 6.6 & 6.5 & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & 6.6 & 6.5 & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 10 & 6.7 & 6.6 & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & 6.6 & 6.6 & 6.8 & 6.7 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & 6.7 & 6.6 & 6.8 & 6.7 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & 6.7 & 6.6 & 6.8 & 6.7 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & 6.7 & 6.6 & 6.8 & 6.7 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & 6.6 & 6.5 & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & 6.6 & 6.5 & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & 6.6 & 6.5 & 6.8 & 6.8 & - & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & 6.6 & 6.5 & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & 6.6 & 6.5 & 6.9 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & 6.6 & 6.5 & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & 6.6 & 6.5 & 6.9 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & 6.6 & 6.5 & 6.9 & 6.9 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & 6.6 & 6.5 & 6.9 & 6.9 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & 6.6 & 6.6 & -- & -- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & 6.6 & 6.5 & -- & --- & --- & --- & --- & --- & --- & --- & 6.4 & 6.3 \\
\hline 26 & 6.5 & 6.5 & --- & --- & --- & --- & --- & --- & --- & --- & 6.5 & 6.3 \\
\hline 27 & 6.5 & 6.5 & --- & --- & --- & --- & --- & --- & --- & --- & 7.2 & 6.5 \\
\hline 28 & 6.5 & 6.5 & - & --- & --- & --- & --- & --- & --- & --- & 7.2 & 7.0 \\
\hline 29 & 6.5 & 6.5 & --- & -- & --- & --- & --- & --- & --- & --- & 7.2 & 7.0 \\
\hline 30 & 6.5 & 6.5 & --- & --- & --- & --- & --- & --- & --- & --- & 7.2 & 6.9 \\
\hline 31 & 6.5 & 6.4 & --- & --- & --- & --- & --- & --- & --- & --- & 7.2 & 7.0 \\
\hline MONTH & 6.7 & 6.4 & 6.9 & 6.5 & --- & --- & --- & --- & --- & --- & 7.2 & 6.3 \\
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN \\
\hline & \multicolumn{2}{|c|}{APRIL} & \multicolumn{2}{|c|}{MAY} & \multicolumn{2}{|c|}{JUNE} & \multicolumn{2}{|c|}{JULY} & \multicolumn{2}{|c|}{AUGUST} & \multicolumn{2}{|l|}{SEPTEMBER} \\
\hline 1 & 7.1 & 6.9 & 6.7 & 6.5 & 6.8 & 6.7 & 6.6 & 6.5 & 6.3 & 6.3 & --- & --- \\
\hline 2 & 7.0 & 6.9 & 6.6 & 6.5 & 6.8 & 6.6 & 6.5 & 6.4 & 6.3 & 6.3 & --- & --- \\
\hline 3 & 7.0 & 6.8 & 6.5 & 6.5 & 6.8 & 6.6 & 6.5 & 6.4 & 6.3 & 6.3 & --- & --- \\
\hline 4 & 7.1 & 6.8 & 6.6 & 6.5 & 6.8 & 6.6 & 6.5 & 6.4 & 6.3 & 6.3 & --- & --- \\
\hline 5 & 7.0 & 6.8 & 6.6 & 6.5 & 6.9 & 6.7 & 6.5 & 6.4 & 6.3 & 6.3 & --- & --- \\
\hline 6 & 7.0 & 6.7 & 6.9 & 6.5 & 7.0 & 6.7 & 6.5 & 6.4 & 6.3 & 6.3 & --- & --- \\
\hline 7 & --- & --- & 6.9 & 6.6 & 7.1 & 6.6 & 6.5 & 6.3 & 6.3 & 6.3 & --- & --- \\
\hline 8 & --- & --- & 6.9 & 6.6 & 7.0 & 6.6 & 6.4 & 6.3 & 6.3 & 6.3 & 6.2 & 6.1 \\
\hline 9 & -- & --- & 6.8 & 6.7 & 7.1 & 6.6 & 6.3 & 6.3 & 6.3 & 6.3 & 6.3 & 6.1 \\
\hline 10 & --- & --- & 6.9 & 6.7 & 7.0 & 6.7 & 6.3 & 6.3 & 6.3 & 6.3 & 6.3 & 6.1 \\
\hline 11 & -- & - & 6.9 & 6.7 & 7.0 & 6.6 & 6.3 & 6.2 & 6.4 & 6.3 & 6.4 & 6.2 \\
\hline 12 & -- & --- & 7.0 & 6.6 & 7.0 & 6.7 & 6.2 & 6.2 & 6.4 & 6.3 & 6.4 & 6.2 \\
\hline 13 & -- & - & 6.7 & 6.6 & 7.0 & 6.8 & 6.2 & 6.2 & 6.4 & 6.4 & 6.3 & 6.2 \\
\hline 14 & --- & --- & 6.9 & 6.6 & 6.9 & 6.7 & 6.2 & 6.2 & 6.4 & 6.4 & 6.2 & 6.1 \\
\hline 15 & -- & --- & 6.7 & 6.7 & 6.8 & 6.7 & 6.3 & 6.2 & 6.4 & 6.4 & 6.4 & 6.2 \\
\hline 16 & --- & --- & 6.7 & 6.7 & 6.8 & 6.7 & 6.3 & 6.3 & 6.4 & 6.3 & 6.4 & 6.2 \\
\hline 17 & -- & - & 6.9 & 6.6 & 6.8 & 6.6 & 6.4 & 6.3 & 6.3 & 6.2 & 6.5 & 6.4 \\
\hline 18 & --- & --- & 6.8 & 6.6 & 6.8 & 6.7 & 6.4 & 6.3 & 6.2 & 6.2 & 6.4 & 6.4 \\
\hline 19 & --- & --- & 6.9 & 6.7 & 6.8 & 6.6 & 6.4 & 6.2 & 6.3 & 6.2 & 6.4 & 6.4 \\
\hline 20 & --- & --- & 6.8 & 6.7 & 6.7 & 6.6 & 6.3 & 6.2 & 6.3 & 6.3 & 6.4 & 6.4 \\
\hline 21 & -- & - & 6.8 & 6.7 & 6.7 & 6.6 & 6.3 & 6.3 & --- & --- & 6.4 & 6.4 \\
\hline 22 & -- & -- & 6.8 & 6.7 & 6.7 & 6.6 & 6.3 & 6.3 & --- & -- & 6.5 & 6.4 \\
\hline 23 & --- & --- & 6.9 & 6.6 & 6.7 & 6.6 & 6.3 & 6.3 & --- & --- & 6.5 & 6.5 \\
\hline 24 & --- & --- & 6.8 & 6.6 & 6.7 & 6.7 & 6.4 & 6.3 & -- & -- & 6.6 & 6.5 \\
\hline 25 & --- & -- & 6.9 & 6.6 & 6.7 & 6.6 & 6.4 & 6.4 & --- & --- & 6.5 & 6.5 \\
\hline 26 & --- & --- & 6.8 & 6.6 & 6.7 & 6.6 & 6.5 & 6.4 & --- & --- & 6.5 & 6.4 \\
\hline 27 & --- & --- & 6.8 & 6.6 & 6.7 & 6.6 & 6.5 & 6.4 & --- & --- & 6.4 & 6.4 \\
\hline 28 & -- & --- & 6.8 & 6.6 & 6.8 & 6.6 & 6.4 & 6.4 & - & - & 6.4 & 6.4 \\
\hline 29 & -- & --- & 6.7 & 6.6 & 6.6 & 6.6 & 6.4 & 6.3 & --- & --- & 6.4 & 6.4 \\
\hline 30 & 6.5 & 6.5 & 6.7 & 6.6 & 6.7 & 6.6 & 6.4 & 6.3 & --- & - & 6.4 & 6.4 \\
\hline 31 & --- & --- & 6.8 & 6.6 & --- & --- & 6.3 & 6.3 & - & --- & --- & --- \\
\hline MONTH & 7.1 & 6.5 & 7.0 & 6.5 & 7.1 & 6.6 & 6.6 & 6.2 & 6.4 & 6.2 & 6.6 & 6.1 \\
\hline YEAR & 7.2 & 6.1 & & & & & & & & & & \\
\hline
\end{tabular}

CUMBERLAND RIVER BASIN
03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued

PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN \\
\hline & \multicolumn{2}{|r|}{OCTOBER} & \multicolumn{2}{|l|}{NOVEMBER} & \multicolumn{2}{|l|}{DECEMBER} & \multicolumn{2}{|r|}{JANUARY} & \multicolumn{2}{|l|}{FEBRUARY} & \multicolumn{2}{|c|}{MARCH} \\
\hline 1 & 6.6 & 6.4 & 6.8 & 6.6 & --- & --- & --- & --- & --- & --- & - & --- \\
\hline 2 & 6.5 & 6.5 & 6.8 & 6.7 & - & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & 6.5 & 6.4 & 6.8 & 6.7 & - & --- & --- & --- & --- & --- & --- & --- \\
\hline 4 & 6.5 & 6.5 & 6.7 & 6.6 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & 6.5 & 6.4 & 6.7 & 6.6 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & 6.6 & 6.5 & 6.7 & 6.6 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 7 & 6.7 & 6.5 & 6.7 & 6.7 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 8 & 6.7 & 6.6 & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 9 & --- & --- & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & 6.8 & 6.8 & - & --- & --- & --- & --- & --- & --- & --- \\
\hline 11 & -- & --- & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 12 & --- & --- & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 14 & 6.7 & 6.6 & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 15 & 6.7 & 6.6 & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & 6.7 & 6.6 & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 17 & 6.7 & 6.6 & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 18 & 6.8 & 6.6 & 6.8 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 19 & 6.8 & 6.6 & 6.9 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 20 & 6.7 & 6.6 & 6.9 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 21 & 6.7 & 6.6 & 6.9 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 22 & 6.7 & 6.6 & 6.9 & 6.8 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 23 & 6.7 & 6.6 & 6.9 & 6.9 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 24 & 6.7 & 6.6 & --- & -- & - & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & 6.7 & 6.6 & --- & -- & --- & -- & - & -- & --- & -- & 6.6 & 6.5 \\
\hline 26 & 6.7 & 6.6 & --- & --- & --- & --- & --- & --- & --- & --- & 6.5 & 6.5 \\
\hline 27 & 6.7 & 6.6 & --- & --- & --- & --- & --- & --- & --- & --- & 7.3 & 6.5 \\
\hline 28 & 6.7 & 6.6 & -- & - & -- & --- & --- & --- & --- & --- & 7.2 & 7.2 \\
\hline 29 & 6.6 & 6.5 & --- & -- & --- & - & - & -- & --- & -- & 7.2 & 7.1 \\
\hline 30 & 6.7 & 6.6 & --- & --- & --- & --- & --- & --- & --- & --- & 7.3 & 7.1 \\
\hline 31 & 6.7 & 6.5 & --- & --- & --- & --- & --- & --- & --- & --- & 7.3 & 7.2 \\
\hline MONTH & 6.8 & 6.4 & 6.9 & 6.6 & --- & --- & --- & --- & --- & --- & 7.3 & 6.5 \\
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN \\
\hline & \multicolumn{2}{|c|}{APRIL} & \multicolumn{2}{|c|}{MAY} & \multicolumn{2}{|c|}{JUNE} & \multicolumn{2}{|c|}{JULY} & \multicolumn{2}{|c|}{AUGUST} & \multicolumn{2}{|l|}{SEPTEMBER} \\
\hline 1 & 7.3 & 7.2 & 7.2 & 7.1 & 7.0 & 7.0 & 6.9 & 6.9 & 6.9 & 6.8 & 6.7 & 6.6 \\
\hline 2 & 7.3 & 7.2 & 7.2 & 6.9 & 7.0 & 6.9 & 7.0 & 6.9 & 6.9 & 6.9 & 6.7 & 6.7 \\
\hline 3 & 7.2 & 7.1 & 7.2 & 7.1 & 7.0 & 6.9 & 7.0 & 6.9 & 6.9 & 6.9 & 6.8 & 6.7 \\
\hline 4 & 7.2 & 7.1 & 7.3 & 7.1 & 7.2 & 6.9 & 7.0 & 6.9 & 6.9 & 6.9 & 6.8 & 6.7 \\
\hline 5 & 7.3 & 7.1 & 7.2 & 6.8 & 7.2 & 7.1 & 7.0 & 6.9 & 6.9 & 6.8 & 6.8 & 6.7 \\
\hline 6 & 7.3 & 7.1 & 7.2 & 7.1 & 7.1 & 7.1 & 7.0 & 7.0 & 7.0 & 6.9 & 6.9 & 6.7 \\
\hline 7 & - & --- & 7.3 & 7.2 & 7.1 & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 & 6.9 & 6.7 \\
\hline 8 & --- & --- & 7.2 & 7.1 & 7.1 & 7.0 & 7.0 & 6.9 & 6.9 & 6.9 & 6.8 & 6.7 \\
\hline 9 & -- & -- & 7.2 & 7.1 & 7.1 & 7.0 & 7.0 & 6.9 & 6.9 & 6.8 & 6.8 & 6.6 \\
\hline 10 & --- & -- & 7.2 & 7.1 & 7.1 & 6.9 & 7.0 & 6.9 & 6.9 & 6.8 & 6.7 & 6.5 \\
\hline 11 & --- & --- & 7.2 & 7.1 & 7.0 & 6.7 & 7.0 & 6.9 & 6.9 & 6.7 & 6.6 & 6.5 \\
\hline 12 & --- & --- & 7.2 & 7.1 & 7.0 & 6.9 & 7.0 & 6.9 & 6.8 & 6.6 & 6.6 & 6.5 \\
\hline 13 & --- & --- & 7.1 & 7.0 & 7.0 & 6.9 & 6.9 & 6.9 & 6.8 & 6.6 & 6.6 & 6.5 \\
\hline 14 & --- & --- & 7.1 & 7.0 & 6.9 & 6.9 & 6.9 & 6.9 & 6.8 & 6.7 & 6.5 & 6.5 \\
\hline 15 & --- & --- & 7.1 & 7.1 & 6.9 & 6.9 & 6.9 & 6.9 & 6.7 & 6.7 & 6.5 & 6.4 \\
\hline 16 & --- & --- & 7.2 & 7.1 & 6.9 & 6.9 & 6.9 & 6.9 & 6.8 & 6.6 & 6.5 & 6.4 \\
\hline 17 & -- & --- & 7.3 & 7.1 & 6.9 & 6.8 & 6.9 & 6.8 & 6.6 & 6.6 & 6.5 & 6.4 \\
\hline 18 & --- & --- & 7.3 & 7.2 & 6.9 & 6.8 & 6.9 & 6.8 & 6.7 & 6.6 & 6.6 & 6.5 \\
\hline 19 & --- & --- & 7.3 & 7.2 & 6.9 & 6.8 & 6.8 & 6.8 & 6.7 & 6.6 & 6.6 & 6.5 \\
\hline 20 & --- & --- & 7.3 & 7.1 & 6.8 & 6.8 & 6.8 & 6.8 & 6.6 & 6.5 & 6.6 & 6.5 \\
\hline 21 & - & - & 7.3 & 7.2 & 6.8 & 6.8 & 6.8 & 6.8 & 6.7 & 6.7 & 6.5 & 6.5 \\
\hline 22 & -- & --- & 7.2 & 7.1 & 6.8 & 6.8 & 6.8 & 6.8 & 6.8 & 6.6 & 6.7 & 6.6 \\
\hline 23 & --- & --- & 7.2 & 7.1 & 6.9 & 6.8 & 6.9 & 6.8 & 6.8 & 6.7 & 6.7 & 6.6 \\
\hline 24 & --- & --- & 7.1 & 7.1 & 6.9 & 6.8 & 6.9 & 6.7 & 6.7 & 6.6 & 6.8 & 6.6 \\
\hline 25 & -- & -- & 7.2 & 7.0 & 6.9 & 6.8 & 6.8 & 6.7 & 6.7 & 6.4 & 6.7 & 6.6 \\
\hline 26 & --- & --- & 7.1 & 7.0 & 6.9 & 6.9 & 6.9 & 6.8 & 6.6 & 6.4 & 6.7 & 6.6 \\
\hline 27 & --- & --- & 7.1 & 7.0 & 6.9 & 6.9 & 6.9 & 6.8 & 6.6 & 6.6 & 6.7 & 6.6 \\
\hline 28 & --- & --- & 7.0 & 7.0 & 7.0 & 6.8 & 6.8 & 6.8 & 6.7 & 6.6 & 6.7 & 6.6 \\
\hline 29 & -- & -- & 7.0 & 7.0 & 7.0 & 6.9 & 6.9 & 6.8 & 6.7 & 6.6 & 6.7 & 6.6 \\
\hline 30 & 7.2 & 6.9 & 7.0 & 7.0 & 7.0 & 6.9 & 6.8 & 6.8 & 6.7 & 6.6 & 6.6 & 6.6 \\
\hline 31 & --- & --- & 7.0 & 7.0 & --- & --- & 6.8 & 6.8 & 6.6 & 6.5 & --- & --- \\
\hline MONTH & 7.3 & 6.9 & 7.3 & 6.8 & 7.2 & 6.7 & 7.0 & 6.7 & 7.0 & 6.4 & 6.9 & 6.4 \\
\hline YEAR & 7.3 & 6.4 & & & & & & & & & & \\
\hline
\end{tabular}

CUMBERLAND RIVER BASIN
03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued

PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN \\
\hline & \multicolumn{2}{|c|}{APRIL} & \multicolumn{2}{|c|}{MAY} & \multicolumn{2}{|c|}{JUNE} & \multicolumn{2}{|c|}{JULY} & \multicolumn{2}{|c|}{AUGUST} & \multicolumn{2}{|l|}{SEPTEMBER} \\
\hline 1 & -- & --- & --- & --- & 7.1 & 7.0 & -- & - & --- & --- & --- & --- \\
\hline 2 & --- & --- & --- & - & 7.0 & 7.0 & --- & --- & --- & --- & --- & --- \\
\hline 3 & --- & --- & --- & --- & 7.1 & 7.0 & --- & --- & --- & --- & --- & --- \\
\hline 4 & --- & --- & -- & - & 7.2 & 7.0 & - & -- & 7.0 & 7.0 & -- & -- \\
\hline 5 & --- & --- & --- & --- & 7.2 & 7.2 & --- & --- & 7.1 & 7.0 & --- & - \\
\hline 6 & --- & --- & --- & --- & 7.2 & 7.1 & --- & -- & 7.2 & 7.0 & -- & --- \\
\hline 7 & --- & --- & --- & --- & 7.1 & 7.1 & --- & --- & 7.2 & 7.1 & --- & --- \\
\hline 8 & --- & -- & -- & - & 7.2 & 7.1 & -- & - & 7.1 & 7.1 & --- & --- \\
\hline 9 & --- & --- & --- & - & 7.2 & 7.1 & --- & --- & 7.1 & 7.0 & --- & --- \\
\hline 10 & --- & --- & --- & - & 7.1 & 7.0 & -- & --- & 7.1 & 7.0 & --- & -- \\
\hline 11 & --- & --- & -- & --- & 7.1 & 7.0 & --- & - & 7.1 & 7.0 & - & --- \\
\hline 12 & --- & - & --- & -- & 7.1 & 7.0 & -- & -- & 6.9 & 6.8 & --- & -- \\
\hline 13 & - & --- & --- & - & 7.1 & 7.0 & --- & - & 7.0 & 6.7 & --- & --- \\
\hline 14 & --- & --- & --- & --- & 7.0 & 7.0 & --- & --- & 7.0 & 6.8 & --- & --- \\
\hline 15 & -- & --- & --- & --- & 7.0 & 7.0 & --- & --- & 6.9 & 6.8 & --- & -- \\
\hline 16 & --- & --- & -- & --- & 7.0 & 7.0 & --- & - & 6.9 & 6.9 & - & --- \\
\hline 17 & -- & -- & 7.1 & 7.0 & 7.0 & 7.0 & -- & -- & 6.9 & 6.8 & --- & --- \\
\hline 18 & - & -- & 7.2 & 7.1 & --- & --- & --- & --- & 6.9 & 6.8 & --- & --- \\
\hline 19 & - & -- & 7.3 & 7.2 & - & - & --- & - & 6.9 & 6.8 & --- & - \\
\hline 20 & --- & -- & 7.2 & 7.2 & -- & --- & --- & -- & 6.8 & 6.8 & -- & -- \\
\hline 21 & --- & -- & 7.2 & 7.2 & --- & --- & - & -- & 6.8 & 6.7 & --- & - \\
\hline 22 & --- & -- & 7.2 & 7.1 & -- & -- & --- & --- & 6.8 & 6.7 & --- & - \\
\hline 23 & --- & --- & 7.2 & 7.1 & --- & --- & --- & --- & 6.8 & 6.7 & - & --- \\
\hline 24 & --- & --- & 7.1 & 7.1 & --- & --- & --- & --- & 6.8 & 6.7 & -- & - \\
\hline 25 & --- & --- & 7.1 & 7.1 & - & --- & --- & --- & --- & --- & -- & --- \\
\hline 26 & --- & --- & 7.1 & 7.1 & -- & --- & --- & --- & - & - & -- & - \\
\hline 27 & --- & -- & 7.2 & 7.1 & - & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & --- & --- & 7.2 & 7.1 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & - & --- & 7.2 & 7.1 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 30 & --- & --- & 7.1 & 7.1 & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & --- & --- & 7.1 & 7.0 & - & - & - & --- & - & --- & --- & --- \\
\hline MONTH & --- & --- & 7.3 & 7.0 & 7.2 & 7.0 & --- & --- & 7.2 & 6.7 & -- & --- \\
\hline
\end{tabular}
\(\begin{array}{lll}\text { YEAR } & 7.3 & 6.7\end{array}\)

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & \multicolumn{2}{|l|}{OCTOBER} & \multicolumn{3}{|c|}{NOVEMBER} & \multicolumn{3}{|c|}{DECEMBER} & \multicolumn{3}{|c|}{JANUARY} \\
\hline 1 & 18.8 & 18.6 & 18.7 & 20.0 & 19.8 & 19.9 & --- & --- & --- & --- & --- & --- \\
\hline 2 & 18.8 & 18.6 & 18.7 & 20.0 & 19.8 & 19.8 & --- & --- & --- & --- & --- & --- \\
\hline 3 & 18.8 & 18.6 & 18.7 & 20.0 & 19.8 & 19.9 & --- & --- & --- & --- & --- & --- \\
\hline 4 & 18.8 & 18.6 & 18.7 & 20.0 & 19.8 & 19.9 & --- & --- & --- & --- & --- & --- \\
\hline 5 & 19.0 & 18.6 & 18.8 & 20.0 & 20.0 & 20.0 & --- & --- & --- & --- & --- & - \\
\hline 6 & 19.0 & 18.8 & 18.9 & 20.2 & 20.0 & 20.0 & --- & --- & --- & --- & --- & --- \\
\hline 7 & 19.0 & 18.8 & 19.0 & 20.0 & 19.8 & 19.9 & --- & --- & --- & --- & --- & --- \\
\hline 8 & 19.0 & 18.8 & 19.0 & 19.8 & 19.4 & 19.7 & --- & --- & --- & --- & --- & --- \\
\hline 9 & 19.0 & 18.8 & 18.9 & 19.8 & 19.6 & 19.7 & --- & --- & --- & --- & --- & --- \\
\hline 10 & 19.0 & 19.0 & 19.0 & 19.8 & 19.6 & 19.7 & --- & --- & --- & --- & - & --- \\
\hline 11 & 19.2 & 19.0 & 19.0 & 19.8 & 19.6 & 19.7 & --- & --- & --- & --- & --- & --- \\
\hline 12 & 19.4 & 19.0 & 19.2 & 19.8 & 19.6 & 19.7 & --- & --- & --- & --- & --- & --- \\
\hline 13 & 19.4 & 19.0 & 19.3 & 19.8 & 19.6 & 19.7 & --- & --- & --- & --- & --- & --- \\
\hline 14 & 19.8 & 18.8 & 19.3 & 19.8 & 19.6 & 19.7 & --- & --- & --- & --- & --- & --- \\
\hline 15 & 19.0 & 18.6 & 18.8 & 19.8 & 19.6 & 19.7 & --- & --- & --- & --- & --- & -- \\
\hline 16 & 18.8 & 18.8 & 18.8 & 19.8 & 19.6 & 19.7 & --- & --- & --- & --- & --- & --- \\
\hline 17 & 19.0 & 18.8 & 18.8 & 19.8 & 19.6 & 19.7 & --- & --- & --- & --- & --- & --- \\
\hline 18 & 19.0 & 18.8 & 18.9 & 19.8 & 19.6 & 19.7 & --- & --- & --- & --- & --- & --- \\
\hline 19 & 19.2 & 18.6 & 19.0 & 19.8 & 19.4 & 19.6 & --- & --- & --- & --- & --- & --- \\
\hline 20 & 18.6 & 17.4 & 17.8 & 19.8 & 19.4 & 19.6 & --- & --- & --- & --- & --- & --- \\
\hline 21 & 18.4 & 18.2 & 18.3 & 19.8 & 19.6 & 19.6 & --- & --- & --- & --- & --- & --- \\
\hline 22 & 18.6 & 18.2 & 18.5 & 19.6 & 19.4 & 19.5 & --- & --- & --- & --- & --- & --- \\
\hline 23 & 18.6 & 18.6 & 18.6 & 19.6 & 19.4 & 19.5 & --- & --- & --- & --- & --- & --- \\
\hline 24 & 18.6 & 18.4 & 18.6 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & 18.8 & 18.6 & 18.7 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & 19.4 & 18.6 & 19.0 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & 19.4 & 19.2 & 19.3 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & 19.4 & 19.0 & 19.3 & -- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & 19.6 & 19.4 & 19.5 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 30 & 19.8 & 19.6 & 19.7 & -- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 31 & 19.8 & 19.8 & 19.8 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline MONTH & 19.8 & 17.4 & 18.9 & 20.2 & 19.4 & 19.7 & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


CUMBERLAND RIVER BASIN
03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{OCTOBER} & \multicolumn{3}{|c|}{NOVEMBER} & \multicolumn{3}{|c|}{DECEMBER} & \multicolumn{3}{|c|}{JANUARY} \\
\hline 1 & 22.3 & 21.4 & 21.9 & 20.8 & 20.6 & 20.7 & --- & -- & - & --- & - & --- \\
\hline 2 & 22.1 & 21.4 & 21.9 & 20.8 & 20.6 & 20.7 & --- & --- & --- & --- & --- & --- \\
\hline 3 & 22.1 & 21.5 & 21.8 & 20.8 & 20.6 & 20.7 & --- & --- & --- & --- & --- & --- \\
\hline 4 & 22.1 & 21.5 & 21.8 & 20.8 & 20.6 & 20.7 & --- & --- & --- & --- & --- & --- \\
\hline 5 & 22.3 & 21.7 & 22.0 & 20.8 & 20.6 & 20.7 & --- & --- & --- & --- & --- & --- \\
\hline 6 & 22.5 & 21.7 & 22.1 & 20.6 & 20.6 & 20.6 & --- & --- & --- & --- & --- & --- \\
\hline 7 & 22.5 & 21.7 & 22.0 & 20.6 & 20.4 & 20.5 & --- & --- & --- & --- & --- & --- \\
\hline 8 & 22.3 & 21.7 & 22.0 & 20.4 & 20.2 & 20.3 & --- & --- & --- & --- & --- & --- \\
\hline 9 & 22.1 & 21.7 & 21.9 & 20.2 & 20.0 & 20.1 & --- & --- & --- & --- & --- & --- \\
\hline 10 & 22.1 & 21.7 & 21.8 & 20.2 & 20.0 & 20.1 & --- & --- & --- & --- & --- & --- \\
\hline 11 & 21.9 & 21.5 & 21.8 & 20.2 & 20.0 & 20.1 & --- & --- & --- & --- & --- & --- \\
\hline 12 & 21.9 & 21.4 & 21.6 & 20.2 & 20.0 & 20.0 & --- & --- & --- & --- & --- & --- \\
\hline 13 & 21.7 & 21.5 & 21.6 & 20.0 & 19.8 & 19.9 & --- & --- & --- & --- & --- & --- \\
\hline 14 & 21.9 & 21.7 & 21.7 & 20.0 & 19.8 & 20.0 & --- & --- & --- & --- & --- & --- \\
\hline 15 & 21.9 & 21.5 & 21.7 & 20.0 & 19.8 & 19.9 & --- & --- & --- & --- & --- & --- \\
\hline 16 & 21.7 & 21.5 & 21.6 & 20.0 & 19.8 & 19.9 & --- & --- & --- & --- & --- & --- \\
\hline 17 & 21.7 & 21.4 & 21.6 & 20.0 & 19.8 & 19.9 & --- & --- & --- & --- & --- & --- \\
\hline 18 & 21.7 & 21.4 & 21.6 & 20.0 & 19.8 & 19.9 & --- & --- & --- & --- & --- & --- \\
\hline 19 & 21.5 & 21.4 & 21.4 & 20.0 & 19.8 & 19.9 & --- & --- & --- & --- & --- & --- \\
\hline 20 & 21.4 & 20.4 & 20.9 & 20.0 & 19.6 & 19.8 & --- & --- & --- & --- & --- & --- \\
\hline 21 & 21.4 & 21.2 & 21.3 & 20.0 & 19.8 & 19.8 & --- & --- & --- & --- & --- & --- \\
\hline 22 & 21.4 & 21.0 & 21.2 & 19.8 & 19.6 & 19.7 & --- & --- & --- & --- & --- & --- \\
\hline 23 & 21.0 & 20.8 & 20.9 & 19.8 & 19.6 & 19.7 & -- & --- & --- & --- & --- & --- \\
\hline 24 & 20.8 & 20.6 & 20.7 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 25 & 20.8 & 20.6 & 20.8 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & 20.6 & 20.4 & 20.5 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 27 & 20.6 & 20.4 & 20.4 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & 20.6 & 20.4 & 20.5 & - & - & --- & -- & --- & --- & --- & - & --- \\
\hline 29 & 20.8 & 20.4 & 20.5 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 30 & 20.6 & 20.6 & 20.6 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 31 & 20.8 & 20.6 & 20.7 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline MONTH & 22.5 & 20.4 & 21.4 & 20.8 & 19.6 & 20.2 & --- & --- & --- & --- & --- & --- \\
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{FEBRUARY} & \multicolumn{3}{|c|}{MARCH} & \multicolumn{3}{|c|}{APRIL} & \multicolumn{3}{|c|}{MAY} \\
\hline 1 & --- & --- & --- & --- & --- & --- & 12.0 & 11.4 & 11.5 & 14.4 & 13.6 & 13.9 \\
\hline 2 & --- & --- & --- & --- & --- & --- & 11.8 & 11.2 & 11.5 & 14.6 & 13.8 & 14.0 \\
\hline 3 & --- & --- & --- & --- & --- & --- & 12.1 & 11.3 & 11.6 & 14.1 & 13.8 & 14.0 \\
\hline 4 & --- & --- & --- & --- & --- & --- & 13.3 & 11.3 & 12.0 & 14.4 & 13.9 & 14.1 \\
\hline 5 & --- & --- & --- & --- & --- & --- & 12.9 & 11.7 & 12.0 & 14.5 & 14.2 & 14.4 \\
\hline 6 & --- & --- & --- & --- & --- & --- & 12.5 & 11.7 & 12.1 & 15.3 & 14.3 & 14.7 \\
\hline 7 & --- & --- & --- & --- & --- & --- & 13.1 & 11.7 & 12.3 & 15.6 & 14.6 & 15.0 \\
\hline 8 & --- & --- & --- & --- & --- & --- & 12.9 & 12.1 & 12.3 & 15.6 & 14.7 & 15.2 \\
\hline 9 & --- & --- & --- & --- & --- & --- & 13.5 & 12.3 & 12.8 & 15.5 & 15.3 & 15.4 \\
\hline 10 & --- & --- & --- & --- & --- & --- & 13.3 & 12.3 & 12.6 & 16.2 & 15.4 & 15.8 \\
\hline 11 & --- & --- & --- & --- & --- & --- & 12.9 & 12.3 & 12.5 & 16.3 & 15.7 & 16.1 \\
\hline 12 & --- & --- & --- & --- & --- & --- & 13.3 & 12.7 & 13.0 & 16.5 & 15.7 & 16.1 \\
\hline 13 & --- & --- & --- & --- & --- & --- & 13.7 & 12.5 & 12.9 & 16.2 & 15.7 & 16.0 \\
\hline 14 & --- & --- & --- & --- & --- & --- & 13.1 & 12.3 & 12.8 & 16.9 & 15.7 & 16.2 \\
\hline 15 & --- & --- & --- & --- & --- & --- & 13.1 & 12.7 & 12.8 & 16.2 & 16.1 & 16.2 \\
\hline 16 & --- & --- & --- & --- & --- & --- & 16.4 & 12.9 & 14.2 & 16.5 & 16.1 & 16.3 \\
\hline 17 & --- & --- & --- & --- & --- & --- & 15.5 & 12.9 & 13.8 & 17.0 & 16.1 & 16.5 \\
\hline 18 & -- & --- & --- & --- & --- & --- & 13.7 & 13.1 & 13.4 & 16.9 & 16.3 & 16.6 \\
\hline 19 & --- & --- & --- & --- & --- & --- & 15.5 & 13.1 & 14.0 & 17.3 & 16.6 & 16.7 \\
\hline 20 & --- & --- & --- & --- & --- & --- & 14.1 & 13.1 & 13.7 & 16.9 & 16.7 & 16.8 \\
\hline 21 & --- & --- & --- & --- & --- & -- & 15.3 & 13.3 & 14.0 & 17.0 & 16.8 & 16.9 \\
\hline 22 & --- & --- & --- & --- & --- & --- & 14.7 & 13.5 & 13.9 & 17.1 & 16.7 & 16.9 \\
\hline 23 & -- & --- & --- & -- & - & --- & 14.3 & 13.7 & 13.9 & 17.2 & 16.6 & 16.9 \\
\hline 24 & - & --- & -- & 11.7 & 11.2 & 11.4 & 14.5 & 13.5 & 13.9 & 17.3 & 16.7 & 16.9 \\
\hline 25 & --- & - & -- & 11.3 & 10.6 & 11.0 & 13.9 & 13.5 & 13.8 & 17.5 & 16.9 & 17.1 \\
\hline 26 & --- & -- & --- & 11.7 & 11.2 & 11.4 & 13.9 & 13.5 & 13.7 & 17.4 & 16.8 & 17.1 \\
\hline 27 & --- & --- & --- & 11.7 & 11.2 & 11.5 & 14.1 & 13.7 & 13.8 & 17.3 & 17.0 & 17.2 \\
\hline 28 & --- & --- & --- & 11.8 & 11.2 & 11.5 & 13.9 & 13.7 & 13.8 & 17.4 & 17.0 & 17.2 \\
\hline 29 & --- & --- & --- & 11.8 & 11.1 & 11.4 & - & , & . & 17.4 & 17.0 & 17.2 \\
\hline 30 & --- & --- & --- & 12.0 & 11.1 & 11.6 & --- & --- & --- & 17.4 & 17.1 & 17.3 \\
\hline 31 & --- & --- & --- & 12.8 & 11.2 & 11.5 & -- & --- & --- & 17.7 & 17.3 & 17.4 \\
\hline MONTH & --- & --- & --- & 12.8 & 10.6 & 11.4 & 16.4 & 11.2 & 13.0 & 17.7 & 13.6 & 16.1 \\
\hline
\end{tabular}

03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & \multicolumn{2}{|l|}{JUNE} & \multicolumn{3}{|c|}{JULY} & \multicolumn{3}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & 17.7 & 17.5 & 17.6 & 21.1 & 20.3 & 20.8 & 21.1 & 21.0 & 21.0 & --- & --- & --- \\
\hline 2 & 17.9 & 17.4 & 17.6 & 20.7 & 20.0 & 20.3 & 21.0 & 20.9 & 21.0 & --- & --- & --- \\
\hline 3 & 18.0 & 17.5 & 17.8 & 21.5 & 20.1 & 20.7 & 21.0 & 21.0 & 21.0 & --- & --- & --- \\
\hline 4 & 18.0 & 17.7 & 17.9 & 20.8 & 19.9 & 20.5 & 21.1 & 21.0 & 21.1 & --- & --- & --- \\
\hline 5 & 18.1 & 17.7 & 18.0 & 20.8 & 20.3 & 20.5 & 21.1 & 21.1 & 21.1 & --- & --- & --- \\
\hline 6 & 18.2 & 17.9 & 18.1 & 21.0 & 20.2 & 20.7 & 21.2 & 21.1 & 21.1 & --- & --- & --- \\
\hline 7 & 18.5 & 17.8 & 18.1 & 21.1 & 20.2 & 20.8 & 21.2 & 21.1 & 21.2 & --- & --- & --- \\
\hline 8 & 18.5 & 17.6 & 18.1 & 21.2 & 20.4 & 20.8 & 21.2 & 21.1 & 21.2 & 24.5 & 24.2 & 24.3 \\
\hline 9 & 18.7 & 17.8 & 18.2 & 21.3 & 20.6 & 20.9 & 21.3 & 21.2 & 21.2 & 24.7 & 23.8 & 24.3 \\
\hline 10 & 18.5 & 18.0 & 18.4 & 21.1 & 20.6 & 20.9 & 21.3 & 21.2 & 21.2 & 24.6 & 24.1 & 24.4 \\
\hline 11 & 19.2 & 18.0 & 18.4 & 21.1 & 20.6 & 20.9 & 21.4 & 21.2 & 21.3 & 24.7 & 24.1 & 24.6 \\
\hline 12 & 18.8 & 18.1 & 18.5 & 21.0 & 20.8 & 20.9 & 21.4 & 21.3 & 21.3 & 24.5 & 24.0 & 24.3 \\
\hline 13 & 19.6 & 18.3 & 18.7 & 21.1 & 20.9 & 21.0 & 21.7 & 21.3 & 21.4 & 24.4 & 24.0 & 24.3 \\
\hline 14 & 19.0 & 18.3 & 18.6 & 21.2 & 20.8 & 21.0 & 21.4 & 21.3 & 21.4 & 24.3 & 24.1 & 24.2 \\
\hline 15 & 19.0 & 18.5 & 18.8 & 21.3 & 19.8 & 20.6 & 21.4 & 21.3 & 21.3 & 24.3 & 24.0 & 24.1 \\
\hline 16 & 18.9 & 18.4 & 18.7 & 20.0 & 19.8 & 19.9 & 21.3 & 21.3 & 21.3 & 24.0 & 23.8 & 23.9 \\
\hline 17 & 19.4 & 18.4 & 18.9 & 20.0 & 19.9 & 20.0 & 21.4 & 21.3 & 21.3 & 23.8 & 23.5 & 23.6 \\
\hline 18 & 19.3 & 18.4 & 18.9 & 20.0 & 20.0 & 20.0 & 21.5 & 21.4 & 21.4 & 23.4 & 23.3 & 23.3 \\
\hline 19 & 19.4 & 18.4 & 18.9 & 20.1 & 19.9 & 20.0 & 21.7 & 21.4 & 21.5 & 23.3 & 23.1 & 23.2 \\
\hline 20 & 19.4 & 18.5 & 18.9 & 20.2 & 20.1 & 20.1 & 21.4 & 21.4 & 21.4 & 23.2 & 23.1 & 23.1 \\
\hline 21 & 19.4 & 18.8 & 19.1 & 20.2 & 20.1 & 20.2 & --- & --- & --- & 23.1 & 23.0 & 23.0 \\
\hline 22 & 19.3 & 18.7 & 19.0 & 20.3 & 20.2 & 20.2 & --- & --- & -- & 22.8 & 22.5 & 22.6 \\
\hline 23 & 20.0 & 19.0 & 19.4 & 20.4 & 20.3 & 20.3 & --- & --- & --- & 22.5 & 22.2 & 22.3 \\
\hline 24 & 19.6 & 19.1 & 19.3 & 20.6 & 20.3 & 20.4 & - & --- & -- & 22.3 & 22.1 & 22.2 \\
\hline 25 & 19.5 & 18.8 & 19.2 & 20.4 & 20.2 & 20.3 & --- & --- & -- & 22.0 & 22.0 & 22.0 \\
\hline 26 & 19.9 & 19.0 & 19.4 & 20.6 & 20.4 & 20.5 & --- & --- & - & 22.0 & 21.9 & 21.9 \\
\hline 27 & 20.1 & 19.1 & 19.4 & 20.7 & 20.5 & 20.6 & --- & -- & -- & 21.9 & 21.8 & 21.9 \\
\hline 28 & 21.0 & 18.9 & 19.8 & 20.7 & 20.6 & 20.7 & --- & --- & --- & 21.9 & 21.8 & 21.8 \\
\hline 29 & 20.0 & 19.0 & 19.5 & 20.9 & 20.7 & 20.8 & --- & --- & --- & 21.9 & 21.8 & 21.8 \\
\hline 30 & 20.8 & 19.6 & 20.2 & 21.1 & 21.0 & 21.0 & --- & --- & -- & 21.9 & 21.8 & 21.9 \\
\hline 31 & & & & 21.1 & 21.0 & 21.1 & --- & --- & --- & --- & --- & \\
\hline MONTH & 21.0 & 17.4 & 18.7 & 21.5 & 19.8 & 20.6 & 21.7 & 20.9 & 21.2 & 24.7 & 21.8 & 23.2 \\
\hline YEAR & 24.7 & 10.6 & 18.8 & & & & & & & & & \\
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{OCTOBER} & \multicolumn{3}{|c|}{NOVEMBER} & \multicolumn{3}{|c|}{DECEMBER} & \multicolumn{3}{|c|}{JANUARY} \\
\hline 1 & 24.5 & 24.1 & 24.3 & 21.5 & 21.4 & 21.5 & --- & --- & --- & --- & --- & --- \\
\hline 2 & 24.1 & 23.9 & 24.0 & 21.5 & 21.4 & 21.4 & --- & --- & --- & --- & --- & --- \\
\hline 3 & 23.9 & 23.7 & 23.8 & 21.5 & 21.4 & 21.5 & --- & _-_ & --- & --- & --- & --- \\
\hline 4 & 24.1 & 23.5 & 23.7 & 21.5 & 21.4 & 21.5 & --- & --- & --- & --- & --- & --- \\
\hline 5 & 23.7 & 23.3 & 23.5 & 21.5 & 21.4 & 21.4 & --- & --- & --- & --- & --- & --- \\
\hline 6 & 23.9 & 23.3 & 23.6 & 21.4 & 21.2 & 21.3 & --- & --- & --- & --- & --- & --- \\
\hline 7 & 23.9 & 23.3 & 23.6 & 21.2 & 20.8 & 21.0 & --- & --- & --- & --- & --- & --- \\
\hline 8 & 23.7 & 23.3 & 23.5 & 21.0 & 20.6 & 20.8 & --- & --- & --- & --- & --- & --- \\
\hline 9 & & --- & -- & 20.8 & 20.2 & 20.6 & --- & --- & --- & --- & --- & --- \\
\hline 10 & --- & --- & --- & 20.6 & 20.6 & 20.6 & --- & --- & --- & --- & --- & --- \\
\hline 11 & --- & - & --- & 20.8 & 20.6 & 20.7 & --- & --- & --- & --- & --- & - \\
\hline 12 & --- & - & -- & 20.8 & 20.6 & 20.7 & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & --- & 20.8 & 20.4 & 20.6 & --- & --- & --- & --- & --- & --- \\
\hline 14 & 22.5 & 22.3 & 22.4 & 20.6 & 20.4 & 20.5 & --- & --- & --- & --- & --- & --- \\
\hline 15 & 22.5 & 22.3 & 22.4 & 20.6 & 20.4 & 20.5 & --- & --- & --- & --- & --- & --- \\
\hline 16 & 22.3 & 22.3 & 22.3 & 20.6 & 20.2 & 20.5 & --- & --- & --- & --- & --- & --- \\
\hline 17 & 22.3 & 22.1 & 22.2 & 20.6 & 20.4 & 20.5 & -- & --- & --- & --- & --- & --- \\
\hline 18 & 22.5 & 22.1 & 22.2 & 20.6 & 20.4 & 20.4 & --- & _-- & --- & --- & --- & --- \\
\hline 19 & 22.3 & 22.1 & 22.2 & 20.6 & 20.2 & 20.4 & --- & --- & --- & --- & --- & --- \\
\hline 20 & 22.1 & 21.7 & 21.9 & 20.6 & 20.2 & 20.4 & --- & --- & --- & --- & --- & --- \\
\hline 21 & 22.1 & 21.7 & 21.9 & 20.4 & 20.2 & 20.3 & --- & --- & --- & --- & --- & --- \\
\hline 22 & 21.9 & 21.5 & 21.7 & 20.4 & 20.0 & 20.2 & --- & --- & --- & --- & --- & --- \\
\hline 23 & 21.7 & 21.5 & 21.6 & 20.2 & 20.2 & 20.2 & -- & --- & --- & --- & --- & --- \\
\hline 24 & 21.5 & 21.2 & 21.4 & -- & -- & , & --- & --- & --- & -- & --- & --- \\
\hline 25 & 21.5 & 21.2 & 21.4 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 26 & 21.4 & 21.2 & 21.3 & --- & --- & --- & -- & --- & -- & --- & --- & --- \\
\hline 27 & 21.4 & 20.8 & 21.2 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 28 & 21.4 & 21.0 & 21.2 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & 21.5 & 21.4 & 21.4 & --- & --- & --- & --- & --- & --- & -- & -- & --- \\
\hline 30 & 21.5 & 21.2 & 21.4 & --- & --- & --- & --- & --- & -- & -- & -- & - \\
\hline 31 & 21.5 & 21.4 & 21.5 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline MONTH & 24.5 & 20.8 & 22.4 & 21.5 & 20.0 & 20.8 & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{FEBRUARY} & \multicolumn{3}{|c|}{MARCH} & \multicolumn{3}{|c|}{APRIL} & \multicolumn{3}{|c|}{MAY} \\
\hline 1 & --- & --- & --- & --- & --- & --- & 14.6 & 13.8 & 14.2 & 17.5 & 17.1 & 17.3 \\
\hline 2 & --- & --- & --- & --- & --- & --- & 16.5 & 14.2 & 15.0 & 17.6 & 16.2 & 17.2 \\
\hline 3 & --- & --- & --- & --- & --- & --- & 18.0 & 14.3 & 16.0 & 18.0 & 16.7 & 17.2 \\
\hline 4 & -- & --- & --- & -- & --- & --- & 17.4 & 15.1 & 16.2 & 17.9 & 16.4 & 17.4 \\
\hline 5 & --- & --- & --- & --- & --- & --- & 19.2 & 15.7 & 17.1 & 19.5 & 16.0 & 17.8 \\
\hline 6 & --- & --- & --- & --- & --- & --- & 19.4 & 18.4 & 18.9 & 20.1 & 17.3 & 18.8 \\
\hline 7 & --- & --- & --- & -- & -- & --- & 19.8 & 16.6 & 18.3 & 18.6 & 17.2 & 18.0 \\
\hline 8 & --- & --- & --- & --- & --- & --- & 18.6 & 17.2 & 18.0 & 20.3 & 17.4 & 18.2 \\
\hline 9 & --- & --- & --- & --- & --- & --- & 18.6 & 17.6 & 18.2 & 18.8 & 18.0 & 18.4 \\
\hline 10 & --- & --- & --- & --- & --- & --- & 20.0 & 18.0 & 18.8 & 18.9 & 18.3 & 18.6 \\
\hline 11 & --- & --- & --- & --- & --- & --- & 20.2 & 18.4 & 19.2 & 19.4 & 18.6 & 19.0 \\
\hline 12 & --- & --- & --- & --- & --- & --- & 19.4 & 17.6 & 18.4 & 19.7 & 19.0 & 19.3 \\
\hline 13 & --- & --- & --- & --- & --- & --- & 18.0 & 16.4 & 17.0 & 22.2 & 18.4 & 19.8 \\
\hline 14 & -- & --- & -- & -- & -- & --- & 17.0 & 16.4 & 16.7 & 20.0 & 19.4 & 19.8 \\
\hline 15 & --- & --- & --- & --- & --- & --- & 17.0 & 16.6 & 16.7 & 20.6 & 19.1 & 19.6 \\
\hline 16 & --- & --- & --- & --- & --- & --- & 17.0 & 16.4 & 16.7 & 20.4 & 19.9 & 20.1 \\
\hline 17 & --- & --- & --- & --- & --- & --- & 16.3 & 15.7 & 16.0 & 20.8 & 19.8 & 20.3 \\
\hline 18 & --- & --- & --- & --- & --- & --- & 15.5 & 15.3 & 15.5 & 21.9 & 20.2 & 20.8 \\
\hline 19 & --- & --- & --- & --- & --- & --- & 15.7 & 15.1 & 15.4 & 21.6 & 20.1 & 20.8 \\
\hline 20 & --- & --- & --- & --- & --- & --- & 16.4 & 14.5 & 15.5 & 22.1 & 20.5 & 21.5 \\
\hline 21 & --- & --- & --- & --- & --- & --- & 16.6 & 15.3 & 16.1 & 22.8 & 19.9 & 21.5 \\
\hline 22 & --- & --- & --- & --- & --- & --- & 17.2 & 16.1 & 16.7 & 22.9 & 19.8 & 21.7 \\
\hline 23 & --- & --- & --- & --- & --- & --- & 17.6 & 17.0 & 17.3 & 22.4 & 21.3 & 21.8 \\
\hline 24 & --- & --- & --- & 13.3 & 12.9 & 13.2 & 16.8 & 15.7 & 16.4 & 22.9 & 21.7 & 22.3 \\
\hline 25 & --- & --- & --- & 13.5 & 12.5 & 12.8 & 18.0 & 16.4 & 17.0 & 22.9 & 20.8 & 21.8 \\
\hline 26 & --- & --- & --- & 12.5 & 11.7 & 11.9 & 17.2 & 16.3 & 16.8 & 22.6 & 21.7 & 22.2 \\
\hline 27 & --- & --- & --- & 14.3 & 11.5 & 12.4 & 17.0 & 16.6 & 16.9 & 22.1 & 22.0 & 22.0 \\
\hline 28 & --- & --- & --- & 14.0 & 11.8 & 12.6 & --- & --- & --- & 22.1 & 21.9 & 22.0 \\
\hline 29 & --- & --- & --- & 13.6 & 12.2 & 12.9 & --- & --- & --- & 22.3 & 21.9 & 22.1 \\
\hline 30 & --- & --- & --- & 14.4 & 12.0 & 13.1 & --- & --- & --- & 22.6 & 21.5 & 22.2 \\
\hline 31 & --- & --- & --- & 14.0 & 13.4 & 13.7 & --- & --- & --- & 22.5 & 22.1 & 22.3 \\
\hline MONTH & --- & --- & --- & 14.4 & 11.5 & 12.8 & 20.2 & 13.8 & 16.9 & 22.9 & 16.0 & 20.1 \\
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{JUNE} & \multicolumn{3}{|c|}{JULY} & \multicolumn{3}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & 23.2 & 22.2 & 22.6 & 26.0 & 24.5 & 25.2 & 27.9 & 27.4 & 27.7 & 25.9 & 25.5 & 25.7 \\
\hline 2 & 23.5 & 22.3 & 22.9 & 25.5 & 24.1 & 24.7 & 28.2 & 27.5 & 27.9 & 25.7 & 25.6 & 25.6 \\
\hline 3 & 23.4 & 22.3 & 22.8 & 25.2 & 24.5 & 24.8 & 28.0 & 27.9 & 27.9 & 25.7 & 25.5 & 25.6 \\
\hline 4 & 23.6 & 22.9 & 23.3 & 25.3 & 24.8 & 25.0 & 27.8 & 27.7 & 27.7 & 25.7 & 25.6 & 25.7 \\
\hline 5 & 23.7 & 22.9 & 23.4 & 25.6 & 25.0 & 25.2 & 27.6 & 27.5 & 27.6 & 25.7 & 25.5 & 25.6 \\
\hline 6 & 23.5 & 23.2 & 23.4 & 25.6 & 25.0 & 25.3 & 27.5 & 27.3 & 27.4 & 25.6 & 25.5 & 25.6 \\
\hline 7 & 24.0 & 23.6 & 23.8 & 25.8 & 25.2 & 25.6 & 28.1 & 27.0 & 27.4 & 25.6 & 25.5 & 25.5 \\
\hline 8 & 24.1 & 23.8 & 24.0 & 26.2 & 25.5 & 25.8 & 27.3 & 27.1 & 27.2 & 25.6 & 25.4 & 25.5 \\
\hline 9 & 24.6 & 23.8 & 24.1 & 27.8 & 25.8 & 26.8 & 27.0 & 27.0 & 27.0 & 25.6 & 25.4 & 25.5 \\
\hline 10 & 24.5 & 24.1 & 24.3 & 27.2 & 25.9 & 26.4 & 27.8 & 26.7 & 27.0 & 25.8 & 25.1 & 25.4 \\
\hline 11 & 25.3 & 24.0 & 24.6 & 26.5 & 26.2 & 26.4 & 26.7 & 26.5 & 26.6 & 25.2 & 24.8 & 24.9 \\
\hline 12 & 25.5 & 24.5 & 24.9 & 26.3 & 26.1 & 26.2 & 26.7 & 26.4 & 26.5 & 25.6 & 24.7 & 24.9 \\
\hline 13 & 25.3 & 24.6 & 25.0 & 26.2 & 25.9 & 26.0 & 27.7 & 26.4 & 27.0 & 24.9 & 24.7 & 24.8 \\
\hline 14 & 25.7 & 25.1 & 25.5 & 26.0 & 25.6 & 25.8 & 26.9 & 26.6 & 26.7 & 24.7 & 24.6 & 24.6 \\
\hline 15 & 25.5 & 25.1 & 25.2 & 25.9 & 25.6 & 25.8 & 26.5 & 26.3 & 26.4 & 24.5 & 24.3 & 24.4 \\
\hline 16 & 25.2 & 25.0 & 25.0 & 26.0 & 25.5 & 25.8 & 27.7 & 26.2 & 26.9 & 24.2 & 23.9 & 24.0 \\
\hline 17 & 24.9 & 24.4 & 24.7 & 26.1 & 25.7 & 25.9 & 27.9 & 26.6 & 27.0 & 23.9 & 23.6 & 23.7 \\
\hline 18 & 24.6 & 24.2 & 24.4 & 26.1 & 25.8 & 25.9 & 26.9 & 26.6 & 26.7 & 24.3 & 23.4 & 23.7 \\
\hline 19 & 24.3 & 24.0 & 24.1 & 26.3 & 25.7 & 26.0 & 27.4 & 26.8 & 27.0 & 24.4 & 23.4 & 23.7 \\
\hline 20 & 24.3 & 24.1 & 24.2 & 26.4 & 25.9 & 26.1 & 26.7 & 26.6 & 26.6 & 23.4 & 23.4 & 23.4 \\
\hline 21 & 24.4 & 24.2 & 24.3 & 26.6 & 26.2 & 26.4 & 26.5 & 26.3 & 26.4 & 23.4 & 23.2 & 23.3 \\
\hline 22 & 24.6 & 24.3 & 24.4 & 26.6 & 26.0 & 26.4 & 26.4 & 26.1 & 26.2 & 23.0 & 22.7 & 22.8 \\
\hline 23 & 25.8 & 23.8 & 24.7 & 26.8 & 26.1 & 26.5 & 26.6 & 26.0 & 26.2 & 22.6 & 22.4 & 22.5 \\
\hline 24 & 25.0 & 24.4 & 24.7 & 26.9 & 25.7 & 26.5 & 26.5 & 25.8 & 26.1 & 22.9 & 22.3 & 22.5 \\
\hline 25 & 24.9 & 24.7 & 24.8 & 27.4 & 26.6 & 26.8 & 26.6 & 25.8 & 26.0 & 22.3 & 22.2 & 22.2 \\
\hline 26 & 24.9 & 24.7 & 24.8 & 27.2 & 26.5 & 26.9 & 26.3 & 25.8 & 26.0 & 22.7 & 22.2 & 22.4 \\
\hline 27 & 25.6 & 24.3 & 24.9 & 27.3 & 26.7 & 27.0 & 25.9 & 25.8 & 25.9 & 22.6 & 22.2 & 22.4 \\
\hline 28 & 25.8 & 24.4 & 25.0 & 28.1 & 26.9 & 27.3 & 26.1 & 25.9 & 26.0 & 22.7 & 22.2 & 22.5 \\
\hline 29 & 25.0 & 24.1 & 24.6 & 27.4 & 26.8 & 27.1 & 26.0 & 26.0 & 26.0 & 23.2 & 22.3 & 22.8 \\
\hline 30 & 25.2 & 24.0 & 24.5 & 28.1 & 26.9 & 27.4 & 26.0 & 25.8 & 25.9 & 22.5 & 22.2 & 22.3 \\
\hline 31 & --- & --- & & 28.3 & 26.6 & 27.4 & 25.8 & 25.6 & 25.6 & --- & --- & \\
\hline MONTH & 25.8 & 22.2 & 24.3 & 28.3 & 24.1 & 26.1 & 28.2 & 25.6 & 26.7 & 25.9 & 22.2 & 24.1 \\
\hline YEAR & 28.3 & 11.5 & 22.5 & & & & & & & & & \\
\hline
\end{tabular}

03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & FEBRUARY & & & MARCH & & & APRIL & & & MAY & \\
\hline 1 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 2 & --- & -- & --- & --- & -- & -- & - & --- & --- & - & - & --- \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & -- & --- & - & --- & --- \\
\hline 4 & --- & --- & - & --- & --- & --- & --- & -- & --- & --- & --- & -- \\
\hline 5 & --- & -- & --- & -- & -- & --- & --- & --- & --- & --- & --- & --- \\
\hline 6 & --- & --- & - & --- & --- & --- & --- & -- & --- & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & -- & --- & --- \\
\hline 8 & --- & --- & --- & --- & -- & --- & & --- & --- & -- & --- & --- \\
\hline 9 & -- & - & --- & --- & --- & --- & -- & --- & - & - & - & --- \\
\hline 10 & --- & --- & - & --- & --- & - & - & --- & - & - & --- & --- \\
\hline 11 & - & --- & --- & --- & --- & --- & - & --- & --- & -- & --- & --- \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 13 & --- & --- & - & --- & --- & --- & -- & --- & --- & -- & --- & --- \\
\hline 14 & --- & - & --- & - & -- & -- & - & --- & -- & -- & - & --- \\
\hline 15 & --- & --- & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- \\
\hline 16 & --- & -- & - & --- & --- & --- & --- & --- & - & --- & --- & --- \\
\hline 17 & --- & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- & -- \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 23.7 & 22.8 & 23.3 \\
\hline 19 & --- & - & -- & --- & --- & --- & --- & - & -- & 23.5 & 22.2 & 22.7 \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 23.9 & 21.9 & 22.7 \\
\hline 21 & --- & --- & -- & --- & --- & --- & --- & --- & --- & 23.8 & 22.3 & 23.1 \\
\hline 22 & --- & - & - & -- & --- & --- & --- & - & --- & 23.5 & 22.6 & 23.0 \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 23.9 & 22.6 & 23.3 \\
\hline 24 & --- & --- & - & --- & --- & --- & --- & -- & --- & 23.5 & 23.0 & 23.2 \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 23.3 & 22.5 & 22.8 \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 23.3 & 22.3 & 22.8 \\
\hline 27 & --- & --- & --- & -- & --- & --- & --- & --- & --- & 23.6 & 22.0 & 22.6 \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & -- & --- & 23.7 & 21.9 & 22.6 \\
\hline 29 & --- & --- & --- & --- & --- & --- & --- & -- & --- & 23.8 & 22.3 & 23.0 \\
\hline 30 & --- & - & --- & --- & --- & - & -- & -- & -- & 24.8 & 22.6 & 23.7 \\
\hline 31 & -- & --- & --- & --- & --- & --- & --- & --- & --- & 24.2 & 23.0 & 23.7 \\
\hline MONTH & --- & --- & --- & --- & -- & --- & --- & --- & - & 24.8 & 21.9 & 23.0 \\
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & JULY & & & AUGUST & & & SEPTEMBER & \\
\hline 1 & 23.8 & 23.3 & 23.6 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 2 & 24.0 & 23.3 & 23.6 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 3 & 24.8 & 23.3 & 23.8 & --- & --- & --- & --- & --- & --- & --- & --- & - \\
\hline 4 & 24.7 & 23.3 & 24.0 & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 5 & 25.6 & 23.7 & 24.6 & --- & -- & --- & 28.4 & 27.7 & 28.1 & --- & --- & --- \\
\hline 6 & 26.1 & 24.2 & 25.0 & --- & --- & --- & 28.4 & 27.3 & 27.8 & -- & --- & -- \\
\hline 7 & 26.8 & 24.6 & 25.6 & --- & --- & --- & 28.4 & 27.3 & 27.9 & --- & --- & --- \\
\hline 8 & 26.9 & 24.8 & 25.8 & --- & --- & --- & 28.0 & 27.3 & 27.5 & --- & -- & -- \\
\hline 9 & 27.0 & 25.1 & 26.1 & -- & --- & --- & 27.7 & 27.1 & 27.3 & --- & --- & --- \\
\hline 10 & 27.3 & 25.4 & 26.2 & --- & --- & --- & 28.0 & 26.8 & 27.2 & --- & --- & --- \\
\hline 11 & 26.9 & 25.6 & 26.2 & --- & --- & --- & 28.0 & 26.9 & 27.5 & --- & --- & -- \\
\hline 12 & 26.9 & 25.5 & 26.2 & --- & --- & --- & 27.5 & 26.8 & 27.1 & --- & --- & --- \\
\hline 13 & 26.9 & 25.8 & 26.3 & --- & -- & --- & 28.1 & 27.0 & 27.4 & --- & - & -- \\
\hline 14 & 26.2 & 25.6 & 25.8 & --- & --- & --- & 27.8 & 27.3 & 27.6 & --- & --- & --- \\
\hline 15 & 26.3 & 25.3 & 25.6 & --- & --- & --- & 27.3 & 26.5 & 26.9 & - & --- & --- \\
\hline 16 & 25.1 & 24.9 & 25.0 & --- & --- & --- & 28.0 & 26.4 & 27.1 & --- & - & --- \\
\hline 17 & 25.0 & 24.6 & 24.8 & --- & --- & --- & 28.3 & 26.9 & 27.6 & - & - & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & 28.4 & 27.1 & 27.7 & --- & --- & - \\
\hline 19 & --- & --- & --- & --- & --- & --- & 27.7 & 26.9 & 27.2 & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & 27.3 & 26.8 & 27.0 & --- & --- & -- \\
\hline 21 & --- & --- & --- & --- & --- & --- & 27.7 & 26.4 & 26.8 & - & --- & --- \\
\hline 22 & --- & - & - & -- & --- & --- & 27.7 & 26.1 & 26.7 & -- & --- & - \\
\hline 23 & --- & --- & --- & --- & --- & --- & 27.5 & 26.2 & 26.8 & --- & --- & --- \\
\hline 24 & --- & --- & --- & --- & --- & --- & 26.9 & 26.4 & 26.6 & --- & --- & --- \\
\hline 25 & --- & -- & - & --- & --- & - & --- & --- & , & --- & --- & --- \\
\hline 26 & --- & --- & --- & --- & --- & -- & --- & --- & --- & -- & -- & --- \\
\hline 27 & --- & --- & --- & --- & --- & --- & -- & --- & -- & --- & --- & --- \\
\hline 28 & - & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 29 & - & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline 30 & --- & --- & - & --- & --- & --- & --- & - & --- & --- & -- & --- \\
\hline 31 & --- & --- & - & --- & --- & --- & --- & --- & -- & --- & --- & -- \\
\hline MONTH & 27.3 & 23.3 & 25.2 & --- & --- & --- & 28.4 & 26.1 & 27.3 & --- & -- & --- \\
\hline YEAR & 28.4 & 21.9 & 25.4 & & & & & & & & & \\
\hline
\end{tabular}

CUMBERLAND RIVER BASIN
03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued

OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


CUMBERLAND RIVER BASIN
03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{FEBRUARY} & \multicolumn{3}{|c|}{MARCH} & \multicolumn{3}{|c|}{APRIL} & \multicolumn{3}{|c|}{MAY} \\
\hline 1 & --- & --- & --- & --- & -- & -- & -- & --- & -- & 6.4 & 5.8 & 6.0 \\
\hline 2 & - & --- & --- & --- & --- & --- & --- & --- & --- & 6.3 & 5.8 & 6.0 \\
\hline 3 & -- & --- & --- & --- & --- & --- & --- & --- & --- & 6.2 & 6.0 & 6.1 \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 6.6 & 6.1 & 6.3 \\
\hline 5 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 6.8 & 6.3 & 6.5 \\
\hline 6 & - & --- & --- & --- & --- & --- & - & --- & --- & 7.6 & 6.3 & 7.0 \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 7.8 & 6.8 & 7.2 \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 8.0 & 6.7 & 7.4 \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 7.5 & 7.2 & 7.4 \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 8.0 & 7.2 & 7.7 \\
\hline 11 & - & --- & --- & --- & --- & --- & --- & --- & --- & 8.0 & 7.3 & 7.7 \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 8.0 & 7.2 & 7.6 \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 7.6 & 6.9 & 7.4 \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 8.1 & 7.2 & 7.6 \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 7.7 & 7.5 & 7.6 \\
\hline 16 & --- & --- & --- & --- & --- & --- & --- & -- & --- & 7.8 & 7.7 & 7.8 \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 8.3 & 7.3 & 7.6 \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 8.1 & 7.3 & 7.8 \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 8.6 & 7.4 & 7.8 \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 8.1 & 7.6 & 7.8 \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 7.9 & 6.9 & 7.6 \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 7.6 & 6.9 & 7.2 \\
\hline 23 & - & --- & --- & --- & --- & --- & --- & --- & --- & 8.2 & 6.6 & 7.2 \\
\hline 24 & -- & --- & --- & --- & --- & - & --- & --- & --- & 7.8 & 6.6 & 7.0 \\
\hline 25 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 8.1 & 6.7 & 7.2 \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 7.9 & 6.7 & 7.2 \\
\hline 27 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 7.4 & 6.8 & 7.1 \\
\hline 28 & --- & --- & -- & -- & -- & --- & --- & -- & - & 7.5 & 6.6 & 7.1 \\
\hline 29 & --- & --- & --- & --- & --- & --- & - & --- & -- & 7.4 & 6.8 & 7.1 \\
\hline 30 & --- & --- & --- & --- & --- & --- & 6.1 & 5.9 & 6.0 & 7.4 & 6.6 & 7.1 \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 7.7 & 6.7 & 7.2 \\
\hline MONTH & --- & --- & --- & --- & --- & --- & 6.1 & 5.9 & 6.0 & 8.6 & 5.8 & 7.2 \\
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{JUNE} & \multicolumn{3}{|c|}{JULY} & \multicolumn{3}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & 7.7 & 6.9 & 7.2 & 6.1 & 4.5 & 5.4 & . 6 & . 6 & . 6 & --- & --- & --- \\
\hline 2 & 8.0 & 6.3 & 7.2 & 4.4 & 2.7 & 3.5 & . 7 & . 6 & . 6 & --- & --- & --- \\
\hline 3 & 9.2 & 6.3 & 7.5 & 4.9 & 2.8 & 3.7 & . 7 & . 7 & . 7 & --- & --- & --- \\
\hline 4 & 7.8 & 6.7 & 7.3 & 3.7 & 1.9 & 3.0 & . 7 & . 6 & . 7 & --- & --- & --- \\
\hline 5 & 8.0 & 6.6 & 7.4 & 3.3 & 2.6 & 2.9 & . 5 & . 4 & . 5 & --- & --- & --- \\
\hline 6 & 8.7 & 6.9 & 7.8 & 3.7 & 2.2 & 3.0 & . 4 & . 4 & . 4 & --- & --- & --- \\
\hline 7 & 9.0 & 6.4 & 7.6 & 3.5 & 1.8 & 2.7 & . 4 & . 4 & . 4 & --- & --- & --- \\
\hline 8 & 8.7 & 5.6 & 7.1 & 3.1 & 1.7 & 2.3 & . 4 & . 4 & . 4 & 1.3 & 1.2 & 1.2 \\
\hline 9 & 9.3 & 5.5 & 7.6 & 2.8 & 1.7 & 2.1 & . 4 & . 4 & . 4 & 1.6 & 1.1 & 1.2 \\
\hline 10 & 9.0 & 6.4 & 8.3 & 2.1 & 1.2 & 1.8 & . 4 & . 3 & . 3 & 1.7 & 1.1 & 1.3 \\
\hline 11 & 9.3 & 5.9 & 7.7 & 1.7 & 1.0 & 1.4 & . 3 & . 3 & . 3 & --- & --- & --- \\
\hline 12 & 9.3 & 6.6 & 8.2 & 1.4 & 1.0 & 1.2 & . 3 & . 3 & . 3 & --- & - & - \\
\hline 13 & 9.2 & 7.1 & 8.2 & 1.3 & 1.0 & 1.1 & . 3 & . 3 & . 3 & -- & -- & --- \\
\hline 14 & 8.9 & 6.8 & 7.8 & 1.3 & . 8 & 1.0 & . 3 & . 3 & . 3 & 2.7 & 1.4 & 2.0 \\
\hline 15 & 8.3 & 7.0 & 7.9 & . 9 & . 8 & . 8 & . 3 & . 3 & . 3 & 5.7 & 3.0 & 4.5 \\
\hline 16 & 8.3 & 6.6 & 7.6 & . 8 & . 8 & . 8 & . 7 & . 3 & . 4 & 5.6 & 2.6 & 4.0 \\
\hline 17 & 8.3 & 5.3 & 7.2 & . 8 & . 8 & . 8 & . 8 & . 6 & . 7 & 6.0 & 5.0 & 5.6 \\
\hline 18 & 8.3 & 6.7 & 7.4 & . 9 & . 8 & . 8 & . 5 & . 4 & . 4 & 6.2 & 5.6 & 5.9 \\
\hline 19 & 8.2 & 5.3 & 7.2 & . 9 & . 9 & . 9 & . 5 & . 4 & . 4 & 5.9 & 5.3 & 5.7 \\
\hline 20 & 7.7 & 5.3 & 6.6 & . 9 & . 9 & . 9 & . 5 & . 4 & . 5 & 5.8 & 5.3 & 5.6 \\
\hline 21 & 7.4 & 6.0 & 6.8 & 1.0 & . 9 & . 9 & --- & --- & --- & 5.5 & 5.2 & 5.3 \\
\hline 22 & 6.8 & 4.8 & 5.8 & 1.0 & 1.0 & 1.0 & --- & --- & --- & 6.8 & 6.1 & 6.4 \\
\hline 23 & 7.0 & 4.2 & 5.6 & 1.0 & . 8 & 1.0 & --- & --- & --- & 7.0 & 6.8 & 6.8 \\
\hline 24 & 5.7 & 4.6 & 5.2 & . 8 & . 6 & . 7 & --- & --- & --- & 6.9 & 6.2 & 6.7 \\
\hline 25 & 5.2 & 3.6 & 4.6 & . 8 & . 6 & . 7 & --- & --- & --- & 6.8 & 6.2 & 6.6 \\
\hline 26 & 5.6 & 3.5 & 4.4 & . 7 & . 6 & . 6 & --- & --- & --- & 6.5 & 5.9 & 6.2 \\
\hline 27 & 5.8 & 3.8 & 4.3 & . 6 & . 6 & . 6 & --- & --- & --- & 6.3 & 6.0 & 6.2 \\
\hline 28 & 6.7 & 2.5 & 4.5 & . 6 & . 6 & . 6 & -- & --- & --- & 5.9 & 5.5 & 5.8 \\
\hline 29 & 4.9 & 2.7 & 3.7 & . 7 & . 6 & . 6 & --- & --- & --- & 5.8 & 5.4 & 5.6 \\
\hline 30 & 6.0 & 3.5 & 4.8 & . 7 & . 6 & . 6 & --- & --- & -- & 6.0 & 4.9 & 5.6 \\
\hline 31 & --- & --- & --- & . 6 & . 6 & . 6 & --- & --- & --- & --- & --- & --- \\
\hline MONTH & 9.3 & 2.5 & 6.7 & 6.1 & . 6 & 1.5 & . 8 & . 3 & . 4 & 7.0 & 1.1 & 4.9 \\
\hline YEAR & 9.3 & . 0 & 4.0 & & & & & & & & & \\
\hline
\end{tabular}

03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


CUMBERLAND RIVER BASIN
03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued

OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


CUMBERLAND RIVER BASIN
03400798 MARTINS FORK LAKE AT MARTINS FORK DAM NEAR SMITH, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999



CUMBERLAND RIVER BASIN
03400800 MARTINS FORK NEAR SMITH, KY
LOCATION.--Lat \(36^{\circ} 45^{\prime} 08^{\prime \prime}\), long \(83^{\circ} 15^{\prime} \mathbf{2 7 \prime}^{\prime \prime}\), Harlan County, Hydrologic Unit 05130101, on left bank 150 ft downstream from State Highway 987 bridge, \(0^{\prime} .3 \mathrm{mi}\) downstream from Martins Fork Dam, 0.7 mi downstream from Crane Creek, 1.0 mi north of Smith, and at mile 15.3.
DRAINAGE AREA. \(--55.8 \mathrm{mi}^{2}\).
WATER-DISCHARGE RECORDS
PERIOD OF RECORD.--Occasional low-flow measurements, water years 1968-71, and annual maximums, water years \(1968-70\). April 1971 to current year.

GAGE.--Water-stage recorder. Datum of gage is \(1,259.00 \mathrm{ft}\) above sea level. July 25 , 1967 to Apr. 9 , 1971 , crest-stage gage at site 30 ft downstream at same datum, and Apr. 10, 1971 to Sept. 30, 1977, water-stage recorder at site 0.8 mi downstream at same datum.

REMARKS.--Records fair. Flow regulated by Martins Fork Dam (station 03400798) beginning January 1979.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 10 & 20 & 20 & 13 & 141 & 170 & 34 & 27 & 19 & 63 & 13 & 12 \\
\hline 2 & 10 & 21 & 5.9 & 13 & 140 & 286 & 34 & 27 & 19 & 24 & 13 & 12 \\
\hline 3 & 10 & 36 & 7.7 & 14 & 108 & 292 & 34 & 27 & 19 & 21 & 13 & 12 \\
\hline 4 & 10 & 63 & 7.7 & 229 & 72 & 298 & 34 & 43 & 19 & 16 & 13 & 12 \\
\hline 5 & 10 & 61 & 8.1 & 360 & 69 & 350 & 34 & 54 & 19 & 16 & 13 & 12 \\
\hline 6 & 10 & 41 & 8.3 & 200 & 64 & 396 & 35 & 109 & 19 & 16 & 14 & 12 \\
\hline 7 & 10 & 28 & 8.8 & 77 & 64 & 390 & 36 & 143 & 17 & 16 & 16 & 12 \\
\hline 8 & 11 & 27 & 12 & 66 & 64 & 383 & 36 & 147 & 13 & 15 & 16 & 12 \\
\hline 9 & 11 & 27 & 11 & 64 & 64 & 377 & 24 & 145 & 13 & 15 & 16 & 12 \\
\hline 10 & 11 & 27 & 102 & 65 & 64 & 370 & 13 & 144 & 13 & 16 & 16 & 12 \\
\hline 11 & 11 & 27 & 149 & 231 & 59 & 363 & 14 & 142 & 13 & 16 & 17 & 13 \\
\hline 12 & 11 & 27 & 107 & 354 & 46 & 297 & 14 & 88 & 13 & 16 & 17 & 13 \\
\hline 13 & 11 & 26 & 110 & 346 & 46 & 216 & 14 & 40 & 13 & 17 & 16 & 13 \\
\hline 14 & 11 & 26 & 215 & 231 & 47 & 215 & 14 & 40 & 13 & 17 & 17 & 13 \\
\hline 15 & 12 & 25 & 289 & 202 & 47 & 219 & 15 & 40 & 13 & 17 & 17 & 13 \\
\hline 16 & 12 & 26 & 278 & 292 & 38 & 223 & 15 & 40 & 13 & 17 & 16 & 14 \\
\hline 17 & 12 & 25 & 181 & 290 & 28 & 223 & 15 & 40 & 13 & 16 & 16 & 14 \\
\hline 18 & 13 & 25 & 30 & 295 & 28 & 223 & 15 & 39 & 13 & 16 & 16 & 13 \\
\hline 19 & 19 & 23 & 21 & 352 & 46 & 222 & 66 & 39 & 13 & 14 & 16 & 12 \\
\hline 20 & 30 & 22 & 21 & 394 & 62 & 218 & 87 & 39 & 13 & 10 & 16 & 12 \\
\hline 21 & 30 & 22 & 21 & 387 & 62 & 215 & 41 & 32 & 13 & 10 & 16 & 12 \\
\hline 22 & 36 & 22 & 21 & 377 & 73 & 212 & 41 & 19 & 13 & 11 & 15 & 11 \\
\hline 23 & 44 & 22 & 45 & 371 & 89 & 207 & 38 & 19 & 13 & 11 & 15 & 11 \\
\hline 24 & 43 & 22 & 61 & 380 & 88 & 99 & 34 & 20 & 13 & 12 & 15 & 11 \\
\hline 25 & 42 & 70 & 61 & 384 & 88 & 20 & 34 & 20 & 14 & 12 & 15 & 11 \\
\hline 26 & 31 & 28 & 61 & 379 & 71 & 52 & 34 & 20 & 14 & 12 & 14 & 11 \\
\hline 27 & 9.4 & 28 & 61 & 372 & 50 & 88 & 29 & 20 & 15 & 12 & 14 & 12 \\
\hline 28 & 14 & 28 & 30 & 361 & 55 & 88 & 26 & 20 & 16 & 12 & 14 & 13 \\
\hline 29 & 19 & 27 & 9.0 & 229 & --- & 64 & 26 & 19 & 16 & 11 & 14 & 13 \\
\hline 30 & 19 & 26 & 12 & 143 & - & 34 & 27 & 19 & 56 & 12 & 13 & 13 \\
\hline 31 & 20 & --- & 12 & 141 & --- & 34 & --- & 19 & - & 12 & 13 & --- \\
\hline TOTAL & 552.4 & 898 & 1986.5 & 7612 & 1873 & 6844 & 913 & 1640 & 483 & 501 & 465 & 368 \\
\hline MEAN & 17.8 & 29.9 & 64.1 & 246 & 66.9 & 221 & 30.4 & 52.9 & 16.1 & 16.2 & 15.0 & 12.3 \\
\hline MAX & 44 & 70 & 289 & 394 & 141 & 396 & 87 & 147 & 56 & 63 & 17 & 14 \\
\hline MIN & 9.4 & 20 & 5.9 & 13 & 28 & 20 & 13 & 19 & 13 & 10 & 13 & 11 \\
\hline \multicolumn{2}{|l|}{STATISTICS OF} & \multicolumn{2}{|l|}{MONTHLY MEAN DATA} & \multicolumn{6}{|l|}{WATER YEARS 1980 - 1999, BY WATER YEAR (WY)} & & & \\
\hline MEAN & 53.9 & 107 & 145 & 178 & 191 & 192 & 112 & 132 & 68.9 & 25.0 & 26.7 & 26.0 \\
\hline MAX & 181 & 226 & 452 & 357 & 402 & 342 & 428 & 322 & 267 & 75.3 & 117 & 117 \\
\hline (WY) & 1990 & 1997 & 1992 & 1982 & 1990 & 1997 & 1998 & 1983 & 1989 & 1990 & 1996 & 1989 \\
\hline MIN & 11.0 & 28.9 & 16.4 & 10.1 & 66.9 & 33.5 & 12.4 & 36.7 & 12.5 & 9.34 & 9.43 & 9.49 \\
\hline (WY) & 1998 & 1981 & 1981 & 1981 & 1999 & 1988 & 1986 & 1987 & 1988 & 1988 & 1988 & 1984 \\
\hline
\end{tabular}

CUMBERLAND RIVER BASIN
03400800 MARTINS FORK NEAR SMITH, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN HIGHEST DAIIY MEAN HIGHEST DAILY MEAN
LOWEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS

FOR 1998 CALENDAR YEAR
\begin{tabular}{rrrr}
39297.9 \\
108 & & & \\
& & & \\
1510 & Apr & 20 \\
5.9 & Dec & 2 \\
8.4 & Dec & 2 \\
& & \\
& & & \\
225 & & \\
42 & & \\
10 & &
\end{tabular}

FOR 1999 WATER YEAR
\begin{tabular}{rlll}
24135.9 & & \\
66.1 & & \\
& & \\
396 & Mar & 6 \\
5.9 & Dec & 2 \\
8.4 & Dec & 2 \\
400 & Mar & 5 \\
10.47 & Mar & 5 \\
& & \\
222 & & \\
21 & & \\
12 & &
\end{tabular}

WATER YEARS 1980 - 1999
\begin{tabular}{ccrr}
104 & & & \\
139 & & & 1997 \\
58.0 & & & 1988 \\
1510 & Apr & 20 & 1998 \\
5.4 & Aug & 31 & 1996 \\
6.7 & Jul & 16 & 1980 \\
9000 & Apr & 4 & 1977 \\
24.24 & Apr & 4 & 1977 \\
.10 & Oct & 30 & 1978 \\
285 & & & \\
48 & & & \\
11 & & &
\end{tabular}


PERIOD OF RECORD.--Water years 1971 to current year.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: October 1971 to current year.
pH: December 1979 to current year.
WATER TEMPERATURE: October 1971 to current year.
DISSOLVED OXYGEN: December 1979 to current year.
INSTRUMENTATION.--Water-quality monitor since October 1971.
EXTREMES FOR PERIOD OF RECORD.--
SPECIFIC CONDUCTANCE (water years 1972-77, 1980 to current year): Maximum, 561 microsiemens, Feb. 12, 1972; minimum, 49 microsiemens, Feb. 26, 1985.
pH: Maximum, 8.2 units, July 2, 1980; minimum, 5.9 units, Jan. 6, 7, 1996, Sept. 20, 1998.
WATER TEMPERATURE: Maximum, \(32.5^{\circ} \mathrm{C}\), Aug. 6,1982 ; minimum, \(0.0^{\circ} \mathrm{C}\), on many days during winter months.
DISSOLVED OXYGEN: Maximum, \(15.6 \mathrm{mg} / \mathrm{L}\), Jan. 20, 21, 1985; minimum, \(4.6 \mathrm{mg} / \mathrm{L}\), Aug. 10, 1994.
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 173 microsiemens, Dec. 8, 9; minimum, 93 microsiemens, Jan. 27.
pH: Maximum, 7.4 units, Nov. 20; minimum, 6.1 units, Aug. 31 to Sept. 2
WATER TEMPERATURE: Maximum, \(27.5^{\circ} \mathrm{C}\), July 31 ; minimum, \(2.8^{\circ} \mathrm{C}\), Jan. 6, 7.
DISSOLVED OXYGEN: Maximum, \(13.6 \mathrm{mg} / \mathrm{L}\), Dec. 7, 8; minimum, \(5.6 \mathrm{mg} / \mathrm{L}\), Aug. 9 .

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


CUMBERLAND RIVER BASIN
03400800 MARTINS FORK NEAR SMITH, KY--Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{FEBRUARY} & \multicolumn{3}{|c|}{MARCH} & \multicolumn{3}{|c|}{APRIL} & \multicolumn{3}{|c|}{MAY} \\
\hline 1 & 113 & 101 & 106 & --- & --- & --- & 123 & 119 & 121 & --- & -- & --- \\
\hline 2 & 113 & 101 & 104 & --- & --- & --- & 123 & 119 & 120 & --- & --- & --- \\
\hline 3 & 109 & 105 & 105 & --- & --- & --- & 123 & 119 & 119 & --- & --- & --- \\
\hline 4 & 109 & 109 & 109 & --- & - & --- & 119 & 119 & 119 & --- & --- & --- \\
\hline 5 & 117 & 109 & 111 & --- & --- & --- & 123 & 119 & 119 & --- & --- & --- \\
\hline 6 & 117 & 113 & 114 & --- & --- & --- & 123 & 119 & 119 & 121 & 118 & 120 \\
\hline 7 & 113 & 113 & 113 & --- & --- & --- & 119 & 119 & 119 & 123 & 119 & 120 \\
\hline 8 & 113 & 113 & 113 & --- & --- & --- & 119 & 119 & 119 & 124 & 120 & 121 \\
\hline 9 & 117 & 113 & 116 & - & -- & -- & 119 & 119 & 119 & 122 & 118 & 120 \\
\hline 10 & 121 & 117 & 117 & --- & --- & --- & 119 & 119 & 119 & 121 & 115 & 119 \\
\hline 11 & 126 & 117 & 118 & --- & - & --- & 123 & 119 & 120 & 119 & 115 & 117 \\
\hline 12 & 129 & 122 & 125 & --- & --- & --- & 123 & 119 & 120 & 119 & 115 & 117 \\
\hline 13 & 126 & 122 & 123 & --- & --- & --- & 123 & 119 & 120 & 120 & 113 & 117 \\
\hline 14 & 126 & 122 & 122 & --- & --- & --- & 123 & 119 & 121 & 120 & 114 & 117 \\
\hline 15 & 122 & 122 & 122 & --- & --- & --- & 123 & 119 & 122 & 119 & 113 & 116 \\
\hline 16 & 122 & 122 & 122 & --- & --- & -- & 123 & 123 & 123 & 119 & 114 & 116 \\
\hline 17 & 122 & 118 & 121 & --- & --- & --- & 123 & 123 & 123 & 119 & 113 & 116 \\
\hline 18 & 126 & 122 & 124 & --- & --- & --- & 123 & 123 & 123 & 117 & 113 & 115 \\
\hline 19 & 130 & 123 & 123 & --- & --- & --- & 123 & 119 & 121 & 117 & 110 & 114 \\
\hline 20 & 123 & 123 & 123 & --- & --- & --- & 119 & 115 & 118 & 114 & 111 & 113 \\
\hline 21 & 123 & 123 & 123 & --- & --- & --- & 119 & 119 & 119 & 114 & 112 & 113 \\
\hline 22 & 123 & 123 & 123 & --- & --- & --- & 123 & 119 & 120 & 115 & 112 & 114 \\
\hline 23 & 127 & 123 & 123 & --- & --- & --- & 123 & 119 & 121 & 115 & 113 & 114 \\
\hline 24 & 123 & 123 & 123 & 122 & 118 & 118 & 123 & 123 & 123 & 116 & 110 & 114 \\
\hline 25 & 123 & 123 & 123 & 122 & 118 & 121 & 123 & 123 & 123 & 115 & 113 & 114 \\
\hline 26 & 127 & 123 & 126 & 122 & 114 & 119 & 123 & 123 & 123 & 115 & 112 & 113 \\
\hline 27 & 127 & 127 & 127 & 118 & 110 & 113 & 123 & 123 & 123 & 115 & 112 & 113 \\
\hline 28 & --- & --- & --- & 129 & 114 & 117 & 126 & 123 & 123 & 113 & 110 & 112 \\
\hline 29 & --- & --- & --- & 125 & 114 & 121 & --- & --- & --- & 113 & 111 & 112 \\
\hline 30 & --- & --- & --- & 125 & 118 & 121 & --- & --- & --- & 113 & 111 & 112 \\
\hline 31 & --- & --- & - & 123 & 119 & 121 & --- & --- & -- & 113 & 111 & 112 \\
\hline MONTH & 130 & 101 & 118 & 129 & 110 & 119 & 126 & 115 & 121 & 124 & 110 & 115 \\
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{JUNE} & \multicolumn{3}{|c|}{JULY} & \multicolumn{3}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & 113 & 109 & 111 & 134 & 124 & 127 & 129 & 125 & 128 & 145 & 142 & 144 \\
\hline 2 & 115 & 106 & 109 & 136 & 133 & 135 & 129 & 128 & 128 & 147 & 145 & 147 \\
\hline 3 & 115 & 112 & 114 & 139 & 135 & 137 & 130 & 128 & 129 & 150 & 147 & 149 \\
\hline 4 & 115 & 111 & 114 & 138 & 134 & 136 & 130 & 129 & 129 & 153 & 150 & 151 \\
\hline 5 & 116 & 114 & 115 & 137 & 134 & 136 & 130 & 129 & 129 & 155 & 152 & 153 \\
\hline 6 & 116 & 115 & 116 & 138 & 135 & 136 & 130 & 129 & 130 & 156 & 154 & 155 \\
\hline 7 & 125 & 116 & 118 & 138 & 133 & 136 & 131 & 129 & 130 & 158 & 155 & 157 \\
\hline 8 & 127 & 125 & 126 & 139 & 135 & 137 & 131 & 130 & 131 & 159 & 156 & 158 \\
\hline 9 & 127 & 126 & 127 & 139 & 135 & 137 & 131 & 130 & 130 & 160 & 156 & 159 \\
\hline 10 & 128 & 126 & 127 & 140 & 133 & 137 & 130 & 130 & 130 & 161 & 157 & 160 \\
\hline 11 & 128 & 127 & 128 & 139 & 136 & 138 & 131 & 130 & 130 & 162 & 158 & 160 \\
\hline 12 & 129 & 127 & 128 & 138 & 134 & 137 & 131 & 130 & 130 & 164 & 161 & 162 \\
\hline 13 & 129 & 127 & 129 & 138 & 133 & 136 & 132 & 130 & 131 & 163 & 159 & 161 \\
\hline 14 & 131 & 129 & 130 & 137 & 131 & 134 & 132 & 131 & 132 & 161 & 158 & 160 \\
\hline 15 & 130 & 128 & 129 & 136 & 131 & 133 & 132 & 132 & 132 & 161 & 158 & 160 \\
\hline 16 & 130 & 128 & 129 & 134 & 125 & 130 & 132 & 132 & 132 & 160 & 157 & 159 \\
\hline 17 & 135 & 127 & 130 & 136 & 123 & 126 & 132 & 132 & 132 & 159 & 157 & 158 \\
\hline 18 & 134 & 129 & 131 & 134 & 127 & 131 & 134 & 132 & 132 & 159 & 157 & 159 \\
\hline 19 & 131 & 129 & 130 & 137 & 126 & 131 & 134 & 133 & 134 & 160 & 157 & 159 \\
\hline 20 & 131 & 130 & 130 & 132 & 128 & 130 & 134 & 132 & 134 & 161 & 158 & 160 \\
\hline 21 & 131 & 128 & 130 & 131 & 127 & 129 & 134 & 134 & 134 & 161 & 158 & 160 \\
\hline 22 & 131 & 127 & 129 & 129 & 126 & 127 & 134 & 133 & 134 & 161 & 158 & 160 \\
\hline 23 & 131 & 128 & 130 & 127 & 126 & 127 & 135 & 134 & 134 & 162 & 159 & 161 \\
\hline 24 & 130 & 128 & 129 & 128 & 123 & 126 & 136 & 135 & 136 & 162 & 160 & 161 \\
\hline 25 & 132 & 130 & 131 & 129 & 126 & 128 & 137 & 130 & 136 & 163 & 159 & 161 \\
\hline 26 & 132 & 128 & 131 & 129 & 126 & 127 & 137 & 136 & 137 & 163 & 160 & 162 \\
\hline 27 & 133 & 131 & 132 & 129 & 127 & 127 & 138 & 137 & 138 & 164 & 160 & 162 \\
\hline 28 & 137 & 132 & 134 & 128 & 126 & 127 & 140 & 138 & 139 & 164 & 160 & 162 \\
\hline 29 & 137 & 134 & 136 & 129 & 125 & 127 & 141 & 140 & 140 & 165 & 161 & 163 \\
\hline 30 & 136 & 123 & 130 & 129 & 127 & 128 & 141 & 140 & 140 & 166 & 163 & 164 \\
\hline 31 & --- & --- & --- & 129 & 127 & 128 & 142 & 140 & 142 & --- & --- & --- \\
\hline MONTH & 137 & 106 & 126 & 140 & 123 & 132 & 142 & 125 & 133 & 166 & 142 & 158 \\
\hline
\end{tabular}

CUMBERLAND RIVER BASIN
03400800 MARTINS FORK NEAR SMITH, KY--Continued
PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{OCTOBER} & \multicolumn{3}{|c|}{NOVEMBER} & \multicolumn{3}{|c|}{DECEMBER} & \multicolumn{3}{|c|}{JANUARY} \\
\hline 1 & 6.7 & 6.6 & --- & 7.3 & 6.8 & --- & 7.3 & 7.1 & --- & 6.8 & 6.7 & --- \\
\hline 2 & 6.7 & 6.6 & - & 7.2 & 7.0 & --- & 7.1 & 7.1 & --- & 7.1 & 6.7 & --- \\
\hline 3 & 6.7 & 6.6 & --- & 7.2 & 6.9 & --- & 7.2 & 7.1 & --- & 7.0 & 6.7 & --- \\
\hline 4 & 6.9 & 6.6 & -- & 7.0 & 6.8 & --- & 7.2 & 7.1 & --- & 6.7 & 6.7 & --- \\
\hline 5 & 6.7 & 6.6 & --- & 7.0 & 6.8 & --- & 7.2 & 7.1 & --- & 6.7 & 6.7 & --- \\
\hline 6 & 6.7 & 6.6 & --- & 6.9 & 6.8 & --- & 7.3 & 7.0 & --- & 6.7 & 6.6 & --- \\
\hline 7 & 6.8 & 6.6 & --- & 6.9 & 6.8 & --- & 7.3 & 7.1 & --- & 6.7 & 6.6 & --- \\
\hline 8 & 6.8 & 6.7 & - & 7.0 & 6.9 & --- & 7.2 & 7.0 & - & 6.9 & 6.7 & --- \\
\hline 9 & 6.8 & 6.7 & --- & 7.2 & 6.9 & --- & 7.1 & 7.0 & --- & 6.9 & 6.7 & --- \\
\hline 10 & 7.0 & 6.7 & --- & 7.3 & 7.1 & --- & 7.0 & 6.9 & --- & 6.7 & 6.7 & --- \\
\hline 11 & 7.1 & 6.8 & --- & 7.2 & 7.1 & --- & 7.0 & 6.9 & --- & 6.7 & 6.6 & --- \\
\hline 12 & 7.0 & 6.8 & --- & 7.1 & 7.0 & --- & 6.9 & 6.9 & --- & 6.7 & 6.7 & --- \\
\hline 13 & 7.0 & 6.9 & - & 7.1 & 7.0 & --- & 7.0 & 6.8 & --- & 6.7 & 6.7 & --- \\
\hline 14 & 7.1 & 6.9 & --- & 7.4 & 7.1 & --- & 6.9 & 6.8 & --- & 6.9 & 6.7 & --- \\
\hline 15 & 7.1 & 6.9 & --- & 7.3 & 7.1 & --- & 6.9 & 6.8 & --- & 6.7 & 6.7 & --- \\
\hline 16 & 7.1 & 7.0 & --- & 7.3 & 7.0 & --- & 7.0 & 6.9 & --- & 6.7 & 6.6 & --- \\
\hline 17 & 7.2 & 7.0 & --- & 7.3 & 7.0 & --- & 7.0 & 6.8 & --- & 6.9 & 6.6 & --- \\
\hline 18 & 7.2 & 7.0 & --- & 7.2 & 7.0 & --- & 6.9 & 6.8 & --- & 6.9 & 6.8 & --- \\
\hline 19 & 7.1 & 7.0 & --- & 7.2 & 7.1 & -- & 6.8 & 6.8 & -- & 6.8 & 6.7 & --- \\
\hline 20 & 7.2 & 7.0 & --- & 7.4 & 7.1 & --- & 6.8 & 6.7 & --- & 6.9 & 6.7 & --- \\
\hline 21 & 7.2 & 7.1 & - & 7.2 & 7.0 & --- & 7.0 & 6.6 & --- & 6.8 & 6.8 & --- \\
\hline 22 & 7.1 & 7.1 & --- & 7.2 & 7.1 & --- & 7.0 & 6.8 & --- & 6.9 & 6.8 & --- \\
\hline 23 & 7.2 & 6.9 & --- & 7.2 & 7.1 & --- & 6.8 & 6.7 & --- & 6.9 & 6.8 & --- \\
\hline 24 & 7.2 & 6.9 & --- & 7.3 & 7.1 & --- & 6.7 & 6.7 & --- & 6.8 & 6.7 & --- \\
\hline 25 & 7.2 & 6.9 & --- & 7.2 & 7.2 & --- & 6.7 & 6.7 & --- & 6.7 & 6.6 & --- \\
\hline 26 & 7.1 & 6.9 & -- & --- & --- & --- & 6.7 & 6.7 & --- & 6.6 & 6.6 & --- \\
\hline 27 & 7.0 & 6.9 & --- & 7.3 & 7.2 & --- & 6.8 & 6.7 & -- & 6.8 & 6.6 & --- \\
\hline 28 & 7.1 & 6.9 & --- & 7.3 & 7.2 & --- & 6.9 & 6.7 & --- & 6.7 & 6.6 & --- \\
\hline 29 & 7.2 & 6.9 & --- & 7.3 & 7.2 & -- & 7.1 & 6.7 & -- & 6.6 & 6.5 & --- \\
\hline 30 & 7.2 & 6.9 & --- & 7.3 & 7.1 & --- & 6.8 & 6.7 & --- & 6.6 & 6.5 & --- \\
\hline 31 & 7.2 & 6.8 & --- & & --- & --- & 6.9 & 6.8 & --- & 6.6 & 6.5 & --- \\
\hline MONTH & 7.2 & 6.6 & --- & 7.4 & 6.8 & --- & 7.3 & 6.6 & --- & 7.1 & 6.5 & --- \\
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{FEBRUARY} & \multicolumn{3}{|c|}{MARCH} & \multicolumn{3}{|c|}{APRIL} & \multicolumn{3}{|c|}{MAY} \\
\hline 1 & 6.9 & 6.6 & --- & --- & --- & --- & 6.9 & 6.7 & --- & --- & --- & 3.4 \\
\hline 2 & 6.9 & 6.7 & --- & --- & --- & --- & 6.9 & 6.7 & --- & --- & --- & 3.4 \\
\hline 3 & 6.7 & 6.7 & --- & --- & --- & --- & 6.9 & 6.7 & --- & --- & --- & 3.4 \\
\hline 4 & 6.7 & 6.7 & - & --- & --- & --- & 6.9 & 6.7 & --- & --- & --- & 3.5 \\
\hline 5 & 6.7 & 6.7 & - & --- & --- & --- & 6.9 & 6.7 & --- & --- & --- & 3.4 \\
\hline 6 & 6.7 & 6.7 & --- & --- & --- & --- & 6.8 & 6.6 & --- & --- & --- & 5.9 \\
\hline 7 & 6.9 & 6.7 & --- & --- & --- & --- & 6.6 & 6.5 & 6.6 & --- & --- & 10.2 \\
\hline 8 & 6.8 & 6.6 & -- & --- & --- & --- & 6.7 & 6.5 & 6.6 & --- & --- & 10.3 \\
\hline 9 & 6.6 & 6.6 & --- & --- & --- & --- & 6.9 & 6.5 & 6.7 & --- & --- & 10.2 \\
\hline 10 & 6.6 & 6.6 & --- & --- & --- & --- & 6.6 & 6.4 & 6.5 & --- & --- & 10.2 \\
\hline 11 & 6.6 & 6.6 & --- & --- & --- & --- & 6.6 & 6.4 & 6.5 & --- & - & 10.3 \\
\hline 12 & 6.7 & 6.6 & --- & --- & --- & --- & 6.4 & 6.4 & 6.4 & --- & --- & 10.3 \\
\hline 13 & 6.6 & 6.6 & --- & --- & --- & --- & 6.4 & 6.3 & 6.4 & --- & --- & 10.1 \\
\hline 14 & 6.7 & 6.6 & --- & --- & --- & --- & 6.4 & 6.3 & 6.3 & --- & --- & 7.1 \\
\hline 15 & 7.0 & 6.6 & --- & --- & --- & --- & 6.7 & 6.4 & 6.5 & --- & --- & 7.1 \\
\hline 16 & 7.0 & 6.7 & --- & --- & --- & --- & 6.6 & 6.4 & 6.5 & 7.1 & 6.9 & 7.1 \\
\hline 17 & 7.0 & 6.8 & - & --- & --- & --- & 6.5 & 6.4 & 6.4 & 7.1 & 6.8 & 7.1 \\
\hline 18 & 7.0 & 6.7 & -- & --- & --- & --- & 6.4 & 6.3 & 6.3 & 7.1 & 6.8 & 7.0 \\
\hline 19 & 6.8 & 6.7 & -- & --- & --- & --- & 6.6 & 6.3 & 6.4 & 7.1 & 6.9 & \\
\hline 20 & 6.8 & 6.7 & --- & --- & --- & -- & 6.7 & 6.3 & 6.5 & 7.1 & 6.9 & 7.0 \\
\hline 21 & 6.8 & 6.7 & --- & --- & --- & --- & 6.8 & 6.5 & 6.6 & 7.1 & 6.8 & 7.0 \\
\hline 22 & 6.7 & 6.7 & --- & --- & --- & --- & 6.7 & 6.5 & 6.6 & 6.9 & 6.8 & 6.9 \\
\hline 23 & 6.7 & 6.6 & --- & --- & - & --- & 6.8 & 6.6 & 6.6 & 6.9 & 6.8 & 6.9 \\
\hline 24 & 6.7 & 6.7 & --- & 6.8 & 6.7 & --- & 6.6 & 6.6 & 6.6 & 6.9 & 6.8 & 6.9 \\
\hline 25 & 6.8 & 6.7 & --- & 6.8 & 6.7 & --- & 6.8 & 6.6 & 6.7 & 6.9 & 6.9 & 6.9 \\
\hline 26 & 6.9 & 6.7 & --- & 6.7 & 6.7 & --- & 6.6 & 6.6 & 6.6 & 6.9 & 6.8 & 6.9 \\
\hline 27 & 6.9 & 6.7 & --- & 6.8 & 6.7 & --- & 6.9 & 6.6 & 6.7 & 6.9 & 6.8 & 6.9 \\
\hline 28 & --- & --- & --- & 6.9 & 6.7 & --- & 6.9 & 6.6 & 6.7 & 6.9 & 6.8 & 6.9 \\
\hline 29 & --- & -- & --- & 6.9 & 6.7 & --- & --- & --- & --- & 6.9 & 6.8 & --- \\
\hline 30 & --- & --- & --- & 6.9 & 6.7 & --- & --- & --- & 3.4 & 6.9 & 6.8 & 6.8 \\
\hline 31 & --- & --- & --- & 6.9 & 6.7 & --- & --- & --- & - & 6.9 & 6.8 & 6.8 \\
\hline MONTH & 7.0 & 6.6 & --- & 6.9 & 6.7 & --- & 6.9 & 6.3 & 6.4 & 7.1 & 6.8 & 7.1 \\
\hline
\end{tabular}

PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & June & & & JULY & & & GUST & & & TEMB & \\
\hline 1 & 6.9 & 6.8 & 6.8 & 7.1 & 6.8 & 6.9 & 7.0 & 6.5 & 6.8 & 6.7 & 6.1 & 6.5 \\
\hline 2 & 6.9 & 6.8 & 6.8 & 7.2 & 6.8 & 7.1 & 7.0 & 6.5 & 6.8 & 6.8 & 6.1 & 6.5 \\
\hline 3 & 6.9 & 6.8 & 6.8 & 7.2 & 6.7 & 7.0 & 6.9 & 6.7 & --- & 6.8 & 6.3 & --- \\
\hline 4 & 6.9 & 6.8 & 6.8 & 7.1 & 6.6 & 6.9 & 6.9 & 6.5 & -- & 6.9 & 6.4 & 6.7 \\
\hline 5 & 6.9 & 6.8 & 6.9 & 7.1 & 6.6 & 6.9 & 6.9 & 6.4 & 6.7 & 6.8 & 6.5 & 6.7 \\
\hline 6 & 6.9 & 6.8 & 6.9 & 7.0 & 6.7 & 6.9 & 6.8 & 6.4 & 6.7 & 6.8 & 6.8 & 6.8 \\
\hline 7 & 7.0 & 6.8 & 6.9 & 7.1 & 6.7 & --- & 6.8 & 6.4 & 6.7 & 6.8 & 6.4 & 6.7 \\
\hline 8 & 7.0 & 6.9 & 6.9 & 7.2 & 6.8 & -- & 6.8 & 6.5 & --- & 6.8 & 6.2 & 6.7 \\
\hline 9 & 7.0 & 6.9 & 6.9 & 7.1 & 6.8 & 7.0 & 6.8 & 6.4 & 6.7 & 6.9 & 6.7 & 6.8 \\
\hline 10 & 7.0 & 6.9 & 6.9 & 7.1 & 6.7 & 6.9 & 6.8 & 6.4 & 6.7 & 6.9 & 6.3 & 6.7 \\
\hline 11 & 7.0 & 6.9 & 6.9 & 7.1 & 6.6 & 6.9 & 6.7 & 6.3 & 6.5 & 6.8 & 6.3 & 6.7 \\
\hline 12 & 7.0 & 6.9 & 6.9 & 7.1 & 6.6 & 6.9 & 6.7 & 6.3 & 6.5 & 6.8 & 6.4 & 6.7 \\
\hline 13 & 7.0 & 6.9 & 6.9 & 7.1 & 6.9 & 7.1 & 6.7 & 6.4 & 6.6 & 6.9 & 6.4 & 6.8 \\
\hline 14 & 6.9 & 6.9 & 6.9 & 7.1 & 6.6 & 6.9 & 6.7 & 6.3 & 6.6 & 6.9 & 6.5 & 6.8 \\
\hline 15 & 7.0 & 6.9 & 6.9 & 7.1 & 6.8 & 7.0 & 6.7 & 6.5 & 6.7 & 6.9 & 6.5 & 6.8 \\
\hline 16 & 6.9 & 6.9 & 6.9 & 7.1 & 6.7 & 7.0 & 6.7 & 6.3 & 6.6 & 6.9 & 6.8 & 6.8 \\
\hline 17 & 6.9 & 6.8 & 6.9 & 7.1 & 6.8 & 7.0 & 6.7 & 6.3 & 6.6 & 6.9 & 6.3 & 6.8 \\
\hline 18 & 6.9 & 6.8 & 6.9 & 7.0 & 6.7 & 6.9 & 6.7 & 6.4 & 6.7 & 7.1 & 6.5 & 6.9 \\
\hline 19 & 6.9 & 6.8 & 6.9 & 7.0 & 6.6 & 6.9 & 6.7 & 6.3 & 6.7 & 7.0 & 6.6 & 6.9 \\
\hline 20 & 6.9 & 6.8 & 6.9 & 6.9 & 6.4 & 6.8 & 6.7 & 6.3 & --- & 7.0 & 6.5 & 6.8 \\
\hline 21 & 6.9 & 6.8 & 6.9 & 6.8 & 6.4 & 6.7 & 6.7 & 6.3 & --- & 7.0 & 6.5 & --- \\
\hline 22 & 6.9 & 6.8 & 6.9 & 6.8 & 6.6 & 6.8 & 6.7 & 6.2 & --- & 7.0 & 6.9 & --- \\
\hline 23 & 7.0 & 6.8 & 6.9 & 6.9 & 6.5 & 6.7 & 6.7 & 6.3 & 6.6 & 7.1 & 6.4 & 6.9 \\
\hline 24 & 7.2 & 6.6 & 6.9 & 6.9 & 6.4 & 6.7 & 6.7 & 6.2 & 6.5 & 7.1 & 6.5 & 6.9 \\
\hline 25 & 7.2 & 6.6 & 6.9 & 6.8 & 6.4 & 6.7 & 6.7 & 6.3 & --- & 7.0 & 6.4 & 6.8 \\
\hline 26 & 7.1 & 6.8 & 7.1 & 6.9 & 6.4 & 6.7 & 6.7 & 6.3 & 6.6 & 7.1 & 6.3 & 6.8 \\
\hline 27 & 7.1 & 6.6 & 6.9 & 6.9 & 6.6 & 6.9 & 6.7 & 6.2 & 6.5 & 7.1 & 6.6 & 7.0 \\
\hline 28 & 7.1 & 6.6 & --- & 6.9 & 6.5 & 6.7 & 6.7 & 6.2 & 6.5 & 7.1 & 6.5 & 6.8 \\
\hline 29 & 7.1 & 6.6 & 6.9 & 6.9 & 6.7 & 6.8 & 6.7 & 6.2 & 6.5 & 6.9 & 6.5 & 6.6 \\
\hline 30 & 7.1 & 6.7 & 7.0 & 6.9 & 6.4 & 6.8 & 6.7 & 6.6 & --- & 7.0 & 6.7 & 6.9 \\
\hline 31 & --- & --- & --- & 6.9 & 6.4 & 6.8 & 6.7 & 6.1 & 6.5 & --- & --- & --- \\
\hline MONTH & 7.2 & 6.6 & 6.9 & 7.2 & 6.4 & 6.9 & 7.0 & 6.1 & 6.6 & 7.1 & 6.1 & 6.8 \\
\hline
\end{tabular}

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & OCTOBER & & & VEMBER & & & CEMBER & & & ANUAR & \\
\hline 1 & 24.5 & 22.1 & 23.5 & 19.0 & 17.0 & 17.6 & 13.1 & 11.0 & 12.4 & 6.4 & 5.2 & 5.7 \\
\hline 2 & 25.1 & 21.2 & 22.7 & 18.2 & 17.0 & 17.6 & --- & - & --- & 6.5 & 5.6 & 6.0 \\
\hline 3 & 22.9 & 21.5 & 22.2 & 18.6 & 17.6 & 18.0 & 12.9 & 11.3 & 12.2 & 6.2 & 4.8 & 5.5 \\
\hline 4 & 25.3 & 21.9 & 23.2 & 17.6 & 16.8 & 17.1 & 13.9 & 11.0 & 12.0 & 4.8 & 3.8 & 4.2 \\
\hline 5 & 25.1 & 22.3 & 23.4 & 16.8 & 15.9 & 16.4 & 12.3 & 11.5 & 11.9 & 3.8 & 3.6 & 3.7 \\
\hline 6 & 25.1 & 22.1 & 23.4 & 16.1 & 14.9 & 15.6 & 13.9 & 11.9 & 12.7 & 3.6 & 2.8 & 3.0 \\
\hline 7 & 24.7 & 22.3 & 23.4 & 16.1 & 14.7 & 15.1 & 13.5 & 12.5 & 13.0 & 3.4 & 2.8 & 3.1 \\
\hline 8 & 22.9 & 21.4 & 22.2 & 14.7 & 14.5 & 14.5 & 12.8 & 11.8 & 12.5 & 3.9 & 3.2 & 3.6 \\
\hline 9 & 22.5 & 20.8 & 21.5 & 15.1 & 14.3 & 14.8 & 12.6 & 10.2 & 11.4 & 4.3 & 3.5 & 3.9 \\
\hline 10 & 23.3 & 20.4 & 21.4 & 15.9 & 14.9 & 15.2 & 11.5 & 10.0 & 10.8 & 4.5 & 3.4 & 3.8 \\
\hline 11 & 23.5 & 20.2 & 21.4 & 15.5 & 14.3 & 14.9 & 11.6 & 11.1 & 11.3 & 4.2 & 3.4 & 3.8 \\
\hline 12 & 23.3 & 20.2 & 21.3 & 15.3 & 13.9 & 14.5 & 11.4 & 11.0 & 11.1 & 4.6 & 4.2 & 4.4 \\
\hline 13 & 22.7 & 20.2 & 21.1 & 14.9 & 14.1 & 14.5 & 11.4 & 10.9 & 11.1 & 4.8 & 4.4 & 4.6 \\
\hline 14 & 22.3 & 19.4 & 20.5 & 14.7 & 14.5 & 14.6 & 10.9 & 9.9 & 10.3 & 5.6 & 4.8 & 5.2 \\
\hline 15 & 22.5 & 19.2 & 20.3 & 15.3 & 13.9 & 14.7 & 10.0 & 9.6 & 9.8 & 5.7 & 5.1 & 5.3 \\
\hline 16 & 22.9 & 19.2 & 20.4 & 15.5 & 13.7 & 14.5 & 10.3 & 9.6 & 9.9 & 6.1 & 5.3 & 5.6 \\
\hline 17 & 22.7 & 19.2 & 20.4 & 15.3 & 13.9 & 14.7 & 9.9 & 8.9 & 9.4 & 6.1 & 5.5 & 5.7 \\
\hline 18 & 22.1 & 19.2 & 20.5 & 15.1 & 13.5 & 14.2 & 10.0 & 8.4 & 9.1 & 6.6 & 6.1 & 6.3 \\
\hline 19 & 20.8 & 20.2 & 20.5 & 14.9 & 14.1 & 14.4 & 9.7 & 8.8 & 9.4 & 6.9 & 5.8 & 6.4 \\
\hline 20 & 21.0 & 19.4 & 20.1 & 14.5 & 13.5 & 14.2 & 10.5 & 9.7 & 10.0 & 7.3 & 6.5 & 6.9 \\
\hline 21 & 20.4 & 19.2 & 19.6 & 14.1 & 12.9 & 13.4 & 10.9 & 10.0 & 10.3 & 7.1 & 6.5 & 6.8 \\
\hline 22 & 19.6 & 18.4 & 19.0 & 13.9 & 12.7 & 13.2 & 11.3 & 8.7 & 9.8 & 8.3 & 6.9 & 7.4 \\
\hline 23 & 19.4 & 18.0 & 18.5 & 13.1 & 12.5 & 12.8 & 8.7 & 7.9 & 8.2 & 8.4 & 6.9 & 7.7 \\
\hline 24 & 19.2 & 17.6 & 18.2 & 13.7 & 12.1 & 12.9 & 7.9 & 7.3 & 7.7 & 8.2 & 7.4 & 7.8 \\
\hline 25 & 19.0 & 17.4 & 18.1 & -- & --- & -- & 7.3 & 6.7 & 7.0 & 8.8 & 7.2 & 8.3 \\
\hline 26 & 18.6 & 16.6 & 17.7 & --- & --- & --- & 7.3 & 6.7 & 7.0 & 8.8 & 7.2 & 8.2 \\
\hline 27 & --- & --- & --- & 12.9 & 11.7 & 12.5 & 6.9 & 6.4 & 6.8 & 9.4 & 8.0 & 8.7 \\
\hline 28 & 18.4 & 16.1 & 17.3 & 12.9 & 11.1 & 12.0 & --- & --- & & 9.7 & 8.7 & 9.1 \\
\hline 29 & 18.8 & 17.0 & 17.8 & 12.9 & 11.0 & 11.9 & --- & --- & --- & 9.1 & 8.5 & 8.6 \\
\hline 30 & 18.8 & 16.8 & 17.7 & 12.9 & 10.8 & 11.9 & 6.9 & 5.8 & 6.2 & 9.1 & 8.5 & 8.7 \\
\hline 31 & 19.0 & 17.0 & 17.7 & --- & --- & --- & 6.5 & 5.6 & 5.9 & 8.5 & 8.3 & 8.4 \\
\hline MONTH & 25.3 & 16.1 & 20.5 & 19.0 & 10.8 & 14.6 & 13.9 & 5.6 & 10.0 & 9.7 & 2.8 & 6.0 \\
\hline
\end{tabular}

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{FEBRUARY} & \multicolumn{3}{|c|}{MARCH} & \multicolumn{3}{|c|}{APRIL} & \multicolumn{3}{|c|}{MAY} \\
\hline 1 & 9.2 & 8.5 & 8.9 & --- & --- & --- & 10.8 & 9.6 & 9.9 & --- & --- & --- \\
\hline 2 & 9.6 & 9.0 & 9.3 & --- & --- & --- & 11.3 & 9.6 & 10.2 & --- & --- & --- \\
\hline 3 & 9.6 & 9.0 & 9.3 & --- & --- & --- & 11.5 & 9.6 & 10.4 & --- & --- & --- \\
\hline 4 & 10.0 & 9.4 & 9.6 & --- & --- & --- & 11.9 & 10.0 & 10.7 & --- & --- & --- \\
\hline 5 & 9.6 & 8.8 & 9.2 & --- & --- & --- & 12.5 & 10.2 & 11.0 & --- & --- & --- \\
\hline 6 & 9.7 & 8.7 & 9.3 & --- & --- & --- & 12.3 & 10.6 & 11.2 & --- & --- & \\
\hline 7 & 10.3 & 9.3 & 9.7 & --- & --- & --- & 12.5 & 10.4 & 11.2 & 15.9 & 15.3 & 15.6 \\
\hline 8 & 9.9 & 9.0 & 9.5 & --- & --- & --- & 12.3 & 10.4 & 11.0 & 16.7 & 15.3 & 15.8 \\
\hline 9 & 9.6 & 8.8 & 9.1 & & --- & --- & 15.5 & 11.0 & 12.5 & 16.3 & 15.7 & 15.9 \\
\hline 10 & 9.9 & 9.1 & 9.4 & --- & --- & --- & 14.7 & 10.8 & 12.4 & 16.7 & 15.8 & 16.2 \\
\hline 11 & 10.1 & 9.1 & 9.5 & --- & --- & --- & 14.9 & 11.3 & 12.7 & 17.2 & 16.2 & 16.6 \\
\hline 12 & 9.9 & 8.8 & 9.5 & --- & --- & --- & 11.5 & 10.6 & 11.1 & 18.2 & 16.0 & 16.7 \\
\hline 13 & 9.4 & 8.4 & 8.9 & --- & --- & --- & 13.9 & 10.2 & 11.8 & 17.9 & 15.9 & 16.4 \\
\hline 14 & 9.4 & 8.4 & 8.8 & --- & --- & --- & 12.3 & 10.4 & 11.3 & 17.5 & 15.9 & 16.5 \\
\hline 15 & 9.5 & 8.0 & 8.7 & --- & --- & --- & 12.9 & 11.1 & 11.9 & 18.1 & 16.0 & 16.7 \\
\hline 16 & 10.5 & 8.1 & 9.2 & --- & --- & --- & 13.5 & 10.6 & 11.9 & 18.5 & 16.1 & 16.9 \\
\hline 17 & 10.9 & 9.9 & 10.4 & --- & --- & --- & 12.5 & 10.8 & 11.5 & 18.6 & 16.4 & 17.1 \\
\hline 18 & 10.2 & 9.0 & 9.5 & --- & --- & --- & 12.9 & 11.1 & 11.8 & 18.6 & 16.6 & 17.2 \\
\hline 19 & 9.2 & 8.4 & 8.8 & --- & --- & --- & 14.3 & 11.0 & 12.4 & 18.8 & 16.6 & 17.4 \\
\hline 20 & 9.2 & 8.2 & 8.5 & --- & --- & --- & 14.7 & 12.3 & 13.3 & 19.1 & 16.9 & 17.6 \\
\hline 21 & 8.5 & 7.9 & 8.3 & --- & --- & --- & 15.3 & 12.9 & 13.8 & 19.6 & 16.9 & 17.9 \\
\hline 22 & 8.0 & 7.5 & 7.8 & --- & --- & --- & 15.7 & 13.1 & 14.2 & 19.4 & 16.6 & 17.6 \\
\hline 23 & 7.8 & 7.4 & 7.6 & --- & --- & --- & 16.3 & 13.7 & 14.9 & 19.6 & 16.7 & 17.7 \\
\hline 24 & 7.6 & 7.2 & 7.4 & 10.2 & 8.4 & 9.2 & 16.3 & 14.5 & 15.2 & 18.9 & 16.7 & 17.5 \\
\hline 25 & 7.4 & 7.0 & 7.2 & 9.8 & 8.0 & 8.7 & 17.2 & 14.7 & 15.7 & 19.4 & 16.7 & 17.7 \\
\hline 26 & 7.6 & 6.8 & 7.1 & 9.2 & 7.6 & 8.4 & 15.9 & 15.1 & 15.4 & 19.8 & 17.0 & 17.9 \\
\hline 27 & 7.4 & 6.8 & 7.1 & 10.0 & 8.8 & 9.3 & 16.6 & 15.3 & 15.8 & 20.0 & 16.7 & 17.9 \\
\hline 28 & - & - & --- & 10.4 & 8.8 & 9.5 & 17.2 & 15.5 & 16.3 & 20.0 & 16.6 & 17.9 \\
\hline 29 & --- & --- & --- & 10.6 & 8.8 & 9.5 & & & --- & 20.2 & 16.9 & 18.2 \\
\hline 30 & --- & --- & --- & 11.1 & 8.6 & 9.6 & --- & --- & --- & 20.0 & 17.1 & 18.3 \\
\hline 31 & --- & --- & --- & 10.4 & 8.8 & 9.5 & --- & --- & --- & 20.0 & 17.2 & 18.2 \\
\hline MONTH & 10.9 & 6.8 & 8.8 & 11.1 & 7.6 & 9.2 & 17.2 & 9.6 & 12.6 & 20.2 & 15.3 & 17.2 \\
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{June} & \multicolumn{3}{|c|}{JULY} & \multicolumn{3}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & 19.2 & 17.6 & 18.2 & 24.1 & 20.6 & 21.9 & 27.0 & 24.0 & 25.1 & 26.7 & 23.3 & 24.6 \\
\hline 2 & 20.1 & 17.6 & 18.6 & 24.9 & 23.4 & 24.0 & 27.0 & 24.0 & 25.1 & 26.9 & 23.3 & 24.6 \\
\hline 3 & 20.3 & 17.9 & 18.7 & 25.7 & 23.0 & 24.0 & 26.7 & 23.8 & 24.8 & 27.0 & 23.6 & 24.8 \\
\hline 4 & 20.8 & 17.9 & 18.9 & 25.0 & 22.9 & 23.7 & 27.0 & 23.7 & 24.9 & 27.1 & 23.4 & 24.8 \\
\hline 5 & 20.9 & 18.0 & 18.9 & 25.6 & 23.1 & 24.0 & 26.5 & 23.7 & 24.8 & 25.5 & 23.7 & 24.5 \\
\hline 6 & 21.1 & 18.2 & 19.2 & 25.5 & 23.1 & 24.0 & 27.1 & 23.6 & 24.8 & 26.1 & 24.5 & 25.1 \\
\hline 7 & 22.5 & 18.4 & 20.1 & 25.4 & 23.2 & 24.0 & 27.3 & 23.7 & 25.0 & 27.4 & 24.4 & 25.4 \\
\hline 8 & 24.6 & 20.6 & 22.2 & 25.9 & 23.3 & 24.3 & 25.1 & 23.6 & 24.3 & 27.1 & 23.9 & 25.1 \\
\hline 9 & 25.0 & 21.2 & 22.5 & 26.5 & 23.3 & 24.6 & 26.5 & 23.9 & 24.9 & 26.2 & 24.2 & 25.0 \\
\hline 10 & 24.8 & 21.4 & 22.4 & 25.7 & 23.7 & 24.3 & 27.1 & 23.6 & 24.9 & 26.7 & 23.4 & 24.8 \\
\hline 11 & 25.0 & 21.2 & 22.7 & 25.0 & 23.6 & 24.1 & 26.9 & 23.8 & 24.9 & 26.8 & 23.3 & 24.7 \\
\hline 12 & 24.8 & 21.2 & 22.6 & 24.1 & 23.3 & 23.7 & 26.5 & 23.9 & 24.8 & 27.2 & 24.1 & 25.4 \\
\hline 13 & 25.2 & 21.5 & 23.0 & 24.9 & 23.4 & 24.0 & 26.9 & 24.0 & 25.2 & 25.4 & 24.1 & 24.8 \\
\hline 14 & 22.9 & 21.6 & 22.2 & 25.8 & 23.5 & 24.2 & 26.7 & 24.1 & 25.1 & 26.3 & 24.3 & 25.2 \\
\hline 15 & 24.8 & 21.5 & 22.8 & 25.7 & 23.6 & 24.4 & 26.3 & 23.6 & 24.7 & 26.2 & 23.6 & 24.7 \\
\hline 16 & 22.7 & 21.5 & 22.0 & 25.9 & 23.7 & 24.5 & 26.7 & 23.7 & 24.9 & 26.0 & 23.5 & 24.5 \\
\hline 17 & 24.1 & 20.9 & 22.2 & 26.3 & 23.8 & 24.6 & 27.0 & 23.6 & 24.9 & 26.3 & 23.0 & 24.4 \\
\hline 18 & 24.7 & 20.5 & 22.0 & 26.0 & 23.9 & 24.5 & 26.9 & 23.6 & 25.0 & 25.9 & 23.0 & 24.2 \\
\hline 19 & 24.0 & 20.3 & 21.8 & 26.4 & 23.0 & 24.6 & 26.0 & 23.6 & 24.5 & 26.0 & 23.1 & 24.3 \\
\hline 20 & 24.7 & 20.5 & 22.1 & 25.3 & 22.8 & 23.7 & 24.9 & 23.6 & 24.2 & 24.9 & 23.3 & 24.0 \\
\hline 21 & 25.0 & 20.8 & 22.4 & 25.7 & 22.9 & 23.9 & 26.2 & 23.6 & 24.6 & 23.9 & 23.6 & 23.8 \\
\hline 22 & 24.6 & 20.9 & 22.5 & 26.0 & 23.0 & 23.9 & 26.6 & 23.2 & 24.4 & 24.8 & 22.2 & 23.2 \\
\hline 23 & 24.9 & 21.1 & 22.7 & 26.5 & 23.2 & 24.2 & 26.1 & 23.4 & 24.4 & 24.7 & 21.6 & 22.9 \\
\hline 24 & 22.5 & 21.5 & 22.0 & 25.3 & 23.0 & 23.7 & 26.0 & 23.9 & 24.7 & 24.4 & 21.4 & 22.7 \\
\hline 25 & 23.9 & 21.7 & 22.4 & 26.4 & 23.0 & 24.2 & 26.2 & 23.8 & 24.7 & 24.6 & 21.5 & 22.8 \\
\hline 26 & 24.5 & 21.9 & 22.9 & 26.4 & 23.2 & 24.4 & 26.1 & 24.0 & 24.8 & 24.7 & 21.4 & 22.8 \\
\hline 27 & 23.8 & 21.9 & 22.6 & 25.8 & 23.3 & 24.1 & 26.1 & 23.8 & 24.7 & 24.6 & 22.3 & 23.1 \\
\hline 28 & 25.3 & 22.1 & 23.0 & 26.8 & 23.4 & 24.5 & 27.0 & 24.1 & 25.1 & 24.8 & 22.5 & 23.3 \\
\hline 29 & 24.4 & 22.0 & 22.8 & 27.0 & 23.6 & 24.8 & 27.0 & 24.1 & 25.2 & 23.5 & 22.2 & 23.0 \\
\hline 30 & 22.2 & 20.5 & 21.3 & 27.2 & 23.8 & 25.1 & 26.0 & 23.4 & 24.6 & 23.5 & 21.1 & 22.2 \\
\hline 31 & & & --- & 27.5 & 23.9 & 25.2 & 26.5 & 22.9 & 24.3 & & & \\
\hline MONTH & 25.3 & 17.6 & 21.6 & 27.5 & 20.6 & 24.2 & 27.3 & 22.9 & 24.8 & 27.4 & 21.1 & 24.2 \\
\hline
\end{tabular}

CUMBERLAND RIVER BASIN
03400800 MARTINS FORK NEAR SMITH, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{OCTOBER} & \multicolumn{3}{|c|}{NOVEMBER} & \multicolumn{3}{|c|}{DECEMBER} & \multicolumn{3}{|c|}{JANUARY} \\
\hline 1 & 6.8 & 6.3 & 6.5 & 9.3 & 8.6 & 8.9 & 10.9 & 9.9 & 10.2 & 13.2 & 12.3 & 12.5 \\
\hline 2 & 6.8 & 6.4 & 6.6 & 9.1 & 8.7 & 8.8 & 10.9 & 10.4 & 10.7 & 12.8 & 11.4 & 12.2 \\
\hline 3 & 6.8 & 6.4 & 6.6 & 9.3 & 8.2 & 8.8 & 12.1 & 11.9 & 12.0 & 12.8 & 11.7 & 12.1 \\
\hline 4 & 6.8 & 6.4 & 6.6 & 9.5 & 7.5 & 8.8 & 12.2 & 11.9 & 12.0 & 12.7 & 11.3 & 12.2 \\
\hline 5 & 6.9 & 6.5 & 6.7 & 9.2 & 8.3 & 9.0 & 12.8 & 11.7 & 12.2 & 13.0 & 11.4 & 12.2 \\
\hline 6 & 7.1 & 6.7 & 6.8 & 9.4 & 7.9 & 9.1 & 12.2 & 11.8 & 12.0 & 12.8 & 12.2 & 12.5 \\
\hline 7 & 7.0 & 6.3 & 6.7 & 9.6 & 8.8 & 9.3 & 13.6 & 11.4 & 12.3 & 13.0 & 12.8 & 12.9 \\
\hline 8 & 6.8 & 6.1 & 6.5 & 9.9 & 9.3 & 9.7 & 13.6 & 10.8 & 12.9 & 12.9 & 12.6 & 12.8 \\
\hline 9 & 6.8 & 6.1 & 6.5 & 9.9 & 9.5 & 9.7 & 13.5 & 10.8 & 12.7 & 12.8 & 12.4 & 12.6 \\
\hline 10 & 6.5 & 6.1 & 6.3 & 9.5 & 9.2 & 9.3 & 12.8 & 9.1 & 11.0 & 13.0 & 12.5 & 12.7 \\
\hline 11 & 6.4 & 6.1 & 6.2 & 9.6 & 9.2 & 9.4 & 9.9 & 9.6 & 9.8 & 12.8 & 12.5 & 12.7 \\
\hline 12 & 6.4 & 6.1 & 6.2 & 9.7 & 9.5 & 9.6 & 9.9 & 9.7 & 9.8 & 12.6 & 12.4 & 12.5 \\
\hline 13 & 6.5 & 6.1 & 6.3 & 9.7 & 9.1 & 9.6 & 10.6 & 9.4 & 9.7 & 12.8 & 12.4 & 12.5 \\
\hline 14 & 6.8 & 6.3 & 6.5 & 9.8 & 9.3 & 9.5 & 9.8 & 9.2 & 9.6 & 12.5 & 11.9 & 12.3 \\
\hline 15 & 6.7 & 6.4 & 6.6 & 9.7 & 9.5 & 9.6 & 10.0 & 9.6 & 9.8 & 12.2 & 11.7 & 12.0 \\
\hline 16 & 7.0 & 6.6 & 6.8 & 9.9 & 9.2 & 9.5 & 9.7 & 9.5 & 9.7 & 12.2 & 11.2 & 12.0 \\
\hline 17 & 7.3 & 6.8 & 7.0 & 10.1 & 9.3 & 9.7 & 9.9 & 9.4 & 9.6 & 12.2 & 11.0 & 11.9 \\
\hline 18 & 7.6 & 7.0 & 7.3 & 10.2 & 9.2 & 9.8 & 12.0 & 9.3 & 10.7 & 12.1 & 10.6 & 11.6 \\
\hline 19 & 7.6 & 6.9 & 7.1 & 10.0 & 9.3 & 9.8 & 12.0 & 10.9 & 11.5 & 12.4 & 11.5 & 12.0 \\
\hline 20 & 8.1 & 7.6 & 7.8 & 10.2 & 9.1 & 9.9 & 11.5 & 11.0 & 11.4 & 12.3 & 11.4 & 11.9 \\
\hline 21 & 8.5 & 8.1 & 8.3 & 10.4 & 9.3 & 10.0 & 12.6 & 11.1 & 11.9 & 12.2 & 11.8 & 12.0 \\
\hline 22 & 8.9 & 8.4 & 8.6 & 10.4 & 10.0 & 10.2 & 12.9 & 12.1 & 12.6 & 12.0 & 11.5 & 11.8 \\
\hline 23 & 9.3 & 8.9 & 9.1 & 10.4 & 9.6 & 10.0 & 13.0 & 11.1 & 11.9 & 12.3 & 10.9 & 11.6 \\
\hline 24 & 9.3 & 9.0 & 9.2 & 9.8 & 9.4 & 9.5 & 12.1 & 11.2 & 11.6 & 12.0 & 11.4 & 11.7 \\
\hline 25 & 9.3 & 8.9 & 9.1 & 9.6 & 9.5 & 9.6 & 12.1 & 11.3 & 11.7 & 12.6 & 10.5 & 11.3 \\
\hline 26 & 9.9 & 8.6 & 9.1 & --- & --- & --- & 12.1 & 11.8 & 11.9 & 11.5 & 10.5 & 11.0 \\
\hline 27 & 8.7 & 8.2 & 8.5 & 10.0 & 9.6 & 9.8 & 12.0 & 11.9 & 11.9 & 11.1 & 9.7 & 10.8 \\
\hline 28 & 9.0 & 8.3 & 8.6 & 9.9 & 9.6 & 9.8 & 12.2 & 11.4 & 11.8 & 11.1 & 10.1 & 10.7 \\
\hline 29 & 9.0 & 8.6 & 8.8 & 9.9 & 9.7 & 9.8 & 13.5 & 11.5 & 12.5 & 11.1 & 10.5 & 10.8 \\
\hline 30 & 9.0 & 8.6 & 8.7 & 10.0 & 9.8 & 9.9 & 13.4 & 11.7 & 12.9 & 11.1 & 9.9 & 10.6 \\
\hline 31 & 9.0 & 8.6 & 8.8 & & --- & --- & 13.2 & 12.5 & 12.7 & 11.0 & 10.5 & 10.7 \\
\hline MONTH & 9.9 & 6.1 & 7.4 & 10.4 & 7.5 & 9.5 & 13.6 & 9.1 & 11.4 & 13.2 & 9.7 & 11.9 \\
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{FEBRUARY} & \multicolumn{3}{|c|}{MARCH} & \multicolumn{3}{|c|}{APRIL} & \multicolumn{3}{|c|}{MAY} \\
\hline 1 & 11.1 & 9.7 & 10.6 & --- & --- & --- & 10.7 & 9.5 & 10.1 & --- & --- & --- \\
\hline 2 & 11.0 & 10.1 & 10.6 & --- & --- & --- & 10.9 & 9.4 & 10.0 & --- & --- & --- \\
\hline 3 & 10.9 & 10.1 & 10.6 & --- & --- & --- & 11.1 & 9.2 & 9.9 & --- & --- & --- \\
\hline 4 & 11.0 & 9.8 & 10.5 & --- & --- & --- & 10.7 & 9.3 & 10.0 & --- & --- & --- \\
\hline 5 & 11.0 & 10.3 & 10.6 & --- & --- & --- & 11.2 & 9.2 & 10.0 & --- & --- & --- \\
\hline 6 & 10.9 & 10.1 & 10.6 & --- & --- & --- & 10.9 & 9.8 & 10.1 & 9.9 & 9.7 & 9.8 \\
\hline 7 & 11.1 & 9.6 & 10.6 & --- & --- & --- & --- & --- & --- & 10.0 & 9.7 & 9.9 \\
\hline 8 & 11.1 & 10.7 & 10.9 & --- & --- & --- & --- & --- & --- & 9.9 & 9.6 & 9.8 \\
\hline 9 & 11.5 & 10.5 & 11.1 & --- & --- & --- & --- & --- & --- & 9.9 & 9.6 & 9.8 \\
\hline 10 & 11.4 & 10.7 & 11.0 & --- & --- & --- & --- & --- & --- & 9.9 & 9.6 & 9.7 \\
\hline 11 & 11.0 & 10.5 & 10.8 & --- & --- & --- & --- & --- & --- & 9.7 & 9.5 & 9.6 \\
\hline 12 & 11.0 & 10.4 & 10.7 & --- & --- & --- & --- & --- & --- & 9.7 & 9.3 & 9.5 \\
\hline 13 & 10.9 & 10.4 & 10.7 & --- & --- & --- & --- & --- & --- & 9.5 & 9.0 & 9.3 \\
\hline 14 & 11.2 & 10.6 & 10.8 & --- & --- & --- & --- & --- & --- & 9.5 & 9.3 & 9.4 \\
\hline 15 & 11.3 & 10.8 & 11.1 & --- & --- & --- & --- & --- & --- & 9.5 & 9.1 & 9.4 \\
\hline 16 & 11.4 & 10.7 & 11.0 & --- & --- & --- & --- & --- & --- & 9.4 & 9.1 & 9.3 \\
\hline 17 & 11.3 & 10.4 & 10.9 & --- & --- & --- & --- & --- & --- & 9.4 & 9.1 & 9.3 \\
\hline 18 & 11.7 & 11.0 & 11.4 & --- & --- & --- & --- & --- & --- & & & \\
\hline 19 & 12.0 & 11.3 & 11.6 & --- & --- & --- & --- & --- & --- & 9.4 & 9.1 & 9.2 \\
\hline 20 & 11.9 & 10.9 & 11.6 & --- & --- & --- & --- & --- & --- & 9.3 & 9.0 & 9.1 \\
\hline 21 & 12.0 & 10.9 & 11.6 & --- & --- & --- & --- & --- & --- & 9.3 & 8.6 & 8.9 \\
\hline 22 & 12.0 & 11.1 & 11.7 & --- & --- & --- & --- & --- & --- & 8.7 & 8.4 & 8.6 \\
\hline 23 & 11.8 & 11.2 & 11.6 & --- & --- & --- & --- & --- & --- & 8.6 & 8.4 & 8.5 \\
\hline 24 & 11.8 & 11.5 & 11.7 & 11.1 & 9.3 & 10.3 & --- & --- & --- & 8.7 & 8.3 & 8.5 \\
\hline 25 & 11.7 & 11.0 & 11.4 & 11.7 & 10.1 & 11.1 & --- & --- & --- & 8.7 & 8.4 & 8.5 \\
\hline 26 & 11.7 & 11.2 & 11.5 & 10.7 & 9.4 & 10.1 & --- & --- & --- & 8.7 & 8.3 & 8.5 \\
\hline 27 & 11.5 & 11.3 & 11.5 & 11.4 & 9.1 & 10.2 & -- & -- & --- & 8.7 & 8.3 & 8.5 \\
\hline 28 & --- & -- & - & 11.4 & 9.1 & 9.9 & --- & --- & - & 8.9 & 8.4 & 8.6 \\
\hline 29 & --- & --- & --- & 11.0 & 9.3 & 10.0 & --- & --- & --- & 8.7 & 8.3 & 8.5 \\
\hline 30 & --- & --- & --- & 11.3 & 9.2 & 10.0 & --- & --- & --- & 8.7 & 8.3 & 8.5 \\
\hline 31 & --- & --- & --- & 11.1 & 9.3 & 10.0 & --- & --- & --- & 8.7 & 8.3 & 8.5 \\
\hline MONTH & 12.0 & 9.6 & 11.1 & 11.7 & 9.1 & 10.2 & 11.2 & 9.1 & 10.2 & 10.0 & 8.3 & 9.1 \\
\hline
\end{tabular}

CUMBERLAND RIVER BASIN
03400800 MARTINS FORK NEAR SMITH, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & \multicolumn{2}{|r|}{JULY} & \multicolumn{4}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & 8.6 & 8.3 & 8.5 & 8.7 & 7.9 & 8.4 & 6.5 & 6.2 & 6.4 & 6.9 & 6.3 & 6.6 \\
\hline 2 & 8.6 & 8.1 & 8.4 & 8.3 & 7.9 & 8.1 & 6.6 & 6.3 & 6.4 & 6.6 & 6.1 & 6.3 \\
\hline 3 & 8.5 & 8.3 & 8.4 & 8.4 & 7.7 & 8.2 & 7.0 & 6.6 & 6.8 & 6.4 & 6.1 & 6.2 \\
\hline 4 & 8.6 & 8.1 & 8.4 & 8.0 & 7.6 & 7.8 & 7.0 & 6.8 & 6.9 & 6.4 & 6.1 & 6.2 \\
\hline 5 & 8.7 & 8.4 & 8.5 & 7.9 & 7.5 & 7.7 & 7.1 & 6.8 & 6.9 & 6.3 & 6.0 & 6.1 \\
\hline 6 & 8.7 & 8.4 & 8.5 & 7.9 & 7.5 & 7.6 & 7.0 & 6.5 & 6.7 & 6.1 & 5.9 & 6.0 \\
\hline 7 & 8.7 & 7.9 & 8.4 & 7.7 & 7.5 & 7.6 & 6.7 & 6.4 & 6.5 & 6.2 & 5.8 & 6.0 \\
\hline 8 & 8.1 & 7.6 & 7.9 & 8.0 & 7.3 & 7.7 & 6.5 & 6.3 & 6.4 & 6.1 & 5.7 & 5.9 \\
\hline 9 & 8.0 & 7.6 & 7.8 & 7.9 & 7.3 & 7.6 & 6.6 & 5.6 & 6.1 & 6.1 & 5.9 & 6.0 \\
\hline 10 & 8.4 & 7.7 & 8.2 & 7.9 & 7.3 & 7.6 & 6.6 & 5.9 & 6.4 & 6.2 & 5.8 & 6.0 \\
\hline 11 & 8.5 & 7.7 & 8.0 & 7.7 & 7.3 & 7.5 & 6.6 & 5.8 & 6.2 & 6.4 & 5.7 & 6.1 \\
\hline 12 & 8.0 & 7.7 & 7.9 & 8.0 & 7.3 & 7.6 & 6.9 & 6.2 & 6.7 & 6.2 & 5.8 & 6.0 \\
\hline 13 & 7.9 & 7.6 & 7.7 & 8.0 & 7.5 & 7.7 & 6.5 & 5.9 & 6.2 & 6.3 & 6.0 & 6.2 \\
\hline 14 & 8.1 & 7.6 & 7.9 & 8.3 & 7.3 & 7.8 & 6.3 & 5.9 & 6.1 & 6.3 & 6.1 & 6.2 \\
\hline 15 & 8.0 & 7.6 & 7.8 & 7.8 & 7.5 & 7.7 & 6.5 & 6.3 & 6.4 & 6.3 & 6.1 & 6.2 \\
\hline 16 & 8.1 & 7.7 & 7.9 & 7.9 & 7.1 & 7.7 & 6.8 & 6.4 & 6.6 & 6.3 & 6.0 & 6.1 \\
\hline 17 & 8.1 & 7.8 & 7.9 & 7.9 & 7.1 & 7.3 & 6.7 & 6.3 & 6.6 & 6.7 & 6.0 & 6.4 \\
\hline 18 & 8.2 & 7.8 & 8.0 & 8.1 & 7.8 & 7.9 & 6.5 & 6.0 & 6.3 & 6.9 & 6.5 & 6.7 \\
\hline 19 & 8.2 & 7.8 & 8.0 & 8.3 & 7.9 & 8.0 & 6.1 & 5.8 & 6.0 & 6.8 & 6.5 & 6.6 \\
\hline 20 & 8.0 & 7.7 & 7.9 & 8.0 & 7.7 & 7.9 & 6.1 & 6.0 & 6.0 & 6.8 & 6.6 & 6.7 \\
\hline 21 & 8.0 & 7.7 & 7.8 & 8.0 & 7.8 & 7.9 & 6.2 & 6.0 & 6.1 & 6.9 & 6.6 & 6.8 \\
\hline 22 & 8.0 & 7.6 & 7.7 & 8.1 & 7.8 & 8.0 & 6.2 & 6.0 & 6.1 & 7.2 & 6.9 & 7.0 \\
\hline 23 & 7.9 & 7.5 & 7.8 & 8.0 & 7.3 & 7.7 & 6.3 & 6.1 & 6.2 & 7.6 & 7.2 & 7.4 \\
\hline 24 & 8.0 & 7.6 & 7.8 & 7.5 & 7.1 & 7.3 & 6.3 & 6.1 & 6.2 & 7.7 & 7.3 & 7.5 \\
\hline 25 & 8.1 & 7.6 & 7.8 & 7.2 & 6.7 & 6.9 & 6.6 & 6.0 & 6.2 & 7.6 & 7.2 & 7.4 \\
\hline 26 & 8.1 & 7.5 & 7.7 & 7.0 & 6.8 & 6.9 & 6.3 & 6.2 & 6.2 & 7.7 & 7.2 & 7.4 \\
\hline 27 & 7.9 & 7.5 & 7.7 & 6.8 & 6.6 & 6.7 & 6.5 & 6.3 & 6.4 & 7.5 & 7.2 & 7.4 \\
\hline 28 & 7.9 & 7.5 & 7.7 & 6.8 & 6.4 & 6.6 & 6.8 & 6.3 & 6.4 & 7.5 & 7.1 & 7.4 \\
\hline 29 & 8.0 & 7.6 & 7.7 & 6.6 & 6.3 & 6.4 & 6.9 & 6.6 & 6.7 & 7.5 & 7.1 & 7.3 \\
\hline 30 & 8.6 & 7.5 & 8.1 & 6.4 & 6.2 & 6.3 & 6.8 & 6.6 & 6.7 & 7.8 & 7.3 & 7.7 \\
\hline 31 & --- & --- & -- & 6.4 & 6.2 & 6.3 & 6.9 & 6.3 & 6.6 & --- & --- & --- \\
\hline MONTH & 8.7 & 7.5 & 8.0 & 8.7 & 6.2 & 7.5 & 7.1 & 5.6 & 6.4 & 7.8 & 5.7 & 6.6 \\
\hline
\end{tabular}


03401000 CUMBERLAND RIVER NEAR HARLAN, KY
LOCATION.--Lat \(36^{\circ} 50^{\prime} 48^{\prime \prime}\), long \(83^{\circ} 21^{\prime} 21^{\prime \prime}\), Harlan County, Hydrologic Unit 05130101 , on right downstream side of bridge on State Highway 840 at Loyall, 1.6 mi upstream from Fourmile Branch, 1.8 mi west of Harlan, 2.3 mi downstream from confluence of Poor and Clover Forks, and at mile 691.9.
DRAINAGE AREA. \(--374 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--March 1940 to current year.
REVISED RECORDS.--WSP 953: 1940 (M). WSP 1173: 1947 (M).
GAGE.--Water-stage recorder. Datum of gage is \(1,139.10 \mathrm{ft}\) above sea level. Prior to Aug. 28 , 1984 , datum of gage 1.00 ft higher. Prior to Nov. 4, 1941, nonrecording gage at same site and datum.

REMARKS.--Records fair. Flow slightly regulated by Martins Fork Dam (station 03400798) beginning January 1979

PEAKS ABOVE BASE.--Peak discharges above base of \(8,200 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 9 & 1300 & 6010 & 8.24
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & e39 & e39 & e49 & 246 & 721 & 2460 & 498 & 688 & 150 & 217 & 84 & 44 \\
\hline 2 & e40 & e39 & e48 & 241 & 749 & 1700 & 482 & 589 & 146 & 157 & 231 & 42 \\
\hline 3 & e37 & e40 & e47 & 1550 & 719 & 3220 & 455 & 514 & 143 & 139 & 120 & 42 \\
\hline 4 & e38 & e41 & e42 & 1180 & 608 & 3210 & 433 & 456 & 137 & 116 & 87 & 41 \\
\hline 5 & e37 & e43 & e40 & 993 & 548 & 2110 & 411 & 458 & 129 & 103 & 74 & 39 \\
\hline 6 & e36 & e57 & e51 & 757 & 505 & 2010 & 388 & 977 & 144 & 95 & 70 & 40 \\
\hline 7 & e35 & e56 & e63 & 488 & 509 & 1860 & 366 & 1100 & 125 & 92 & 65 & 42 \\
\hline 8 & e66 & e53 & e420 & 542 & 508 & 1560 & 349 & 1010 & 113 & 87 & 65 & 39 \\
\hline 9 & e100 & e45 & e1000 & 3740 & 466 & 1520 & 361 & 815 & 114 & 82 & 69 & 37 \\
\hline 10 & e78 & e46 & e450 & 2340 & 443 & 1650 & 322 & 701 & 125 & 131 & 63 & 36 \\
\hline 11 & e55 & e67 & e300 & 1290 & 419 & 1510 & 704 & 621 & 113 & 167 & 60 & 33 \\
\hline 12 & e46 & e90 & e270 & 1140 & 422 & 1310 & 966 & 552 & 102 & 114 & 55 & 32 \\
\hline 13 & e41 & e80 & e1400 & 968 & 408 & 1090 & 717 & 418 & 98 & 101 & 55 & 32 \\
\hline 14 & e37 & e59 & e1300 & 999 & 362 & 1210 & 591 & 431 & 95 & 96 & 52 & 33 \\
\hline 15 & e36 & e50 & e690 & 2760 & 349 & 1850 & 794 & 402 & 95 & 92 & 52 & 30 \\
\hline 16 & e35 & e48 & e640 & 1830 & 346 & 1860 & 990 & 340 & 90 & 87 & 50 & 28 \\
\hline 17 & e34 & e47 & 563 & 1340 & 380 & 1900 & 876 & 309 & 89 & 99 & 48 & 28 \\
\hline 18 & e33 & e46 & 283 & 3380 & 418 & 1710 & 737 & 306 & 84 & 94 & 46 & 30 \\
\hline 19 & e32 & e45 & 221 & 2980 & 447 & 1440 & 638 & 339 & 81 & 108 & 44 & 28 \\
\hline 20 & e33 & e44 & 204 & 1870 & 518 & 1210 & 680 & 277 & 78 & 94 & 109 & 30 \\
\hline 21 & e34 & e47 & 184 & 1420 & 496 & 1080 & 533 & 247 & 78 & 82 & 98 & 32 \\
\hline 22 & e38 & e46 & 214 & 1180 & 466 & 935 & 472 & 225 & 76 & 81 & 67 & 30 \\
\hline 23 & e43 & e45 & 258 & 1910 & 470 & 832 & 430 & 217 & 73 & 76 & 55 & 30 \\
\hline 24 & e42 & e45 & 422 & 3360 & 452 & 746 & 398 & 323 & 77 & 175 & 52 & 31 \\
\hline 25 & e46 & e44 & 373 & 2350 & 444 & 531 & 356 & 266 & 105 & 300 & 179 & 30 \\
\hline 26 & e46 & e47 & 332 & 1640 & 435 & 511 & 386 & 216 & 108 & 131 & 123 & 29 \\
\hline 27 & e45 & e69 & 306 & 1320 & 382 & 578 & 429 & 195 & 117 & 100 & 77 & 29 \\
\hline 28 & e44 & e53 & 299 & 1130 & 2660 & 607 & 753 & 180 & 224 & 131 & 63 & 48 \\
\hline 29 & e39 & e51 & 260 & 930 & - & 578 & 1060 & 170 & 422 & 104 & 59 & 76 \\
\hline 30 & e32 & e50 & 298 & 708 & --- & 486 & 837 & 165 & 231 & 88 & 54 & 109 \\
\hline 31 & e32 & --- & 277 & 644 & -- & 464 & --- & 158 & --- & 80 & 47 & --- \\
\hline TOTAL & 1329 & 1532 & 11304 & 47226 & 15650 & 43738 & 17412 & 13665 & 3762 & 3619 & 2373 & 1150 \\
\hline MEAN & 42.9 & 51.1 & 365 & 1523 & 559 & 1411 & 580 & 441 & 125 & 117 & 76.5 & 38.3 \\
\hline MAX & 100 & 90 & 1400 & 3740 & 2660 & 3220 & 1060 & 1100 & 422 & 300 & 231 & 109 \\
\hline MIN & 32 & 39 & 40 & 241 & 346 & 464 & 322 & 158 & 73 & 76 & 44 & 28 \\
\hline CFSM & . 11 & . 14 & . 97 & 4.07 & 1.49 & 3.77 & 1.55 & 1.18 & . 34 & . 31 & . 20 & . 10 \\
\hline IN. & . 13 & . 15 & 1.12 & 4.70 & 1.56 & 4.35 & 1.73 & 1.36 & . 37 & . 36 & . 24 & . 11 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1940 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
MEAN & 177 & 460 & 903 & 1194 & 1327 & 1469 & 1052 & 749 & 396 & 304 & 126 \\
MAX & 1129 & 2004 & 2704 & 2767 & 3259 & 4148 & 2986 & 2003 & 1789 & 1414 & 1202 \\
(WY) & 1990 & 1978 & 1992 & 1974 & 1994 & 1963 & 1998 & 1984 & 1989 & 1941 & 1942 \\
MIN & 9.00 & 25.8 & 43.6 & 63.5 & 105 & 334 & 211 & 1989 \\
(WY) & 1954 & 1954 & 1966 & 1981 & 1941 & 1988 & 1986 & 1941 & 1948 & 21.4 & 40.0 \\
\hline
\end{tabular}

CUMBERLAND RIVER BASIN
03401000 CUMBERLAND RIVER NEAR HARLAN, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & AR YEAR & \multicolumn{3}{|l|}{FOR 1999 WATER YEAR} & \multicolumn{4}{|l|}{WATER YEARS 1940 - 1999} \\
\hline ANNUAL TOTAL & 273366 & & 162760 & & & & & & \\
\hline ANNUAL MEAN & 749 & & 446 & & & 695 & & & \\
\hline HIGHEST ANNUAL MEAN & & & & & & 1130 & & & 1994 \\
\hline LOWEST ANNUAL MEAN & & & & & & 293 & & & 1941 \\
\hline HIGHEST DAILY MEAN & 16300 & Apr 19 & 3740 & Jan & & 33900 & Apr & 4 & 1977 \\
\hline LOWEST DAILY MEAN & 32 & Oct 19 & 28 & Sep & & 5.0 & Oct & 9 & 1953 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 34 & Oct 15 & 29 & Sep & & 6.7 & Oct & 7 & 1953 \\
\hline INSTANTANEOUS PEAK FLOW & & & 6010 & Jan & 9 & 64500 & Apr & 5 & 1977 \\
\hline INSTANTANEOUS PEAK STAGE & & & 8.24 & Jan & 9 & 30.20 & Apr & 5 & 1977 \\
\hline INSTANTANEOUS LOW FLOW & & & & & & 3.0 & Oct & 9 & 1953 \\
\hline ANNUAL RUNOFF (CFSM) & 2.00 & & 1.19 & & & 1.86 & & & \\
\hline ANNUAL RUNOFF (INCHES) & 27.19 & & 16.19 & & & 25.25 & & & \\
\hline 10 PERCENT EXCEEDS & 1500 & & 1240 & & & 1570 & & & \\
\hline 50 PERCENT EXCEEDS & 400 & & 165 & & & 333 & & & \\
\hline 90 PERCENT EXCEEDS & 45 & & 39 & & & 53 & & & \\
\hline
\end{tabular}
e Estimated


03402000 YELLOW CREEK NEAR MIDDLESBORO, KY
LOCATION.--Lat \(36^{\circ} 40^{\prime} 05^{\prime \prime}\), long \(83^{\circ} 41^{\prime} 19^{\prime \prime}\), Bell County, Hydrologic Unit 05130101 , on left bank 35 ft downstream from bridge on U.S. Highway \(25 \mathrm{E}, 1.2 \mathrm{mi}\) downstream from Browne Branch, 4.6 mi north of Middlesboro, and at mile 11.4 .

DRAINAGE AREA. \(--60.6 \mathrm{mi}^{2}\). See WRD-KY-98-1 for history of changes.
PERIOD OF RECORD.--August 1940 to current year.
REVISED RECORDS.--WSP 953: 1941(M). WSP 973: 1942 (M). WSP 1436: Drainage area. WRD KY 1969: 1965 (M), 1967 (M).
GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 1,097.99 ft above sea level. See WDR KY-90-1 for history of changes prior to Sept. 30, 1973.

REMARKS.--Estimated daily discharges: Aug. 9. Records good except for those estimated, which are poor. Occasional regulation from Fern Lake.

PEAKS ABOVE BASE.--Peak discharges above base of \(3,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 23 & 1500 & \(* 2830\) & 12.21
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 5.7 & e6.8 & 7.9 & 41 & 113 & 230 & 76 & 60 & 23 & 27 & 11 & 6.9 \\
\hline 2 & 5.5 & e6.9 & 7.1 & 42 & 98 & 165 & 64 & 56 & 23 & 26 & 11 & 6.4 \\
\hline 3 & 5.2 & e7.0 & 6.9 & 282 & 94 & 427 & 60 & 52 & 23 & 26 & 8.1 & 5.7 \\
\hline 4 & 5.8 & e7.1 & 6.8 & 111 & 85 & 365 & 57 & 49 & 24 & 20 & 7.6 & 6.0 \\
\hline 5 & 6.4 & e11 & 11 & 72 & 77 & 252 & 54 & 53 & 25 & 16 & 7.2 & 5.8 \\
\hline 6 & 6.2 & e10 & 11 & 57 & 74 & 251 & 53 & 476 & 28 & 15 & 7.5 & 5.7 \\
\hline 7 & 6.0 & e9.8 & 23 & 53 & 78 & 204 & 50 & 319 & 22 & 14 & 5.7 & 6.4 \\
\hline 8 & 33 & e9.0 & 205 & 65 & 70 & 163 & 102 & 568 & 20 & 14 & 7.6 & 6.6 \\
\hline 9 & 7.1 & e7.9 & 84 & 847 & 68 & 206 & 126 & 197 & 19 & 12 & 9.4 & 5.4 \\
\hline 10 & 5.1 & e8.0 & 35 & 289 & 87 & 204 & 91 & 131 & 19 & 18 & 8.0 & 4.2 \\
\hline 11 & 4.7 & 35 & 26 & 151 & 77 & 175 & 148 & 100 & 18 & 34 & 7.1 & 2.8 \\
\hline 12 & 4.5 & 9.2 & 36 & 112 & 89 & 149 & 125 & 81 & 17 & 39 & 6.6 & 4.1 \\
\hline 13 & 4.5 & 6.9 & 475 & 91 & 85 & 136 & 111 & 81 & 18 & 29 & 6.4 & 5.6 \\
\hline 14 & 4.8 & 6.2 & 112 & 204 & 75 & 215 & 97 & 98 & 17 & 21 & 7.1 & 7.1 \\
\hline 15 & 4.6 & 6.6 & 61 & 655 & 73 & 648 & 177 & 73 & 17 & 20 & 7.5 & 4.3 \\
\hline 16 & 4.8 & 7.2 & 44 & 250 & 73 & 385 & 154 & 62 & 15 & 15 & 6.8 & 5.9 \\
\hline 17 & 4.8 & 6.5 & 37 & 157 & 89 & 283 & 126 & 54 & 15 & 15 & 6.3 & 3.7 \\
\hline 18 & 4.8 & 6.3 & 30 & 1130 & 86 & 211 & 109 & 52 & 14 & 17 & 5.9 & 3.9 \\
\hline 19 & 5.5 & 6.2 & 29 & 447 & 86 & 163 & 96 & 57 & 14 & 14 & 5.8 & 5.2 \\
\hline 20 & 6.2 & 6.8 & 28 & 225 & 84 & 138 & 91 & 44 & 14 & 13 & 16 & 5.0 \\
\hline 21 & 5.9 & 8.0 & 25 & 154 & 75 & 127 & 77 & 39 & 14 & 13 & 8.5 & 4.1 \\
\hline 22 & 6.4 & 8.0 & 33 & 120 & 69 & 106 & 67 & 37 & 13 & 14 & 6.6 & 4.3 \\
\hline 23 & 6.7 & 7.8 & 39 & 1310 & 66 & 93 & 61 & 34 & 13 & 11 & 6.0 & 6.9 \\
\hline 24 & 6.5 & 7.7 & 71 & 868 & 64 & 88 & 59 & 63 & 15 & 35 & 7.9 & 5.8 \\
\hline 25 & 7.1 & 7.5 & 47 & 338 & 61 & 79 & 53 & 40 & 54 & 36 & 54 & 8.4 \\
\hline 26 & 7.1 & 14 & 41 & 205 & 57 & 77 & 57 & 33 & 28 & 15 & 11 & 7.0 \\
\hline 27 & e7.0 & 10 & 40 & 153 & 57 & 73 & 58 & 30 & 26 & 12 & 7.3 & 7.2 \\
\hline 28 & e7.0 & 8.5 & 42 & 122 & 301 & 64 & 57 & 27 & 250 & 13 & 6.7 & 7.4 \\
\hline 29 & e6. 5 & 7.8 & 47 & 102 & --- & 60 & 77 & 26 & 105 & 11 & 7.5 & 33 \\
\hline 30 & e5.5 & 8.0 & 56 & 86 & --- & 55 & 65 & 25 & 48 & 9.9 & 7.6 & 40 \\
\hline 31 & e7.0 & --- & 47 & 80 & --- & 55 & --- & 24 & --- & 9.3 & 8.4 & --- \\
\hline TOTAL & 207.9 & 267.7 & 1763.7 & 8819 & 2411 & 5847 & 2598 & 3041 & 951 & 584.2 & 290.1 & 230.8 \\
\hline MEAN & 6.71 & 8.92 & 56.9 & 284 & 86.1 & 189 & 86.6 & 98.1 & 31.7 & 18.8 & 9.36 & 7.69 \\
\hline MAX & 33 & 35 & 475 & 1310 & 301 & 648 & 177 & 568 & 250 & 39 & 54 & 40 \\
\hline MIN & 4.5 & 6.2 & 6.8 & 41 & 57 & 55 & 50 & 24 & 13 & 9.3 & 5.7 & 2.8 \\
\hline CFSM & . 11 & . 15 & . 94 & 4.69 & 1.42 & 3.11 & 1.43 & 1.62 & . 52 & . 31 & . 15 & . 13 \\
\hline IN. & . 13 & . 16 & 1.08 & 5.41 & 1.48 & 3.59 & 1.59 & 1.87 & . 58 & . 36 & . 18 & . 14 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1941 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 24.9 & 78.6 & 165 & 213 & 232 & 257 & 179 & 120 & 67.2 & 51.7 & 35.6 & 19.6 \\
MAX & 155 & 416 & 609 & 551 & 677 & 610 & 569 & 539 & 298 & 345 & 197 & 109 \\
(WY) & 1978 & 1974 & 1991 & 1974 & 1991 & 1975 & 1998 & 1984 & 1989 & 1967 & 1942 & 1982 \\
MIN & 3.05 & 5.35 & 7.34 & 14.4 & 14.9 & 47.6 & 34.9 & 17.2 & 13.8 & 4.26 & 6.00 & 3.02 \\
(WY) & 1954 & 1941 & 1966 & 1981 & 1941 & 1988 & 1986 & 1941 & 1988 & 1944 & 1951 & 1954
\end{tabular}

03402000 YELLOW CREEK NEAR MIDDLESBORO, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & AR YEAR & FOR 1999 WAT & R YEAR & WATER YEARS & \multicolumn{2}{|l|}{1941 - 1999} \\
\hline ANNUAL TOTAL & 46362.6 & & 27011.4 & & & & \\
\hline ANNUAL MEAN & 127 & & 74.0 & & 120 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 219 & & 1991 \\
\hline LOWEST ANNUAL MEAN & & & & & 49.5 & & 1941 \\
\hline HIGHEST DAILY MEAN & 5660 & Apr 19 & 1310 & Jan 23 & 7000 & Apr 4 & 1977 \\
\hline LOWEST DAILY MEAN & 4.5 & Oct 12 & 2.8 & Sep 11 & 1.2 & Oct 7 & 1952 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 4.7 & Oct 11 & 4.6 & Sep 15 & 1.6 & Sep 17 & 1955 \\
\hline INSTANTANEOUS PEAK FLOW & & & 2830 & Jan 23 & 11700 & Apr 4 & 1977 \\
\hline INSTANTANEOUS PEAK STAGE & & & 12.21 & Jan 23 & 23.35 & Apr 4 & 1977 \\
\hline INSTANTANEOUS LOW FLOW & & & & & . 00 & Sep 26 & 1952 \\
\hline ANNUAL RUNOFF (CFSM) & 2.10 & & 1.22 & & 1.98 & & \\
\hline ANNUAL RUNOFF (INCHES) & 28.46 & & 16.58 & & 26.86 & & \\
\hline 10 PERCENT EXCEEDS & 287 & & 169 & & 255 & & \\
\hline 50 PERCENT EXCEEDS & 49 & & 28 & & 46 & & \\
\hline 90 PERCENT EXCEEDS & 6.2 & & 6.0 & & 7.6 & & \\
\hline
\end{tabular}


03402900 CUMBERLAND RIVER AT PINE ST BRIDGE AT PINEVILLE, KY
LOCATION.--Lat \(36^{\circ} 45^{\prime} 47^{\prime \prime}\), long \(83^{\circ} 41^{\prime} 31^{\prime \prime}\), Bell County, Hydrologic Unit 05130101, on pier near right bank on Pine St. bridge at Pineville, 0.2 mi downstream from Straight Creek, and at mile 654.4.

DRAINAGE AREA. \(--770 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1991 to current year.
GAGE.--Water-stage recorder. Datum of gage is 970.00 ft above sea level, Sandy Hook datum.
REMARKS.--Records good except for those estimated, which are fair. Flow slightly regulated by Martins Fork Dam (station 03400798) beginning January 1979.
PEAKS ABOVE BASE.--Peak discharges above base of \(15,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 24 & 0700 & 11200 & 19.84
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 76 & 79 & 100 & 622 & 1200 & 4790 & 833 & 1140 & 264 & 430 & 143 & 74 \\
\hline 2 & 79 & 80 & 99 & 577 & 1220 & 3140 & 839 & 1030 & 257 & 369 & 261 & 69 \\
\hline 3 & 75 & 81 & 95 & 2200 & 1190 & 4800 & 797 & 906 & 248 & 306 & 294 & 67 \\
\hline 4 & 77 & 84 & 85 & 2370 & 1090 & 7110 & 769 & 796 & 236 & 250 & 188 & 64 \\
\hline 5 & 76 & 88 & 82 & e1400 & 983 & 4340 & 742 & 776 & 220 & 212 & 133 & 61 \\
\hline 6 & 73 & 117 & 103 & e1100 & 918 & 3870 & 716 & 2990 & 218 & 188 & 113 & 61 \\
\hline 7 & 71 & 115 & 129 & 991 & 872 & 3580 & 679 & 2920 & 221 & 170 & 102 & 60 \\
\hline 8 & 134 & 108 & 855 & 889 & 879 & 2890 & 698 & 3030 & 201 & 151 & 92 & 58 \\
\hline 9 & 205 & 92 & 2130 & 6320 & 817 & 2780 & 875 & 1990 & 185 & 139 & 100 & 58 \\
\hline 10 & 160 & 94 & 918 & 5910 & 823 & 2950 & 810 & 1510 & 185 & 145 & 101 & 57 \\
\hline 11 & 113 & 137 & 596 & 2620 & 777 & 2760 & 976 & 1240 & 204 & 346 & 96 & 56 \\
\hline 12 & 93 & 186 & 555 & 1950 & 804 & 2390 & 1760 & 1030 & 177 & 309 & 92 & 54 \\
\hline 13 & 84 & 164 & 2920 & 1610 & 865 & 2000 & 1470 & 921 & 165 & 255 & 88 & 51 \\
\hline 14 & 76 & 120 & 2600 & 1690 & 791 & 2110 & 1230 & 863 & 160 & 200 & 79 & 50 \\
\hline 15 & 73 & 101 & 1410 & 5810 & 769 & 4270 & 1490 & 837 & 169 & 179 & 75 & 51 \\
\hline 16 & 71 & 97 & 1020 & 4020 & 767 & 4450 & 2030 & 727 & 151 & 164 & 74 & 51 \\
\hline 17 & 70 & 97 & 845 & 2620 & 807 & 4060 & 1820 & 644 & 137 & 143 & 74 & 50 \\
\hline 18 & 67 & 94 & 700 & 6680 & 872 & 3420 & 1520 & 602 & 135 & 148 & 72 & 49 \\
\hline 19 & 65 & 91 & 478 & 7190 & 894 & 2730 & 1290 & 686 & 132 & 140 & 66 & 49 \\
\hline 20 & 68 & 90 & 425 & 3800 & 959 & 2250 & 1190 & 611 & 127 & 149 & 73 & 48 \\
\hline 21 & 70 & 94 & 382 & 2650 & 923 & 1950 & 1110 & 507 & 134 & 159 & 111 & 49 \\
\hline 22 & 78 & 94 & 376 & 2100 & 868 & 1680 & 968 & 462 & 130 & 161 & 135 & 49 \\
\hline 23 & 87 & 93 & 470 & 6110 & 852 & 1440 & 863 & 424 & 127 & 155 & 97 & 51 \\
\hline 24 & 86 & 92 & 706 & 10000 & 843 & 1320 & 785 & 590 & 124 & 168 & 83 & 51 \\
\hline 25 & 94 & 91 & 738 & 5590 & 789 & 1100 & 721 & 605 & 177 & 363 & 190 & 51 \\
\hline 26 & 94 & 96 & 654 & 3350 & 782 & 934 & 724 & 469 & 231 & 341 & 295 & 52 \\
\hline 27 & 92 & 140 & 619 & 2520 & 739 & 975 & 827 & 396 & 203 & 236 & 182 & 51 \\
\hline 28 & 91 & 109 & 608 & 2050 & 3130 & 962 & 874 & 345 & 725 & 189 & 122 & 50 \\
\hline 29 & 80 & 105 & 650 & 1700 & --- & 930 & 1460 & 317 & 1130 & 185 & 98 & 65 \\
\hline 30 & 65 & 102 & 678 & 1340 & --- & 873 & 1360 & 294 & 755 & 168 & 86 & 185 \\
\hline 31 & 66 & --- & 683 & 1160 & -- & 813 & --- & 275 & --- & 139 & 81 & --- \\
\hline TOTAL & 2709 & 3131 & 22709 & 98939 & 27223 & 83667 & 32226 & 29933 & 7528 & 6657 & 3796 & 1792 \\
\hline MEAN & 87.4 & 104 & 733 & 3192 & 972 & 2699 & 1074 & 966 & 251 & 215 & 122 & 59.7 \\
\hline MAX & 205 & 186 & 2920 & 10000 & 3130 & 7110 & 2030 & 3030 & 1130 & 430 & 295 & 185 \\
\hline MIN & 65 & 79 & 82 & 577 & 739 & 813 & 679 & 275 & 124 & 139 & 66 & 48 \\
\hline CFSM & . 11 & . 14 & . 95 & 4.14 & 1.26 & 3.51 & 1.40 & 1.25 & . 33 & . 28 & . 16 & . 08 \\
\hline IN. & . 13 & . 15 & 1.10 & 4.78 & 1.32 & 4.04 & 1.56 & 1.45 & . 36 & . 32 & . 18 & . 09 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
\\
MEAN & 237 & 824 & 2090 & 2585 & 2526 & 3510 & 2365 & 1751 & 914 & 369 & 407 \\
MAX & 670 & 3009 & 5204 & 4201 & 6720 & 5367 & 5977 & 3091 & 1640 & 684 & 923 \\
(WY) & 1997 & 1997 & 1992 & 1994 & 1994 & 1994 & 1998 & 1995 & 1997 & 1996 & 1996 \\
MIN & 87.4 & 104 & 394 & 1308 & 972 & 2139 & 817 & 796 & 251 & 176 \\
(WY) & 1999 & 1999 & 1998 & 1998 & 1999 & 1992 & 1995 & 1993 & 1999 & 199 & 199
\end{tabular}

CUMBERLAND RIVER BASIN
03402900 CUMBERLAND RIVER AT PINE ST BRIDGE AT PINEVILLE, KY--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 1999, BY WATER YEAR (WY)

e Estimated


03403500 CUMBERLAND RIVER AT BARBOURVILLE, KY
LOCATION.--Lat \(36^{\circ} 51^{\prime \prime} 45^{\prime \prime}\), long \(83^{\circ} 53^{\prime} 31^{\prime \prime}\), Knox County, Hydrologic Unit 05130101, on right bank 100 ft upstream from bridge on State Highway 11, at Barbourville, 0.4 mi upstream from Richland Creek, and at mile 635.2 .

DRAINAGE AREA. \(-960 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1922 to September 1931, April 1948 to July 2, 1993, October 1995 to current year. Monthly discharge only April to June 1948, published in WSP 1306.

REVISED RECORDS.--WSP 603: 1923-24. WSP 1336: 1923(M). 1927, 1929, 1950-51. WSP 1436: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 942.97 ft above sea level. See WRD KY-90-1 for history of changes prior to Oct. 17, 1975.

REMARKS.--Records fair. Flow slightly regulated by Martins Fork Dam (station 03400798) beginning January 1979. Diversion above station by city of Barbourville for municipal water supply.

PEAKS ABOVE BASE.--Peak discharges above base of \(18,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{rccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 24 & 1400 & 15400 & 22.75
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 86 & 79 & 103 & 768 & 1440 & 6130 & 1020 & 1420 & 269 & 502 & 127 & 79 \\
\hline 2 & 88 & 91 & 99 & 648 & 1510 & 4290 & 1080 & 1220 & 267 & 367 & 244 & 74 \\
\hline 3 & 88 & 93 & 99 & 2160 & 1490 & 4400 & 997 & 1080 & 263 & 387 & 264 & 69 \\
\hline 4 & 88 & 97 & 95 & 3460 & 1400 & 9170 & 944 & 951 & 258 & 263 & 230 & 67 \\
\hline 5 & 86 & 103 & 95 & 2050 & 1230 & 6560 & 896 & 918 & 237 & 228 & 152 & 64 \\
\hline 6 & 86 & 113 & 98 & 1580 & 1130 & 4680 & 843 & 2790 & 222 & 185 & 123 & 62 \\
\hline 7 & 86 & 141 & 135 & 1270 & 1090 & 4410 & 796 & 4240 & 215 & 163 & 108 & 62 \\
\hline 8 & 118 & 141 & 553 & 1080 & 1110 & 3680 & 755 & 3700 & 209 & 149 & 101 & 62 \\
\hline 9 & 174 & 128 & 2520 & 6330 & 1030 & 3390 & 1030 & 2730 & 184 & 143 & 99 & 60 \\
\hline 10 & 206 & 107 & 1300 & 11900 & 1020 & 3650 & 976 & 2020 & 172 & 137 & 99 & 60 \\
\hline 11 & 143 & 126 & 638 & 5300 & 964 & 3450 & 1020 & 1610 & 196 & 217 & 99 & 60 \\
\hline 12 & 108 & 171 & 536 & 2490 & 1010 & 2980 & 1970 & 1330 & 181 & 367 & 96 & 57 \\
\hline 13 & 93 & 226 & 3250 & 2020 & 1220 & 2530 & 1880 & 1230 & 166 & 264 & 93 & 57 \\
\hline 14 & 88 & 171 & 4900 & 1980 & 1120 & 2560 & 1550 & 1430 & 160 & 222 & 88 & 56 \\
\hline 15 & 83 & 135 & 2030 & 5720 & 1080 & 5150 & 1680 & 1200 & 180 & 182 & 83 & 55 \\
\hline 16 & 79 & 119 & 1260 & 6330 & 1070 & 6770 & 2430 & 988 & 165 & 168 & 79 & 55 \\
\hline 17 & 78 & 108 & 1000 & 3680 & 1140 & 5480 & 2290 & 801 & 150 & 151 & 77 & 55 \\
\hline 18 & 78 & 103 & 838 & 5620 & 1280 & 4400 & 1990 & 699 & 140 & 140 & 75 & 54 \\
\hline 19 & 78 & 97 & 521 & 10700 & 1300 & 3480 & 1700 & 826 & 133 & 143 & 72 & 50 \\
\hline 20 & 78 & 95 & 418 & 6180 & 1320 & 2820 & 1510 & 742 & 125 & 160 & 70 & 50 \\
\hline 21 & 78 & 98 & 368 & 3530 & 1280 & 2430 & 1420 & 579 & 119 & 170 & 82 & 51 \\
\hline 22 & 79 & 99 & 390 & 2600 & 1180 & 2150 & 1180 & 495 & 113 & 145 & 134 & 54 \\
\hline 23 & 90 & 99 & 480 & 5320 & 1100 & 1860 & 1040 & 452 & 109 & 174 & 119 & 55 \\
\hline 24 & 99 & 96 & 678 & 14700 & 1070 & 1690 & 993 & 576 & 109 & 183 & 96 & 55 \\
\hline 25 & 99 & 96 & 869 & 11200 & 1010 & 1490 & 882 & 679 & 129 & 263 & 123 & 55 \\
\hline 26 & 103 & 102 & 742 & 5530 & 978 & 1230 & 861 & 531 & 198 & 397 & 254 & 55 \\
\hline 27 & 104 & 114 & 681 & 3270 & 933 & 1220 & 1040 & 422 & 193 & 250 & 234 & 55 \\
\hline 28 & 109 & 140 & 647 & 2560 & 2650 & 1200 & 1060 & 364 & 509 & 232 & 146 & 55 \\
\hline 29 & 111 & 115 & 739 & 2140 & --- & 1180 & 1580 & 319 & 1430 & 171 & 109 & 59 \\
\hline 30 & 96 & 110 & 855 & 1760 & --- & 1110 & 1720 & 294 & 977 & 175 & 94 & 113 \\
\hline 31 & 82 & --- & 865 & 1450 & --- & 992 & --- & 282 & --- & 146 & 87 & -- \\
\hline TOTAL & 3062 & 3513 & 27802 & 135326 & 34155 & 106532 & 39133 & 36918 & 7778 & 6844 & 3857 & 1815 \\
\hline MEAN & 98.8 & 117 & 897 & 4365 & 1220 & 3437 & 1304 & 1191 & 259 & 221 & 124 & 60.5 \\
\hline MAX & 206 & 226 & 4900 & 14700 & 2650 & 9170 & 2430 & 4240 & 1430 & 502 & 264 & 113 \\
\hline MIN & 78 & 79 & 95 & 648 & 933 & 992 & 755 & 282 & 109 & 137 & 70 & 50 \\
\hline CFSM & . 10 & . 12 & . 93 & 4.55 & 1.27 & 3.58 & 1.36 & 1.24 & . 27 & . 23 & . 13 & . 06 \\
\hline IN. & . 12 & . 14 & 1.08 & 5.24 & 1.32 & 4.13 & 1.52 & 1.43 & . 30 & . 27 & . 15 & . 07 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1923 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
\\
MEAN & 393 & 1248 & 2384 & 3045 & 3316 & 3742 & 2722 & 2009 & 1021 & 614 & 419 & 292 \\
MAX & 3058 & 5231 & 9398 & 8182 & 7919 & 10470 & 8578 & 6782 & 5524 & 2346 & 1432 & 1894 \\
(WY) & 1990 & 1974 & 1927 & 1974 & 1956 & 1963 & 1998 & 1984 & 1989 & 1967 & 1971 & 1989 \\
MIN & 9.86 & 43.7 & 102 & 135 & 568 & 791 & 549 & 459 & 121 & 62.8 & 27.0 & 15.8 \\
(WY) & 1954 & 1923 & 1966 & 1981 & 1954 & 1988 & 1986 & 1962 & 1930 & 1930 & 1925 & 1930
\end{tabular}

CUMBERLAND RIVER BASIN
03403500 CUMBERLAND RIVER AT BARBOURVILLE, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN HIGHEST DATIY MEAN HIGHEST DAILY MEAN
LOWEST DAILY MEAN LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

FOR 1998 CALENDAR YEAR
\begin{tabular}{rll}
709092 \\
1943 & & \\
& & \\
34400 & Apr & 20 \\
76 & Sep & 25 \\
78 & Oct & 16
\end{tabular}

FOR 1999 WATER YEAR
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{406735} \\
\hline \multirow[t]{3}{*}{1114} & \multicolumn{5}{|c|}{1767} \\
\hline & \multicolumn{5}{|r|}{30181974} \\
\hline & \multicolumn{5}{|r|}{8241988} \\
\hline 14700 & Jan 24 & 47200 & Apr & 5 & 1977 \\
\hline 50 & Sep 19 & . 50 & Oct & 5 & 1930 \\
\hline 53 & Sep 16 & 5.4 & Oct & 2 & 1930 \\
\hline 15400 & Jan 24 & 56100 & Apr & 6 & 1977 \\
\hline 22.75 & Jan 24 & 45.91 & Apr & 6 & 1977 \\
\hline & & . 20 & Oct & 5 & 1930 \\
\hline 1.16 & & 1.84 & & & \\
\hline 15.76 & & 25.00 & & & \\
\hline 3090 & & 4140 & & & \\
\hline 282 & & 785 & & & \\
\hline 78 & & 100 & & & \\
\hline
\end{tabular}


03403910 CLEAR FORK AT SAXTON, KY
LOCATION.--Lat \(36^{\circ} 82^{\prime \prime} 02^{\prime \prime}\) (corrected), long \(84^{\circ} 06^{\prime} 42^{\prime \prime}\), Whitley County, Hydrologic Unit 05130101 , on right bank 100 ft upstream from bridge on State Highway 1804, at Saxton, 100 ft upstream from Louisville and Nashville Railroad bridge, 150 ft downstream from unnamed stream. 7.2 mi southeast of Williamsburg, and at mile 12.2.
DRAINAGE AREA. \(--331 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--July 1968 to September 1990, October 1995 to current year.
GAGE.--Water-stage recorder. Datum of gage is 921.83 ft above sea level.
REMARKS.--Records good except for periods of estimated record, which are fair.
Peak discharges above base of \(5000 \mathrm{ft}^{3} / \mathrm{s}\) and maximun *.
\begin{tabular}{rccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 24 & 0200 & \(* 8650\) & 23.93
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES


CUMBERLAND RIVER BASIN
03403910 CLEAR FORK AT SAXTON, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALENDAR & AR YEAR & FOR 1999 WATER & R YEAR & WATER YEARS & 1968 - & - 1999 \\
\hline ANNUAL TOTAL & 208405 & & 137144 & & & & \\
\hline ANNUAL MEAN & 571 & & 376 & & 557 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 894 & & 1973 \\
\hline LOWEST ANNUAL MEAN & & & & & 233 & & 1988 \\
\hline HIGHEST DAILY MEAN & 11900 & Apr 20 & 6540 & Jan 24 & 19400 & May 28 & 281973 \\
\hline LOWEST DAILY MEAN & 13 & Oct 24 & 12 & Sep 18 & 3.3 & Aug 19 & 91988 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 14 & Oct 23 & 13 & Sep 17 & 6.7 & Jul 5 & 51988 \\
\hline InStantaneous Peak flow & & & 8650 & Jan 24 & 22800 & Apr 5 & 51977 \\
\hline INSTANTANEOUS PEAK STAGE & & & 23.93 & Jan 24 & 41.51 & Apr 5 & 51977 \\
\hline ANNUAL RUNOFF (CFSM) & 1.72 & & 1.14 & & 1.68 & & \\
\hline ANNUAL RUNOFF (INCHES) & 23.42 & & 15.41 & & 22.88 & & \\
\hline 10 PERCENT EXCEEDS & 1340 & & 925 & & 1200 & & \\
\hline 50 PERCENT EXCEEDS & 208 & & 137 & & 261 & & \\
\hline 90 PERCENT EXCEEDS & 17 & & 16 & & 36 & & \\
\hline
\end{tabular}


03404000 CUMBERLAND RIVER AT WILLIAMSBURG, KY
LOCATION.--Lat \(36^{\circ} 44^{\prime} 36^{\prime \prime}\), long \(84^{\circ} 09^{\prime} 22^{\prime \prime}\), Whitley County, Hydrologic Unit 05130101 , on right bank 100 ft upstream from bridge on State Highway 296E at Williamsburg, 2.0 mi downstream from Clear Fork, and at mile 590.4.

DRAINAGE AREA. \(--1,607 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1950 to current year. Gage-height records collected in this vicinity since 1908 are published in reports of National Weather Service

REVISED RECORDS.--WSP 1436: Drainage area.
GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 891.52 ft above sea level. See WDR KY-90-1 for history of changes prior to June 26, 1990.

REMARKS.--Records good except for those estimated, which are fair. Flow slightly regulated by Martins Fork Dam (station 03400798) beginning January 1979

PEAKS ABOVE BASE.--Peak discharges above base of \(20,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{rccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 24 & 1600 & \(* 20800\) & 20.72
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & e100 & 102 & 149 & 1400 & 2300 & 6900 & 1440 & 2240 & 469 & 1380 & 285 & 146 \\
\hline 2 & e97 & 90 & 139 & 1240 & 2570 & 7430 & 1520 & 1890 & 444 & 864 & 346 & 133 \\
\hline 3 & e95 & 90 & 132 & 3000 & 2570 & 6190 & 1510 & 1640 & 436 & 814 & 348 & 123 \\
\hline 4 & e93 & 102 & 127 & 5000 & 2430 & 9840 & 1400 & 1430 & 456 & 763 & 390 & 114 \\
\hline 5 & 91 & 109 & 139 & 4140 & 2190 & 10900 & 1310 & 1300 & 443 & 552 & 356 & 109 \\
\hline 6 & 90 & 107 & 137 & 2740 & 1940 & 8100 & 1250 & 3670 & 410 & 444 & 271 & 101 \\
\hline 7 & 91 & 113 & 177 & 2150 & 1810 & 6960 & 1190 & 8750 & 404 & 379 & 218 & 95 \\
\hline 8 & 125 & 127 & 431 & 1830 & 1830 & 6000 & 1140 & 6730 & 376 & 331 & 188 & 92 \\
\hline 9 & 183 & 147 & 2050 & 7250 & 1820 & 5530 & 1280 & 5350 & 361 & 301 & 174 & 92 \\
\hline 10 & 214 & 145 & 2850 & 14000 & 2380 & 6040 & 1540 & 3670 & 328 & 278 & 170 & 90 \\
\hline 11 & 264 & 148 & 1450 & 12100 & 2150 & 5690 & 1450 & 2720 & 320 & 328 & 164 & 87 \\
\hline 12 & 217 & 157 & 870 & 5690 & 2030 & 4970 & 1900 & 2160 & 324 & 525 & 161 & 85 \\
\hline 13 & 164 & 202 & 4480 & 3490 & 2360 & 4240 & 2690 & 1800 & 316 & 823 & 157 & 85 \\
\hline 14 & 133 & 254 & 8100 & 3050 & 2320 & 4540 & 2370 & 2130 & 298 & 604 & 150 & 84 \\
\hline 15 & 117 & 237 & 5000 & 6120 & 2130 & 8880 & 2220 & 2190 & 310 & 459 & 143 & 80 \\
\hline 16 & 104 & 195 & 2490 & 9520 & 2060 & 11400 & 3120 & 1740 & 333 & 377 & 133 & 77 \\
\hline 17 & 97 & 158 & 1670 & 7130 & 2090 & 10200 & 3530 & 1410 & 305 & 334 & 124 & 74 \\
\hline 18 & 90 & 136 & 1340 & 7150 & 2270 & 8030 & 3130 & 1200 & 272 & 310 & 122 & 74 \\
\hline 19 & 88 & 128 & 1110 & 13300 & 2320 & 6190 & 2650 & 1310 & 247 & 309 & 118 & 72 \\
\hline 20 & 88 & 124 & 841 & 11900 & 2230 & 4880 & 2300 & 1330 & 237 & 282 & 118 & 72 \\
\hline 21 & 89 & 123 & 714 & 7060 & 2110 & 4070 & 2090 & 1110 & 225 & 805 & 116 & 70 \\
\hline 22 & 89 & 123 & 700 & 4600 & 1950 & 3520 & 1880 & 910 & 211 & 565 & 115 & 68 \\
\hline 23 & 88 & 123 & 792 & 7310 & 1770 & 3020 & 1610 & 810 & 203 & 411 & 141 & 66 \\
\hline 24 & 88 & 123 & 959 & 19200 & 1650 & 2640 & 1470 & 873 & 199 & 390 & 198 & 66 \\
\hline 25 & 98 & 124 & 1180 & 17700 & 1580 & 2400 & 1390 & 1020 & 227 & 498 & 230 & 66 \\
\hline 26 & 104 & 127 & 1240 & 13200 & 1470 & 2090 & 1260 & 966 & 488 & 556 & 330 & 68 \\
\hline 27 & 106 & 128 & 1160 & 6660 & 1410 & 1820 & 1380 & 801 & 437 & 588 & 343 & 67 \\
\hline 28 & 113 & 145 & 1150 & 4460 & 2870 & 1740 & 1610 & 671 & 791 & 470 & 366 & 65 \\
\hline 29 & 115 & 179 & 1290 & 3600 & --- & 1680 & 1660 & 597 & 1620 & 418 & 266 & 76 \\
\hline 30 & 115 & 174 & 1500 & 2990 & -- & 1620 & 2310 & 542 & 2450 & 337 & 205 & 88 \\
\hline 31 & 113 & --- & 1530 & 2440 & - & 1510 & --- & 499 & --- & 306 & 164 & --- \\
\hline TOTAL & 3659 & 4240 & 45897 & 211420 & 58610 & 169020 & 55600 & 63459 & 13940 & 15801 & 6610 & 2585 \\
\hline MEAN & 118 & 141 & 1481 & 6820 & 2093 & 5452 & 1853 & 2047 & 465 & 510 & 213 & 86.2 \\
\hline MAX & 264 & 254 & 8100 & 19200 & 2870 & 11400 & 3530 & 8750 & 2450 & 1380 & 390 & 146 \\
\hline MIN & 88 & 90 & 127 & 1240 & 1410 & 1510 & 1140 & 499 & 199 & 278 & 115 & 65 \\
\hline CFSM & . 07 & . 09 & . 92 & 4.24 & 1.30 & 3.39 & 1.15 & 1.27 & . 29 & . 32 & . 13 & . 05 \\
\hline IN. & . 08 & . 10 & 1.06 & 4.89 & 1.36 & 3.91 & 1.29 & 1.47 & . 32 & . 37 & . 15 & . 06 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1951 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
\\
MEAN & 613 & 1737 & 3638 & 4707 & 5176 & 6059 & 4328 & 2970 & 1574 & 927 & 455 \\
MAX & 4413 & 6552 & 9751 & 11860 & 13550 & 14670 & 11520 & 9572 & 8305 & 4906 & 2142 \\
(WY) & 1990 & 1978 & 1992 & 1974 & 1956 & 1963 & 1998 & 1984 & 1989 & 1967 & 1971 \\
MIN & 10.2 & 50.6 & 150 & 203 & 1190 & 1193 & 730 & 705 & 277 & 122 & 109 \\
(WY) & 1954 & 1954 & 1966 & 1981 & 1968 & 1988 & 1986 & 1962 & 1988 & 1952 & 1954
\end{tabular}

CUMBERLAND RIVER BASIN
03404000 CUMBERLAND RIVER AT WILLIAMSBURG, KY--Continued



03404900 LYNN CAMP CREEK AT CORBIN, KY
LOCATION.--Lat \(36^{\circ} 57^{\prime} 05^{\prime \prime}\), long \(84^{\circ} 05^{\prime} 3^{\prime \prime \prime}\), Whitley County, Hydrologic Unit 05130101 , on left bank 40 ft downstream from bridge on State Highway 312, (East Masters Street) at Corbin, 0.8 mi downstream from East Fork Lynn Camp Creek, and at mile 3.9 .
DRAINAGE AREA. \(--53.8 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--Annual maximums, water years 1957-73, October 1973 to current year.
GAGE.--Water-stage recorder. Datum of gage is \(1,049.00 \mathrm{ft}\) above sea level (levels by U.S. Army Corps of Engineers)
REMARKS.--Records good except for discharges below \(2.0 \mathrm{ft} 3 / \mathrm{s}\), which are fair.
PEAKS ABOVE BASE.--Peak discharges above base of \(1,500 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{rccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 9 & 1500 & \(* 2140\) & 8.50
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES} \\
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 1.6 & 3.2 & 3.4 & 60 & 97 & 133 & 52 & 36 & 4.2 & 9.2 & 2.3 & 1.2 \\
\hline 2 & 1.2 & 3.1 & 3.5 & 71 & 95 & 91 & 47 & 29 & 10 & 32 & 2.2 & 1.5 \\
\hline 3 & 1.1 & 9.0 & 2.8 & 402 & 91 & 248 & 36 & 24 & 13 & 19 & 1.1 & . 46 \\
\hline 4 & 1.4 & 6.2 & 2.7 & 154 & 73 & 263 & 33 & 19 & 8.5 & 9.4 & . 83 & . 35 \\
\hline 5 & 1.0 & 4.6 & 24 & 88 & 61 & 161 & 29 & 31 & 6.3 & 6.0 & . 72 & . 22 \\
\hline 6 & . 44 & 3.9 & 20 & 65 & 56 & 199 & 28 & 311 & 5.5 & 3.9 & . 68 & . 25 \\
\hline 7 & 1.2 & 3.1 & 58 & 59 & 58 & 150 & 28 & 135 & 5.2 & 3.3 & . 59 & . 18 \\
\hline 8 & 12 & 4.0 & 232 & 253 & 58 & 111 & 29 & 75 & 4.7 & 2.9 & 1.0 & . 16 \\
\hline 9 & 5.2 & 4.0 & 139 & 1790 & 50 & 215 & 49 & 43 & 5.7 & 2.2 & 1.1 & . 19 \\
\hline 10 & 2.4 & 8.5 & 49 & 528 & 45 & 180 & 40 & 30 & 6.2 & 3.1 & . 74 & . 21 \\
\hline 11 & 1.6 & 18 & 32 & 183 & 39 & 129 & 116 & 23 & 7.8 & 8.8 & . 62 & . 20 \\
\hline 12 & 1.8 & 10 & 47 & 122 & 71 & 99 & 75 & 18 & 6.1 & 51 & . 59 & . 14 \\
\hline 13 & 1.4 & 5.1 & 843 & 95 & 89 & 85 & 54 & 16 & 4.1 & 26 & . 60 & . 17 \\
\hline 14 & 1.5 & 3.5 & 350 & 206 & 67 & 212 & 45 & 21 & 17 & 9.3 & . 44 & . 15 \\
\hline 15 & 1.3 & 3.4 & 102 & 401 & 64 & 644 & 96 & 21 & 26 & 5.5 & . 75 & . 15 \\
\hline 16 & 1.2 & 3.9 & 62 & 204 & 59 & 406 & 78 & 13 & 12 & 3.2 & . 64 & . 14 \\
\hline 17 & . 79 & 3.5 & 50 & 132 & 66 & 219 & 54 & 9.6 & 7.7 & 2.2 & . 49 & . 18 \\
\hline 18 & . 64 & 2.6 & 40 & 319 & 64 & 153 & 46 & 15 & 6.2 & 2.1 & . 54 & . 10 \\
\hline 19 & 1.4 & 2.0 & 35 & 232 & 56 & 114 & 40 & 31 & 5.1 & 1.8 & 5.5 & . 11 \\
\hline 20 & 1.7 & 3.2 & 36 & 150 & 48 & 92 & 39 & 13 & 4.3 & 1.9 & 8.9 & . 46 \\
\hline 21 & 1.6 & 5.2 & 29 & 109 & 44 & 84 & 33 & 9.2 & 3.8 & 2.1 & 5.2 & . 31 \\
\hline 22 & 1.8 & 4.4 & 70 & 83 & 38 & 72 & 29 & 7.3 & 4.0 & 2.8 & 2.3 & . 22 \\
\hline 23 & 1.9 & 3.5 & 65 & 792 & 36 & 61 & 26 & 6.7 & 3.9 & 3.4 & 3.7 & . 23 \\
\hline 24 & 1.8 & 2.7 & 60 & 746 & 36 & 61 & 24 & 25 & 9.9 & 3.5 & 6.9 & . 26 \\
\hline 25 & 1.6 & 4.3 & 49 & 248 & 34 & 55 & 22 & 13 & 18 & 21 & 24 & . 28 \\
\hline 26 & 1.8 & 9.9 & 48 & 155 & 31 & 48 & 59 & 8.3 & 15 & 5.9 & 8.6 & . 18 \\
\hline 27 & 2.1 & 7.2 & 53 & 114 & 31 & 42 & 81 & 7.5 & 8.8 & 3.5 & 4.0 & . 17 \\
\hline 28 & 1.8 & 5.6 & 72 & 88 & 182 & 38 & 76 & 5.9 & 25 & 3.4 & 1.9 & . 15 \\
\hline 29 & 1.6 & 3.8 & 100 & 74 & --- & 35 & 66 & 4.9 & 98 & 7.2 & 1.4 & . 59 \\
\hline 30 & 1.7 & 3.2 & 97 & 63 & -- & 32 & 49 & 4.7 & 25 & 10 & 1.4 & . 74 \\
\hline 31 & 2.4 & --- & 74 & 56 & -- & 32 & -- & 4.6 & & 7.0 & 1.3 & \\
\hline TOTAL & 60.97 & 154.6 & 2848.4 & 8042 & 1739 & 4464 & 1479 & 1010.7 & 377.0 & 272.6 & 91.03 & 9.65 \\
\hline MEAN & 1.97 & 5.15 & 91.9 & 259 & 62.1 & 144 & 49.3 & 32.6 & 12.6 & 8.79 & 2.94 & . 32 \\
\hline MAX & 12 & 18 & 843 & 1790 & 182 & 644 & 116 & 311 & 98 & 51 & 24 & 1.5 \\
\hline MIN & . 44 & 2.0 & 2.7 & 56 & 31 & 32 & 22 & 4.6 & 3.8 & 1.8 & . 44 & . 10 \\
\hline CFSM & . 04 & . 10 & 1.71 & 4.82 & 1.15 & 2.68 & . 92 & . 61 & . 23 & . 16 & . 05 & . 01 \\
\hline IN. & . 04 & . 11 & 1.97 & 5.56 & 1.20 & 3.09 & 1.02 & . 70 & . 26 & . 19 & . 06 & . 01 \\
\hline \multicolumn{13}{|l|}{STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967-1999, BY WATER YEAR (WY)} \\
\hline MEAN & 30.8 & 86.4 & 119 & 158 & 155 & 164 & 112 & 94.5 & 57.9 & 37.5 & 26.8 & 28.0 \\
\hline MAX & 133 & 267 & 378 & 372 & 326 & 458 & 413 & 387 & 203 & 110 & 78.4 & 100 \\
\hline (WY) & 1990 & 1974 & 1991 & 1974 & 1994 & 1975 & 1998 & 1983 & 1997 & 1978 & 1979 & 1982 \\
\hline MIN & 1.35 & 5.15 & 10.4 & 5.13 & 56.9 & 41.9 & 16.5 & 9.47 & 2.38 & 2.11 & 2.50 & . 32 \\
\hline (WY) & 1981 & 1999 & 1981 & 1981 & 1977 & 1988 & 1986 & 1986 & 1988 & 1975 & 1976 & 1999 \\
\hline
\end{tabular}

03404900 LYNN CAMP CREEK AT CORBIN, KY--Continued

SUMMARY STATISTICS

ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 50 PERCENT EXCEEDS
90 PERCENT EXCEEDS
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{FOR} & 1998 CALEND & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{YEAR}} \\
\hline & \[
36918.37
\] & & \\
\hline & \[
101
\] & & \\
\hline \multirow[t]{3}{*}{} & 4530 & Apr & \\
\hline & . 44 & Oct & 6 \\
\hline & 1.1 & Oct & \\
\hline \multicolumn{4}{|c|}{1.88} \\
\hline \multicolumn{4}{|c|}{25.53} \\
\hline \multicolumn{4}{|c|}{233} \\
\hline \multicolumn{4}{|c|}{45} \\
\hline \multicolumn{4}{|c|}{2.4} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{FOR 1999 WATER YEAR} \\
\hline \multicolumn{2}{|l|}{20548.95} \\
\hline \multicolumn{2}{|l|}{56.3} \\
\hline 1790 & Jan 9 \\
\hline . 10 & Sep 18 \\
\hline . 14 & Sep 13 \\
\hline 2140 & Jan 9 \\
\hline 8.50 & Jan 9 \\
\hline \multicolumn{2}{|l|}{1.05} \\
\hline \multicolumn{2}{|l|}{14.21} \\
\hline \multicolumn{2}{|l|}{132} \\
\hline \multicolumn{2}{|l|}{13} \\
\hline . 64 & \\
\hline
\end{tabular}

WATER YEARS 1967 - 1999
\begin{tabular}{cccc}
88.9 & & & \\
141 & & & 1994 \\
36.5 & & 1988 \\
4530 & Apr 17 & 1998 \\
.02 & Jun 24 & 1988 \\
.02 & Jun 24 & 1988 \\
9000 & Jan 29 & 1957 \\
22.50 & Jan 29 & 1957 \\
.02 & Jun 24 & 1988 \\
1.65 & & & \\
22.46 & & & \\
198 & & & \\
37 & & & \\
3.4 & & & \\
& & &
\end{tabular}


LOCATION.--Lat \(37^{\circ} 10^{\prime} 1^{\prime \prime}\), long \(84^{\circ} 1^{\prime} \mathbf{\prime}^{\prime \prime}\) ", Laurel County, Hydrologic Unit 05130102, on left bank 200 ft upstream from bridge on State Highway 80 at Billows, 0.9 mi upstream from Pine Creek, 1.1 mi downstream from Hawk Creek, 13 mi west f London, and at mile 24.4.

DRAINAGE AREA. \(--604 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--July 1936 to current year.
REVISED RECORDS.--WSP 1436: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 802.90 ft above sea level. Prior to Nov. 19 , 1940 , nonrecording gage at same site and datum.

REMARKS.--Records good.
PEAKS ABOVE BASE.--Peak discharges above base of \(10,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{rcccccc} 
& & Discharge & Gage Height \\
Date & Time & \(\left(\mathrm{ft}^{3} / \mathrm{st}\right)\) & \((\mathrm{ft})\) & Date & \begin{tabular}{c} 
Time
\end{tabular} \\
Jan. 9 & 2300 & \(* 25300\) & 31.73 & Jan. 24 & 0700 & 11800
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 20 & 29 & 46 & 613 & 873 & 1370 & 351 & 1250 & 64 & 161 & 24 & 16 \\
\hline 2 & 20 & 28 & 46 & 534 & 1840 & 1200 & 398 & 938 & 60 & 104 & 25 & 16 \\
\hline 3 & 22 & 29 & 46 & 2580 & 1690 & 1630 & 377 & 739 & 61 & 78 & 22 & 14 \\
\hline 4 & 26 & 30 & 46 & 2470 & 1410 & 3920 & 349 & 599 & 57 & 59 & 19 & 13 \\
\hline 5 & 27 & 31 & 53 & 1330 & 1140 & 2620 & 332 & 536 & 55 & 58 & 20 & 11 \\
\hline 6 & 27 & 45 & 114 & 923 & 952 & 2160 & 316 & 1250 & 52 & 49 & 19 & 12 \\
\hline 7 & 28 & 46 & 216 & 749 & 861 & 2220 & 296 & 2080 & 49 & 40 & 17 & 12 \\
\hline 8 & 42 & 39 & 1260 & 1270 & 811 & 1700 & 287 & 1290 & 45 & 32 & 16 & 10 \\
\hline 9 & 89 & 34 & 1790 & 19300 & 686 & 1640 & 340 & 921 & 43 & 28 & 16 & 10 \\
\hline 10 & 82 & 33 & 748 & 16400 & 611 & 2110 & 422 & 702 & 49 & 26 & 15 & 9.7 \\
\hline 11 & 55 & 45 & 433 & 3160 & 552 & 1820 & 425 & 555 & 51 & 23 & 14 & 9.2 \\
\hline 12 & 47 & 58 & 315 & 1930 & 608 & 1500 & 468 & 445 & 53 & 22 & 15 & 8.4 \\
\hline 13 & 38 & 72 & 1780 & 1400 & 1450 & 1240 & 433 & 520 & 51 & 23 & 15 & 8.3 \\
\hline 14 & 30 & 79 & 3470 & 1290 & 1180 & 1540 & 401 & 456 & 47 & 22 & 15 & 8.5 \\
\hline 15 & 26 & 61 & 1200 & 2140 & 1030 & 5570 & 418 & 364 & 49 & 21 & 14 & 8.0 \\
\hline 16 & 24 & 48 & 729 & 2170 & 970 & 3690 & 607 & 307 & 45 & 20 & 12 & 8.2 \\
\hline 17 & 22 & 42 & 546 & 1640 & 941 & 2390 & 688 & 261 & 42 & 21 & 12 & 8.3 \\
\hline 18 & 22 & 36 & 441 & 1620 & 987 & 1740 & 605 & 225 & 36 & 21 & 11 & 8.1 \\
\hline 19 & 24 & 32 & 351 & 2030 & 903 & 1310 & 543 & 202 & 31 & 20 & 11 & 8.0 \\
\hline 20 & 24 & 32 & 309 & 1650 & 810 & 1050 & 508 & 196 & 30 & 20 & 15 & 9.4 \\
\hline 21 & 23 & 31 & 283 & 1410 & 704 & 903 & 474 & 182 & 28 & 33 & 12 & 11 \\
\hline 22 & 23 & 30 & 444 & 1170 & 614 & 782 & 432 & 150 & 26 & 169 & 10 & 12 \\
\hline 23 & 22 & 31 & 1070 & 4190 & 546 & 658 & 385 & 133 & 25 & 78 & 9.6 & 12 \\
\hline 24 & 21 & 32 & 757 & 10100 & 516 & 617 & 349 & 142 & 28 & 44 & 9.2 & 17 \\
\hline 25 & 21 & 30 & 563 & 3930 & 488 & 595 & 312 & 148 & 40 & 39 & 11 & 14 \\
\hline 26 & 21 & 34 & 457 & 2230 & 453 & 524 & 325 & 167 & 44 & 37 & 116 & 11 \\
\hline 27 & 20 & 38 & 409 & 1600 & 423 & 461 & 566 & 128 & 46 & 42 & 81 & 8.9 \\
\hline 28 & 22 & 40 & 407 & 1250 & 750 & 420 & 998 & 102 & 48 & 31 & 40 & 7.3 \\
\hline 29 & 24 & 43 & 498 & 988 & --- & 387 & 2210 & 89 & 109 & 26 & 29 & 6.7 \\
\hline 30 & 24 & 40 & 648 & 794 & -- & 360 & 1810 & 78 & 218 & 24 & 23 & 7.8 \\
\hline 31 & 26 & - & 696 & 679 & --- & 335 & --- & 70 & - & 23 & 19 & --- \\
\hline TOTAL & 942 & 1198 & 20171 & 93540 & 24799 & 48462 & 16425 & 15225 & 1582 & 1394 & 686.8 & 315.8 \\
\hline MEAN & 30.4 & 39.9 & 651 & 3017 & 886 & 1563 & 548 & 491 & 52.7 & 45.0 & 22.2 & 10.5 \\
\hline MAX & 89 & 79 & 3470 & 19300 & 1840 & 5570 & 2210 & 2080 & 218 & 169 & 116 & 17 \\
\hline MIN & 20 & 28 & 46 & 534 & 423 & 335 & 287 & 70 & 25 & 20 & 9.2 & 6.7 \\
\hline CFSM & . 05 & . 07 & 1.08 & 5.00 & 1.47 & 2.59 & . 91 & . 81 & . 09 & . 07 & . 04 & . 02 \\
\hline IN. & . 06 & . 07 & 1.24 & 5.76 & 1.53 & 2.98 & 1.01 & . 94 & . 10 & . 09 & . 04 & . 02 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1936 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
\\
MEAN & 198 & 573 & 1261 & 1715 & 1909 & 2017 & 1469 & 972 & 573 & 1956 \\
MAX & 2887 & 2374 & 5279 & 5990 & 5236 & 5860 & 4051 & 4207 & 2862 & 1830 & 1263 & 1052 \\
(WY) & 1990 & 1987 & 1991 & 1937 & 1956 & 1975 & 1972 & 1983 & 1947 & 1941 & 1977 & 1974 \\
MIN & 3.18 & 11.5 & 16.5 & 56.9 & 208 & 507 & 188 & 115 & 37.9 & 10.8 & 10.1 & 4.95 \\
(WY) & 1954 & 1954 & 1954 & 1981 & 1941 & 1983 & 1986 & 1941 & 1988 & 1944 & 1957 & 1936
\end{tabular}

CUMBERLAND RIVER BASIN
03406500 ROCKCASTLE RIVER AT BILLOWS, KY--Continued

SUMMARY STATISTICS

ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES 10 PERCENT EXCEEDS 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

FOR 1998 CALENDAR YEAR
\begin{tabular}{rlr}
390228 & & \\
1069 & & \\
& & \\
19600 & Jan & 8 \\
14 & Sep & 16 \\
16 & Sep & 12
\end{tabular}
1.77
24.03
2640
444
24

FOR 1999 WATER YEAR
\begin{tabular}{ccc}
224740.6 \\
616 & & \\
& & \\
19300 & Jan & 9 \\
6.7 & Sep & 29 \\
8.2 & Sep & 13 \\
25300 & Jan & 9 \\
31.73 & Jan & 9
\end{tabular}
31.73 Jan 9
1.02
13.02
13.84

1620
82
14

WATER YEARS 1936 - 1999



03410500 SOUTH FORK CUMBERLAND RIVER NEAR STEARNS, KY
LOCATION (revised).--Lat \(36^{\circ} 37^{\prime \prime} 47^{\prime \prime}\), long \(84^{\circ} 31^{\prime \prime} 55^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104 , on right bank, 400 ft upstream from Salt Branch, 1,000 ft downstream from Bear Creek, 5.3 mi southwest of Stearns, and at mile 49.4 .
DRAINAGE AREA. \(--954 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--September 1942 to current year.
REVISED RECORDS.--WSP 1113: 1946(M). WSP 1436: Drainage area.
GAGE--Water-stage recorder. Datum of gage is 763.83 ft above sea level; prior to Oct. 1 , 1980 at site 1 , 000 ft upstream at datum 0.98 ft higher.

REMARKS.--Records good.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of March 1929 reached a stage of 52.9 ft from information by local residents.
PEAKS ABOVE BASE.--Peak discharges above base of \(22,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{lcccccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & \begin{tabular}{c} 
Time
\end{tabular} \\
Dec. 13 & 1900 & 24500 & 22.03 & Jan. 9 & 2200 & 27500 \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 28 & 41 & 84 & 1350 & 2680 & 6770 & 864 & 2110 & 205 & 3580 & 330 & 82 \\
\hline 2 & 32 & 42 & 84 & 1140 & 4340 & 3880 & 1050 & 1650 & 196 & 3180 & 266 & 72 \\
\hline 3 & 34 & 44 & 80 & 2690 & 3510 & 3330 & 1040 & 1320 & 299 & 6590 & 214 & 66 \\
\hline 4 & 54 & 52 & 76 & 3720 & 2730 & 5550 & 998 & 1090 & 427 & 3350 & 190 & 61 \\
\hline 5 & 51 & 55 & 84 & 2340 & 2140 & 4090 & 940 & 983 & 430 & 1990 & 164 & 56 \\
\hline 6 & 54 & 55 & 107 & 1690 & 1740 & 3780 & 865 & 10000 & 586 & 1340 & 144 & 51 \\
\hline 7 & 55 & 53 & 107 & 1370 & 1600 & 4200 & 809 & 12500 & 479 & 1040 & 126 & 49 \\
\hline 8 & 187 & 49 & 419 & 1390 & 1780 & 3240 & 797 & 5120 & 380 & 780 & 118 & 44 \\
\hline 9 & 165 & 48 & 1100 & 18000 & 1630 & 3050 & 1100 & 3230 & 293 & 607 & 131 & 40 \\
\hline 10 & 149 & 56 & 1040 & 13200 & 1580 & 4410 & 1210 & 2180 & 227 & 538 & 129 & 37 \\
\hline 11 & 140 & 88 & 555 & 5050 & 1720 & 3730 & 1140 & 1600 & 203 & 1080 & 118 & 34 \\
\hline 12 & 110 & 105 & 406 & 3160 & 1730 & 2900 & 1130 & 1230 & 176 & 1760 & 110 & 32 \\
\hline 13 & 93 & 104 & 12700 & 2360 & 2100 & 2370 & 1030 & 1020 & 162 & 7350 & 102 & 30 \\
\hline 14 & 78 & 164 & 8820 & 2140 & 2010 & 5000 & 933 & 1120 & 169 & 3500 & 95 & 29 \\
\hline 15 & 70 & 128 & 2820 & 7210 & 1780 & 8750 & 1040 & 1260 & 195 & 2490 & 84 & 28 \\
\hline 16 & 65 & 108 & 1560 & 6210 & 1670 & 6230 & 1860 & 926 & 179 & 1560 & 78 & 26 \\
\hline 17 & 59 & 93 & 1100 & 3690 & 1660 & 4290 & 1930 & 738 & 156 & 1080 & 74 & 25 \\
\hline 18 & 54 & 82 & 854 & 6080 & 1920 & 3180 & 1610 & 613 & 142 & 833 & 69 & 24 \\
\hline 19 & 53 & 74 & 705 & 9050 & 1960 & 2460 & 1360 & 691 & 124 & 705 & 63 & 23 \\
\hline 20 & 56 & 68 & 610 & 4750 & 1760 & 2010 & 1230 & 788 & 109 & 579 & 73 & 23 \\
\hline 21 & 53 & 67 & 559 & 3250 & 1500 & 1760 & 1160 & 598 & 97 & 2210 & 83 & 23 \\
\hline 22 & 49 & 66 & 549 & 2460 & 1280 & 1640 & 1000 & 488 & 94 & 1210 & 76 & 23 \\
\hline 23 & 47 & 64 & 569 & 13900 & 1110 & 1400 & 881 & 452 & 93 & 1020 & 65 & 24 \\
\hline 24 & 46 & 63 & 770 & 24500 & 1040 & 1280 & 809 & 571 & 89 & 907 & 66 & 26 \\
\hline 25 & 44 & 63 & 1370 & 7840 & 984 & 1170 & 747 & 618 & 3450 & 2720 & 312 & 25 \\
\hline 26 & 44 & 69 & 1280 & 4390 & 925 & 1060 & 675 & 520 & 4580 & 1890 & 596 & 23 \\
\hline 27 & 43 & 74 & 1160 & 3070 & 864 & 966 & 687 & 422 & 3400 & 1090 & 413 & 22 \\
\hline 28 & 43 & 83 & 1340 & 2380 & 4300 & 879 & 809 & 360 & 9620 & 746 & 245 & 22 \\
\hline 29 & 42 & 81 & 2250 & 1910 & --- & 821 & 1140 & 303 & 12100 & 574 & 168 & 22 \\
\hline 30 & 40 & 77 & 2200 & 1560 & --- & 772 & 2230 & 257 & 10800 & 473 & 125 & 22 \\
\hline 31 & 40 & -- & 1730 & 1420 & --- & 742 & --- & 225 & - & 383 & 99 & \\
\hline TOTAL & 2078 & 2216 & 47088 & 163270 & 54043 & 95710 & 33074 & 54983 & 49460 & 57155 & 4926 & 1064 \\
\hline MEAN & 67.0 & 73.9 & 1519 & 5267 & 1930 & 3087 & 1102 & 1774 & 1649 & 1844 & 159 & 35.5 \\
\hline MAX & 187 & 164 & 12700 & 24500 & 4340 & 8750 & 2230 & 12500 & 12100 & 7350 & 596 & 82 \\
\hline MIN & 28 & 41 & 76 & 1140 & 864 & 742 & 675 & 225 & 89 & 383 & 63 & 22 \\
\hline CFSM & . 07 & . 08 & 1.59 & 5.52 & 2.02 & 3.24 & 1.16 & 1.86 & 1.73 & 1.93 & . 17 & . 04 \\
\hline IN. & . 08 & . 09 & 1.84 & 6.37 & 2.11 & 3.73 & 1.29 & 2.14 & 1.93 & 2.23 & . 19 & . 04 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1943 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrrr} 
MEAN & 391 & 1257 & 2648 & 3381 & 3523 & 3689 & 2545 & 1743 & 999 & 621 & 354 \\
MAX & 2553 & 4556 & 7388 & 9615 & 8747 & 10580 & 6038 & 6555 & 5152 & 3772 & 2997 & 2983 \\
(WY) & 1990 & 1958 & 1991 & 1950 & 1956 & 1975 & 1977 & 1984 & 1989 & 1967 & 1971 & 1982 \\
MIN & 20.8 & 30.6 & 150 & 145 & 725 & 1248 & 568 & 224 & 72.8 & 34.5 & 65.4 & 29.6 \\
(WY) & 1954 & 1954 & 1964 & 1981 & 1968 & 1985 & 1986 & 1948 & 1988 & 1944 & 1951 & 1953
\end{tabular}

CUMBERLAND RIVER BASIN
03410500 SOUTH FORK CUMBERLAND RIVER NEAR STEARNS, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

FOR 1998 CALENDAR YEAR
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{768470} & \multicolumn{2}{|l|}{565067} \\
\hline \multicolumn{2}{|l|}{2105} & \multicolumn{2}{|l|}{1548} \\
\hline 30100 & Apr 17 & 24500 & Jan 24 \\
\hline 28 & Sep 26 & 22 & Sep 27 \\
\hline 28 & Sep 25 & 23 & Sep 24 \\
\hline & & 38700 & Jan 24 \\
\hline & & 28.20 & Jan 24 \\
\hline & & 21 & Sep 30 \\
\hline 2.21 & & 1.62 & \\
\hline 29.97 & & 22.03 & \\
\hline 5240 & & 3750 & \\
\hline 749 & & 705 & \\
\hline 48 & & 45 & \\
\hline
\end{tabular}

FOR 1999 WATER YEAR

WATER YEARS 1943 - 1999
\begin{tabular}{cllll}
1789 & & & \\
3023 & & & 1973 \\
810 & & & 1988 \\
80200 & & Mar & 13 & 1975 \\
11 & & Sep & 18 & 1954 \\
12 & Sep & 13 & 1954 \\
93200 & May & 28 & 1973 \\
46.29 & May & 28 & 1973 \\
11 & & Oct & 4 & 1948 \\
1.88 & & & \\
25.48 & & & \\
4100 & & & \\
725 & & & \\
82 & & & &
\end{tabular}


PERIOD OF RECORD.--Water years 1960-72, 1979 to 1990; July 1999 to Sep. 1999
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: May 1980 to Sep. 1990, July 1999 to Sep. 1999.
pH: May 1980 to Sept. 1990, July 1999 to Sep. 1999.
WATER TEMPERATURE: May 1980 to Sep. 1990, July 1999 to Sep. 1999.
DISSOLVED OXYGEN: May 1980 to Sep. 1990 (discontinued)
TURBIDITY: May 1980 to Sep. 1987.
SUSPENDED SEDIMENT DISCHARGE: May 1980 to Sep. 1990 (discontinued).
INSTRUMENTATION.--Five parameter water-quality monitor and sediment pumping sampler May 1980 to Sep. 1990 . Three parameter water-quality monitor since July 1999.

REMARKS.--Miscellaneous samples prior to 1979. Miscellaneous measurement values may fall outside the range observed for that day by the water-quality monitor due to minor differences in sampling location.

EXTREMES FOR PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: Maximum recorded, 434 microsiemens, July 17, 1985; minimum recorded, 40 microsiemens, May 7,1984
pH : Maximum recorded, 8.6 units , Aug. 10, 1989; minimum recorded, 5.2 units, May 19, Nov. \(24,1980\).
WATER TEMPERATURE: Maximum recorded, \(34.6^{\circ} \mathrm{C}\), Aug. 31, Sep. 1, 1989; minimum recorded, \(4.5 \mathrm{mg} / \mathrm{L}, \mathrm{May} 22\), 1980
SEDIMENT CONCENTRATIONS: Maximum daily mean, \(1980 \mathrm{mg} / \mathrm{L}\), Aug. 9, 1981; minimum daily mean, \(0 \mathrm{mg} / \mathrm{L}\), on several days in \(1983-84\), 1987-88.
SEDIMENT LOADS: Maximum daily, 200,000 tons, Sep. 2, 1982; minimum daily, 0.04 ton, Nov. 25, 1987.
EXTREMES FOR CURRENT RECORD.--
SPECIFIC CONDUCTANCE: Maximum recorded, 195 microsiemens, July 30; minimum recorded, 75 microsiemens, July 18.
pH: Maximum recorded, 7.5 units, Aug. 3-11; minimum recorded, 6.4 units, Aug. 25.
WATER TEMPERATURE: Maximum recorded, \(29.6^{\circ} \mathrm{C}\), Aug. 13; minimum recorded \(20.8^{\circ} \mathrm{C}\), July 14.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


03410500 SOUTH FORK CUMBERLAND RIVER NEAR STEARNS, KY --Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & JULY & & \multicolumn{2}{|r|}{AUGUST} & & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & --- & --- & --- & --- & --- & --- & -- & --- & --- & 137 & 135 & 136 \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 135 & 134 & 135 \\
\hline 3 & -- & --- & --- & --- & --- & --- & 145 & 143 & 144 & --- & --- & --- \\
\hline 4 & -- & --- & --- & -- & --- & --- & 153 & 144 & 148 & --- & --- & --- \\
\hline 5 & --- & --- & --- & --- & --- & -- & 147 & 137 & 141 & --- & --- & -- \\
\hline 6 & --- & --- & --- & --- & --- & --- & 147 & 134 & 141 & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & -- & --- & 147 & 127 & 134 & --- & --- & --- \\
\hline 8 & --- & --- & -- & 100 & 96 & 98 & 151 & 143 & 147 & --- & -- & -- \\
\hline 9 & --- & --- & --- & 104 & 98 & 102 & 143 & 130 & 133 & --- & --- & --- \\
\hline 10 & --- & -- & --- & 111 & 98 & 106 & 137 & 130 & 133 & -- & --- & --- \\
\hline 11 & -- & --- & --- & 115 & 95 & 105 & 131 & 125 & 127 & --- & --- & --- \\
\hline 12 & -- & -- & --- & 143 & 96 & 125 & 132 & 126 & 129 & --- & --- & -- \\
\hline 13 & --- & --- & --- & 132 & 104 & 122 & 129 & 125 & 126 & --- & --- & --- \\
\hline 14 & - & --- & -- & 110 & 94 & 100 & 137 & 126 & 132 & --- & --- & -- \\
\hline 15 & - & --- & -- & 109 & 91 & 99 & 139 & 137 & 138 & --- & --- & -- \\
\hline 16 & --- & --- & --- & 95 & 91 & 93 & 139 & 128 & 134 & --- & --- & --- \\
\hline 17 & --- & --- & -- & 96 & 94 & 95 & 128 & 125 & 126 & --- & --- & --- \\
\hline 18 & --- & --- & --- & 114 & 75 & 99 & 126 & 124 & 125 & --- & --- & --- \\
\hline 19 & --- & --- & -- & 116 & 97 & 110 & 129 & 125 & 127 & --- & --- & -- \\
\hline 20 & --- & --- & -- & 119 & 115 & 117 & 131 & 128 & 130 & --- & --- & -- \\
\hline 21 & -- & --- & --- & 141 & 110 & 123 & 135 & 131 & 133 & --- & --- & --- \\
\hline 22 & --- & --- & --- & 138 & 114 & 121 & 138 & 135 & 136 & --- & --- & - \\
\hline 23 & -- & --- & - & 133 & 112 & 122 & 139 & 137 & 138 & --- & --- & - \\
\hline 24 & -- & --- & - & 169 & 112 & 145 & 143 & 139 & 140 & --- & --- & --- \\
\hline 25 & - & --- & -- & 177 & 99 & 145 & 154 & 139 & 147 & --- & --- & --- \\
\hline 26 & --- & --- & --- & 145 & 97 & 124 & 152 & 148 & 150 & --- & --- & --- \\
\hline 27 & --- & --- & --- & 145 & 114 & 127 & 158 & 150 & 153 & --- & --- & --- \\
\hline 28 & --- & --- & -- & 156 & 104 & 131 & 160 & 159 & 160 & --- & -- & --- \\
\hline 29 & --- & --- & --- & 194 & 156 & 180 & 164 & 158 & 161 & --- & --- & --- \\
\hline 30 & --- & --- & --- & 195 & 180 & 190 & 158 & 141 & 146 & - & --- & --- \\
\hline 31 & --- & -- & -- & 180 & 121 & 152 & 140 & 137 & 139 & --- & --- & --- \\
\hline MONTH & --- & -- & -- & 195 & 75 & 122 & 164 & 124 & 139 & 137 & 134 & 136 \\
\hline YEAR & 195 & 75 & 131 & & & & & & & & & \\
\hline
\end{tabular}

PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MAX & & MIN & MAX & MIN & MAX & MIN & MAX & MIN & MAX & MIN \\
\hline & \multicolumn{2}{|c|}{APRIL} & \multicolumn{3}{|c|}{MAY} & \multicolumn{2}{|c|}{JUNE} & \multicolumn{2}{|c|}{JULY} & \multicolumn{2}{|c|}{AUGUST} & \multicolumn{2}{|l|}{SEPTEMBER} \\
\hline 1 & -- & --- & --- & & -- & -- & -- & - & --- & -- & -- & -- & --- \\
\hline 2 & --- & --- & --- & & -- & --- & --- & --- & --- & --- & - & --- & --- \\
\hline 3 & -- & --- & --- & & --- & --- & --- & --- & --- & 7.5 & 7.5 & -- & --- \\
\hline 4 & -- & --- & - & & -- & -- & - & --- & --- & 7.5 & 7.4 & --- & --- \\
\hline 5 & - & - & --- & & --- & - & --- & --- & - & 7.5 & 7.4 & -- & -- \\
\hline 6 & --- & --- & --- & & -- & --- & -- & --- & --- & 7.5 & 7.5 & --- & --- \\
\hline 7 & - & --- & -- & & - & - & --- & --- & -- & 7.5 & 7.5 & --- & - \\
\hline 8 & -- & --- & -- & & -- & -- & -- & 6.8 & 6.7 & 7.5 & 7.4 & --- & --- \\
\hline 9 & --- & --- & - & & - & -- & -- & 6.8 & 6.7 & 7.5 & 7.4 & --- & -- \\
\hline 10 & -- & --- & -- & & -- & --- & --- & 6.8 & 6.8 & 7.5 & 7.5 & --- & -- \\
\hline 11 & - & -- & - & & -- & -- & --- & 6.9 & 6.8 & 7.5 & 7.4 & --- & -- \\
\hline 12 & --- & --- & -- & & -- & -- & -- & 6.9 & 6.9 & 7.4 & 7.4 & --- & --- \\
\hline 13 & --- & --- & -- & & -- & --- & -- & 7.1 & 6.9 & 7.4 & 7.3 & --- & -- \\
\hline 14 & --- & - & --- & & --- & --- & --- & 7.0 & 6.9 & 7.5 & 7.4 & --- & --- \\
\hline 15 & -- & --- & -- & & --- & --- & --- & 6.9 & 6.9 & 7.4 & 7.3 & --- & --- \\
\hline 16 & --- & - & --- & & --- & --- & -- & 7.0 & 6.9 & 7.3 & 7.3 & - & - \\
\hline 17 & --- & --- & -- & & -- & --- & --- & 7.0 & 6.9 & 7.3 & 7.1 & --- & --- \\
\hline 18 & --- & --- & --- & & - & - & - & 6.9 & 6.9 & 7.1 & 7.1 & --- & --- \\
\hline 19 & --- & --- & --- & & --- & --- & --- & 6.9 & 6.9 & 7.1 & 6.9 & --- & - \\
\hline 20 & -- & -- & --- & & --- & --- & -- & 6.9 & 6.9 & 6.9 & 6.7 & --- & -- \\
\hline 21 & --- & --- & --- & & --- & -- & -- & 7.0 & 6.9 & 6.7 & 6.6 & -- & - \\
\hline 22 & --- & --- & -- & & --- & -- & --- & 7.0 & 7.0 & 6.6 & 6.6 & --- & -- \\
\hline 23 & --- & --- & --- & & --- & --- & - & 7.0 & 7.0 & 6.6 & 6.5 & - & -- \\
\hline 24 & --- & -- & --- & & --- & --- & --- & 7.0 & 7.0 & 6.9 & 6.5 & --- & -- \\
\hline 25 & --- & --- & -- & & --- & --- & --- & 7.0 & 7.0 & 6.7 & 6.4 & -- & -- \\
\hline 26 & --- & --- & --- & & --- & -- & --- & 7.1 & 7.0 & --- & --- & --- & -- \\
\hline 27 & --- & -- & --- & & --- & --- & - & 7.1 & 7.0 & 6.6 & 6.6 & --- & -- \\
\hline 28 & --- & -- & --- & & --- & --- & --- & 7.0 & 6.9 & 6.8 & 6.6 & -- & - \\
\hline 29 & -- & --- & --- & & --- & --- & - & 7.2 & 6.9 & 6.9 & 6.8 & --- & -- \\
\hline 30 & - & --- & --- & & --- & --- & --- & 7.3 & 7.2 & --- & --- & --- & - \\
\hline 31 & --- & --- & --- & & --- & --- & --- & 7.3 & 7.3 & --- & --- & --- & --- \\
\hline MONTH & --- & --- & --- & & --- & --- & --- & 7.3 & 6.7 & 7.5 & 6.4 & --- & -- \\
\hline
\end{tabular}

CUMBERLAND RIVER BASIN
03410500 SOUTH FORK CUMBERLAND RIVER NEAR STEARNS, KY --Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & JULY & & & AUGUST & & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & --- & --- & --- & --- & --- & - & - & - & -- & 27.2 & 24.6 & 25.9 \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 27.3 & 24.9 & 26.2 \\
\hline 3 & --- & --- & --- & --- & --- & - & 28.6 & 26.3 & 26.8 & --- & --- & - \\
\hline 4 & --- & --- & --- & --- & --- & --- & 28.6 & 26.0 & 27.4 & - & --- & --- \\
\hline 5 & --- & --- & --- & --- & --- & --- & 28.6 & 26.4 & 27.6 & --- & --- & - \\
\hline 6 & --- & --- & --- & --- & --- & - & 28.3 & 25.7 & 27.1 & --- & --- & --- \\
\hline 7 & --- & --- & --- & --- & --- & --- & 28.1 & 25.8 & 27.0 & --- & --- & --- \\
\hline 8 & - & --- & -- & 24.7 & 24.1 & 24.5 & 28.0 & 26.3 & 27.1 & --- & --- & - \\
\hline 9 & --- & --- & --- & 25.2 & 24.7 & 24.8 & 27.7 & 25.3 & 26.0 & --- & --- & --- \\
\hline 10 & --- & --- & -- & 25.3 & 25.0 & 25.2 & 28.3 & 25.7 & 26.9 & --- & --- & --- \\
\hline 11 & --- & --- & - & 25.3 & 24.6 & 24.9 & 29.2 & 26.8 & 27.8 & --- & --- & --- \\
\hline 12 & --- & --- & -- & 24.6 & 23.9 & 24.4 & 29.5 & 27.3 & 28.4 & --- & --- & --- \\
\hline 13 & --- & --- & -- & 23.9 & 21.0 & 22.1 & 29.6 & 28.1 & 28.9 & --- & --- & -- \\
\hline 14 & --- & --- & - & 21.0 & 20.8 & 20.8 & 29.5 & 26.8 & 27.9 & - & --- & --- \\
\hline 15 & -- & -- & --- & 21.2 & 20.9 & 21.0 & 27.0 & 25.3 & 26.0 & -- & --- & --- \\
\hline 16 & --- & --- & --- & 21.9 & 21.2 & 21.5 & 27.4 & 25.1 & 26.2 & --- & --- & --- \\
\hline 17 & --- & --- & - & 22.8 & 21.9 & 22.3 & 28.8 & 26.3 & 27.2 & --- & --- & -- \\
\hline 18 & --- & --- & --- & 23.4 & 22.8 & 23.1 & 29.4 & 27.0 & 28.2 & --- & --- & --- \\
\hline 19 & -- & --- & --- & 24.1 & 23.4 & 23.7 & 29.4 & 27.1 & 28.1 & -- & --- & - \\
\hline 20 & --- & --- & - & 24.7 & 24.1 & 24.3 & 27.5 & 25.4 & 26.1 & --- & --- & --- \\
\hline 21 & --- & --- & --- & 25.0 & 24.7 & 24.8 & 26.6 & 24.3 & 25.2 & --- & --- & --- \\
\hline 22 & --- & --- & --- & 25.1 & 24.6 & 24.9 & 27.3 & 24.5 & 26.0 & --- & --- & - \\
\hline 23 & --- & --- & - & 24.6 & 24.2 & 24.4 & 27.4 & 25.6 & 26.4 & --- & --- & --- \\
\hline 24 & --- & --- & - & 24.7 & 24.5 & 24.6 & 26.2 & 24.9 & 25.5 & --- & --- & --- \\
\hline 25 & --- & - & --- & 24.7 & 24.4 & 24.5 & 26.0 & 25.1 & 25.6 & --- & --- & --- \\
\hline 26 & --- & --- & - & 24.5 & 24.1 & 24.3 & 26.0 & 25.3 & 25.6 & --- & --- & - \\
\hline 27 & --- & --- & --- & 24.9 & 24.4 & 24.6 & 26.1 & 24.9 & 25.3 & --- & --- & --- \\
\hline 28 & -- & --- & --- & 25.2 & 24.7 & 24.9 & 27.2 & 24.9 & 25.7 & --- & --- & --- \\
\hline 29 & --- & --- & --- & 26.0 & 25.1 & 25.4 & 27.3 & 25.1 & 26.2 & --- & --- & --- \\
\hline 30 & --- & --- & --- & 27.0 & 25.8 & 26.2 & 27.4 & 25.0 & 26.3 & --- & --- & --- \\
\hline 31 & --- & --- & --- & 28.4 & 26.6 & 27.1 & 27.1 & 24.0 & 25.6 & - & - & --- \\
\hline MONTH & --- & -- & -- & 28.4 & 20.8 & 24.1 & 29.6 & 24.0 & 26.7 & 27.3 & 24.6 & 26.0 \\
\hline YEAR & 29.6 & 20.8 & 25.5 & & & & & & & & & \\
\hline
\end{tabular}


03410600 SOUTH FORK CUMBERLAND RIVER AT YAMACRAW, KY
LOCATION.--Lat \(36^{\circ} 43^{\prime \prime} 2^{\prime \prime \prime}\), long \(84^{\circ} 32^{\prime \prime} 3^{\prime \prime \prime}\), McCreary County, Hydrologic Unit 05130104, on left bank, 200 feet upstream of bridge on State Highway 92 at Yamacraw, 700 'feet upstream from Wolf Creek, 0.6 mile downstream from Rock Creek, and at mile 40.3 . DRAINAGE AREA. \(-1,083 \mathrm{mi}^{2}\).

WATER-DISCHARGE RECORDS
PERIOD OF RECORD.--June 1999 to September 30, 1999.
GAGE.--Water-stage recorder. Datum of gage is 730 ft above sea level from topographic map.
REMARKS.--Records poor
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & --- & --- & - & --- & --- & -- & -- & -- & e230 & e4100 & e380 & e93 \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & e220 & e3600 & e300 & e82 \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & e340 & e7500 & e240 & e75 \\
\hline 4 & --- & --- & --- & --- & --- & --- & --- & --- & e480 & e3800 & e220 & e69 \\
\hline 5 & --- & --- & --- & --- & --- & --- & --- & --- & e490 & e2300 & e190 & e64 \\
\hline 6 & --- & --- & --- & --- & --- & --- & -- & -- & e660 & e1500 & e160 & e58 \\
\hline 7 & --- & --- & --- & --- & --- & --- & --- & --- & e540 & e1200 & e140 & e56 \\
\hline 8 & --- & --- & --- & --- & --- & --- & --- & --- & e430 & e880 & e130 & e50 \\
\hline 9 & --- & --- & --- & --- & --- & --- & --- & --- & e330 & e690 & e150 & e45 \\
\hline 10 & --- & --- & --- & --- & --- & --- & --- & --- & e260 & e610 & e150 & e42 \\
\hline 11 & --- & --- & --- & --- & --- & --- & --- & -- & e230 & e1200 & e130 & e39 \\
\hline 12 & --- & --- & --- & --- & --- & --- & --- & --- & e200 & e2000 & e120 & e36 \\
\hline 13 & --- & --- & --- & --- & --- & --- & --- & --- & e180 & e8300 & e120 & e34 \\
\hline 14 & --- & --- & --- & --- & --- & --- & --- & --- & e190 & e4000 & e110 & e33 \\
\hline 15 & --- & --- & --- & --- & --- & --- & --- & --- & e220 & e2800 & e95 & e32 \\
\hline 16 & --- & --- & --- & --- & --- & --- & - & - & e200 & e1800 & e89 & e30 \\
\hline 17 & --- & --- & --- & --- & --- & --- & --- & --- & e180 & e1200 & e84 & e28 \\
\hline 18 & --- & --- & --- & --- & --- & --- & --- & --- & e160 & e940 & e78 & e27 \\
\hline 19 & --- & --- & --- & --- & --- & --- & --- & --- & e140 & e800 & e72 & e26 \\
\hline 20 & --- & --- & --- & --- & --- & --- & --- & --- & e120 & e660 & e83 & e26 \\
\hline 21 & --- & --- & --- & --- & --- & --- & --- & --- & e110 & e2500 & e94 & e26 \\
\hline 22 & --- & --- & --- & --- & --- & --- & --- & --- & e110 & e1400 & e86 & e26 \\
\hline 23 & --- & --- & --- & --- & --- & --- & --- & --- & e110 & e1200 & e74 & e27 \\
\hline 24 & --- & --- & --- & --- & --- & --- & --- & --- & e100 & e1000 & e75 & e30 \\
\hline 25 & -- & --- & --- & --- & --- & --- & --- & --- & e3900 & e3100 & e350 & e28 \\
\hline 26 & --- & --- & --- & --- & --- & --- & --- & --- & e5200 & e2100 & e680 & e26 \\
\hline 27 & --- & --- & --- & -- & --- & --- & --- & --- & e3900 & e1200 & e470 & e25 \\
\hline 28 & --- & --- & --- & --- & --- & --- & --- & --- & e11000 & e850 & e280 & e25 \\
\hline 29 & --- & --- & --- & --- & --- & --- & --- & --- & e14000 & e650 & e190 & e25 \\
\hline 30 & --- & --- & --- & --- & --- & --- & --- & - & e12000 & e540 & e140 & e25 \\
\hline 31 & --- & --- & --- & --- & --- & --- & --- & --- & --- & e440 & e110 & --- \\
\hline TOTAL & --- & --- & --- & --- & --- & --- & --- & - & 56230 & 64860 & 5590 & 1208 \\
\hline MEAN & --- & --- & --- & --- & --- & --- & --- & --- & 1874 & 2092 & 180 & 40.3 \\
\hline MAX & --- & --- & -- & --- & --- & - & -- & - & 14000 & 8300 & 680 & 93 \\
\hline MIN & --- & --- & --- & --- & --- & --- & -- & -- & 100 & 440 & 72 & 25 \\
\hline CFSM & --- & --- & --- & --- & --- & --- & --- & --- & 1.73 & 1.93 & . 17 & . 04 \\
\hline IN. & --- & --- & --- & --- & --- & --- & --- & - & 1.93 & 2.23 & . 19 & . 04 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1999 - 1999, BY WATER YEAR (WY)
\begin{tabular}{clllllllllll} 
MEAN & --- & --- & --- & --- & --- & --- & --- & --- & 1874 & 2092 & 180 \\
MAX & --- & --- & --- & --- & --- & --- & --- & --- & 1874 & 2092 & 180 \\
(WY) & -- & --- & --- & --- & --- & --- & --- & --- & 1999 & 1999 & 1999 \\
MIN & --- & --- & --- & --- & --- & --- & --- & --- & 1899 \\
(WY) & --- & --- & --- & --- & --- & --- & --- & --- & 1999 & 2092 & 180 \\
\hline
\end{tabular}
e Estimated

CUMBERLAND RIVER BASIN
03410600 SOUTH FORK CUMBERLAND RIVER AT YAMACRAW, KY--Continued


PERIOD OF RECORD.--
CHEMICAL ANALYSES: June 1999 to Sep. 1999.
WATER TEMPERATURE: Oct. 1949 to Sep. 1963, unpublished; Oct. 1963 to Sep. 1976.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: June 1999 to Sep. 1999
pH : June 1999 to Sep. 1999.
WATER TEMPERATURE: June 1999 to Sep. 1999.
INSTRUMENTATION.--Water-quality monitor since June 1999.
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum recorded, 207 microsiemens, Sep. 26, 27; minimum recorded, 133 microsiemens, Aug. 27 , 28. \(\mathrm{pH}:\) Maximum recorded, 7.3 units, June 8-14; minimum recorded, 6.4 units, July \(24,25\).
WATER TEMPERATURE: Maximum recorded, \(30.1^{\circ} \mathrm{C}\), Aug. 13; minimum recorded, \(18.6^{\circ} \mathrm{C}\), Sep. 24.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


CUMBERLAND RIVER BASIN
03410600 SOUTH FORK CUMBERLAND RIVER AT YAMACRAW, KY --Contiuned--Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & \multicolumn{2}{|r|}{JULY} & \multicolumn{4}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & --- & --- & --- & --- & --- & --- & --- & --- & -- & 146 & 142 & 144 \\
\hline 2 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 143 & 139 & 140 \\
\hline 3 & --- & --- & --- & --- & --- & --- & --- & --- & --- & 139 & 136 & 138 \\
\hline 4 & 164 & 164 & 164 & --- & --- & --- & --- & --- & --- & 137 & 134 & 136 \\
\hline 5 & 163 & 161 & 162 & --- & --- & --- & --- & --- & --- & 138 & 135 & 137 \\
\hline 6 & 165 & 154 & 160 & --- & --- & --- & --- & --- & --- & 143 & 138 & 140 \\
\hline 7 & 153 & 152 & 152 & --- & --- & --- & --- & --- & --- & 150 & 142 & 147 \\
\hline 8 & 151 & 147 & 149 & --- & --- & --- & --- & --- & --- & 153 & 149 & 151 \\
\hline 9 & 154 & 147 & 150 & --- & --- & --- & --- & --- & --- & 160 & 153 & 157 \\
\hline 10 & 162 & 158 & 160 & --- & - & --- & --- & - & -- & 166 & 159 & 164 \\
\hline 11 & 163 & 161 & 162 & --- & --- & --- & - & --- & --- & 168 & 166 & 167 \\
\hline 12 & 162 & 157 & 161 & --- & - & -- & 149 & 146 & 147 & 176 & 168 & 172 \\
\hline 13 & 158 & 155 & 157 & --- & --- & --- & 148 & 146 & 147 & 182 & 176 & 179 \\
\hline 14 & 156 & 154 & 155 & --- & --- & --- & 149 & 148 & 148 & 184 & 182 & 182 \\
\hline 15 & 164 & 153 & 161 & --- & --- & --- & 151 & 148 & 150 & 182 & 180 & 181 \\
\hline 16 & --- & --- & --- & --- & --- & --- & 154 & 151 & 153 & 182 & 180 & 181 \\
\hline 17 & --- & --- & --- & --- & --- & --- & 154 & 153 & 153 & 186 & 182 & 184 \\
\hline 18 & --- & --- & --- & --- & --- & --- & 154 & 152 & 153 & 193 & 180 & 189 \\
\hline 19 & --- & --- & --- & --- & --- & --- & 154 & 153 & 153 & 195 & 193 & 194 \\
\hline 20 & -- & --- & --- & --- & --- & --- & 156 & 154 & 155 & 194 & 193 & 194 \\
\hline 21 & 170 & 167 & 168 & -- & - & - & 158 & 156 & 156 & 194 & 193 & 193 \\
\hline 22 & 168 & 161 & 165 & 189 & 149 & 169 & 160 & 158 & 159 & 194 & 193 & 194 \\
\hline 23 & 166 & 165 & 165 & --- & --- & --- & 159 & 155 & 156 & 194 & 191 & 192 \\
\hline 24 & 166 & 165 & 166 & --- & --- & --- & 155 & 151 & 154 & 194 & 190 & 192 \\
\hline 25 & 185 & 151 & 169 & --- & --- & --- & 166 & 152 & 157 & 204 & 193 & 198 \\
\hline 26 & 192 & 146 & 169 & --- & --- & --- & 155 & 139 & 143 & 207 & 202 & 205 \\
\hline 27 & --- & --- & --- & --- & --- & --- & 139 & 133 & 135 & 207 & 202 & 204 \\
\hline 28 & --- & --- & --- & --- & --- & - & 137 & 133 & 134 & 202 & 196 & 200 \\
\hline 29 & --- & --- & --- & --- & --- & --- & 144 & 137 & 140 & 197 & 195 & 196 \\
\hline 30 & -- & --- & --- & --- & --- & --- & 148 & 144 & 146 & 200 & 195 & 198 \\
\hline 31 & --- & --- & --- & --- & --- & -- & 148 & 146 & 147 & --- & --- & --- \\
\hline MONTH & 192 & 146 & 161 & 189 & 149 & 169 & 166 & 133 & 149 & 207 & 134 & 175 \\
\hline YEAR & 207 & 133 & 164 & & & & & & & & & \\
\hline
\end{tabular}

PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN \\
\hline & \multicolumn{2}{|c|}{APRIL} & \multicolumn{2}{|c|}{MAY} & \multicolumn{2}{|c|}{JUNE} & \multicolumn{2}{|c|}{JULY} & \multicolumn{2}{|c|}{AUGUST} & \multicolumn{2}{|l|}{SEPTEMBER} \\
\hline 1 & -- & --- & -- & -- & -- & -- & 6.8 & 6.6 & --- & --- & 7.1 & 6.9 \\
\hline 2 & --- & --- & --- & --- & --- & - & 6.8 & 6.7 & --- & --- & 7.1 & 6.9 \\
\hline 3 & --- & --- & --- & --- & --- & --- & 6.8 & 6.7 & --- & --- & 7.1 & 6.9 \\
\hline 4 & --- & --- & --- & --- & 7.2 & 7.2 & 6.8 & 6.7 & --- & --- & 7.1 & 6.9 \\
\hline 5 & --- & --- & --- & --- & 7.2 & 7.2 & 6.7 & 6.7 & --- & --- & 7.1 & 6.9 \\
\hline 6 & --- & --- & --- & --- & 7.2 & 7.1 & 6.8 & 6.7 & --- & --- & 7.0 & 6.9 \\
\hline 7 & --- & --- & --- & --- & 7.2 & 7.2 & 6.8 & 6.7 & --- & --- & 7.1 & 6.9 \\
\hline 8 & --- & --- & --- & - & 7.3 & 7.3 & 6.9 & 6.8 & --- & -- & 7.1 & 6.9 \\
\hline 9 & --- & --- & --- & --- & 7.3 & 7.2 & 6.9 & 6.8 & --- & --- & 7.1 & 6.9 \\
\hline 10 & --- & -- & --- & - & 7.3 & 7.2 & 6.9 & 6.8 & --- & -- & 7.1 & 6.9 \\
\hline 11 & --- & --- & --- & --- & 7.3 & 7.2 & 6.9 & 6.8 & --- & --- & 7.1 & 6.8 \\
\hline 12 & - & --- & --- & - & 7.3 & 7.2 & 7.0 & 6.9 & 7.0 & 6.8 & 7.0 & 6.8 \\
\hline 13 & --- & --- & --- & --- & 7.3 & 7.1 & 7.1 & 6.9 & 7.1 & 6.9 & 6.9 & 6.8 \\
\hline 14 & --- & --- & --- & --- & 7.3 & 7.1 & 6.9 & 6.9 & 7.0 & 6.9 & 7.0 & 6.8 \\
\hline 15 & --- & --- & --- & --- & 7.2 & 7.0 & 6.9 & 6.9 & 7.0 & 6.9 & 7.0 & 6.9 \\
\hline 16 & --- & --- & --- & --- & --- & --- & 6.9 & 6.8 & 7.0 & 6.9 & 7.1 & 6.9 \\
\hline 17 & -- & --- & --- & --- & --- & --- & 6.9 & 6.8 & 7.1 & 6.9 & 7.0 & 7.0 \\
\hline 18 & --- & --- & --- & --- & --- & --- & 6.9 & 6.8 & 7.0 & 6.9 & 7.0 & 7.0 \\
\hline 19 & --- & --- & --- & --- & --- & --- & 6.8 & 6.8 & 7.0 & 6.9 & 7.0 & 6.9 \\
\hline 20 & --- & --- & --- & --- & --- & --- & 6.8 & 6.7 & 6.9 & 6.8 & 7.0 & 6.9 \\
\hline 21 & --- & --- & --- & --- & 7.1 & 7.1 & 7.0 & 6.8 & 6.9 & 6.8 & 6.9 & 6.9 \\
\hline 22 & --- & --- & --- & --- & 7.2 & 7.0 & 6.9 & 6.7 & 7.0 & 6.8 & 7.1 & 7.0 \\
\hline 23 & --- & --- & --- & --- & 7.2 & 7.0 & 6.7 & 6.5 & 7.1 & 6.9 & 7.1 & 6.9 \\
\hline 24 & --- & --- & --- & --- & 7.1 & 7.0 & 6.6 & 6.4 & 7.1 & 6.9 & 7.0 & 6.9 \\
\hline 25 & --- & --- & --- & --- & 7.0 & 6.7 & 6.8 & 6.4 & 7.0 & 6.9 & 7.0 & 6.8 \\
\hline 26 & --- & --- & --- & -- & 7.1 & 6.8 & 6.8 & 6.6 & 7.0 & 6.9 & 6.9 & 6.8 \\
\hline 27 & --- & --- & --- & --- & 6.9 & 6.8 & 6.7 & 6.5 & 7.0 & 6.9 & 7.0 & 6.8 \\
\hline 28 & --- & -- & --- & --- & 7.0 & 6.8 & 6.9 & 6.7 & 7.0 & 6.9 & 7.0 & 6.9 \\
\hline 29 & --- & --- & --- & --- & 7.0 & 6.7 & --- & --- & 7.1 & 6.9 & 7.1 & 6.8 \\
\hline 30 & --- & --- & --- & --- & 6.8 & 6.7 & --- & --- & 7.1 & 7.0 & 7.1 & 7.0 \\
\hline 31 & --- & --- & --- & -- & --- & --- & --- & -- & 7.1 & 6.9 & - & - \\
\hline MONTH & --- & --- & --- & - & 7.3 & 6.7 & 7.1 & 6.4 & 7.1 & 6.8 & 7.1 & 6.8 \\
\hline
\end{tabular}

\footnotetext{
\(\begin{array}{lll}\text { YEAR } & 7.3 & 6.4\end{array}\)
}

CUMBERLAND RIVER BASIN
03410600 SOUTH FORK CUMBERLAND RIVER AT YAMACRAW, KY --Contiuned--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & & JULY & & \multicolumn{3}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & --- & --- & --- & 21.5 & 20.3 & 20.8 & --- & --- & --- & 26.6 & 24.1 & 25.3 \\
\hline 2 & --- & --- & --- & 21.6 & 20.9 & 21.2 & --- & --- & --- & 26.7 & 24.2 & 25.3 \\
\hline 3 & --- & --- & --- & 21.3 & 20.7 & 21.0 & --- & --- & --- & 26.9 & 24.3 & 25.5 \\
\hline 4 & 24.7 & 24.7 & 24.7 & 22.5 & 20.8 & 21.5 & --- & --- & --- & 27.3 & 24.5 & 25.7 \\
\hline 5 & 24.2 & 23.8 & 24.0 & 23.4 & 22.0 & 22.6 & --- & --- & --- & 27.5 & 24.4 & 25.7 \\
\hline 6 & 23.8 & 23.2 & 23.5 & 24.8 & 23.1 & 23.8 & --- & --- & --- & 27.3 & 24.9 & 26.0 \\
\hline 7 & 25.1 & 24.2 & 24.6 & 25.4 & 24.1 & 24.7 & --- & --- & --- & 27.9 & 25.1 & 26.2 \\
\hline 8 & 25.4 & 24.6 & 24.8 & 26.4 & 24.8 & 25.5 & --- & --- & --- & 28.0 & 24.7 & 26.0 \\
\hline 9 & 27.2 & 25.0 & 25.9 & 26.5 & 25.7 & 26.1 & --- & --- & --- & 26.5 & 25.1 & 25.7 \\
\hline 10 & 27.4 & 25.6 & 26.6 & 26.5 & 25.9 & 26.2 & --- & --- & --- & 25.9 & 23.5 & 24.7 \\
\hline 11 & 27.8 & 25.8 & 26.8 & 26.3 & 25.1 & 25.4 & --- & --- & --- & 25.3 & 22.9 & 24.0 \\
\hline 12 & 29.6 & 26.1 & 27.3 & 25.1 & 24.0 & 24.7 & 29.7 & 27.4 & 28.5 & 25.6 & 23.4 & 24.4 \\
\hline 13 & 28.7 & 26.4 & 27.4 & 24.0 & 20.0 & 21.4 & 30.1 & 28.0 & 28.9 & 24.9 & 23.6 & 24.1 \\
\hline 14 & 28.1 & 26.5 & 26.9 & 21.1 & 19.9 & 20.4 & 29.5 & 27.5 & 28.2 & 25.4 & 23.2 & 24.0 \\
\hline 15 & 26.9 & 25.3 & 26.1 & 21.9 & 20.6 & 21.2 & 27.5 & 26.6 & 27.1 & 23.8 & 22.2 & 23.0 \\
\hline 16 & --- & --- & --- & 23.1 & 21.6 & 22.3 & 28.2 & 25.8 & 26.9 & 22.9 & 21.6 & 22.2 \\
\hline 17 & --- & --- & --- & 24.2 & 22.5 & 23.3 & 29.0 & 26.4 & 27.6 & 22.7 & 20.7 & 21.7 \\
\hline 18 & --- & --- & --- & 24.7 & 23.8 & 24.2 & 29.4 & 26.9 & 28.2 & 22.4 & 20.4 & 21.4 \\
\hline 19 & --- & --- & --- & 25.4 & 24.2 & 24.8 & 27.9 & 27.1 & 27.3 & 22.6 & 20.5 & 21.5 \\
\hline 20 & --- & --- & --- & 26.0 & 25.0 & 25.5 & 27.4 & 26.3 & 26.7 & 21.9 & 20.9 & 21.4 \\
\hline 21 & 27.2 & 25.0 & 26.0 & 26.6 & 25.5 & 26.0 & 27.3 & 25.5 & 26.3 & 21.4 & 21.0 & 21.0 \\
\hline 22 & 27.2 & 24.6 & 25.6 & 26.5 & 25.9 & 26.2 & 27.4 & 25.0 & 26.1 & 20.6 & 19.3 & 19.7 \\
\hline 23 & 26.8 & 25.2 & 25.9 & 25.9 & 24.9 & 25.4 & 26.5 & 25.0 & 25.8 & 20.8 & 18.6 & 19.6 \\
\hline 24 & 26.4 & 25.7 & 25.9 & 25.6 & 25.2 & 25.4 & 26.3 & 25.3 & 25.8 & 21.1 & 18.6 & 19.6 \\
\hline 25 & 25.8 & 24.0 & 25.0 & 26.1 & 24.6 & 25.3 & 26.0 & 25.1 & 25.5 & 21.9 & 18.8 & 20.0 \\
\hline 26 & 24.0 & 20.3 & 21.2 & 25.6 & 24.3 & 24.9 & 25.9 & 25.2 & 25.6 & 22.1 & 19.2 & 20.4 \\
\hline 27 & 20.7 & 20.1 & 20.4 & 26.2 & 24.9 & 25.5 & 25.6 & 24.7 & 25.2 & 21.8 & 20.2 & 20.9 \\
\hline 28 & 20.7 & 19.8 & 20.3 & 26.7 & 24.9 & 25.9 & 26.1 & 24.8 & 25.4 & 22.7 & 20.9 & 21.7 \\
\hline 29 & 20.2 & 19.7 & 19.9 & --- & --- & --- & 27.0 & 25.0 & 25.9 & 22.4 & 20.5 & 21.6 \\
\hline 30 & 20.4 & 19.6 & 20.0 & --- & --- & --- & 26.4 & 24.9 & 25.7 & 20.9 & 19.6 & 20.1 \\
\hline 31 & --- & --- & --- & --- & -- & --- & 26.3 & 24.1 & 25.2 & --- & --- & --- \\
\hline MONTH & 29.6 & 19.6 & 24.5 & 26.7 & 19.9 & 24.0 & 30.1 & 24.1 & 26.6 & 28.0 & 18.6 & 22.9 \\
\hline YEAR & 30.1 & 18.6 & 24.3 & & & & & & & & & \\
\hline
\end{tabular}


03413200 BEAVER CREEK NEAR MONTICELLO, KY
LOCATION.--Lat \(36^{\circ} 47^{\prime} 51^{\prime \prime}\), long \(84^{\circ} 53^{\prime} 46^{\prime \prime}\), Wayne County, Hydrologic Unit 05130103, on left bank upstream of bridge on State Highway 200, 0.6 mi downstream from unnamed tributary, 0.8 mi northeast of Bethesda, 0.9 mi upstream from unnamed tributary, 3.8 mi southwest of Monticello, and at mile 24.0 .

DRAINAGE AREA. \(-43.4 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1968 to September 1983, October 1989 to current year.
REVISED RECORDS.--WDR-98-1: Peak discharges and annual maximum.
GAGE.--Water-stage recorder. Datum of gage is 804.72 ft above sea level
REMARKS.--Records fair.
EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of 1946 reached a stage of 10.8 ft from information by local residents.

PEAKS ABOVE BASE.--Peak discharges above base of \(1,500 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 23 & 1230 & \(* 1740\) & 5.99
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES} \\
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 1.7 & 2.0 & 2.0 & 14 & 211 & 92 & 23 & 30 & 7.8 & 16 & 4.6 & 2.2 \\
\hline 2 & 1.4 & 2.0 & 2.0 & 21 & 149 & 65 & 23 & 26 & 7.7 & 34 & 4.4 & 2.2 \\
\hline 3 & 1.8 & 2.0 & 2.0 & 184 & 109 & 155 & 22 & 23 & 7.3 & 24 & 4.4 & 2.2 \\
\hline 4 & 2.0 & 2.0 & 2.0 & 74 & 80 & 149 & 22 & 21 & 6.9 & 16 & 4.3 & 2.2 \\
\hline 5 & 1.9 & 2.1 & 8.0 & 47 & 60 & 125 & 21 & 23 & 7.8 & 13 & 4.2 & 2.1 \\
\hline 6 & 1.8 & 2.3 & 11 & 38 & 50 & 157 & 21 & 88 & 9.2 & 12 & 3.9 & 2.1 \\
\hline 7 & 2.2 & 2.2 & 12 & 29 & 50 & 125 & 20 & 49 & 7.7 & 10 & 3.6 & 2.1 \\
\hline 8 & 7.9 & 2.0 & 171 & 211 & 48 & 92 & 20 & 33 & 7.0 & 9.4 & 3.4 & 2.1 \\
\hline 9 & 3.4 & 2.3 & 76 & 427 & 38 & 117 & 21 & 27 & 6.7 & 8.7 & 2.8 & 2.0 \\
\hline 10 & 2.0 & 3.7 & 21 & 262 & 31 & 107 & 20 & 23 & 6.5 & 8.3 & 2.9 & 2.0 \\
\hline 11 & 1.8 & 5.7 & 10 & 134 & 27 & 80 & 22 & 20 & 6.3 & 8.3 & 2.6 & 1.9 \\
\hline 12 & 1.8 & 5.5 & 15 & 92 & 116 & 68 & 21 & 19 & 6.2 & 7.9 & 2.5 & 1.9 \\
\hline 13 & 1.8 & 4.2 & 594 & 66 & 119 & 58 & 20 & 18 & 7.0 & 7.4 & 2.3 & 2.0 \\
\hline 14 & 1.8 & 3.4 & 122 & 93 & 78 & 183 & 20 & 49 & 8.1 & 7.1 & 2.4 & 2.0 \\
\hline 15 & 1.7 & 3.1 & 44 & 122 & 64 & 208 & 32 & 27 & 10 & 6.7 & 2.8 & 2.0 \\
\hline 16 & 1.6 & 3.0 & 23 & 87 & 51 & 142 & 31 & 22 & 7.5 & 6.5 & 2.6 & 2.0 \\
\hline 17 & 1.6 & 2.7 & 19 & 67 & 57 & 108 & 27 & 20 & 6.4 & 6.3 & 2.5 & 2.0 \\
\hline 18 & 1.6 & 2.5 & 17 & 117 & 53 & 86 & 24 & 18 & 5.9 & 6.0 & 2.4 & 1.9 \\
\hline 19 & 1.6 & 2.5 & 12 & 96 & 44 & 67 & 23 & 16 & 5.7 & 5.6 & 2.4 & 1.9 \\
\hline 20 & 1.6 & 2.4 & 10 & 76 & 35 & 59 & 23 & 13 & 5.6 & 5.9 & 2.5 & 2.1 \\
\hline 21 & 1.7 & 2.3 & 8.7 & 62 & 29 & 53 & 23 & 12 & 5.4 & 5.8 & 2.5 & 2.2 \\
\hline 22 & 1.8 & 2.3 & 14 & 49 & 25 & 44 & 22 & 12 & 5.3 & 5.4 & 2.5 & 2.1 \\
\hline 23 & 1.8 & 2.3 & 18 & 971 & 23 & 37 & 21 & 11 & 5.3 & 5.2 & 2.3 & 2.1 \\
\hline 24 & 1.8 & 2.3 & 13 & 336 & 21 & 35 & 20 & 11 & 10 & 5.5 & 2.2 & 2.0 \\
\hline 25 & 1.8 & 2.3 & 11 & 153 & 20 & 32 & 19 & 11 & 31 & 5.8 & 2.7 & 2.0 \\
\hline 26 & 1.8 & 2.8 & 11 & 99 & 18 & 29 & 19 & 10 & 17 & 5.0 & 2.7 & 2.0 \\
\hline 27 & 1.8 & 2.6 & 13 & 74 & 17 & 26 & 18 & 9.5 & 12 & 5.4 & 2.5 & 2.0 \\
\hline 28 & 1.8 & 2.4 & 17 & 57 & 185 & 24 & 19 & 8.9 & 18 & 4.9 & 2.5 & 2.0 \\
\hline 29 & 1.8 & 2.2 & 23 & 40 & -- & 23 & 76 & 7.6 & 64 & 4.8 & 2.4 & 2.5 \\
\hline 30 & 1.9 & 2.0 & 20 & 32 & --- & 21 & 40 & 7.3 & 24 & 4.8 & 2.3 & 2.4 \\
\hline 31 & 2.0 & --- & 16 & 46 & - & 21 & --- & 7.8 & - & 4.2 & 2.3 & --- \\
\hline TOTAL & 63.0 & 81.1 & 1337.7 & 4176 & 1808 & 2588 & 733 & 673.1 & 335.3 & 275.9 & 90.4 & 62.2 \\
\hline MEAN & 2.03 & 2.70 & 43.2 & 135 & 64.6 & 83.5 & 24.4 & 21.7 & 11.2 & 8.90 & 2.92 & 2.07 \\
\hline MAX & 7.9 & 5.7 & 594 & 971 & 211 & 208 & 76 & 88 & 64 & 34 & 4.6 & 2.5 \\
\hline MIN & 1.4 & 2.0 & 2.0 & 14 & 17 & 21 & 18 & 7.3 & 5.3 & 4.2 & 2.2 & 1.9 \\
\hline CFSM & . 05 & . 06 & . 99 & 3.10 & 1.49 & 1.92 & . 56 & . 50 & . 26 & . 21 & . 07 & . 05 \\
\hline IN. & . 05 & . 07 & 1.15 & 3.58 & 1.55 & 2.22 & . 63 & . 58 & . 29 & . 24 & . 08 & . 05 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1969 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 22.2 & 34.5 & 97.9 & 118 & 116 & 135 & 114 & 57.3 & 47.2 & 16.7 & 16.9 & 15.1 \\
MAX & 281 & 109 & 459 & 265 & 225 & 479 & 242 & 215 & 193 & 101 & 124 & 106 \\
(WY) & 1990 & 1980 & 1991 & 1974 & 1991 & 1975 & 1998 & 1983 & 1981 & 1971 & 1971 & 1982 \\
MIN & 1.72 & 2.70 & 2.41 & 2.36 & 28.1 & 24.0 & 21.4 & 16.6 & 4.83 & 3.13 & 1.89 & 1.17 \\
(WY) & 1981 & 1999 & 1981 & 1981 & 1981 & 1983 & 1995 & 1982 & 1980 & 1980 & 1980 & 1980
\end{tabular}

CUMBERLAND RIVER BASIN
03413200 BEAVER CREEK NEAR MONTICELLO, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & AR YEAR & FOR 1999 WAT & R YEAR & WATER YEARS & \multicolumn{2}{|l|}{1969-1999} \\
\hline ANNUAL TOTAL & 28121.9 & & 12223.7 & & & & \\
\hline ANNUAL MEAN & 77.0 & & 33.5 & & 65.8 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 103 & & 1979 \\
\hline LOWEST ANNUAL MEAN & & & & & 32.5 & & 1969 \\
\hline HIGHEST DAILY MEAN & 1580 & Apr 17 & 971 & Jan 23 & 4280 & Oct 17 & 1989 \\
\hline LOWEST DAILY MEAN & 1.4 & Oct 2 & 1.4 & Oct 2 & . 50 & Oct 2 & 1968 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 1.6 & Sep 12 & 1.6 & Oct 15 & . 95 & Sep 4 & 1980 \\
\hline INSTANTANEOUS PEAK FLOW & & & 1740 & Jan 23 & 3130 & Apr 17 & 1998 \\
\hline INSTANTANEOUS PEAK STAGE & & & 5.99 & Jan 23 & 8.67 & Apr 17 & 1998 \\
\hline INSTANTANEOUS LOW FLOW & & & & & . 50 & Oct 2 & 1968 \\
\hline ANNUAL RUNOFF (CFSM) & 1.78 & & . 77 & & 1.52 & & \\
\hline ANNUAL RUNOFF (INCHES) & 24.10 & & 10.48 & & 20.59 & & \\
\hline 10 PERCENT EXCEEDS & 176 & & 90 & & 134 & & \\
\hline 50 PERCENT EXCEEDS & 17 & & 10 & & 20 & & \\
\hline 90 PERCENT EXCEEDS & 1.8 & & 2.0 & & 2.6 & & \\
\hline
\end{tabular}


LOCATION.--Lat \(36^{\circ} 46^{\prime} 40^{\prime \prime}\), long \(87^{\circ} 43^{\prime} 18^{\prime \prime}\), Trigg County, Hydrologic Unit 05130205, on right bank at upstream side of bridge on State Highway 1253, 50 ft downstream from Casey Creek, 8.8 mi southeast of Cadiz, and at mile 34.3 .
DRAINAGE AREA. \(--244 \mathrm{mi}^{2}\), of which about \(94 \mathrm{mi}^{2}\) does not contribute directly to surface runoff.
PERIOD OF RECORD.--February 1940 to current year.
REVISED RECORDS.--WSP 1173: 1942-43, 1946 (M), 1949. WSP 1306: 1940 (M). WSP 1626: Drainage area.
GAGE.--Water-stage recorder. Datum of gage is 391.45 ft above sea level. Prior to July 31 , 1945 , nonrecording gage at same site and datum.

REMARKS.--Records good except for periods of estimated record, which are fair.
PEAKS ABOVE BASE.--Peak discharges above base of \(3,500 \mathrm{ft}^{3} / \mathrm{s}\) and maximun*
\begin{tabular}{ccccccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} \\
Jan. 23 & 0230 & \(* 7630\) & 16.39 & May 6 & 1830 & 4810
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 28 & 37 & 33 & 140 & 1910 & 602 & 286 & 246 & 136 & 127 & 44 & 26 \\
\hline 2 & 28 & 35 & 32 & 139 & 1280 & 498 & 328 & 208 & 134 & 371 & 41 & 25 \\
\hline 3 & 31 & 35 & 34 & 182 & 1030 & 497 & 373 & 182 & 131 & 254 & 38 & 27 \\
\hline 4 & 32 & 35 & 36 & 249 & 873 & 570 & 1010 & 163 & 117 & 199 & 37 & 28 \\
\hline 5 & 41 & 34 & 132 & 204 & 747 & 483 & 867 & 377 & 154 & 174 & 37 & 25 \\
\hline 6 & 37 & 36 & 434 & 181 & 673 & 559 & 859 & 4310 & 120 & 151 & 37 & 22 \\
\hline 7 & 169 & 39 & 1650 & 170 & 631 & 683 & 937 & 2580 & 109 & 136 & 38 & 20 \\
\hline 8 & 1110 & 39 & 2100 & 411 & 597 & 572 & 692 & 1210 & 101 & 122 & 36 & 19 \\
\hline 9 & 324 & 38 & 1120 & e2540 & 547 & 550 & 611 & 887 & 99 & 110 & 35 & 19 \\
\hline 10 & 181 & 39 & 777 & e1600 & 501 & 573 & 551 & 727 & 95 & 101 & 34 & 19 \\
\hline 11 & 129 & 46 & 624 & 1040 & 465 & 519 & 477 & 624 & 89 & 93 & 35 & 21 \\
\hline 12 & 106 & 79 & 522 & 785 & 444 & 458 & 419 & 549 & 83 & 86 & 35 & 20 \\
\hline 13 & 92 & 45 & 499 & 681 & 454 & 418 & 366 & 498 & 80 & 82 & 39 & 23 \\
\hline 14 & 83 & 38 & 487 & 719 & 424 & 979 & 335 & 446 & 82 & 80 & 38 & 23 \\
\hline 15 & 74 & 36 & 417 & 711 & 391 & 1550 & 346 & 394 & 87 & 76 & 41 & 22 \\
\hline 16 & 67 & 33 & 361 & 614 & 371 & 997 & 374 & 355 & 82 & 72 & 34 & 23 \\
\hline 17 & 60 & 30 & 324 & 544 & 353 & 789 & 338 & 322 & 72 & 70 & 33 & 23 \\
\hline 18 & 57 & 30 & 289 & 611 & 340 & 669 & 296 & 299 & 66 & 67 & 31 & 21 \\
\hline 19 & 57 & 31 & 261 & 671 & 321 & 576 & 267 & 276 & 63 & 63 & 32 & 20 \\
\hline 20 & 64 & 34 & 240 & 567 & 301 & 514 & 249 & 253 & 62 & 61 & 31 & 24 \\
\hline 21 & 61 & 33 & 222 & 510 & 282 & 467 & 232 & 235 & 58 & 59 & 32 & e26 \\
\hline 22 & 51 & 34 & 241 & 2970 & 263 & 419 & 216 & 219 & 55 & 57 & 60 & e36 \\
\hline 23 & 47 & 35 & 316 & 6930 & 254 & 385 & 196 & 207 & 55 & 54 & 49 & 30 \\
\hline 24 & 44 & 41 & 254 & 4240 & 246 & 364 & 177 & 195 & 64 & 53 & 39 & 25 \\
\hline 25 & 44 & 43 & 224 & 2030 & 242 & 339 & 163 & 188 & 188 & 55 & 33 & 21 \\
\hline 26 & 43 & 42 & 205 & 1560 & 233 & 311 & 154 & 178 & 159 & 56 & 28 & 20 \\
\hline 27 & 42 & 37 & 193 & 1250 & 260 & 285 & 308 & 168 & 250 & 54 & 26 & 20 \\
\hline 28 & 39 & 33 & 183 & 1030 & 573 & 265 & 472 & 159 & 333 & 51 & 25 & 19 \\
\hline 29 & 37 & 32 & 174 & 883 & --- & 247 & 389 & 150 & 184 & 50 & 24 & 19 \\
\hline 30 & 37 & 32 & 164 & 784 & --- & 230 & 299 & 142 & 145 & 48 & 25 & 20 \\
\hline 31 & 37 & -- & 151 & 1650 & --- & 228 & --- & 137 & -- & 45 & 25 & --- \\
\hline TOTAL & 3252 & 1131 & 12699 & 36596 & 15006 & 16596 & 12587 & 16884 & 3453 & 3077 & 1092 & 686 \\
\hline MEAN & 105 & 37.7 & 410 & 1181 & 536 & 535 & 420 & 545 & 115 & 99.3 & 35.2 & 22.9 \\
\hline MAX & 1110 & 79 & 2100 & 6930 & 1910 & 1550 & 1010 & 4310 & 333 & 371 & 60 & 36 \\
\hline MIN & 28 & 30 & 32 & 139 & 233 & 228 & 154 & 137 & 55 & 45 & 24 & 19 \\
\hline CFSM & . 43 & . 15 & 1.68 & 4.84 & 2.20 & 2.19 & 1.72 & 2.23 & . 47 & . 41 & . 14 & . 09 \\
\hline IN. & . 50 & . 17 & 1.94 & 5.58 & 2.29 & 2.53 & 1.92 & 2.57 & . 53 & . 47 & . 17 & . 10 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1940 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
\\
MEAN & 64.8 & 208 & 455 & 567 & 692 & 775 & 551 & 417 & 225 & 149 & 93.7 \\
MAX & 504 & 1677 & 1985 & 2168 & 2130 & 3653 & 1924 & 1875 & 1498 & 790 & 381 \\
(WY) & 1997 & 1958 & 1979 & 1950 & 1989 & 1997 & 1979 & 1984 & 1998 & 1989 & 1950 \\
MIN & 12.3 & 14.1 & 14.2 & 27.3 & 39.6 & 28.1 & 37.5 & 21.4 & 34.0 & 29.6 & 23.9 \\
(WY) & 1944 & 1941 & 1964 & 1963 & 1963 & 1941 & 1941 & 1941 & 1963 & 1988 & 1952
\end{tabular}

CUMBERLAND RIVER BASIN
03438000 LITTLE RIVER NEAR CADIZ, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & R YEAR & FOR 1999 WAT & R YEAR & WATER YEARS & 1940 & \multicolumn{2}{|l|}{- 1999} \\
\hline ANNUAL TOTAL & 126445 & & 123059 & & & & & \\
\hline ANNUAL MEAN & 346 & & 337 & & 356 & & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 757 & & & 1997 \\
\hline LOWEST ANNUAL MEAN & & & & & 58.9 & & & 1941 \\
\hline HIGHEST DAILY MEAN & 9140 & Jun 10 & 6930 & Jan 23 & 24300 & Mar & 2 & 1997 \\
\hline LOWEST DAILY MEAN & 28 & Oct 1 & 19 & Sep 8 & 3.6 & Oct & 3 & 1941 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 30 & Sep 28 & 20 & Sep 6 & 7.0 & Oct & 24 & 1940 \\
\hline INSTANTANEOUS PEAK FLOW & & & 7630 & Jan 23 & 37600 & Mar & 1 & 1997 \\
\hline INSTANTANEOUS PEAK STAGE & & & 16.39 & Jan 23 & 26.44 & Mar & 1 & 1997 \\
\hline INSTANTANEOUS LOW FLOW & & & & & 1.0 & Oct & 3 & 1941 \\
\hline ANNUAL RUNOFF (CFSM) & 1.42 & & 1.38 & & 1.46 & & & \\
\hline ANNUAL RUNOFF (INCHES) & 19.28 & & 18.76 & & 19.84 & & & \\
\hline 10 PERCENT EXCEEDS & 677 & & 735 & & 831 & & & \\
\hline 50 PERCENT EXCEEDS & 186 & & 159 & & 140 & & & \\
\hline 90 PERCENT EXCEEDS & 36 & & 29 & & 28 & & & \\
\hline
\end{tabular}


03438220 CUMBERLAND RIVER NEAR GRAND RIVERS, KY
WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1969 to 1986, September 1995 to September 1996, November 1998 to September 1999.
INSTRUMENTATION.--Water-quality monitor since September 1995.
REMARKS.--Flow regulated by Barkley Dam and reservoirs above station. Periods of missing record were due to instrument malfunctions. Supersaturation of oxygen may occur due to local hydraulic conditions.

EXTREMES FOR PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: Maximum, 948 microsiemens, June 13, 1996; minimum 183 microsiemens, June 26 , 1996
pH : Maximum, 9.7 units, June 20, 1996; minimum, 6.0 units, Sept. \(12,1995\).
WATER TEMPERATURE: Maximum, 29. \(6^{\circ} \mathrm{C}\), Sept. 1, 1995; minimum, 0.5\({ }^{\circ} \mathrm{C}, \mathrm{Feb} .6,1995\).
DISSOLVED OXYGEN: Maximum, \(14.9 \mathrm{mg} / \mathrm{L}\), Apr. 3, 1999; minimum, \(3.1 \mathrm{mg} / \mathrm{L}, \mathrm{Sept} .1,1995\).
EXTREMES FOR CURRENT YEAR.--
SPECIFIC CONDUCTANCE: Maximum, 263 microsiemens, Jan. 9; minimum 158 microsiemens, July 14
pH : Maximum, 9.1 units, Mar. 30; minimum, 7.4 units, Sept. 8, 9.
WATER TEMPERATURE: Maximum, \(32.4^{\circ} \mathrm{C}\), July 30 , 31 ; minimum, \(1.9^{\circ} \mathrm{C}\), Jan. 5.
DISSOLVED OXYGEN: Maximum, \(14.9 \mathrm{mg} / \mathrm{L}\), Apr. 3 ; minimum, \(4.7 \mathrm{mg} / \mathrm{L}, \mathrm{July} 25,31\), Aug. 2 , 5.

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{OCTOBER} & \multicolumn{3}{|c|}{NOVEMBER} & \multicolumn{3}{|c|}{DECEMBER} & \multicolumn{3}{|c|}{JANUARY} \\
\hline 1 & -- & -- & -- & --- & --- & --- & 211 & 198 & 205 & 244 & 223 & 232 \\
\hline 2 & -- & --- & --- & --- & -- & - & 207 & 195 & 201 & 247 & 206 & 225 \\
\hline 3 & --- & --- & --- & --- & --- & --- & 206 & 195 & 200 & 237 & 220 & 228 \\
\hline 4 & -- & - & --- & --- & --- & - & 206 & 195 & 201 & 252 & 228 & 244 \\
\hline 5 & -- & - & --- & --- & --- & - & 203 & 191 & 195 & 253 & 248 & 251 \\
\hline 6 & -- & - & -- & -- & -- & --- & 212 & 203 & 208 & 255 & 238 & 250 \\
\hline 7 & -- & --- & --- & --- & --- & - & 212 & 211 & 211 & 259 & 255 & 257 \\
\hline 8 & -- & --- & --- & --- & - & --- & 212 & 197 & 208 & 259 & 229 & 249 \\
\hline 9 & -- & --- & --- & --- & --- & --- & 210 & 198 & 206 & 263 & 257 & 260 \\
\hline 10 & --- & --- & --- & --- & --- & --- & 210 & 201 & 205 & 260 & 256 & 258 \\
\hline 11 & - & --- & --- & --- & --- & --- & 209 & 199 & 205 & 258 & 240 & 251 \\
\hline 12 & --- & --- & --- & --- & --- & --- & 210 & 203 & 206 & 241 & 226 & 232 \\
\hline 13 & --- & --- & --- & - & - & -- & 211 & 199 & 206 & 229 & 224 & 226 \\
\hline 14 & - & --- & --- & --- & --- & --- & 221 & 199 & 208 & 232 & 225 & 230 \\
\hline 15 & -- & -- & --- & --- & --- & --- & 227 & 221 & 224 & 236 & 226 & 232 \\
\hline 16 & --- & --- & --- & --- & --- & - & 238 & 220 & 226 & 240 & 230 & 235 \\
\hline 17 & --- & --- & --- & --- & --- & --- & 237 & 220 & 230 & 244 & 226 & 239 \\
\hline 18 & --- & --- & --- & --- & --- & --- & 230 & 216 & 221 & --- & --- & \\
\hline 19 & - & --- & --- & --- & --- & --- & 234 & 220 & 227 & --- & --- & \\
\hline 20 & -- & --- & --- & - & --- & --- & 233 & 221 & 228 & --- & --- & \\
\hline 21 & --- & --- & --- & --- & --- & --- & 232 & 207 & 222 & --- & --- & \\
\hline 22 & --- & --- & --- & - & -- & - & 232 & 207 & 220 & - & --- & \\
\hline 23 & --- & --- & --- & 204 & 198 & 200 & 219 & 202 & 213 & -- & - & \\
\hline 24 & --- & --- & --- & 214 & 194 & 203 & 221 & 212 & 216 & --- & --- & \\
\hline 25 & --- & --- & -- & 198 & 188 & 194 & 224 & 208 & 215 & --- & - & \\
\hline 26 & --- & --- & --- & 206 & 195 & 202 & 226 & 211 & 217 & --- & --- & \\
\hline 27 & -- & - & --- & 208 & 196 & 201 & 220 & 208 & 214 & -- & --- & -- \\
\hline 28 & --- & --- & --- & 210 & 196 & 204 & 232 & 216 & 224 & --- & --- & \\
\hline 29 & --- & --- & - & 206 & 196 & 203 & 243 & 210 & 222 & --- & --- & \\
\hline 30 & --- & - & --- & 200 & 193 & 196 & 239 & 211 & 222 & --- & --- & \\
\hline 31 & --- & --- & --- & --- & --- & --- & 223 & 208 & 214 & --- & --- & \\
\hline MONT & --- & --- & --- & 214 & 188 & 200 & 243 & 191 & 214 & 263 & 206 & 241 \\
\hline
\end{tabular}

CUMBERLAND RIVER BASIN
03438220 CUMBERLAND RIVER NEAR GRAND RIVERS, KY--Continued
SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


03438220 CUMBERLAND RIVER NEAR GRAND RIVERS, KY--Continued
PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN \\
\hline & \multicolumn{2}{|r|}{OCTOBER} & \multicolumn{2}{|l|}{NOVEMBER} & \multicolumn{2}{|l|}{DECEMBER} & \multicolumn{2}{|r|}{JANUARY} & \multicolumn{2}{|l|}{FEBRUARY} & \multicolumn{2}{|c|}{MARCH} \\
\hline 1 & --- & - & --- & - & 8.2 & 7.9 & 8.1 & 8.0 & --- & -- & 8.5 & 8.3 \\
\hline 2 & --- & --- & --- & --- & 8.4 & 8.2 & 8.1 & 7.9 & --- & --- & 8.5 & 8.2 \\
\hline 3 & --- & --- & --- & --- & 8.4 & 8.1 & 8.0 & 8.0 & --- & --- & 8.4 & 8.2 \\
\hline 4 & --- & --- & --- & --- & 8.5 & 8.1 & 8.1 & 8.0 & --- & --- & 8.4 & 8.2 \\
\hline 5 & --- & --- & --- & --- & 8.3 & 8.1 & 8.3 & 8.1 & --- & --- & 8.2 & 8.1 \\
\hline 6 & --- & --- & --- & --- & 8.5 & 8.2 & 8.3 & 8.1 & --- & -- & 8.1 & 8.0 \\
\hline 7 & --- & --- & --- & --- & 8.4 & 8.3 & 8.2 & 8.1 & --- & --- & 8.2 & 8.1 \\
\hline 8 & --- & --- & --- & --- & 8.4 & 8.0 & 8.2 & 8.0 & --- & --- & 8.2 & 8.1 \\
\hline 9 & --- & --- & --- & --- & 8.3 & 8.0 & 8.1 & 8.1 & --- & --- & 8.1 & 8.0 \\
\hline 10 & --- & --- & --- & --- & 8.2 & 8.0 & 8.3 & 8.0 & --- & --- & 8.2 & 8.1 \\
\hline 11 & --- & --- & --- & --- & 8.1 & 7.9 & 8.1 & 7.7 & --- & -- & 8.3 & 8.1 \\
\hline 12 & --- & --- & --- & --- & 8.0 & 7.9 & 7.8 & 7.6 & --- & --- & 8.3 & 8.1 \\
\hline 13 & --- & --- & --- & --- & 8.0 & 7.9 & 7.7 & 7.7 & --- & --- & 8.3 & 8.2 \\
\hline 14 & --- & --- & --- & --- & 8.0 & 7.8 & 7.8 & 7.7 & --- & --- & 8.2 & 8.1 \\
\hline 15 & --- & --- & --- & --- & 7.9 & 7.8 & 7.8 & 7.7 & --- & --- & 8.3 & 8.2 \\
\hline 16 & --- & --- & --- & --- & 7.9 & 7.8 & 7.9 & 7.8 & --- & --- & 8.4 & 8.2 \\
\hline 17 & --- & --- & --- & --- & 7.9 & 7.8 & 7.9 & 7.8 & --- & --- & 8.4 & 8.2 \\
\hline 18 & --- & --- & --- & --- & 8.0 & 7.8 & --- & --- & --- & --- & 8.3 & 8.1 \\
\hline 19 & --- & --- & --- & --- & 8.0 & 7.9 & --- & --- & --- & --- & 8.2 & 8.1 \\
\hline 20 & --- & --- & --- & --- & 8.0 & 7.9 & --- & --- & --- & --- & 8.2 & 8.0 \\
\hline 21 & --- & --- & --- & --- & 8.0 & 7.9 & --- & --- & --- & --- & 8.4 & 8.1 \\
\hline 22 & --- & --- & - & --- & 8.0 & 7.9 & -- & --- & 8.4 & 8.1 & 8.4 & 8.2 \\
\hline 23 & --- & --- & 8.2 & 8.0 & 8.0 & 7.9 & -- & -- & 8.4 & 8.2 & 8.4 & 8.2 \\
\hline 24 & --- & --- & 8.3 & 8.0 & 8.0 & 7.9 & --- & --- & 8.4 & 8.2 & 8.5 & 8.2 \\
\hline 25 & --- & --- & 8.1 & 7.9 & 8.0 & 7.9 & --- & --- & 8.4 & 8.1 & 8.6 & 8.2 \\
\hline 26 & --- & --- & 8.2 & 8.0 & 8.0 & 7.9 & --- & --- & 8.4 & 8.2 & 8.7 & 8.3 \\
\hline 27 & --- & --- & 8.2 & 8.0 & 8.0 & 7.9 & --- & --- & 8.4 & 8.2 & 8.7 & 8.2 \\
\hline 28 & --- & --- & 8.5 & 8.1 & 8.0 & 7.9 & --- & --- & 8.4 & 8.2 & 8.7 & 8.5 \\
\hline 29 & --- & --- & 8.4 & 8.1 & 8.0 & 7.8 & --- & --- & --- & --- & 8.9 & 8.6 \\
\hline 30 & --- & --- & 8.2 & 8.0 & 8.1 & 7.9 & - & -- & --- & - & 9.1 & 8.9 \\
\hline 31 & --- & --- & --- & & 8.0 & 7.9 & --- & --- & --- & --- & 9.0 & 8.8 \\
\hline MONTH & --- & --- & 8.5 & 7.9 & 8.5 & 7.8 & 8.3 & 7.6 & 8.4 & 8.1 & 9.1 & 8.0 \\
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN \\
\hline & \multicolumn{2}{|c|}{APRIL} & \multicolumn{2}{|c|}{MAY} & \multicolumn{2}{|c|}{JUNE} & \multicolumn{2}{|c|}{JULY} & \multicolumn{2}{|c|}{AUGUST} & \multicolumn{2}{|l|}{SEPTEMBER} \\
\hline 1 & 8.9 & 8.7 & 8.7 & 8.6 & 8.6 & 8.0 & 8.5 & 8.0 & 8.3 & 7.9 & 7.9 & 7.6 \\
\hline 2 & 8.9 & 8.7 & 8.7 & 8.6 & 8.6 & 7.7 & 8.4 & 7.9 & 8.3 & 7.8 & 8.3 & 7.7 \\
\hline 3 & 8.9 & 8.7 & 8.8 & 8.6 & 8.4 & 7.7 & 8.4 & 8.0 & 8.6 & 7.9 & 8.4 & 7.8 \\
\hline 4 & 8.8 & 8.7 & 8.7 & 8.5 & 8.4 & 7.8 & 8.4 & 8.0 & 8.5 & 7.9 & 8.4 & 7.8 \\
\hline 5 & 8.8 & 8.7 & 8.6 & 8.3 & 8.1 & 7.8 & 8.4 & 7.8 & 8.5 & 8.0 & 8.2 & 7.7 \\
\hline 6 & 8.7 & 8.6 & 8.6 & 8.2 & 8.1 & 7.7 & 8.2 & 7.7 & 8.5 & 7.9 & 8.0 & 7.6 \\
\hline 7 & 8.8 & 8.6 & 8.7 & 8.4 & 8.3 & 7.7 & 8.2 & 7.5 & 8.7 & 7.7 & 8.3 & 7.8 \\
\hline 8 & 8.6 & 8.5 & 8.5 & 8.1 & 8.4 & 7.8 & 8.2 & 7.6 & 8.4 & 7.7 & 8.1 & 7.4 \\
\hline 9 & 8.5 & 8.3 & 8.2 & 7.9 & 8.4 & 7.7 & 8.3 & 7.6 & 8.5 & 7.8 & 7.6 & 7.4 \\
\hline 10 & 8.5 & 8.2 & 8.4 & 7.9 & 8.3 & 7.7 & 8.2 & 7.6 & 8.5 & 7.7 & 8.0 & 7.6 \\
\hline 11 & 8.5 & 8.0 & 8.4 & 7.8 & 8.3 & 7.6 & 8.5 & 7.8 & 8.1 & 7.5 & 8.1 & 7.6 \\
\hline 12 & 8.1 & 8.0 & 8.8 & 7.9 & 8.3 & 7.6 & 8.4 & 7.8 & 8.1 & 7.5 & 8.2 & 7.8 \\
\hline 13 & 8.3 & 8.0 & 8.5 & 8.0 & 8.4 & 7.8 & 8.3 & 7.8 & 8.2 & 7.7 & 7.9 & 7.7 \\
\hline 14 & 8.4 & 8.2 & 8.2 & 7.9 & 7.9 & 7.6 & 8.0 & 7.6 & 8.0 & 7.7 & 8.0 & 7.8 \\
\hline 15 & 8.3 & 7.9 & 7.9 & 7.6 & 8.1 & 7.8 & 8.5 & 7.7 & 8.5 & 7.8 & 8.2 & 7.7 \\
\hline 16 & 7.9 & 7.9 & 7.8 & 7.6 & 8.1 & 7.7 & 8.6 & 7.9 & 8.3 & 7.9 & 8.1 & 7.8 \\
\hline 17 & 8.0 & 7.9 & 7.8 & 7.6 & 8.1 & 7.8 & 8.4 & 7.7 & 8.1 & 7.7 & 8.2 & 7.9 \\
\hline 18 & 8.1 & 8.0 & 7.7 & 7.6 & 8.5 & 7.8 & 8.2 & 7.7 & 8.2 & 7.6 & 8.5 & 7.8 \\
\hline 19 & 8.5 & 8.1 & 7.7 & 7.6 & 8.4 & 8.0 & 8.3 & 7.7 & 7.9 & 7.6 & 8.4 & 7.9 \\
\hline 20 & 8.6 & 8.1 & 8.0 & 7.7 & 8.2 & 7.8 & 8.3 & 7.6 & 7.8 & 7.6 & 8.3 & 7.9 \\
\hline 21 & 8.8 & 8.6 & 8.2 & 7.8 & 8.1 & 7.7 & 7.9 & 7.5 & 7.8 & 7.6 & 8.1 & 7.8 \\
\hline 22 & 8.8 & 8.6 & 7.8 & 7.6 & 8.2 & 7.7 & 8.1 & 7.5 & 7.8 & 7.6 & 8.1 & 7.8 \\
\hline 23 & 8.7 & 8.4 & 8.2 & 7.7 & 8.2 & 7.7 & 8.0 & 7.6 & 8.0 & 7.6 & 8.1 & 7.8 \\
\hline 24 & 8.7 & 8.5 & 8.0 & 7.7 & 8.1 & 7.6 & 8.2 & 7.5 & 7.9 & 7.7 & 8.2 & 7.9 \\
\hline 25 & 8.8 & 8.7 & 8.2 & 7.9 & 8.3 & 7.7 & 8.5 & 7.5 & 7.8 & 7.5 & 8.4 & 7.8 \\
\hline 26 & 8.8 & 8.7 & 7.9 & 7.8 & 8.5 & 8.2 & 8.4 & 7.6 & 8.0 & 7.7 & 8.3 & 7.7 \\
\hline 27 & 8.8 & 8.6 & 8.4 & 7.9 & 8.3 & 7.8 & 8.0 & 7.5 & 8.2 & 7.8 & 8.3 & 7.8 \\
\hline 28 & 8.6 & 8.3 & 8.3 & 8.0 & 8.2 & 7.7 & 8.1 & 7.5 & 8.1 & 7.8 & 8.4 & 7.8 \\
\hline 29 & 8.5 & 8.3 & 8.2 & 8.0 & 7.9 & 7.6 & 8.3 & 7.6 & 8.1 & 7.8 & 7.9 & 7.7 \\
\hline 30 & 8.6 & 8.5 & 8.3 & 7.8 & 8.5 & 7.9 & 8.1 & 7.7 & 8.1 & 7.9 & 7.9 & 7.6 \\
\hline 31 & & --- & 8.3 & 7.8 & & & 8.3 & 7.7 & 8.1 & 7.8 & & \\
\hline MONTH & 8.9 & 7.9 & 8.8 & 7.6 & 8.6 & 7.6 & 8.6 & 7.5 & 8.7 & 7.5 & 8.5 & 7.4 \\
\hline
\end{tabular}

CUMBERLAND RIVER BASIN
03438220 CUMBERLAND RIVER NEAR GRAND RIVERS, KY--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{OCTOBER} & \multicolumn{3}{|c|}{NOVEMBER} & \multicolumn{3}{|c|}{DECEMBER} & \multicolumn{3}{|c|}{JANUARY} \\
\hline 1 & --- & --- & - & --- & --- & -- & 13.6 & 13.3 & 13.4 & 5.7 & 4.5 & 5.1 \\
\hline 2 & --- & --- & --- & --- & --- & --- & 13.6 & 13.2 & 13.4 & 6.0 & 4.5 & 5.3 \\
\hline 3 & --- & --- & --- & --- & --- & --- & 13.7 & 13.4 & 13.5 & 5.4 & 4.5 & 4.9 \\
\hline 4 & --- & --- & --- & --- & --- & --- & 14.4 & 13.6 & 13.9 & 4.6 & 2.9 & 3.6 \\
\hline 5 & --- & --- & --- & --- & --- & --- & 14.6 & 14.1 & 14.3 & 3.0 & 1.9 & 2.3 \\
\hline 6 & --- & - & - & - & - & --- & 15.2 & 14.4 & 14.7 & 3.3 & 2.2 & 3.0 \\
\hline 7 & --- & --- & --- & --- & --- & --- & 15.1 & 14.5 & 14.6 & 3.5 & 3.0 & 3.3 \\
\hline 8 & --- & --- & --- & --- & --- & --- & 14.5 & 13.8 & 14.2 & 4.1 & 3.0 & 3.5 \\
\hline 9 & --- & --- & --- & --- & --- & --- & 13.8 & 13.3 & 13.4 & 3.7 & 3.2 & 3.5 \\
\hline 10 & --- & --- & --- & --- & --- & --- & 13.4 & 12.4 & 12.8 & 3.5 & 2.3 & 3.0 \\
\hline 11 & --- & --- & --- & --- & - & - & 12.8 & 12.1 & 12.5 & 4.7 & 3.5 & 3.9 \\
\hline 12 & --- & --- & --- & --- & --- & --- & 12.3 & 11.9 & 12.2 & 5.9 & 4.6 & 5.2 \\
\hline 13 & -- & --- & --- & --- & --- & --- & 12.2 & 11.4 & 12.0 & 6.3 & 5.9 & 6.1 \\
\hline 14 & --- & --- & --- & --- & --- & --- & 12.0 & 11.2 & 11.6 & 5.9 & 5.3 & 5.6 \\
\hline 15 & --- & --- & --- & --- & --- & --- & 11.2 & 10.8 & 11.1 & 5.5 & 5.0 & 5.3 \\
\hline 16 & --- & --- & --- & --- & --- & --- & 11.4 & 10.9 & 11.1 & 5.9 & 5.1 & 5.5 \\
\hline 17 & --- & --- & --- & --- & --- & --- & 11.1 & 10.5 & 10.9 & 6.5 & --- & --- \\
\hline 18 & --- & --- & --- & --- & --- & --- & 10.6 & 10.3 & 10.4 & --- & --- & --- \\
\hline 19 & --- & --- & --- & --- & --- & --- & 10.3 & 10.0 & 10.2 & --- & --- & --- \\
\hline 20 & --- & --- & --- & --- & --- & --- & 10.2 & 9.9 & 10.1 & --- & --- & --- \\
\hline 21 & --- & --- & --- & --- & --- & -- & 10.7 & 9.9 & 10.3 & --- & --- & --- \\
\hline 22 & --- & --- & --- & --- & --- & --- & 9.9 & 8.8 & 9.3 & --- & --- & --- \\
\hline 23 & --- & --- & --- & 13.1 & 12.9 & 13.0 & 8.9 & 7.4 & 8.0 & --- & --- & -- \\
\hline 24 & --- & --- & --- & 13.3 & 12.9 & 13.1 & 7.9 & 6.9 & 7.5 & --- & --- & --- \\
\hline 25 & --- & --- & --- & 13.2 & 12.9 & 13.1 & 7.2 & 6.0 & 6.8 & --- & --- & --- \\
\hline 26 & --- & --- & --- & 13.2 & 13.0 & 13.1 & 7.1 & 6.4 & 6.7 & --- & --- & --- \\
\hline 27 & --- & --- & --- & 13.3 & 12.9 & 13.1 & 6.9 & 6.4 & 6.6 & --- & --- & --- \\
\hline 28 & --- & --- & --- & 13.4 & 12.9 & 13.1 & 6.9 & 6.4 & 6.6 & --- & --- & --- \\
\hline 29 & --- & --- & --- & 13.9 & 13.2 & 13.5 & 7.0 & 6.4 & 6.7 & --- & --- & --- \\
\hline 30 & --- & --- & --- & 13.8 & 13.5 & 13.6 & 6.4 & 5.3 & 5.9 & --- & --- & --- \\
\hline 31 & --- & --- & --- & & & - & 6.1 & 5.3 & 5.7 & --- & --- & --- \\
\hline MONTH & --- & --- & --- & 13.9 & 12.9 & 13.2 & 15.2 & 5.3 & 10.7 & 6.5 & 1.9 & 4.3 \\
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{FEBRUARY} & \multicolumn{3}{|c|}{MARCH} & \multicolumn{3}{|c|}{APRIL} & \multicolumn{3}{|c|}{MAY} \\
\hline 1 & --- & --- & --- & 9.8 & 9.0 & 9.5 & 12.8 & 12.1 & 12.5 & 18.8 & 18.3 & 18.5 \\
\hline 2 & --- & --- & --- & 10.3 & 9.5 & 9.9 & 13.5 & 12.6 & 13.0 & 19.1 & 18.8 & 18.9 \\
\hline 3 & - & --- & --- & 10.0 & 9.1 & 9.6 & 14.7 & 13.2 & 13.7 & 20.3 & 19.1 & 19.7 \\
\hline 4 & - & --- & --- & 9.6 & 8.6 & 9.2 & 14.5 & 14.0 & 14.2 & 20.5 & 19.5 & 19.8 \\
\hline 5 & --- & --- & --- & 9.2 & 8.9 & 9.1 & 15.6 & 14.5 & 15.1 & 20.0 & 19.4 & 19.7 \\
\hline 6 & --- & --- & --- & 9.2 & 8.7 & 9.1 & 15.5 & 15.0 & 15.3 & 20.3 & 19.4 & 19.8 \\
\hline 7 & --- & --- & --- & 9.0 & 7.9 & 8.6 & 16.8 & 15.3 & 16.0 & 20.6 & 20.0 & 20.3 \\
\hline 8 & --- & --- & --- & 8.7 & 7.9 & 8.2 & 17.2 & 16.2 & 16.6 & 20.8 & 20.1 & 20.4 \\
\hline 9 & --- & --- & --- & 8.6 & 7.9 & 8.4 & 17.3 & 16.5 & 16.9 & 20.9 & 20.2 & 20.6 \\
\hline 10 & --- & --- & --- & 8.4 & 7.6 & 8.0 & 18.1 & 17.2 & 17.5 & 21.8 & 20.6 & 21.1 \\
\hline 11 & --- & --- & --- & 8.4 & 7.3 & 7.9 & 18.1 & 17.5 & 17.7 & 22.4 & 21.4 & 21.9 \\
\hline 12 & --- & --- & --- & 8.4 & 7.6 & 8.0 & 17.6 & 17.5 & 17.6 & 23.0 & 21.8 & 22.4 \\
\hline 13 & --- & --- & --- & 8.2 & 7.7 & 7.9 & 17.8 & 17.4 & 17.6 & 22.6 & 22.0 & 22.2 \\
\hline 14 & --- & --- & --- & 7.9 & 7.3 & 7.6 & 17.7 & 17.1 & 17.5 & 22.1 & 21.9 & 22.0 \\
\hline 15 & --- & --- & --- & 7.8 & 6.6 & 7.3 & 17.1 & 16.5 & 16.7 & 22.3 & 21.5 & 21.9 \\
\hline 16 & -- & --- & --- & 8.7 & 7.7 & 8.1 & 16.6 & 15.6 & 16.3 & 22.5 & 21.7 & 22.0 \\
\hline 17 & --- & --- & --- & 9.8 & 8.5 & 9.1 & 15.6 & 14.6 & 15.0 & 22.9 & 22.1 & 22.4 \\
\hline 18 & -- & --- & --- & 10.2 & 9.5 & 9.9 & 14.6 & 14.1 & 14.3 & 22.8 & 22.3 & 22.5 \\
\hline 19 & --- & --- & --- & 10.6 & 9.9 & 10.2 & 14.7 & 13.9 & 14.3 & 23.3 & 22.5 & 22.7 \\
\hline 20 & --- & --- & --- & 10.5 & 10.2 & 10.4 & 15.4 & 14.3 & 14.6 & 23.6 & 22.9 & 23.2 \\
\hline 21 & --- & - & -- & 11.0 & 10.2 & 10.6 & 16.3 & 15.4 & 15.9 & 23.8 & 23.0 & 23.3 \\
\hline 22 & 9.0 & --- & --- & 11.1 & 10.6 & 10.9 & 17.0 & 16.1 & 16.5 & 23.2 & 22.8 & 23.0 \\
\hline 23 & 8.5 & 7.9 & 8.1 & 10.9 & 10.3 & 10.6 & 16.6 & 16.2 & 16.5 & 23.9 & 23.2 & 23.5 \\
\hline 24 & 8.3 & 7.6 & 7.9 & 11.5 & 10.5 & 11.0 & 17.0 & 16.3 & 16.7 & 23.4 & 23.2 & 23.3 \\
\hline 25 & 8.4 & 7.6 & 8.1 & 11.5 & 10.9 & 11.2 & 17.1 & 17.0 & 17.1 & 23.3 & 23.0 & 23.2 \\
\hline 26 & 8.6 & 7.9 & 8.3 & 11.0 & 10.6 & 10.9 & 17.2 & 16.7 & 16.9 & 23.1 & 22.9 & 23.0 \\
\hline 27 & 9.3 & 8.5 & 8.9 & 11.7 & 10.4 & 11.0 & 17.7 & 17.1 & 17.4 & 23.5 & 22.9 & 23.2 \\
\hline 28 & 9.3 & 8.9 & 9.1 & 11.3 & 11.1 & 11.2 & 17.5 & 17.2 & 17.3 & 23.5 & 23.0 & 23.3 \\
\hline 29 & --- & --- & & 12.0 & 11.2 & 11.5 & 18.0 & 17.2 & 17.7 & 24.1 & 23.3 & 23.6 \\
\hline 30 & --- & --- & --- & 12.5 & 11.8 & 12.1 & 18.4 & 18.0 & 18.1 & 24.6 & 23.6 & 24.0 \\
\hline 31 & --- & --- & --- & 12.4 & 12.1 & 12.3 & --- & -- & --- & 24.4 & 23.8 & 24.1 \\
\hline MONTH & 9.3 & 7.6 & 8.4 & 12.5 & 6.6 & 9.7 & 18.4 & 12.1 & 16.1 & 24.6 & 18.3 & 21.9 \\
\hline
\end{tabular}

03438220 CUMBERLAND RIVER NEAR GRAND RIVERS, KY--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & & JUNE & & \multicolumn{3}{|c|}{JULY} & \multicolumn{3}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & 24.7 & 24.0 & 24.3 & 27.6 & 27.1 & 27.3 & 32.1 & 31.9 & 32.0 & 27.4 & 26.5 & 26.8 \\
\hline 2 & 24.7 & 23.8 & 24.3 & 27.9 & 27.1 & 27.5 & 31.9 & 31.4 & 31.6 & 27.6 & 26.9 & 27.3 \\
\hline 3 & 25.0 & 23.8 & 24.4 & 28.7 & 27.7 & 28.2 & 31.4 & 30.3 & 31.0 & 27.9 & 27.2 & 27.5 \\
\hline 4 & 25.5 & 25.0 & 25.3 & 29.2 & 28.3 & 28.7 & 30.7 & 30.4 & 30.6 & 27.8 & 27.4 & 27.6 \\
\hline 5 & 25.9 & 25.1 & 25.6 & 29.8 & 28.8 & 29.2 & 30.5 & 30.2 & 30.3 & 27.8 & 27.4 & 27.5 \\
\hline 6 & 26.3 & 25.6 & 26.0 & 29.8 & 29.2 & 29.5 & 30.5 & 29.9 & 30.2 & 27.7 & 27.5 & 27.5 \\
\hline 7 & 27.1 & 25.6 & 26.3 & 29.8 & 29.1 & 29.4 & 30.5 & 29.8 & 30.1 & 27.9 & 27.5 & 27.7 \\
\hline 8 & 27.7 & 26.4 & 27.0 & 29.7 & 29.1 & 29.4 & 30.0 & 29.6 & 29.8 & 27.6 & 27.2 & 27.4 \\
\hline 9 & 28.2 & 26.8 & 27.4 & 30.2 & 29.3 & 29.7 & 30.0 & 29.5 & 29.7 & 27.2 & 26.8 & 27.0 \\
\hline 10 & 28.7 & 27.3 & 28.0 & 29.6 & 29.3 & 29.4 & 30.2 & 29.5 & 29.7 & 26.8 & 26.4 & 26.6 \\
\hline 11 & 29.0 & 27.6 & 28.1 & 29.3 & 28.8 & 29.0 & 30.0 & 29.4 & 29.7 & 26.6 & 26.2 & 26.4 \\
\hline 12 & 28.9 & 27.8 & 28.4 & 28.8 & 28.1 & 28.5 & 30.5 & 29.6 & 29.9 & 26.3 & 25.8 & 26.0 \\
\hline 13 & 29.2 & 28.4 & 28.8 & 28.6 & 27.8 & 28.2 & 30.2 & 29.5 & 29.8 & 25.9 & 25.7 & 25.8 \\
\hline 14 & 28.4 & 27.9 & 28.2 & 29.0 & 27.8 & 28.4 & 29.5 & 28.9 & 29.2 & 25.7 & 25.2 & 25.5 \\
\hline 15 & 28.2 & 27.6 & 27.8 & 29.2 & 28.4 & 28.8 & 28.9 & 28.2 & 28.4 & 25.4 & 25.0 & 25.2 \\
\hline 16 & 27.7 & 27.2 & 27.4 & 29.2 & 28.5 & 28.9 & 28.3 & 28.0 & 28.1 & 25.1 & 24.4 & 24.7 \\
\hline 17 & 27.2 & 26.4 & 26.7 & 29.5 & 28.7 & 29.1 & 28.4 & 28.0 & 28.2 & 24.5 & 23.8 & 24.2 \\
\hline 18 & 26.7 & 26.1 & 26.3 & 29.8 & 29.0 & 29.4 & 28.9 & 28.0 & 28.5 & 24.2 & 23.8 & 24.0 \\
\hline 19 & 26.5 & 25.8 & 26.0 & 30.1 & 29.2 & 29.6 & 28.9 & 28.4 & 28.7 & 24.1 & 23.6 & 23.9 \\
\hline 20 & 25.9 & 25.6 & 25.7 & 30.3 & 29.6 & 29.9 & 28.5 & 28.1 & 28.3 & 24.3 & 23.9 & 24.0 \\
\hline 21 & 26.1 & 25.5 & 25.8 & 30.5 & 29.6 & 30.0 & 28.3 & 27.7 & 28.0 & 23.9 & 23.2 & 23.6 \\
\hline 22 & 26.4 & 25.8 & 26.1 & 30.9 & 30.0 & 30.3 & 27.9 & 27.5 & 27.7 & 23.2 & 22.5 & 22.8 \\
\hline 23 & 26.6 & 26.2 & 26.5 & 31.1 & 30.4 & 30.7 & 27.9 & 27.5 & 27.7 & 22.6 & 22.3 & 22.5 \\
\hline 24 & 26.3 & 25.7 & 25.8 & 31.6 & 30.5 & 31.0 & 27.7 & 27.3 & 27.4 & 22.6 & 21.9 & 22.3 \\
\hline 25 & 26.8 & 25.8 & 26.1 & 32.0 & 30.6 & 31.3 & 27.5 & 27.1 & 27.3 & 23.1 & 22.1 & 22.5 \\
\hline 26 & 26.9 & 26.6 & 26.8 & 32.1 & 31.3 & 31.7 & 27.4 & 27.1 & 27.2 & 23.0 & 22.2 & 22.6 \\
\hline 27 & 26.7 & 26.4 & 26.5 & 32.2 & 31.4 & 31.8 & 27.6 & 27.2 & 27.4 & 23.2 & 22.5 & 22.8 \\
\hline 28 & 27.1 & 26.7 & 26.9 & 32.1 & 31.6 & 31.8 & 28.1 & 27.4 & 27.7 & 23.8 & 23.1 & 23.4 \\
\hline 29 & 26.9 & 26.6 & 26.8 & 32.2 & 31.4 & 31.8 & 28.0 & 27.6 & 27.8 & 23.2 & 22.4 & 22.8 \\
\hline 30 & 27.6 & 26.7 & 27.1 & 32.4 & 31.5 & 31.9 & 27.9 & 27.0 & 27.4 & 22.4 & 21.8 & 22.1 \\
\hline 31 & --- & --- & --- & 32.4 & 31.5 & 32.0 & 27.0 & 26.2 & 26.7 & --- & --- & --- \\
\hline MONTH & 29.2 & 23.8 & 26.5 & 32.4 & 27.1 & 29.8 & 32.1 & 26.2 & 28.9 & 27.9 & 21.8 & 25.0 \\
\hline
\end{tabular}

OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


CUMBERLAND RIVER BASIN
03438220 CUMBERLAND RIVER NEAR GRAND RIVERS, KY--Continued
OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{FEBRUARY} & \multicolumn{3}{|c|}{MARCH} & \multicolumn{3}{|c|}{APRIL} & \multicolumn{3}{|c|}{MAY} \\
\hline 1 & --- & --- & --- & 13.3 & 12.2 & 12.8 & 14.3 & 13.5 & 13.8 & 12.5 & 11.7 & 11.9 \\
\hline 2 & --- & --- & --- & 13.1 & 12.1 & 12.5 & 14.8 & 13.9 & 14.3 & 13.2 & 12.1 & 12.4 \\
\hline 3 & --- & --- & --- & 12.4 & 11.9 & 12.0 & 14.9 & 13.8 & 14.4 & 13.6 & 11.6 & 12.9 \\
\hline 4 & --- & --- & --- & 12.5 & 12.0 & 12.3 & 14.4 & 13.6 & 13.8 & 11.8 & 10.4 & 11.3 \\
\hline 5 & --- & --- & --- & 12.1 & 11.7 & 11.9 & 14.0 & 13.3 & 13.6 & 10.4 & 8.6 & 9.6 \\
\hline 6 & --- & --- & --- & 11.8 & 11.5 & 11.6 & 13.3 & 12.9 & 13.0 & 10.2 & 9.0 & 9.6 \\
\hline 7 & --- & --- & --- & 12.4 & 11.6 & 12.0 & 13.5 & 12.8 & 13.0 & 10.2 & 9.3 & 9.7 \\
\hline 8 & --- & --- & --- & 12.2 & 11.7 & 11.9 & 13.2 & 12.5 & 12.9 & 10.4 & 8.9 & 9.6 \\
\hline 9 & --- & --- & --- & 12.0 & 11.6 & 11.7 & 12.6 & 12.0 & 12.3 & 9.8 & 9.2 & 9.5 \\
\hline 10 & --- & --- & --- & 12.4 & 11.7 & 12.0 & 13.3 & 12.0 & 12.8 & 11.1 & 9.3 & 9.9 \\
\hline 11 & --- & --- & --- & 12.7 & 11.9 & 12.3 & 13.0 & 11.6 & 12.0 & 10.7 & 9.1 & 9.8 \\
\hline 12 & --- & --- & --- & 13.0 & 12.2 & 12.6 & 12.4 & 11.7 & 12.0 & 11.5 & 9.1 & 10.3 \\
\hline 13 & --- & --- & --- & 12.7 & 12.1 & 12.4 & 12.9 & 12.0 & 12.3 & 10.1 & 7.6 & 8.6 \\
\hline 14 & --- & --- & --- & 12.4 & 12.0 & 12.2 & 13.0 & 12.5 & 12.7 & 8.2 & 7.3 & 7.7 \\
\hline 15 & --- & --- & --- & 13.1 & 12.2 & 12.7 & 12.6 & 11.4 & 11.9 & 7.7 & 6.4 & 6.8 \\
\hline 16 & --- & --- & --- & 13.3 & 12.5 & 12.9 & 11.5 & 11.3 & 11.4 & 7.2 & 6.3 & 6.6 \\
\hline 17 & --- & --- & --- & 13.5 & 12.7 & 13.0 & 11.6 & 11.5 & 11.6 & 7.5 & 6.4 & 6.9 \\
\hline 18 & --- & --- & --- & 12.8 & 12.3 & 12.6 & 11.8 & 11.5 & 11.6 & 7.3 & 6.7 & 7.0 \\
\hline 19 & - & --- & - & 12.6 & 12.2 & 12.4 & 12.4 & 11.7 & 12.0 & 8.0 & 7.2 & 7.6 \\
\hline 20 & --- & --- & --- & 12.9 & 12.2 & 12.5 & 12.8 & 11.7 & 12.0 & 9.1 & 6.9 & 8.2 \\
\hline 21 & --- & --- & --- & 13.2 & 12.3 & 12.7 & 12.8 & 12.2 & 12.6 & 9.5 & 8.0 & 8.6 \\
\hline 22 & --- & 11.7 & --- & 13.6 & 12.6 & 13.1 & 12.3 & 11.8 & 12.0 & 8.3 & 7.0 & 7.5 \\
\hline 23 & 12.5 & 12.1 & 12.3 & 13.3 & 12.3 & 12.7 & 11.8 & 10.8 & 11.4 & 9.8 & 7.7 & 8.7 \\
\hline 24 & 12.8 & 12.0 & 12.4 & 13.4 & 12.1 & 12.7 & 11.8 & 10.8 & 11.3 & 8.9 & 7.6 & 8.3 \\
\hline 25 & 13.1 & 12.2 & 12.6 & 13.4 & 12.1 & 12.7 & 11.8 & 11.3 & 11.5 & 9.4 & 8.2 & 8.7 \\
\hline 26 & 13.5 & 12.6 & 13.1 & 13.5 & 11.8 & 12.5 & --- & 11.4 & -- & 8.5 & 7.4 & 8.0 \\
\hline 27 & 13.3 & 12.4 & 12.7 & 13.6 & 11.4 & 12.1 & 13.1 & 10.9 & 12.2 & 9.9 & 7.9 & 8.7 \\
\hline 28 & 12.9 & 12.3 & 12.5 & 12.6 & 12.2 & 12.3 & 12.1 & 10.6 & 11.2 & 9.8 & 8.2 & 9.2 \\
\hline 29 & --- & & & 14.1 & 12.1 & 12.8 & 11.3 & 10.5 & 11.0 & 10.8 & 9.4 & 10.0 \\
\hline 30 & --- & --- & --- & 14.6 & 13.0 & 13.8 & 11.7 & 11.0 & 11.3 & 11.6 & 9.2 & 10.2 \\
\hline 31 & --- & --- & --- & 14.5 & 13.6 & 14.1 & & & --- & 10.1 & 8.4 & 9.2 \\
\hline MONTH & 13.5 & 11.7 & 12.6 & 14.6 & 11.4 & 12.5 & 14.9 & 10.5 & 12.3 & 13.6 & 6.3 & 9.1 \\
\hline \multirow[t]{2}{*}{DAY} & MAX & MIN & MEAN \\
\hline & \multicolumn{3}{|c|}{JUNE} & \multicolumn{3}{|c|}{JULY} & \multicolumn{3}{|c|}{AUGUST} & \multicolumn{3}{|c|}{SEPTEMBER} \\
\hline 1 & 10.7 & 8.8 & 9.6 & 9.1 & 7.6 & 8.3 & 7.2 & 5.2 & 6.1 & 7.2 & 5.8 & 6.6 \\
\hline 2 & 10.7 & 7.4 & 9.0 & --- & --- & --- & 7.5 & 4.7 & 6.0 & 7.4 & 5.8 & 6.7 \\
\hline 3 & 9.9 & 7.5 & 8.8 & --- & --- & --- & 8.2 & 4.9 & 6.5 & 7.5 & 6.4 & 6.9 \\
\hline 4 & 10.1 & 8.6 & 9.7 & --- & --- & --- & 7.7 & 5.1 & 6.6 & 8.0 & 6.6 & 7.4 \\
\hline 5 & 9.3 & 8.0 & 8.9 & --- & --- & --- & 6.9 & 4.7 & 5.4 & 7.4 & 5.5 & 6.5 \\
\hline 6 & 8.4 & 6.2 & 7.4 & --- & --- & --- & 8.4 & 5.1 & 6.8 & 6.3 & 5.5 & 6.0 \\
\hline 7 & 8.2 & 6.2 & 7.0 & --- & --- & --- & 9.0 & 5.3 & 6.9 & 8.2 & 6.2 & 7.0 \\
\hline 8 & 8.4 & 6.7 & 7.5 & --- & --- & --- & 7.9 & 5.0 & 6.0 & 7.3 & 5.6 & 6.8 \\
\hline 9 & 8.7 & 6.6 & 7.3 & --- & --- & --- & 8.5 & 5.4 & 6.4 & 6.7 & 5.6 & 6.1 \\
\hline 10 & 8.3 & 6.8 & 7.5 & --- & --- & --- & 8.8 & 6.0 & 7.0 & 7.8 & 6.7 & 7.1 \\
\hline 11 & 7.9 & 5.7 & 6.8 & --- & --- & --- & 7.8 & 5.9 & 6.6 & 7.2 & 6.1 & 6.6 \\
\hline 12 & 8.2 & 5.9 & 6.8 & --- & --- & --- & 8.1 & 6.4 & 7.2 & 8.0 & 5.7 & 6.9 \\
\hline 13 & 8.7 & 6.4 & 7.7 & --- & --- & --- & 7.5 & 5.7 & 7.0 & 7.6 & 5.6 & 6.1 \\
\hline 14 & 7.9 & 6.3 & 6.8 & --- & - & -- & 6.8 & 5.2 & 5.9 & 8.4 & 7.1 & 7.6 \\
\hline 15 & 8.5 & 7.4 & 8.0 & 9.6 & 7.0 & 8.3 & 8.9 & 6.2 & 7.2 & 8.9 & 7.3 & 7.9 \\
\hline 16 & 8.8 & 7.9 & 8.3 & 9.2 & 7.7 & 8.2 & 9.5 & 7.3 & 8.2 & 8.5 & 7.7 & 8.2 \\
\hline 17 & 8.5 & 7.3 & 8.1 & 8.9 & 7.1 & 7.9 & 8.9 & 5.6 & 7.4 & 8.9 & 8.0 & 8.5 \\
\hline 18 & 9.7 & 7.6 & 8.5 & 8.4 & 6.9 & 7.7 & 9.1 & 5.1 & 7.0 & 9.4 & 7.8 & 8.5 \\
\hline 19 & 9.4 & 8.1 & 8.7 & 8.3 & 6.6 & 7.3 & 7.8 & 5.0 & 6.7 & 9.1 & 7.6 & 8.3 \\
\hline 20 & 8.9 & 7.6 & 8.2 & 7.9 & 6.5 & 7.1 & 7.0 & 5.3 & 6.1 & 8.8 & 7.2 & 7.9 \\
\hline 21 & 9.1 & 7.3 & 8.2 & 7.8 & 5.8 & 6.8 & 9.2 & 6.1 & 7.4 & 8.4 & 7.4 & 7.9 \\
\hline 22 & 9.8 & 7.3 & 8.4 & 8.1 & 5.8 & 6.8 & 8.9 & 6.8 & 7.6 & 8.4 & 7.7 & 8.2 \\
\hline 23 & 9.4 & 8.0 & 8.7 & 7.6 & 6.2 & 6.8 & 8.7 & 5.5 & 7.4 & 8.6 & 7.7 & 8.2 \\
\hline 24 & 8.2 & 5.4 & 6.5 & 8.2 & 5.0 & 6.8 & 6.9 & 4.9 & 5.8 & 9.2 & 7.8 & 8.5 \\
\hline 25 & 8.7 & 6.3 & 7.4 & 8.7 & 4.7 & 6.9 & 8.7 & 4.9 & 5.9 & 9.8 & 7.7 & 8.5 \\
\hline 26 & 9.3 & 7.4 & 8.4 & 8.7 & 6.2 & 7.1 & 7.1 & 5.2 & 5.9 & 9.4 & 8.1 & 8.7 \\
\hline 27 & 8.2 & 6.1 & 6.7 & 7.7 & 5.4 & 6.8 & 8.1 & 5.2 & 6.7 & 9.0 & 7.8 & 8.4 \\
\hline 28 & 7.7 & 6.1 & 6.9 & 7.7 & 5.3 & 6.6 & 7.2 & 5.3 & 6.6 & 9.2 & 8.2 & 8.7 \\
\hline 29 & 7.4 & 5.7 & 6.5 & 8.1 & 5.1 & 6.5 & 7.4 & 6.0 & 6.6 & 8.2 & 7.2 & 7.7 \\
\hline 30 & 9.3 & 6.8 & 7.9 & 7.5 & 5.2 & 6.2 & 7.4 & 6.0 & 6.8 & 9.1 & 8.0 & 8.5 \\
\hline 31 & & & --- & 7.3 & 4.7 & 6.0 & 7.2 & 6.1 & 6.6 & & & \\
\hline MONTH & 10.7 & 5.4 & 7.9 & 9.6 & 4.7 & 7.1 & 9.5 & 4.7 & 6.7 & 9.8 & 5.5 & 7.6 \\
\hline
\end{tabular}
(National stream-quality accounting and radiochemical network station)
WATER-QUALITY RECORDS
LOCATION.--Lat \(37^{\circ} 02^{\prime} 1^{\prime \prime}\), long \(88^{\circ} 31^{\prime \prime} 46^{\prime \prime}\), McCracken County, Hydrologic unit 06040006 , at auxiliary gaging station at bridge on U.S. highway \(60,16.3 \mathrm{mi}\) downstream from gaging station, 2.4 mi east of Paducah, and at mile 5.3 .

DRAINAGE AREA. \(--40,330 \mathrm{mi}^{2} ; 40,200 \mathrm{mi}^{2}\) at gaging station.
PERIOD OF RECORD.--Water years 1950, 1952, 1967-72, 1974-86, 1997 to current water year.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: November 1973 to September 1981.
WATER TEMPERATURE: November 1973 to September 1981.
REMARKS.--Records of daily discharge are published for gaging station near Paducah (station 03609500 ) 16.3 mi upstream. Flow completely regulated. Barkley-Kentucky Canal (station 03438190) diverts water from or to Lake Barkley in the Cumberland River Basin.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & DIS- & UV & & PH & & & & OXYGEN, & \\
\hline & & & CHARGE, & ABSORB- & SPE- & WATER & & & & DIS- & HARD- \\
\hline & & & INST. & ANCE & CIFIC & WHOLE & & & & SOLVED & NESS \\
\hline & & & CUBIC & 254 NM, & CON- & FIELD & TEMPER- & TUR- & OXYGEN, & (PER- & TOTAL \\
\hline & & SAMPLE & FEET & WTR FLT & DUCT- & (STAND- & ATURE & BID- & DIS- & CENT & (MG/L \\
\hline DATE & TIME & TYPE & PER & (UNITS & ANCE & ARD & WATER & ITY & SOLVED & SATUR- & AS \\
\hline & & & SECOND & /CM) & (US/CM) & UNITS) & (DEG C) & (NTU) & (MG/L) & ATION) & CACO3) \\
\hline & & & (00061) & (50624) & (00095) & (00400) & (00010) & (00076) & (00300) & (00301) & (00900) \\
\hline DEC & & & & & & & & & & & \\
\hline 04. & 1110 & ENVIRONMENTAL & 15000 & -- & 184 & 7.8 & 14.0 & 2.5 & 9.6 & 93 & 65 \\
\hline 18. & 1120 & ENVIRONMENTAL & 96700 & -- & 185 & 7.7 & 11.0 & 4.1 & 13.2 & 119 & 69 \\
\hline JAN & & & & & & & & & & & \\
\hline 29. & 1200 & ENVIRONMENTAL & 181000 & -- & 147 & 7.3 & 10.5 & 27 & 13.5 & 119 & 60 \\
\hline 29. & 1208 & FIELD BLANK & -- & -- & -- & -- & -- & -- & -- & -- & 0 \\
\hline FEB & & & & & & & & & & & \\
\hline 17. & 1100 & ENVIRONMENTAL & 54000 & -- & 151 & 7.5 & 10.5 & 9.5 & 10.3 & 92 & 58 \\
\hline MAR & & & & & & & & & & & \\
\hline 17. & 1220 & ENVIRONMENTAL & 163000 & . 070 & 173 & 7.6 & 9.0 & 10 & 14.4 & 124 & 70 \\
\hline APR & & & & & & & & & & & \\
\hline 28. & 1220 & ENVIRONMENTAL & 7700 & . 048 & 182 & 7.8 & 17.5 & 10 & 9.4 & 99 & 71 \\
\hline 28. & 1228 & FIELD BLANK & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline MAY & & & & & & & & & & & \\
\hline 13. & 1240 & ENVIRONMENTAL & 153000 & . 063 & 156 & 7.2 & 22.0 & 10 & 11.4 & 131 & 58 \\
\hline 13. & 1248 & FIELD BLANK & -- & -- & - & -- & -- & -- & -- & -- & 0 \\
\hline 18. & 1130 & ENVIRONMENTAL & 62200 & \(<.004\) & 150 & 7.1 & 22.5 & 10 & 9.6 & 110 & 55 \\
\hline 18. & 1138 & FIELD BLANK & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline JUN & & & & & & & & & & & \\
\hline 10. & 1140 & ENVIRONMENTAL & 36100 & . 055 & 152 & 7.7 & 28.0 & 4.0 & 7.7 & 98 & 57 \\
\hline 10. & 1150 & REPLICATE & -- & . 056 & -- & -- & -- & 4.5 & -- & -- & 56 \\
\hline JUL & & & & & & & & & & & \\
\hline 22. & 1220 & ENVIRONMENTAL & 46900 & . 061 & 145 & 7.0 & 29.5 & 10 & 5.9 & 77 & 49 \\
\hline AUG & & & & & & & & & & & \\
\hline 25. & 1140 & ENVIRONMENTAL & 23000 & . 060 & 149 & 7.1 & 27.5 & 2.3 & 7.4 & 95 & 51 \\
\hline SEP & & & & & & & & & & & \\
\hline 07. & 1210 & ENVIRONMENTAL & 15600 & . 052 & 149 & 6.7 & 27.5 & 2.7 & 5.3 & 68 & 48 \\
\hline 07... & 1218 & FIELD BLANK & -- & -- & -- & -- & -- & -- & -- & -- & 0 \\
\hline
\end{tabular}

TENNESSEE RIVER BASIN
03609750 TENNESSEE RIVER AT HIGHWAY 60, NEAR PADUCAH, KY--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999



03609750 TENNESSEE RIVER AT HIGHWAY 60, NEAR PADUCAH, KY--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DATE & \[
\begin{aligned}
& \text { COBALT, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS CO) } \\
& (01035)
\end{aligned}
\] & \[
\begin{aligned}
& \text { COPPER, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS CU) } \\
& (01040)
\end{aligned}
\] & \[
\begin{aligned}
& \text { IRON, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS FE) } \\
& (01046 \text { ) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LEAD, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS PB) } \\
& (01049)
\end{aligned}
\] & \[
\begin{aligned}
& \text { LITHIUM } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS LI) } \\
& (01130)
\end{aligned}
\] & \[
\begin{aligned}
& \text { MANGA- } \\
& \text { NESE, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS MN) } \\
& (01056 \text { ) }
\end{aligned}
\] & \begin{tabular}{l}
MOLYB- \\
DENUM, DISSOLVED (UG/L AS MO) (01060)
\end{tabular} & \[
\begin{aligned}
& \text { NICKEL, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS NI) } \\
& (01065)
\end{aligned}
\] & \[
\begin{aligned}
& \text { SELE- } \\
& \text { NIUM, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS SE) } \\
& \text { (01145) }
\end{aligned}
\] & \[
\begin{gathered}
\text { SILVER, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS AG) } \\
(01075)
\end{gathered}
\] & \[
\begin{gathered}
\text { STRON- } \\
\text { TIUM, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS SR) } \\
\text { (01080) }
\end{gathered}
\] & \[
\begin{gathered}
\text { THAL- } \\
\text { LIUM, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS TL) } \\
(01057)
\end{gathered}
\] \\
\hline \multicolumn{13}{|l|}{DEC} \\
\hline 04. & -- & -- & \(<10\) & -- & \(<6\) & -- & -- & -- & <1 & -- & 66 & -- \\
\hline 18. & \(<1.0\) & 1.0 & <10 & \(<1.0\) & <6 & 3.5 & 1.3 & \(<1.0\) & <1 & \(<1.0\) & 65 & -- \\
\hline \multicolumn{13}{|l|}{JAN} \\
\hline 29... & \(<1.0\) & <1.0 & E8. 2 & \(<1.0\) & \(<6\) & \(<1.0\) & \(<1.0\) & \(<1.0\) & <1 & \(<1.0\) & 53 & -- \\
\hline 29. & <. 20 & <. 20 & \(<3.0\) & <. 30 & -- & <. 10 & <. 20 & <. 50 & - & <. 20 & <. 10 & <. 10 \\
\hline \multicolumn{13}{|l|}{FEB} \\
\hline 17... & -- & -- & 19 & -- & \(<6\) & -- & -- & -- & <1 & -- & 53 & -- \\
\hline \multicolumn{13}{|l|}{MAR} \\
\hline 17... & \(<1.0\) & \(<1.0\) & E9.3 & <1.0 & \(<6\) & 3.8 & \(<1.0\) & <1.0 & <1 & \(<1.0\) & 62 & -- \\
\hline \multicolumn{13}{|l|}{APR} \\
\hline 28. & -- & -- & E5. 6 & -- & E3 & -- & -- & -- & 2 & -- & 71 & -- \\
\hline 28... & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{13}{|l|}{MAY} \\
\hline 13. & -- & -- & E8. 6 & -- & \(<6\) & -- & -- & -- & <1 & -- & 56 & -- \\
\hline 13. & \(<.20\) & \(<.20\) & \(<3.0\) & \(<.30\) & -- & \(<.10\) & \(<.20\) & \(<.50\) & -- & \(<.20\) & <. 10 & \(<.10\) \\
\hline 18. & \(<1.0\) & \(<1.0\) & E8. 6 & \(<1.0\) & \(<6\) & 1.1 & \(<1.0\) & \(<1.0\) & <1 & \(<1.0\) & 53 & - 10 \\
\hline 18... & -- & -- & -- & -- & -- & -- & -- & -- & -- & - & -- & -- \\
\hline \multicolumn{13}{|l|}{JUN} \\
\hline 10. & \(<1.0\) & \(<1.0\) & \(<10\) & \(<1.0\) & <6 & \(<1.0\) & \(<1.0\) & \(<1.0\) & \(<1\) & \(<1.0\) & 59 & -- \\
\hline 10. & <1.0 & \(<1.0\) & E7. 5 & \(<1.0\) & <6 & \(<1.0\) & <1.0 & \(<1.0\) & <1 & \(<1.0\) & 59 & -- \\
\hline \multicolumn{13}{|l|}{JUL} \\
\hline 22... & \(<1.0\) & \(<1.0\) & \(<10\) & \(<1.0\) & \(<6\) & 1.1 & 1.3 & \(<1.0\) & <1 & \(<1.0\) & 55 & -- \\
\hline \multicolumn{13}{|l|}{AUG} \\
\hline 25... & -- & -- & \(<10\) & -- & E3 & -- & -- & -- & <1 & -- & 58 & -- \\
\hline \multicolumn{13}{|l|}{SEP} \\
\hline 07... & -- & - & \(<10\) & -- & <4 & -- & -- & -- & <1 & -- & 60 & -- \\
\hline 07... & \(<.20\) & \(<.20\) & <3.0 & \(<.30\) & -- & \(<.10\) & <. 20 & \(<.50\) & -- & <. 20 & <. 10 & <. 10 \\
\hline
\end{tabular}

TENNESSEE RIVER BASIN
03609750 TENNESSEE RIVER AT HIGHWAY 60, NEAR PADUCAH, KY--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DATE} & & & & & & & & & & & \\
\hline & \[
\begin{aligned}
& \text { VANA- } \\
& \text { DIUM, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS V) } \\
& (01085)
\end{aligned}
\] & \[
\begin{gathered}
\text { ZINC, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS ZN) } \\
(01090)
\end{gathered}
\] & URANIUM NATURAL DISSOLVED (UG/L AS U) (22703) & \[
\begin{aligned}
& \text { CARBON, } \\
& \text { ORGANIC } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (MG/L } \\
& \text { AS C) } \\
& (00681)
\end{aligned}
\] & \[
\begin{aligned}
& \text { ORGANIC } \\
& \text { SUS- } \\
& \text { PENDED } \\
& \text { TOTAL } \\
& \text { (MG/L } \\
& \text { AS C) } \\
& (00689)
\end{aligned}
\] & \begin{tabular}{l}
ALA- \\
CHLOR, \\
WATER, \\
DISS, \\
REC, \\
(UG/L) \\
(46342)
\end{tabular} & ACETOCHLOR, WATER FLTRD REC (UG/L) (49260) & \begin{tabular}{l}
ATRA- \\
ZINE, \\
WATER, \\
DISS, \\
REC \\
(UG/L) \\
(39632)
\end{tabular} & \[
\begin{aligned}
& \text { ALPHA } \\
& \text { BHC } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L) } \\
& (34253)
\end{aligned}
\] & \begin{tabular}{l}
BUTYL- \\
ATE, WATER, DISS, REC (UG/L) (04028)
\end{tabular} & \[
\begin{gathered}
\text { CHLOR- } \\
\text { PYRIFOS } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L) } \\
(38933)
\end{gathered}
\] \\
\hline \multicolumn{12}{|l|}{DEC} \\
\hline 04. & \(<10\) & -- & -- & 1.8 & . 40 & \(<.002\) & <. 0020 & . 025 & \(<.0020\) & <. 0020 & <. 0040 \\
\hline 18. & <10 & 2.1 & \(<1.0\) & 1.8 & . 30 & <. 002 & <. 0020 & . 036 & <. 0020 & <. 0020 & <. 0040 \\
\hline \multicolumn{12}{|l|}{JAN} \\
\hline 29. & \(<10\) & 1.4 & \(<1.0\) & 2.3 & . 60 & \(<.002\) & <. 0020 & . 023 & <. 0020 & <. 0020 & <. 0040 \\
\hline 29. & -- & <. 50 & <. 20 & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{FEB} \\
\hline 17. & \(<10\) & -- & -- & 2.2 & -- & \(<.002\) & <. 0020 & . 029 & <. 0020 & <. 0020 & <. 0040 \\
\hline \multicolumn{12}{|l|}{MAR} \\
\hline 17. & \(<10\) & 1.2 & <1.0 & 1.9 & . 30 & \(<.002\) & <. 0020 & . 042 & <. 0020 & \(<.0020\) & \(<.0040\) \\
\hline \multicolumn{12}{|l|}{APR} \\
\hline 28. & \(<10\) & - & -- & 2.0 & . 40 & \(<.002\) & . 0048 & . 094 & <. 0020 & <. 0020 & <. 0040 \\
\hline 28. & -- & -- & -- & 19 & . 20 & \(<.002\) & <. 0020 & <. 001 & <. 0020 & <. 0020 & <. 0040 \\
\hline \multicolumn{12}{|l|}{MAY} \\
\hline 13. & \(<10\) & -- & -- & 1.9 & . 60 & \(<.002\) & . 0078 & . 319 & \(<.0020\) & \(<.0020\) & \(<.0040\) \\
\hline 13. & -- & \(<.50\) & \(<.20\) & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 18. & <10 & 2.3 & \(<1.0\) & . 80 & <. 20 & E. 002 & . 0149 & . 496 & <. 0020 & <. 0020 & <. 0040 \\
\hline 18. & -- & -- & -- & 2.0 & . 60 & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JUN} \\
\hline 10. & \(<10\) & 1.7 & \(<1.0\) & 2.3 & . 80 & E. 002 & . 0083 & . 555 & <. 0020 & <. 0020 & <. 0040 \\
\hline 10. & <10 & 6.3 & <1.0 & 2.4 & . 70 & E. 002 & . 0098 & . 584 & <. 0020 & <. 0020 & <. 0040 \\
\hline \multicolumn{12}{|l|}{JUL} \\
\hline 22. & \(<10\) & 4.1 & \(<1.0\) & 2.3 & . 60 & \(<.005\) & <. 0020 & . 420 & <. 0020 & <. 0020 & \(<.0040\) \\
\hline \multicolumn{12}{|l|}{AUG} \\
\hline 25. & \(<10\) & -- & -- & 2.2 & . 20 & \(<.002\) & \(<.0020\) & . 133 & \(<.0020\) & \(<.0020\) & \(<.0040\) \\
\hline \multicolumn{12}{|l|}{SEP} \\
\hline 07.. & <10 & -- & -- & 2.2 & . 40 & \(<.002\) & <. 0020 & . 116 & <. 0020 & <. 0020 & <. 0040 \\
\hline 07... & -- & . 70 & <. 20 & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & DEETHYL & & & & & & & & & \\
\hline DATE & \[
\begin{aligned}
& \text { CYANA- } \\
& \text { ZINE, } \\
& \text { WATER, } \\
& \text { DISS, } \\
& \text { REC } \\
& \text { (UG/L) } \\
& (04041)
\end{aligned}
\] & \[
\begin{aligned}
& \text { ATRA- } \\
& \text { ZINE, } \\
& \text { WATER, } \\
& \text { DISS, } \\
& \text { REC } \\
& \text { (UG/L) } \\
& (04040)
\end{aligned}
\] & \[
\begin{gathered}
\text { DI- } \\
\text { AZINON, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L) } \\
(39572)
\end{gathered}
\] & \[
\begin{aligned}
& \text { DI- } \\
& \text { ELDRIN } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L) } \\
& (39381)
\end{aligned}
\] & FONOFOS WATER DISS REC (UG/L) (04095) & \[
\begin{aligned}
& \text { LINDANE } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L) } \\
& (39341)
\end{aligned}
\] & \[
\begin{aligned}
& \text { MALA- } \\
& \text { THION, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L) } \\
& (39532)
\end{aligned}
\] & \[
\begin{aligned}
& \text { METRI- } \\
& \text { BUZIN } \\
& \text { SENCOR } \\
& \text { WATER } \\
& \text { DISSOLV } \\
& \text { (UG/L) } \\
& (82630)
\end{aligned}
\] & \[
\begin{aligned}
& \text { METO- } \\
& \text { LACHLOR } \\
& \text { WATER } \\
& \text { DISSOLV } \\
& \text { (UG/L) } \\
& \text { (39415) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { P, P' } \\
& \text { DDE } \\
& \text { DISSOLV } \\
& \text { (UG/L) } \\
& (34653)
\end{aligned}
\] & PARATHION, DISSOLVED (UG/L) (39542) \\
\hline \multicolumn{12}{|l|}{DEC} \\
\hline 04. & <. 0040 & E. 0084 & \(<.002\) & \(<.001\) & <. 0030 & \(<.004\) & \(<.005\) & <. 004 & E. 004 & <. 0060 & \(<.004\) \\
\hline 18. & <. 0040 & E. 0104 & <. 002 & <. 001 & <. 0030 & <. 004 & <. 005 & <. 004 & . 008 & <. 0060 & <. 004 \\
\hline \multicolumn{12}{|l|}{JAN} \\
\hline 29. & <. 0040 & E. 0082 & \(<.002\) & <. 001 & <. 0030 & \(<.004\) & <. 005 & <. 004 & . 008 & <. 0060 & \(<.004\) \\
\hline 29. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{FEB} \\
\hline 17. & \(<.0040\) & E. 0087 & \(<.002\) & \(<.001\) & <. 0030 & \(<.004\) & \(<.005\) & \(<.004\) & . 008 & <. 0060 & \(<.004\) \\
\hline \multicolumn{12}{|l|}{MAR} \\
\hline 17. & \(<.0040\) & E. 0083 & \(<.002\) & \(<.001\) & <. 0030 & \(<.004\) & \(<.005\) & \(<.004\) & . 006 & <. 0060 & \(<.004\) \\
\hline \multicolumn{12}{|l|}{APR} \\
\hline 28. & . 0053 & E. 0278 & \(<.002\) & \(<.001\) & \(<.0030\) & \(<.004\) & \(<.005\) & \(<.004\) & . 016 & E. 0010 & \(<.004\) \\
\hline 28. & <. 0040 & <. 0020 & \(<.002\) & <. 001 & <. 0030 & <. 004 & \(<.005\) & \(<.004\) & <. 002 & <. 0060 & \(<.004\) \\
\hline \multicolumn{12}{|l|}{MAY} \\
\hline 13. & . 0875 & E. 0276 & \(<.002\) & \(<.001\) & <. 0030 & <. 004 & \(<.005\) & <. 004 & . 067 & <. 0060 & <. 004 \\
\hline 13. & -- & --- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 18. & . 118 & E. 0387 & . 004 & \(<.001\) & \(<.0030\) & \(<.004\) & \(<.005\) & \(<.004\) & . 080 & \(<.0060\) & \(<.004\) \\
\hline 18. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JUN} \\
\hline 10. & . 0766 & E. 0429 & <. 002 & \(<.001\) & <. 0030 & <. 004 & <. 005 & <. 004 & . 074 & <. 0060 & <. 004 \\
\hline 10. & . 0881 & E. 0417 & \(<.002\) & <. 001 & <. 0030 & <. 004 & <. 005 & <. 004 & . 079 & <. 0060 & \(<.004\) \\
\hline \multicolumn{12}{|l|}{JUL} \\
\hline 22. & . 222 & E. 0509 & <. 002 & <. 001 & <. 0030 & <. 004 & <. 005 & <. 004 & . 042 & <. 0060 & <. 004 \\
\hline \multicolumn{12}{|l|}{} \\
\hline 25. & . 0800 & E. 0264 & \(<.002\) & <. 001 & <. 0030 & \(<.004\) & \(<.005\) & \(<.004\) & . 019 & <. 0060 & \(<.004\) \\
\hline \multicolumn{12}{|l|}{SEP} \\
\hline 07... & . 0610 & E. 0266 & \(<.002\) & \(<.001\) & \(<.0030\) & \(<.004\) & \(<.005\) & \(<.004\) & . 015 & <. 0060 & \(<.004\) \\
\hline 07... & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline
\end{tabular}

03609750 TENNESSEE RIVER AT HIGHWAY 60, NEAR PADUCAH, KY--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{} & & & & & & & & & & & \\
\hline & \[
\begin{aligned}
& \text { ETHO- } \\
& \text { PROP }
\end{aligned}
\] & EPTC & \[
\begin{aligned}
& \text { LIN- } \\
& \text { URON }
\end{aligned}
\] & \[
\begin{gathered}
\text { METHYL } \\
\text { AZIN- }
\end{gathered}
\] & METHYL PARA- & \[
\begin{gathered}
\text { MOL- } \\
\text { INATE }
\end{gathered}
\] & \[
\begin{aligned}
& \text { NAPROP- } \\
& \text { AMIDE }
\end{aligned}
\] & \[
\begin{aligned}
& \text { PEB- } \\
& \text { ULATE }
\end{aligned}
\] & \[
\begin{gathered}
\text { PER- } \\
\text { METHRIN }
\end{gathered}
\] & PHORATE & \[
\begin{aligned}
& \text { PRON- } \\
& \text { AMIDE }
\end{aligned}
\] \\
\hline & WATER & WATER & WATER & PHOS & THION & WATER & WATER & WATER & CIS & WATER & WATER \\
\hline & FLTRD & FLTRD & FLTRD & WAT FLT & WAT FLT & FLTRD & FLTRD & FILTRD & WAT FLT & FLTRD & FLTRD \\
\hline & 0.7 U \\
\hline DATE & \begin{tabular}{l}
GF, REC \\
(UG/L)
\end{tabular} & GF, REC (UG/L) & \begin{tabular}{l}
GF, REC \\
(UG/L)
\end{tabular} & GF, REC (UG/L) & GF, REC (UG/L) & GF, REC (UG/L) & GF, REC (UG/L) \\
\hline & (82672) & (82668) & (82666) & (82686) & (82667) & (82671) & (82684) & (82669) & (82687) & (82664) & (82676) \\
\hline \multicolumn{12}{|l|}{DEC} \\
\hline 04. & \(<.0030\) & <. 0020 & <. 0020 & <. 0010 & <. 0060 & \(<.0040\) & <. 0030 & \(<.0040\) & \(<.0050\) & <. 0020 & \(<.0030\) \\
\hline 18. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{JAN} \\
\hline 29. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & \(<.0040\) & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 29. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{FEB} \\
\hline 17. & \(<.0030\) & <. 0020 & \(<.0020\) & \(<.0010\) & \(<.0060\) & \(<.0040\) & <. 0030 & \(<.0040\) & \(<.0050\) & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{MAR} \\
\hline 17. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & \(<.0040\) & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{APR} \\
\hline 28. & \(<.0030\) & <. 0020 & <. 0020 & <. 0010 & \(<.0060\) & \(<.0040\) & \(<.0030\) & \(<.0040\) & <. 0050 & <. 0020 & \(<.0030\) \\
\hline 28. & \(<.0030\) & <. 0020 & <. 0020 & <. 0010 & <. 0060 & \(<.0040\) & \(<.0030\) & \(<.0040\) & <. 0050 & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{MAY} \\
\hline 13. & \(<.0030\) & <. 0020 & \(<.0020\) & \(<.0010\) & \(<.0060\) & \(<.0040\) & \(<.0030\) & \(<.0040\) & \(<.0050\) & <. 0020 & <. 0030 \\
\hline 13. & -- & -- & -- & -- & -- & - & -- & -- & -- & -- & -- \\
\hline 18. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & \(<.0040\) & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 18. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JUN} \\
\hline 10. & \(<.0030\) & <. 0020 & \(<.0020\) & \(<.0010\) & \(<.0060\) & \(<.0040\) & \(<.0030\) & \(<.0040\) & <. 0050 & <. 0020 & <. 0030 \\
\hline 10. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{JUL} \\
\hline 22. & \(<.0030\) & <. 0020 & \(<.0020\) & <. 0010 & \(<.0060\) & \(<.0040\) & <. 0030 & \(<.0040\) & \(<.0050\) & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{AUG} \\
\hline 25. & \(<.0030\) & <. 0020 & \(<.0075\) & \(<.0010\) & \(<.0060\) & \(<.0040\) & \(<.0030\) & \(<.0040\) & <. 0050 & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{SEP} \\
\hline 07. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & \(<.0040\) & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 07... & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline
\end{tabular}

TENNESSEE RIVER BASIN
03609750 TENNESSEE RIVER AT HIGHWAY 60, NEAR PADUCAH, KY--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


LOCATION.--Lat \(36^{\circ} 41^{\prime} 30^{\prime \prime}\), long \(88^{\circ} 16^{\prime} 2^{\prime \prime}\), Calloway County, Hydrologic Unit 06040006 , on left bank at downstream side of bridge on State Highway \(464, \quad 0.3 \mathrm{mi}\) southeast of Almo, 5.1 mi upstream from Rockhouse Creek, and at mile 53.5 .

DRAINAGE AREA. \(--134 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1982 to current year.
GAGE.--Water-stage recorder. Datum of gage is 413.46 ft above sea level.
REMARKS.--Records fair except for periods of estimated record, which are poor.
PEAKS ABOVE BASE.--Peak discharges above base of \(4,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{ccccccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & Time & Discharge \(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & e17 & e17 & 13 & e55 & 449 & 136 & 409 & 65 & 25 & 1610 & 11 & 7.9 \\
\hline 2 & e17 & e17 & 12 & e400 & 203 & 89 & 130 & 55 & 39 & 1440 & 11 & 8.5 \\
\hline 3 & e16 & e17 & 12 & e150 & 117 & 455 & 99 & 50 & 24 & 181 & 11 & 8.1 \\
\hline 4 & e17 & e16 & 17 & e66 & 79 & 110 & 1120 & 47 & 23 & 64 & 11 & 7.8 \\
\hline 5 & e17 & e16 & 902 & e52 & 62 & 67 & 263 & 836 & 70 & 46 & 10 & 7.1 \\
\hline 6 & e18 & e16 & 110 & e50 & 55 & 1510 & 1440 & 4820 & 34 & 39 & 9.4 & 6.3 \\
\hline 7 & 69 & e16 & e60 & e60 & 58 & 251 & 262 & 337 & 105 & 35 & 8.9 & 6.6 \\
\hline 8 & 28 & e18 & e90 & e400 & 54 & 114 & 135 & 127 & 27 & 32 & 9.6 & 6.6 \\
\hline 9 & 18 & e30 & e50 & e300 & 48 & 356 & 222 & 73 & 24 & 30 & 9.5 & 6.6 \\
\hline 10 & 16 & e200 & e44 & e180 & 45 & 157 & 129 & 57 & 22 & 28 & 9.6 & 5.8 \\
\hline 11 & 16 & e40 & e42 & e100 & 44 & 86 & 105 & 48 & 26 & 26 & 9.2 & 6.4 \\
\hline 12 & 16 & e26 & e52 & e90 & 65 & 67 & 79 & 46 & 21 & 24 & 8.9 & 6.1 \\
\hline 13 & e15 & e24 & e90 & e100 & 54 & 83 & 67 & 49 & 25 & 23 & 9.1 & 11 \\
\hline 14 & e15 & e22 & e60 & e300 & 44 & 3050 & 84 & 40 & 27 & 22 & 8.3 & 7.7 \\
\hline 15 & e15 & e18 & e46 & 91 & 41 & 649 & 253 & 37 & 22 & 21 & 8.3 & 6.6 \\
\hline 16 & e16 & e17 & e40 & 57 & 41 & 240 & 139 & 36 & 21 & 20 & 7.7 & 6.2 \\
\hline 17 & e16 & e16 & e35 & 85 & 43 & 148 & 80 & 36 & 19 & 19 & 7.8 & 5.5 \\
\hline 18 & e20 & e16 & e30 & 547 & 40 & 103 & 66 & 44 & 19 & 18 & 7.4 & 5.3 \\
\hline 19 & e30 & e17 & e26 & 108 & 38 & 83 & 61 & 37 & 18 & 17 & 7.5 & 5.9 \\
\hline 20 & e20 & e20 & e30 & 59 & 36 & 73 & 58 & 33 & 18 & 16 & 7.8 & 6.2 \\
\hline 21 & e18 & e22 & e100 & 48 & 35 & 67 & 55 & 32 & 19 & 15 & 8.0 & 6.5 \\
\hline 22 & e18 & e20 & e300 & 4560 & 33 & 60 & 53 & 32 & 19 & 15 & 7.4 & 5.9 \\
\hline 23 & e17 & e19 & e70 & 7520 & 35 & 70 & 50 & 30 & 27 & 15 & 7.4 & 5.5 \\
\hline 24 & e17 & e18 & e50 & 442 & 39 & 131 & 47 & 27 & 67 & 67 & 7.4 & 5.6 \\
\hline 25 & e17 & e17 & e46 & 200 & 36 & 78 & 47 & 26 & 37 & 21 & 7.6 & 5.7 \\
\hline 26 & e19 & e16 & e44 & 114 & 35 & 63 & 70 & 26 & 24 & 12 & 8.0 & 5.4 \\
\hline 27 & e20 & e15 & e44 & 79 & 577 & 56 & 2620 & 25 & 48 & 11 & 7.9 & 5.0 \\
\hline 28 & e19 & e15 & e50 & 64 & 635 & 54 & 959 & 24 & 363 & 11 & 8.3 & 5.5 \\
\hline 29 & e18 & e16 & e50 & 61 & --- & 64 & 151 & 23 & 721 & 11 & 8.8 & 5.5 \\
\hline 30 & e18 & e14 & e48 & 470 & -- & 61 & 85 & 23 & 74 & 12 & 8.8 & 5.5 \\
\hline 31 & e17 & --- & e46 & 1280 & --- & 179 & --- & 27 & --- & 11 & 8.2 & --- \\
\hline TOTAL & 610 & 751 & 2609 & 18088 & 3041 & 8710 & 9338 & 7168 & 2008 & 3912 & 270.8 & 194.3 \\
\hline MEAN & 19.7 & 25.0 & 84.2 & 583 & 109 & 281 & 311 & 231 & 66.9 & 126 & 8.74 & 6.48 \\
\hline MAX & 69 & 200 & 902 & 7520 & 635 & 3050 & 2620 & 4820 & 721 & 1610 & 11 & 11 \\
\hline MIN & 15 & 14 & 12 & 48 & 33 & 54 & 47 & 23 & 18 & 11 & 7.4 & 5.0 \\
\hline CFSM & . 15 & . 19 & . 63 & 4.35 & . 81 & 2.10 & 2.32 & 1.73 & . 50 & . 94 & . 07 & . 05 \\
\hline IN. & . 17 & . 21 & . 72 & 5.02 & . 84 & 2.42 & 2.59 & 1.99 & . 56 & 1.09 & . 08 & . 05 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1983 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrr} 
MEAN & 47.6 & 160 & 330 & 235 & 412 & 289 & 230 & 212 & 132 & 70.6 & 46.6 \\
MAX & 205 & 684 & 1065 & 583 & 1693 & 1336 & 623 & 95.6 \\
(WY) & 1986 & 1989 & 1983 & 1999 & 1989 & 1997 & 1983 & 1983 & 1998 & 1989 & 1977 \\
MIN & 2.96 & 19.5 & 24.4 & 27.4 & 65.5 & 61.7 & 21.6 & 12.4 & 3.88 & 4.95 & 2.40 \\
(WY) & 1988 & 1998 & 1996 & 1987 & 1996 & 1995 & 1986 & 1988 & 1988 & 1986 & 1989
\end{tabular}


MASSAC CREEK BASIN
03611260 MASSAC CREEK NEAR PADUCAH, KY
LOCATION.--Lat \(37^{\circ} 02^{\prime} 2^{\prime \prime \prime}\), long \(88^{\circ} 42^{\prime} 3^{\prime \prime \prime}\), McCracken County, Hyrologic Unit 05140206 , on left upstream wingwall of bridge n U.S. Highway \(62,1.2 \mathrm{mi}\) upstream from Middle Fork, 6.9 mi west of post office in Paducah, and at mile 8.3 .
DRAINAGE AREA. \(-14.6 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1971 to current year.
REVISED RECORDS.--1983 (M), 1984 (M).
GAGE.--Water-stage recorder. Datum of gage is 345.53 ft above sea level.
REMARKS.--Records fair except for periods of estimated record, which are poor.
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 78 & . 80 & . 89 & 2.3 & 26 & 9.6 & 7.7 & 5.8 & e1.7 & 4.5 & . 68 & e. 56 \\
\hline 2 & . 79 & . 79 & . 92 & 101 & 11 & 8.9 & 6.5 & 5.6 & e7.4 & 2.8 & . 67 & e. 55 \\
\hline 3 & . 95 & . 92 & . 97 & 7.7 & 7.1 & 9.9 & 212 & 5.5 & e1.3 & 1.9 & . 66 & e. 55 \\
\hline 4 & . 97 & . 93 & 1.9 & e4.0 & 5.8 & 7.7 & 175 & 5.5 & e1.1 & 1.5 & . 83 & e. 54 \\
\hline 5 & 1.1 & . 99 & e7.6 & e3.4 & 5.2 & 8.3 & e66 & 136 & e1.1 & 1.3 & e. 80 & e. 54 \\
\hline 6 & 2.9 & 1.6 & e3.0 & e2. 8 & 5.9 & 151 & e164 & 71 & e120 & 1.2 & e. 74 & e. 54 \\
\hline 7 & 106 & . 86 & e2.5 & 2.7 & 13 & 13 & 20 & 8.4 & 21 & 1.1 & e. 68 & e. 54 \\
\hline 8 & 1.4 & . 99 & e3.2 & 56 & 6.2 & 11 & 14 & 5.3 & 3.5 & 1.0 & e. 80 & e. 56 \\
\hline 9 & . 93 & 1.1 & 2.8 & e8.0 & 5.3 & 19 & 12 & 4.4 & 2.6 & . 95 & e. 74 & e. 60 \\
\hline 10 & . 89 & 2.6 & 2.4 & e4.0 & 4.7 & 10 & 9.8 & 3.8 & 2.2 & 1.1 & e. 66 & e. 60 \\
\hline 11 & 1.0 & 1.3 & 2.4 & e3.2 & 4.5 & 8.7 & 8.7 & 3.4 & 1.9 & . 99 & e. 64 & e. 58 \\
\hline 12 & . 94 & . 80 & 4.3 & 4.3 & 6.3 & 7.7 & 7.6 & 3.1 & 1.8 & . 94 & . 61 & e. 66 \\
\hline 13 & . 87 & . 79 & 6.6 & 8.2 & 4.5 & 7.6 & 7.3 & 3.1 & 1.9 & e. 90 & . 59 & e. 64 \\
\hline 14 & . 78 & . 80 & e3.4 & 6.1 & 4.1 & 86 & 30 & 2.7 & 2.3 & e. 88 & . 62 & e. 62 \\
\hline 15 & . 86 & . 80 & e2. 8 & 3.7 & 4.0 & 14 & 110 & 2.5 & 1.7 & . 87 & e. 60 & e. 62 \\
\hline 16 & e. 84 & . 82 & 2.7 & 3.3 & 4.0 & 9.7 & 17 & 2.4 & e1.7 & . 87 & e. 60 & e. 60 \\
\hline 17 & e. 82 & e. 82 & 2.6 & 24 & 4.3 & 8.5 & 11 & 2.4 & e1.5 & . 83 & e. 58 & e. 60 \\
\hline 18 & 2.9 & e. 80 & 2.5 & 31 & 4.0 & 7.4 & 9.1 & 3.0 & e1.4 & . 79 & e. 58 & e. 60 \\
\hline 19 & 2.3 & e1.2 & 2.5 & 11 & 3.7 & 6.9 & 8.2 & 2.1 & 1.2 & . 78 & e. 60 & e. 58 \\
\hline 20 & 1.0 & e3.0 & 2.4 & 9.8 & 3.3 & 6.7 & 7.5 & 2.0 & 3.7 & . 76 & e. 60 & e1.0 \\
\hline 21 & . 93 & 1.2 & 84 & 9.3 & 3.1 & 6.4 & 7.0 & 3.5 & 1.7 & . 74 & e. 62 & e. 80 \\
\hline 22 & . 84 & 1.1 & 28 & 617 & 3.1 & 6.1 & 6.4 & 2.9 & 1.6 & . 73 & e. 62 & e. 76 \\
\hline 23 & . 86 & . 93 & 4.2 & 73 & 3.4 & 9.3 & 6.1 & 2.0 & 2.0 & . 73 & e. 60 & e. 72 \\
\hline 24 & . 85 & . 94 & 3.2 & 12 & 3.7 & 8.0 & 5.8 & 1.9 & 12 & . 81 & e. 62 & e. 68 \\
\hline 25 & . 87 & 1.0 & 2.8 & 8.0 & 3.3 & 6.7 & 5.7 & e1.7 & 3.0 & . 91 & e. 62 & e. 66 \\
\hline 26 & . 87 & 1.0 & 2.6 & 6.5 & 3.1 & 6.2 & 6.1 & e1.6 & 3.2 & . 76 & e. 59 & e. 72 \\
\hline 27 & . 89 & . 99 & 2.7 & 6.0 & 26 & 6.1 & 25 & e1.5 & 3.7 & . 75 & e. 58 & e. 68 \\
\hline 28 & . 93 & . 97 & 2.7 & 5.7 & 19 & 6.0 & 7.9 & e1.4 & 2.6 & . 74 & e. 58 & e. 66 \\
\hline 29 & . 94 & 1.1 & 2.6 & 5.1 & --- & 6.0 & 8.3 & e1.3 & 2.1 & . 74 & e. 58 & e. 70 \\
\hline 30 & . 88 & . 96 & 2.4 & 26 & --- & 5.8 & 6.4 & e1.3 & 2.0 & . 71 & e. 56 & e. 68 \\
\hline 31 & . 90 & --- & 2.3 & 127 & --- & 7.4 & --- & e2. 7 & --- & . 71 & e. 56 & --- \\
\hline TOTAL & 138.78 & 32.90 & 195.88 & 1192.1 & 197.6 & 485.6 & 988.1 & 299.8 & 214.9 & 34.29 & 19.81 & 19.14 \\
\hline MEAN & 4.48 & 1.10 & 6.32 & 38.5 & 7.06 & 15.7 & 32.9 & 9.67 & 7.16 & 1.11 & . 64 & . 64 \\
\hline MAX & 106 & 3.0 & 84 & 617 & 26 & 151 & 212 & 136 & 120 & 4.5 & . 83 & 1.0 \\
\hline MIN & . 78 & . 79 & . 89 & 2.3 & 3.1 & 5.8 & 5.7 & 1.3 & 1.1 & . 71 & . 56 & . 54 \\
\hline CFSM & . 31 & . 08 & . 43 & 2.63 & . 48 & 1.07 & 2.26 & . 66 & . 49 & . 08 & . 04 & . 04 \\
\hline IN. & . 35 & . 08 & . 50 & 3.04 & . 50 & 1.24 & 2.52 & . 76 & . 55 & . 09 & . 05 & . 05 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1972 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
\\
MEAN & 3.15 & 15.0 & 27.5 & 21.8 & 36.1 & 31.4 & 31.9 & 17.6 & 9.87 & 8.53 & 3.09 & 4.19 \\
MAX & 19.4 & 70.8 & 105 & 48.1 & 160 & 109 & 121 & 58.8 & 53.8 & 37.3 & 13.9 & 50.1 \\
(WY) & 1986 & 1997 & 1983 & 1974 & 1989 & 1997 & 1973 & 1983 & 1998 & 1983 & 1982 & 1985 \\
MIN & .25 & .37 & .71 & .58 & 4.19 & 8.36 & 2.14 & 1.17 & .32 & .37 & .30 & .23 \\
(WY) & 1982 & 1972 & 1977 & 1977 & 1996 & 1987 & 1986 & 1992 & 1972 & 1974 & 1980 & 1976
\end{tabular}

MASSAC CREEK BASIN
03611260 MASSAC CREEK NEAR PADUCAH, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & R YEAR & \multicolumn{2}{|l|}{1999 WATER YEAR} & WATER YEARS & 1972 - & 1999 \\
\hline ANNUAL TOTAL & 5811.30 & & 3818.90 & & & & \\
\hline ANNUAL MEAN & 15.9 & & 10.5 & & 17.4 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 37.9 & & 1979 \\
\hline LOWEST ANNUAL MEAN & & & & & 6.54 & & 1987 \\
\hline HIGHEST DAILY MEAN & 750 & Jun 9 & 617 & Jan 22 & 1780 & Feb 13 & 1989 \\
\hline LOWEST DAILY MEAN & . 71 & Sep 23 & . 54 & Sep 4 & . 09 & Nov 13 & 1971 \\
\hline ANNUAL SEVEN-DAY MINIMUM & . 73 & Sep 22 & . 55 & Sep 1 & . 10 & Nov 10 & 1971 \\
\hline INSTANTANEOUS PEAK FLOW & & & 1090 & Jan 22 & 5990 & Sep 5 & 1985 \\
\hline INSTANTANEOUS PEAK STAGE & & & 9.62 & Jan 22 & 15.86 & Sep 5 & 1985 \\
\hline INSTANTANEOUS LOW FLOW & & & & & . 06 & Nov 14 & 1971 \\
\hline ANNUAL RUNOFF (CFSM) & 1.09 & & . 72 & & 1.19 & & \\
\hline ANNUAL RUNOFF (INCHES) & 14.81 & & 9.73 & & 16.19 & & \\
\hline 10 PERCENT EXCEEDS & 22 & & 12 & & 28 & & \\
\hline 50 PERCENT EXCEEDS & 3.0 & & 2.4 & & 2.2 & & \\
\hline 90 PERCENT EXCEEDS & . 89 & & . 62 & & . 43 & & \\
\hline
\end{tabular}
e Estimated


LOCATION.--Lat \(37^{\circ} 08^{\prime} 51^{\prime \prime}\), long \(88^{\circ} 44^{\prime} \mathbf{2 7 " \prime}^{\prime \prime}\), Massac County Il., Hydrologic Unit 05140206 , near center of span on downstream side of pier of Paducah \& Illinois Railroad bridge at Metropolis, 9.5 mi downstream from Tennessee River, 37 mi upstream from mouth, and at mile 944.1.
DRAINAGE AREA. \(--203,000 \mathrm{mi}^{2}\), approximately.
PERIOD OF RECORD.--January 1928 to current year. Prior to April 1928 monthly discharge only, published in WSP 1305. Gage-height records collected 9.6 mi upstream at Paducah since 1890 are contained in reports of National Weather Service. Occasional discharge measurements 1881 to 1924 in reports of Mississippi River Commission.

GAGE.--Water-stage recorder. Datum of gage is 276.27 ft above sea level. Prior to Dec. 22, 1936, water-stage recorders (temporary installations) at Paducah, Ky., Metropolis and Joppa, Il., and Dam 52. Auxiliary water-stage recorder near Grand Chain, 0.5 mi upstream from Dam 53, and 18 mi downstream from base gage. Prior to May 29 , 1936 , auxiliary nonrecording gage at Dam 53.

REMARKS.--Records fair except discharges below \(100,000 \mathrm{ft} 3 / \mathrm{s}\) and for period of estimated record, which are poor. Flow regulated by many dams and reservoirs. Maximum daily discharge includes overflow through Bay Creek and Cache River Valleys.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
DAILY MEAN VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 85400 & 70100 & 76800 & 164000 & 961000 & 275000 & 211000 & 313000 & 83100 & 161000 & 88700 & 62900 \\
\hline 2 & 82200 & 74500 & 70300 & 197000 & 943000 & 331000 & 192000 & 296000 & 108000 & 176000 & 78700 & 62800 \\
\hline 3 & 61800 & 88000 & 64000 & 191000 & 924000 & 377000 & 174000 & 302000 & 124000 & 189000 & 85600 & 61500 \\
\hline 4 & 63000 & 86000 & 60100 & 200000 & 907000 & 409000 & 212000 & 295000 & 99200 & 233000 & 86700 & 66100 \\
\hline 5 & 67900 & 74200 & 58000 & 207000 & 879000 & 438000 & 232000 & 248000 & 121000 & 166000 & 56400 & 48300 \\
\hline 6 & 74500 & 109000 & 58200 & 204000 & 845000 & 482000 & 256000 & 295000 & 114000 & 174000 & 61200 & 45300 \\
\hline 7 & 89700 & 89200 & 75600 & 204000 & 801000 & 510000 & 266000 & 349000 & 144000 & 128000 & 79200 & 38600 \\
\hline 8 & 101000 & 64700 & 103000 & 193000 & 726000 & 543000 & 266000 & 337000 & 100000 & 164000 & 60500 & 48500 \\
\hline 9 & 120000 & 63700 & 109000 & 203000 & 662000 & 595000 & 256000 & 301000 & 130000 & 131000 & 81700 & 41000 \\
\hline 10 & 125000 & 87000 & 129000 & 299000 & 623000 & 625000 & 222000 & 283000 & 115000 & 151000 & 74100 & 40000 \\
\hline 11 & 123000 & 96500 & 157000 & 399000 & 589000 & 639000 & 204000 & 278000 & 103000 & 80400 & 66900 & 42300 \\
\hline 12 & 116000 & 102000 & 162000 & 478000 & 579000 & 642000 & 208000 & 285000 & 55600 & 110000 & 60700 & 41800 \\
\hline 13 & 106000 & 108000 & 168000 & 516000 & 571000 & 636000 & 215000 & 307000 & 65400 & 142000 & 65600 & 47700 \\
\hline 14 & 91800 & 92700 & 164000 & 529000 & 565000 & 648000 & 232000 & 291000 & 111000 & 120000 & 87100 & 38900 \\
\hline 15 & 85300 & 97200 & 183000 & 508000 & 554000 & 668000 & 256000 & 213000 & 79500 & 136000 & 58300 & 35300 \\
\hline 16 & 75100 & 109000 & 195000 & 495000 & 535000 & 661000 & 267000 & 193000 & 88200 & 109000 & 71000 & 35000 \\
\hline 17 & 74800 & 93100 & 220000 & 477000 & 519000 & 654000 & 264000 & 176000 & 77700 & 113000 & 52400 & e34000 \\
\hline 18 & 72500 & 96200 & 207000 & 485000 & 495000 & 640000 & 253000 & 184000 & 76000 & 106000 & 57600 & 33900 \\
\hline 19 & 71400 & 103000 & 179000 & 513000 & 464000 & 631000 & 258000 & 160000 & 81000 & 116000 & 56800 & 46300 \\
\hline 20 & 72300 & 103000 & 158000 & 538000 & 430000 & 620000 & 248000 & 128000 & 54700 & 102000 & 61500 & 33200 \\
\hline 21 & 77300 & 87500 & 125000 & 565000 & 379000 & 582000 & 243000 & 141000 & 66900 & 109000 & 61300 & 35000 \\
\hline 22 & 94700 & 91200 & 180000 & 611000 & 322000 & 563000 & 250000 & 151000 & 73900 & 93200 & 45100 & 38900 \\
\hline 23 & 107000 & 99000 & 227000 & 696000 & 332000 & 553000 & 255000 & 135000 & 77500 & 98200 & 41800 & 39500 \\
\hline 24 & 71100 & 79500 & 219000 & 816000 & 327000 & 509000 & 261000 & 115000 & 81800 & 88200 & 57000 & 35900 \\
\hline 25 & 70300 & 76900 & 197000 & 909000 & 285000 & 485000 & 269000 & 134000 & 70400 & 86000 & 69600 & 31200 \\
\hline 26 & 74100 & 77300 & 193000 & 951000 & 247000 & 454000 & 277000 & 129000 & 65400 & 107000 & 71100 & 30500 \\
\hline 27 & 79400 & 78600 & 190000 & 938000 & 212000 & 386000 & 288000 & 135000 & 84800 & 108000 & 100000 & 37300 \\
\hline 28 & 69400 & 83400 & 185000 & 915000 & 212000 & 311000 & 303000 & 139000 & 93600 & 86300 & 95800 & 41700 \\
\hline 29 & 66700 & 75500 & 151000 & 901000 & --- & 270000 & 317000 & 138000 & 150000 & 101000 & 64800 & 51500 \\
\hline 30 & 72600 & 78200 & 143000 & 921000 & --- & 247000 & 321000 & 111000 & 166000 & 111000 & 69700 & 53700 \\
\hline 31 & 71600 & --- & 160000 & 951000 & --- & 228000 & --- & 88800 & --- & 101000 & 69800 & --- \\
\hline TOTAL & 2612900 & 2634200 & 4567000 & 16174000 & 15888000 & 15612000 & 7476000 & 6650800 & 2860700 & 3896300 & 2136700 & 1298600 \\
\hline MEAN & 84290 & 87810 & 147300 & 521700 & 567400 & 503600 & 249200 & 214500 & 95360 & 125700 & 68930 & 43290 \\
\hline MAX & 125000 & 109000 & 227000 & 951000 & 961000 & 668000 & 321000 & 349000 & 166000 & 233000 & 100000 & 66100 \\
\hline MIN & 61800 & 63700 & 58000 & 164000 & 212000 & 228000 & 174000 & 88800 & 54700 & 80400 & 41800 & 30500 \\
\hline \multicolumn{2}{|l|}{STATISTICS OF} & \multicolumn{8}{|l|}{MONTHLY MEAN DATA FOR WATER YEARS 1928 - 1999, BY WATER YEAR (WY)} & & & \\
\hline MEAN & 103200 & 165100 & 289800 & 401000 & 471200 & 528600 & 458300 & 339200 & 221100 & 154500 & 121500 & 99230 \\
\hline MAX & 335600 & 450300 & 717500 & 1022000 & 1217000 & 1039000 & 896400 & 917800 & 596400 & 441200 & 331100 & 383500 \\
\hline (WY) & 1980 & 1986 & 1973 & 1937 & 1937 & 1997 & 1994 & 1983 & 1997 & 1928 & 1958 & 1979 \\
\hline MIN & 22710 & 33400 & 48610 & 71650 & 77380 & 154700 & 129900 & 75180 & 53840 & 23350 & 25390 & 29330 \\
\hline (WY) & 1931 & 1931 & 1931 & 1940 & 1934 & 1941 & 1986 & 1941 & 1936 & 1930 & 1930 & 1930 \\
\hline
\end{tabular}

OHIO RIVER MAIN STEM
03611500 OHIO RIVER AT METROPOLIS, IL--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CA & R Y & AR & \multicolumn{3}{|l|}{FOR 1999 WATER YEAR} & WATER YEARS & 1928 & \multicolumn{2}{|l|}{- 1999} \\
\hline ANNUAL TOTAL & 118335200 & & & 81807200 & & & & & & \\
\hline ANNUAL MEAN & 324200 & & & 224100 & & & 277700 & & & \\
\hline HIGHEST ANNUAL MEAN & & & & & & & 436600 & & & 1979 \\
\hline LOWEST ANNUAL MEAN & & & & & & & 120300 & & & 1931 \\
\hline HIGHEST DAILY MEAN & 850000 & Apr & & 961000 & Feb & 1 & 1850000 & Feb & 1 & 1937 \\
\hline LOWEST DAILY MEAN & 58000 & Dec & 5 & 30500 & Sep & 26 & 15000 & Jul & 20 & 1930 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 66100 & Dec & 1 & 34900 & Sep & 20 & 16600 & Jul & 20 & 1930 \\
\hline INSTANTANEOUS PEAK FLOW & & & & 968000 & Feb & 1 & 1850000 & Feb & 1 & 1937 \\
\hline INSTANTANEOUS PEAK STAGE & & & & 51.93 & Feb & 1 & 66.60 & Feb & 2 & 1937 \\
\hline 10 PERCENT EXCEEDS & 666000 & & & 567000 & & & 640000 & & & \\
\hline 50 PERCENT EXCEEDS & 276000 & & & 129000 & & & 191000 & & & \\
\hline 90 PERCENT EXCEEDS & 77200 & & & 58100 & & & 68000 & & & \\
\hline
\end{tabular}


03611800 BAYOU CREEK NEAR HEATH, KY
LOCATION.--Lat \(37^{\circ} 05^{\prime} 58^{\prime \prime}\), long \(88^{\circ} 49^{\prime} \mathbf{2 7}^{\prime \prime}\), McCracken County, Hydrologic Unit 05140206 , on left downstream wingwall of bridge on Dyke Road, 1.0 mi southwest of Paducah Gaseous Diffusion Plant, 2.0 mi northwest of Heath, 3.0 mi upstream from Brushy Creek, and at mile 7.3.
DRAINAGE AREA. \(--6.55 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1990 to November 1991, June 1993 to current year.
GAGE.--Water-stage recorder. Datum of gage is 366.06 ft above sea level (levels by U.S. Department of Energy).
REMARKS.--Records fair except for periods of estimated record, which are poor.
PEAKS ABOVE BASE.--Peak discharges above base of \(900 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{ccccccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} \\
Jan. 22 & 0330 & 1270 & 7.57 & Apr. 3 & 0645 & \(* 1340\)
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 13 & . 13 & e. 24 & . 63 & 50 & 3.7 & 1.4 & . 47 & . 72 & 32 & . 27 & . 20 \\
\hline 2 & . 11 & . 17 & e. 24 & 93 & 11 & 2.2 & . 95 & . 36 & 4.2 & 2.6 & . 27 & . 22 \\
\hline 3 & . 14 & e. 16 & e. 26 & e15 & 4.7 & 1.4 & 199 & . 32 & . 39 & . 93 & . 29 & . 23 \\
\hline 4 & . 12 & e. 15 & e1.0 & e5.0 & 2.9 & 1.0 & e70 & . 34 & . 24 & . 38 & . 31 & . 25 \\
\hline 5 & . 10 & e. 14 & 2.7 & e2.5 & 2.0 & 1.5 & e20 & 31 & . 33 & . 27 & . 28 & . 20 \\
\hline 6 & 5.9 & e. 13 & . 72 & e1.3 & 9.8 & 30 & e44 & 21 & . 28 & . 22 & . 29 & . 18 \\
\hline 7 & 96 & e. 12 & 1.1 & e1.1 & 30 & 4.0 & e7.0 & 3.3 & . 24 & . 21 & . 29 & . 16 \\
\hline 8 & 1.4 & e. 12 & e. 60 & 19 & 6.4 & 6.9 & e3.0 & 1.6 & . 18 & . 21 & . 48 & . 18 \\
\hline 9 & . 36 & . 38 & e. 40 & e10 & 3.8 & 23 & e2.4 & . 92 & . 18 & . 20 & . 23 & . 19 \\
\hline 10 & . 26 & 1.6 & . 35 & e4.0 & 2.7 & 5.4 & e2.0 & . 63 & . 18 & . 22 & . 22 & . 17 \\
\hline 11 & . 20 & 1.3 & . 33 & e2. 8 & 3.5 & 3.0 & e1. 5 & . 53 & . 18 & . 21 & . 23 & . 18 \\
\hline 12 & . 20 & . 85 & . 54 & 4.7 & 7.5 & 2.0 & 1.1 & . 54 & . 18 & . 22 & . 20 & . 20 \\
\hline 13 & . 19 & e. 70 & 1.8 & 19 & 2.6 & 1.8 & . 86 & . 55 & . 36 & . 23 & . 20 & . 26 \\
\hline 14 & . 18 & e. 54 & . 98 & 6.9 & 1.9 & 38 & 15 & . 37 & . 52 & . 24 & . 22 & . 21 \\
\hline 15 & . 14 & e. 44 & . 51 & 2.6 & 1.6 & 8.0 & 43 & . 38 & . 25 & . 24 & . 22 & . 18 \\
\hline 16 & . 18 & e. 36 & . 42 & 2.4 & 1.8 & 3.7 & 7.3 & . 37 & . 26 & . 22 & . 22 & . 17 \\
\hline 17 & . 24 & e. 30 & . 37 & 29 & 3.7 & 2.4 & 3.5 & . 46 & . 24 & . 24 & . 21 & . 16 \\
\hline 18 & . 35 & e. 26 & . 35 & 21 & 2.6 & 1.6 & 2.1 & . 80 & . 23 & . 23 & . 20 & . 18 \\
\hline 19 & . 14 & e. 80 & . 36 & 4.4 & 2.0 & 1.2 & 1.5 & . 47 & . 26 & . 23 & . 23 & . 18 \\
\hline 20 & . 15 & 3.0 & . 35 & 2.6 & 1.5 & . 98 & 1.1 & . 39 & 36 & . 23 & . 26 & . 19 \\
\hline 21 & . 16 & e. 70 & 82 & 2.3 & 1.1 & . 81 & . 76 & . 59 & 1.3 & . 23 & . 28 & . 27 \\
\hline 22 & . 17 & e. 40 & 20 & 395 & . 97 & . 60 & . 52 & . 61 & . 47 & . 23 & . 32 & . 20 \\
\hline 23 & . 17 & e. 30 & e4.0 & 26 & 1.4 & 6.8 & . 36 & . 29 & 16 & . 24 & . 27 & . 23 \\
\hline 24 & . 15 & e. 32 & e1.8 & 7.1 & 1.8 & 3.7 & . 26 & . 26 & 13 & . 24 & . 25 & . 21 \\
\hline 25 & . 14 & e. 34 & e1.3 & 3.8 & 1.5 & 1.7 & . 25 & . 26 & 4.5 & . 22 & . 22 & . 21 \\
\hline 26 & e. 14 & e. 32 & e1.2 & e2.7 & 1.2 & 1.2 & . 33 & . 26 & 1.4 & . 23 & . 21 & . 20 \\
\hline 27 & e. 13 & e. 28 & e1.0 & e2.0 & 21 & . 80 & 4.6 & . 29 & . 93 & . 23 & . 20 & . 21 \\
\hline 28 & e. 12 & e. 26 & 1.2 & e1.7 & 12 & . 75 & 1.7 & . 33 & . 49 & . 25 & . 20 & . 19 \\
\hline 29 & e. 11 & e. 24 & 1.2 & e1. 6 & --- & . 70 & 1.8 & . 33 & . 37 & . 27 & . 18 & . 26 \\
\hline 30 & . 10 & e. 22 & . 88 & e10 & --- & . 53 & . 83 & . 39 & 22 & . 27 & . 18 & . 20 \\
\hline 31 & . 12 & --- & . 64 & 56 & --- & 1.1 & --- & . 64 & --- & . 24 & . 19 & --- \\
\hline TOTAL & 108.00 & 15.03 & 128.84 & 755.13 & 192.97 & 160.47 & 438.12 & 69.05 & 105.88 & 42.18 & 7.62 & 6.07 \\
\hline MEAN & 3.48 & . 50 & 4.16 & 24.4 & 6.89 & 5.18 & 14.6 & 2.23 & 3.53 & 1.36 & . 25 & . 20 \\
\hline MAX & 96 & 3.0 & 82 & 395 & 50 & 38 & 199 & 31 & 36 & 32 & . 48 & . 27 \\
\hline MIN & . 10 & . 12 & . 24 & . 63 & . 97 & . 53 & . 25 & . 26 & . 18 & . 20 & . 18 & . 16 \\
\hline CFSM & . 53 & . 08 & . 63 & 3.72 & 1.05 & . 79 & 2.23 & . 34 & . 54 & . 21 & . 04 & . 03 \\
\hline IN. & . 61 & . 09 & . 73 & 4.29 & 1.10 & . 91 & 2.49 & . 39 & . 60 & . 24 & . 04 & . 03 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1991 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrrr} 
MEAN & 1.27 & 5.19 & 9.89 & 10.2 & 10.4 & 11.2 & 9.29 & 8.70 & 5.12 & 2.36 & 1.92 & 8.60 \\
MAX & 3.48 & 22.8 & 37.2 & 24.4 & 15.6 & 34.9 & 16.6 & 16.5 & 16.6 & 7.59 & 8.31 & 2.11 \\
(WY) & 1999 & 1997 & 1991 & 1999 & 1991 & 1997 & 1994 & 1995 & 1998 & 1998 & 1998 & 1993 \\
MIN & .21 & .45 & .50 & 1.69 & .60 & 3.26 & 4.90 & .56 & .17 & .089 & .12 & .15 \\
(WY) & 1998 & 1998 & 1998 & 1998 & 1996 & 1995 & 1991 & 1994 & 1994 & 1993 & 1993 & 1998
\end{tabular}

BAYOU CREEK BASIN
03611800 BAYOU CREEK NEAR HEATH, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & AR YEAR & FOR 1999 WATER YEAR & YEAR & WATER YEARS & \multicolumn{3}{|l|}{\(1991-1999\)} \\
\hline ANNUAL TOTAL & 2248.31 & & 2029.36 & & & & & \\
\hline ANNUAL MEAN & 6.16 & & 5.56 & & 6.42 & & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 10.0 & & & 1997 \\
\hline LOWEST ANNUAL MEAN & & & & & 3.85 & & & 1996 \\
\hline HIGHEST DAILY MEAN & 375 & Jun 9 & 395 & Jan 22 & 710 & Mar & 1 & 1997 \\
\hline LOWEST DAILY MEAN & . 08 & Jan 1 & . 10 & Oct 5 & . 05 & Sep & 7 & 1991 \\
\hline ANNUAL SEVEN-DAY MINIMUM & . 12 & Sep 26 & . 12 & Oct 26 & . 06 & Jul & 2 & 1993 \\
\hline INSTANTANEOUS PEAK FLOW & & & 1340 & Apr 3 & 1870 & Mar & 1 & 1997 \\
\hline INSTANTANEOUS PEAK STAGE & & & 7.84 & Apr 3 & 9.90 & Mar & 1 & 1997 \\
\hline ANNUAL RUNOFF (CFSM) & . 94 & & . 85 & & . 98 & & & \\
\hline ANNUAL RUNOFF (INCHES) & 12.77 & & 11.53 & & 13.32 & & & \\
\hline 10 PERCENT EXCEEDS & 5.6 & & 8.7 & & 5.7 & & & \\
\hline 50 PERCENT EXCEEDS & . 47 & & . 40 & & . 45 & & & \\
\hline 90 PERCENT EXCEEDS & . 14 & & . 18 & & . 14 & & & \\
\hline
\end{tabular}
e Estimated


03611850 BAYOU CREEK NEAR GRAHAMVILLE, KY
LOCATION.--Lat \(37^{\circ} 08^{\prime} 41^{\prime \prime}\), long \(88^{\circ} 49^{\prime} 38^{\prime \prime}\), McCracken County, Hydrologic Unit 05140206, near right bank on downstream side of bridge on State Highway 358, 750 ft downstream of Brushy Creek, 1.4 mi north of Paducah Gaseous Diffusion Plant, 3.6 mi northwest of Grahamville, and at mile 4.1.
DRAINAGE AREA. \(-14.9 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1990 to November 1991, June 1993 to current year.
GAGE.--Water-stage recorder. Datum of gage is 330 ft above sea level (from topographic map).
REMARKS.--Records fair except for periods of estimated record, which are poor.
PEAKS ABOVE BASE.--Peak discharges above base of \(1,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{ccccccc} 
\\
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} \\
Jan. 22 & 0445 & \(* 1370\) & 11.17 & Apr. 3 & 0830 & 1210
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 5.4 & e3. 8 & 5.5 & 5.6 & 143 & 14 & 15 & 7.4 & 5.4 & 93 & 11 & 9.9 \\
\hline 2 & 5.4 & e5.0 & e5.4 & 219 & 37 & 11 & 12 & 7.5 & 37 & 16 & 11 & 10 \\
\hline 3 & 5.8 & 4.8 & e5.2 & e18 & 21 & 9.3 & 285 & 7.5 & 7.3 & 12 & 11 & 10 \\
\hline 4 & 5.9 & 4.0 & e9.0 & e14 & 16 & 8.2 & 223 & 7.4 & 5.8 & 11 & 11 & 9.9 \\
\hline 5 & 6.2 & 3.6 & 12 & e12 & 13 & 13 & 80 & 72 & 6.8 & 11 & 10 & 10 \\
\hline 6 & 32 & e3. 5 & 7.1 & e10 & 26 & 106 & 159 & 71 & 18 & 10 & 9.8 & 10 \\
\hline 7 & 209 & e3.4 & 9.5 & 10 & 96 & 18 & 26 & 14 & 11 & 9.6 & 9.5 & 10 \\
\hline 8 & 8.6 & e3.5 & 7.9 & 54 & 24 & 20 & 20 & 10 & 5.6 & 9.7 & 12 & 10 \\
\hline 9 & 6.6 & e6.0 & 5.4 & e18 & 16 & 79 & 17 & 8.9 & 5.2 & 9.6 & 10 & 10 \\
\hline 10 & 5.4 & e14 & 4.4 & e11 & 13 & 21 & 13 & 7.8 & 5.7 & 11 & 10 & 10 \\
\hline 11 & 5.5 & 9.1 & 4.3 & e12 & 14 & 15 & 11 & 6.1 & 6.1 & 9.8 & 10 & 10 \\
\hline 12 & 5.4 & 8.3 & e4.2 & 15 & 21 & 12 & 9.7 & 7.9 & 4.9 & 9.8 & 10 & 9.9 \\
\hline 13 & 5.4 & e6. 8 & e4.1 & 37 & 12 & 11 & 8.5 & 8.2 & 9.5 & 9.9 & 9.9 & 11 \\
\hline 14 & 5.4 & e6.4 & e4.0 & 19 & 10 & 100 & 26 & 6.9 & 24 & 9.8 & 10 & 9.7 \\
\hline 15 & 5.2 & e6.0 & e3.9 & 12 & 9.8 & 28 & 125 & 6.2 & 9.3 & 9.0 & 10 & 9.4 \\
\hline 16 & 5.0 & e5.4 & e3.9 & 11 & 11 & 16 & 24 & 6.4 & 5.6 & 8.1 & 9.7 & 9.2 \\
\hline 17 & 4.8 & e5.2 & e3.9 & 52 & 13 & 12 & 15 & 7.4 & 3.8 & 8.8 & 9.5 & 6.0 \\
\hline 18 & 8.5 & e5.0 & e3. 8 & 58 & 12 & 10 & 12 & 8.1 & 3.5 & 9.1 & 9.7 & 4.6 \\
\hline 19 & 5.8 & e4.8 & e3. 8 & 15 & 10 & 9.1 & 11 & 6.3 & 4.3 & 9.2 & 9.8 & 4.1 \\
\hline 20 & 4.6 & 16 & e3.8 & 12 & 9.1 & 8.9 & 10 & 6.0 & 89 & 9.1 & 9.8 & 4.0 \\
\hline 21 & 4.5 & 6.2 & e180 & 12 & 8.8 & 8.9 & 9.8 & 8.1 & 8.9 & 9.0 & 10 & 5.6 \\
\hline 22 & e4.3 & 5.2 & 58 & 713 & 8.7 & 9.0 & 8.2 & 6.9 & 7.0 & 9.6 & 10 & 4.8 \\
\hline 23 & e4.3 & 5.0 & e9.4 & 88 & 9.0 & 22 & 7.3 & 5.7 & 35 & 10 & 10 & 3.8 \\
\hline 24 & e4.2 & 5.0 & e8.8 & 31 & 8.6 & 15 & 6.9 & 5.6 & 24 & 10 & 10 & 3.5 \\
\hline 25 & e4.2 & 5.8 & e8.0 & 19 & 7.5 & 10 & 6.8 & 5.7 & 15 & 11 & 11 & 3.2 \\
\hline 26 & e4.2 & 5.8 & e6. 8 & 15 & 6.9 & 8.9 & 7.7 & 8.1 & 11 & 10 & 11 & 3.5 \\
\hline 27 & e4.1 & 5.9 & 7.2 & 14 & 41 & 7.0 & 16 & 5.9 & 12 & 10 & 11 & 3.3 \\
\hline 28 & e4.1 & 5.7 & 7.8 & 13 & 37 & 8.4 & 8.6 & 3.7 & 10 & 10 & 9.9 & 3.6 \\
\hline 29 & e4.0 & 5.7 & 8.1 & 11 & --- & 8.4 & 14 & 3.5 & 12 & 10 & 9.8 & 5.5 \\
\hline 30 & e4.0 & 6.0 & 7.1 & 26 & --- & 7.7 & 7.2 & 3.7 & 22 & 10 & 9.8 & 5.1 \\
\hline 31 & e3.9 & --- & 6.0 & 173 & --- & 11 & --- & 7.1 & -- & 10 & 9.8 & --- \\
\hline TOTAL & 391.7 & 180.9 & 418.3 & 1729.6 & 654.4 & 637.8 & 1194.7 & 347.0 & 424.7 & 395.1 & 316.0 & 219.6 \\
\hline MEAN & 12.6 & 6.03 & 13.5 & 55.8 & 23.4 & 20.6 & 39.8 & 11.2 & 14.2 & 12.7 & 10.2 & 7.32 \\
\hline MAX & 209 & 16 & 180 & 713 & 143 & 106 & 285 & 72 & 89 & 93 & 12 & 11 \\
\hline MIN & 3.9 & 3.4 & 3.8 & 5.6 & 6.9 & 7.0 & 6.8 & 3.5 & 3.5 & 8.1 & 9.5 & 3.2 \\
\hline CFSM & . 85 & . 40 & . 91 & 3.74 & 1.57 & 1.38 & 2.67 & . 75 & . 95 & . 86 & . 68 & . 49 \\
\hline IN. & . 98 & . 45 & 1.04 & 4.32 & 1.63 & 1.59 & 2.98 & . 87 & 1.06 & . 99 & . 79 & . 55 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1991 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lllllllllllll} 
MEAN & 9.66 & 18.5 & 25.9 & 29.7 & 28.7 & 31.5 & 29.6 & 24.8 & 18.9 & 12.1 & 10.6 & 7.70 \\
MAX & 20.0 & 56.7 & 60.7 & 55.8 & 37.9 & 77.5 & 41.0 & 38.4 & 32.4 & 24.3 & 21.4 & 12.6 \\
(WY) & 1997 & 1997 & 1991 & 1999 & 1997 & 1997 & 1994 & 1996 & 1998 & 1996 & 1998 & 1993 \\
MIN & 5.57 & 5.76 & 6.66 & 10.1 & 6.13 & 15.0 & 17.2 & 9.30 & 7.56 & 6.37 & 6.51 & 5.11 \\
(WY) & 1998 & 1991 & 1996 & 1998 & 1996 & 1995 & 1991 & 1994 & 1991 & 1994 & 1993 & 1997
\end{tabular}

BAYOU CREEK BASIN
03611850 BAYOU CREEK NEAR GRAHAMVILLE, KY--Continued

SUMMARY STATISTICS
ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN HIGHEST DAILY MEAN
LOWEST DAILY MEAN LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS
e Estimated


WATER YEAR

03611900 LITTLE BAYOU CREEK NEAR GRAHAMVILLE, KY
LOCATION.--Lat \(37^{\circ} 08^{\prime} 22^{\prime \prime}\), long \(88^{\circ} 47^{\prime} 2^{\prime \prime}\), McCracken County, Hydrologic Unit 05140206 , on left bank on reservation of Tennessee Valley Authority Shawnee Steam Plant, 30 ft upstream of bridge on unnamed county road, 1.1 mi southwest of Shawnee Steam Plant, 2.2 mi upstream from Bayou Creek, and 2.3 mi north of Grahamville.
DRAINAGE AREA. \(-5.78 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1990 to November 1991, June 1993 to current year.
GAGE.--Water-stage recorder. Datum of gage is 324.80 ft above sea level (levels by U.S. Department of Energy).
REMARKS.--Records fair except for periods of estimated record, which are poor. Some regulation from Paducah Gaseous Diffusion Plant, 0.4 mi upstream.
PEAKS ABOVE BASE.--Peak discharges above base of \(400 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{ccccccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} & Date & \begin{tabular}{c} 
Time
\end{tabular} & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} \\
Jan. 22 & 0415 & 573 & 7.45 & Apr. 3 & 0800 & \(* 595\)
\end{tabular}

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & . 85 & e. 58 & e. 56 & 1.1 & 29 & 3.8 & 1.9 & 1.5 & 1.4 & 47 & e. 86 & . 93 \\
\hline 2 & . 84 & e. 64 & e. 60 & 70 & 5.6 & 2.4 & 1.6 & 1.3 & 19 & 3.8 & e. 84 & . 93 \\
\hline 3 & 1.1 & e. 60 & e. 66 & e17 & 2.7 & 1.9 & 143 & 1.3 & 2.4 & 1.4 & e. 84 & . 95 \\
\hline 4 & 1.0 & e. 58 & e1. 5 & e8.0 & 1.9 & 1.6 & 86 & 1.3 & 1.1 & 1.1 & e. 84 & . 94 \\
\hline 5 & 1.0 & e. 58 & e4.0 & e4.0 & 1.6 & 2.1 & 24 & 30 & 1.9 & . 99 & e. 82 & . 89 \\
\hline 6 & 13 & e. 56 & e2.2 & e2. 5 & 15 & 34 & 64 & 40 & 49 & . 94 & e. 82 & . 84 \\
\hline 7 & 86 & e. 56 & e2. 6 & 1.7 & 18 & 5.5 & 8.1 & 4.4 & 18 & . 95 & e. 82 & . 81 \\
\hline 8 & 1.5 & e. 54 & e1.8 & 23 & 5.4 & 3.8 & 4.0 & 2.0 & 1.9 & . 95 & e. 80 & . 82 \\
\hline 9 & . 76 & e1.0 & e1.4 & e12 & 3.2 & 27 & 3.1 & 1.5 & 1.1 & 1.0 & e. 80 & . 82 \\
\hline 10 & . 65 & e4.0 & e1.0 & e6.0 & 2.6 & 6.7 & 2.6 & 1.4 & 1.0 & 1.2 & e. 80 & . 83 \\
\hline 11 & . 65 & e2.0 & e. 90 & e3.2 & 4.2 & 3.2 & 1.9 & 1.3 & 1.1 & . 99 & . 77 & . 81 \\
\hline 12 & . 65 & e1.7 & e1.6 & 3.8 & 9.8 & 2.1 & 1.6 & 1.3 & . 98 & . 98 & . 76 & . 84 \\
\hline 13 & . 66 & e1.3 & e2.8 & 8.4 & 3.8 & 2.0 & 1.4 & 1.9 & 1.7 & . 95 & . 87 & 1.1 \\
\hline 14 & . 66 & e. 90 & e2.0 & 6.2 & 2.5 & 35 & 6.7 & 1.3 & 5.1 & . 91 & . 82 & . 80 \\
\hline 15 & . 68 & e. 70 & e1.4 & 3.2 & 2.3 & 11 & 55 & 1.2 & 1.0 & 1.6 & . 78 & . 80 \\
\hline 16 & . 73 & e. 64 & e1.2 & 2.2 & 2.4 & 4.7 & 10 & 1.2 & . 91 & . 87 & . 81 & . 84 \\
\hline 17 & . 77 & e. 62 & e1.0 & 8.6 & 3.4 & 2.5 & 3.9 & 1.3 & . 87 & . 98 & . 82 & . 87 \\
\hline 18 & 2.3 & e. 60 & e. 94 & 22 & 2.6 & 1.9 & 2.6 & 3.0 & . 74 & . 90 & . 86 & . 86 \\
\hline 19 & . 73 & e1.3 & e. 88 & 5.0 & 2.2 & 1.5 & 2.1 & 1.4 & . 78 & . 87 & . 85 & . 87 \\
\hline 20 & . 52 & e4.0 & e. 82 & 2.9 & 1.9 & 1.4 & 1.8 & 1.2 & 24 & . 85 & . 85 & . 90 \\
\hline 21 & . 65 & e2.0 & 58 & 3.6 & 1.7 & 1.3 & 1.6 & 1.8 & 2.0 & . 93 & . 84 & 1.2 \\
\hline 22 & . 75 & e1.0 & e22 & 286 & 1.5 & 1.2 & 1.6 & 1.8 & 1.0 & . 88 & . 85 & . 73 \\
\hline 23 & e. 70 & e. 70 & e6.0 & 34 & 2.2 & 5.6 & 1.5 & 1.2 & 8.4 & . 90 & . 86 & . 73 \\
\hline 24 & e. 66 & e. 66 & e4.0 & e9.0 & 2.5 & 4.7 & 1.4 & 1.2 & 11 & . 89 & . 84 & . 73 \\
\hline 25 & e. 64 & e. 70 & e3.0 & e6.0 & 2.0 & 2.4 & 1.5 & 2.5 & 3.2 & . 89 & . 88 & . 72 \\
\hline 26 & e. 62 & e. 66 & e2.0 & e4.0 & 1.9 & 2.0 & 1.8 & 3.5 & 5.1 & . 89 & . 94 & . 71 \\
\hline 27 & e. 60 & e. 60 & 1.3 & e3.0 & 11 & 1.4 & 5.6 & 2.6 & 3.4 & . 91 & 1.0 & . 77 \\
\hline 28 & e. 58 & e. 58 & 1.2 & 2.0 & 12 & 1.3 & 2.2 & 1.1 & 1.5 & . 94 & . 94 & . 77 \\
\hline 29 & e. 56 & e. 56 & 1.2 & 2.0 & - & 1.3 & 5.4 & 1.1 & 1.2 & e. 92 & . 96 & . 97 \\
\hline 30 & e. 54 & e. 58 & 1.1 & 12 & --- & 1.2 & 2.1 & 1.1 & 6.8 & e. 90 & . 94 & . 85 \\
\hline 31 & e. 54 & -- & 1.1 & 61 & - & 1.7 & --- & 2.6 & - & e. 88 & . 90 & --- \\
\hline TOTAL & 121.89 & 31.44 & 130.76 & 633.4 & 154.9 & 178.2 & 450.0 & 120.3 & 177.58 & 79.16 & 26.38 & 25.63 \\
\hline MEAN & 3.93 & 1.05 & 4.22 & 20.4 & 5.53 & 5.75 & 15.0 & 3.88 & 5.92 & 2.55 & . 85 & . 85 \\
\hline MAX & 86 & 4.0 & 58 & 286 & 29 & 35 & 143 & 40 & 49 & 47 & 1.0 & 1.2 \\
\hline MIN & . 52 & . 54 & . 56 & 1.1 & 1.5 & 1.2 & 1.4 & 1.1 & . 74 & . 85 & . 76 & . 71 \\
\hline CFSM & . 68 & . 18 & . 73 & 3.53 & . 96 & . 99 & 2.60 & . 67 & 1.02 & . 44 & . 15 & . 15 \\
\hline IN. & . 78 & . 20 & . 84 & 4.08 & 1.00 & 1.15 & 2.90 & . 77 & 1.14 & . 51 & . 17 & . 16 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1991 - 1999, BY WATER YEAR (WY)
\begin{tabular}{llllllllllllll} 
MEAN & 2.37 & 5.63 & 9.49 & 10.5 & 9.37 & 11.1 & 10.4 & 8.22 & 4.81 & 2.52 & 2.17 & 1.47 \\
MAX & 4.25 & 18.3 & 33.5 & 20.4 & 17.0 & 32.5 & 19.2 & 13.5 & 12.4 & 7.87 & 8.11 & 2.98 \\
(WY) & 1997 & 1997 & 1991 & 1999 & 1991 & 1997 & 1994 & 1997 & 1998 & 1996 & 1998 & 1993 \\
MIN & 1.28 & 1.05 & 1.26 & 1.67 & 1.02 & 3.79 & 5.62 & 1.48 & 1.04 & .82 & .72 & .78 \\
(WY) & 1998 & 1999 & 1996 & 1998 & 1996 & 1995 & 1991 & 1994 & 1994 & 1991 & 1996 & 1998
\end{tabular}

BAYOU CREEK BASIN
03611900 LITTLE BAYOU CREEK NEAR GRAHAMVILLE, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & R YEAR & \multicolumn{2}{|l|}{1999 WATER YEAR} & WATER YEARS & \multicolumn{2}{|l|}{1991 - 1999} \\
\hline ANNUAL TOTAL & 1974.52 & & 2129.64 & & & & \\
\hline ANNUAL MEAN & 5.41 & & 5.83 & & 6.59 & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 10.1 & & 1997 \\
\hline LOWEST ANNUAL MEAN & & & & & 4.35 & & 1996 \\
\hline HIGHEST DAILY MEAN & 259 & Jun 9 & 286 & Jan 22 & 506 & Mar 1 & 1997 \\
\hline LOWEST DAILY MEAN & . 40 & Jan 2 & . 52 & Oct 20 & . 02 & May 25 & 1995 \\
\hline ANNUAL SEVEN-DAY MINIMUM & . 57 & Oct 26 & . 57 & Oct 26 & . 42 & Dec 29 & 1997 \\
\hline INSTANTANEOUS PEAK FLOW & & & 595 & Apr 3 & 1300 & Mar 1 & 1997 \\
\hline INSTANTANEOUS PEAK STAGE & & & 7.59 & Apr 3 & 11.26 & Mar 1 & 1997 \\
\hline ANNUAL RUNOFF (CFSM) & . 94 & & 1.01 & & 1.14 & & \\
\hline ANNUAL RUNOFF (INCHES) & 12.71 & & 13.71 & & 15.49 & & \\
\hline 10 PERCENT EXCEEDS & 6.4 & & 9.9 & & 8.9 & & \\
\hline 50 PERCENT EXCEEDS & 1.2 & & 1.3 & & 1.2 & & \\
\hline 90 PERCENT EXCEEDS & . 66 & & . 69 & & . 70 & & \\
\hline
\end{tabular}
e Estimated


OHIO RIVER MAIN STEM
03612500 OHIO RIVER AT LOCK AND DAM 53, NEAR GRAND CHAIN, IL
(National stream-quality accounting network station)
WATER-QUALITY RECORDS
LOCATION.--Lat \(37^{\circ} 12^{\prime} 11^{\prime \prime}\), long \(89^{\circ} 02^{\prime} 30^{\prime \prime}\), Pulaski County, Hydrologic Unit 05140206, at auxiliary gaging station, 0.5 mi upstream from Gar Creek, 3.0 mi southwest of Grand Chain, 18.1 mi downstream from gaging station at Metropolis, and at mile 962.2 .

DRAINAGE AREA. \(--203,100 \mathrm{mi}^{2}\), approximately.
PERIOD OF RECORD.--Water years 1955 to current year.
PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: October 1954 to September 1970, January 1973 to September 1990.
WATER TEMPERATURES: October 1954 to September 1970, January 1973 to September 1990.
REMARKS.--Records of daily discharge are published for station at Metropolis, IL, (station 03611500). Flow regulated by many days dams and reservoirs.
EXTREMES FOR PERIOD OF DAILY RECORD.--
SPECIFIC CONDUCTANCE: Maximum daily, 693 microsiemens, Nov. 25, 1968; minimum daily, 170 microsiemens, Feb. 9, 1957, Jan. 21, 1973.

WATER TEMPERATURES: Maximum daily, \(31.0^{\circ} \mathrm{C}\), July 15,1964 , July \(17-21,25\), 1977 ; minimum daily, \(0.0^{\circ} \mathrm{C}\), on several days during most winter months.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


OHIO RIVER MAIN STEM
03612500 OHIO RIVER AT LOCK AND DAM 53, NEAR GRAND CHAIN, IL--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DATE & \[
\begin{gathered}
\text { NITRO- } \\
\text { GEN } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (MG/L } \\
\text { AS N) } \\
(00602)
\end{gathered}
\] & \[
\begin{aligned}
& \text { NITRO- } \\
& \text { GEN, } \\
& \text { ORGANIC } \\
& \text { TOTAL } \\
& \text { (MG/L } \\
& \text { AS N) } \\
& (00605)
\end{aligned}
\] & \[
\begin{gathered}
\text { NITRO- } \\
\text { GEN, } \\
\text { ORGANIC } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (MG/L } \\
\text { AS N) } \\
(00607)
\end{gathered}
\] & \[
\begin{gathered}
\text { NITRO- } \\
\text { GEN, } \\
\text { NITRITE } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (MG/L } \\
\text { AS N) } \\
(00613)
\end{gathered}
\] & \[
\begin{gathered}
\text { NITRO- } \\
\text { GEN, } \\
\text { NO2+NO3 } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (MG/L } \\
\text { AS N) } \\
(00631)
\end{gathered}
\] & \[
\begin{aligned}
& \text { NITRO- } \\
& \text { GEN, } \\
& \text { AMMONIA } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (MG/L } \\
& \text { AS N) } \\
& (00608)
\end{aligned}
\] & \[
\begin{aligned}
& \text { NITRO- } \\
& \text { GEN, } \\
& \text { NITRATE } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (MG/L } \\
& \text { AS N) } \\
& (00618)
\end{aligned}
\] & \[
\begin{aligned}
& \text { NITRO- } \\
& \text { GEN, AM- } \\
& \text { MONIA + } \\
& \text { ORGANIC } \\
& \text { DIS. } \\
& \text { (MG/L } \\
& \text { AS N) } \\
& (00623)
\end{aligned}
\] & \[
\begin{aligned}
& \text { NITRO- } \\
& \text { GEN, AM- } \\
& \text { MONIA + } \\
& \text { ORGANIC } \\
& \text { TOTAL } \\
& \text { (MG/L } \\
& \text { AS N) } \\
& (00625)
\end{aligned}
\] & \[
\begin{gathered}
\text { PHOS- } \\
\text { PHORUS } \\
\text { TOTAL } \\
\text { (MG/L } \\
\text { AS P) } \\
(00665)
\end{gathered}
\] & \[
\begin{aligned}
& \text { PHOS- } \\
& \text { PHORUS } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (MG/L } \\
& \text { AS P) } \\
& (00666)
\end{aligned}
\] & \begin{tabular}{l}
PHOS- \\
PHATE, ORTHO, DISSOLVED (MG/L AS PO4) (00660)
\end{tabular} \\
\hline \multicolumn{13}{|l|}{NOV} \\
\hline 13. & . 90 & . 23 & . 23 & . 029 & . 553 & . 119 & . 524 & . 35 & . 35 & . 055 & . 040 & . 10 \\
\hline \multicolumn{13}{|l|}{DEC} \\
\hline 17. & . 77 & . 28 & . 21 & . 013 & . 465 & . 091 & . 452 & . 31 & . 37 & . 129 & E. 034 & . 13 \\
\hline \multicolumn{13}{|l|}{JAN} \\
\hline 28. & 1.6 & . 65 & . 26 & . 012 & 1.27 & . 079 & 1.26 & . 34 & . 73 & . 317 & . 053 & . 15 \\
\hline 28. & -- & -- & -- & <. 001 & . 005 & <. 002 & -- & -- & -- & -- & -- & . 00 \\
\hline \multicolumn{13}{|l|}{MAR} \\
\hline 16. & 1.7 & . 43 & . 18 & . 012 & 1.48 & . 039 & 1.46 & . 22 & . 47 & . 149 & . 036 & . 10 \\
\hline \multicolumn{13}{|l|}{APR} \\
\hline 14. & 1.5 & . 41 & . 22 & . 013 & 1.22 & . 043 & 1.21 & . 26 & . 46 & . 118 & . 033 & . 09 \\
\hline 14. & 1.5 & . 43 & . 22 & . 013 & 1.23 & . 035 & 1.21 & . 25 & . 46 & . 120 & . 034 & . 09 \\
\hline 27. & 2.5 & -- & -- & . 016 & 2.25 & <. 020 & 2.23 & . 23 & . 42 & . 108 & . 037 & . 10 \\
\hline 27. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{13}{|l|}{MAY} \\
\hline 12. & 1.3 & . 37 & . 17 & . 019 & 1.07 & . 039 & 1.05 & . 21 & . 41 & . 073 & . 031 & . 07 \\
\hline 12. & -- & -- & - & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 25. & 1.6 & . 39 & . 17 & . 019 & 1.40 & . 059 & 1.38 & . 23 & . 45 & . 056 & . 028 & . 06 \\
\hline 25. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{13}{|l|}{JUN} \\
\hline 09. & 2.0 & . 51 & . 30 & . 069 & 1.64 & . 068 & 1.57 & . 37 & . 58 & . 086 & . 047 & . 12 \\
\hline 09. & -- & -- & -- & <. 001 & . 005 & . 006 & -- & -- & -- & -- & -- & . 00 \\
\hline 24. & 1.3 & -- & -- & . 022 & 1.03 & \(<.020\) & 1.01 & . 27 & . 45 & . 070 & . 022 & . 05 \\
\hline \multicolumn{13}{|l|}{JUL} \\
\hline 08. & . 62 & -- & -- & . 022 & . 407 & \(<.020\) & . 385 & . 21 & . 47 & . 085 & . 024 & . 06 \\
\hline 08. & . 69 & -- & -- & . 025 & . 466 & <. 020 & . 441 & . 23 & . 48 & . 088 & . 029 & . 07 \\
\hline 26... & . 37 & - & -- & . 017 & . 201 & <. 020 & . 184 & . 17 & . 50 & . 072 & . 024 & . 06 \\
\hline 26... & . 37 & -- & -- & . 018 & . 197 & <. 020 & . 179 & . 17 & . 47 & . 070 & . 024 & . 05 \\
\hline
\end{tabular}

OHIO RIVER MAIN STEM
03612500 OHIO RIVER AT LOCK AND DAM 53, NEAR GRAND CHAIN, IL--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DATE & \begin{tabular}{l}
NITROGEN, \\
AMMONIA DISSOLVED (MG/L \\
AS NH4) \\
(71846)
\end{tabular} & \[
\begin{gathered}
\text { NITRO- } \\
\text { GEN, } \\
\text { NITRATE } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (MG/L } \\
\text { AS NO3) } \\
(71851)
\end{gathered}
\] & \[
\begin{gathered}
\text { NITRO- } \\
\text { GEN, } \\
\text { NITRITE } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (MG/L } \\
\text { AS NO2) } \\
(71856)
\end{gathered}
\] & PHOSPHORUS ORTHO, DISSOLVED (MG/L AS P) (00671) & ALUMINUM, DISSOLVED (UG/L AS AL) (01106) & ANTIMONY, DISSOLVED (UG/L AS SB) (01095) & ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) & \[
\begin{aligned}
& \text { BARIUM, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS BA) } \\
& (01005 \text { ) }
\end{aligned}
\] & \begin{tabular}{l}
BERYL- \\
LIUM, \\
DIS- \\
SOLVED \\
(UG/L \\
AS BE) \\
(01010)
\end{tabular} & \[
\begin{aligned}
& \text { BORON, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS B) } \\
& \text { (01020) }
\end{aligned}
\] & \[
\begin{gathered}
\text { CADMIUM } \\
\text { DIS-- } \\
\text { SOLVED } \\
\text { (UG/L } \\
\text { AS CD) } \\
\text { (01025) }
\end{gathered}
\] & CHROMIUM, DISSOLVED (UG/L (01030) \\
\hline \multicolumn{13}{|l|}{NOV} \\
\hline 13... & . 15 & 2.3 & . 10 & . 034 & 2.3 & <1.0 & 2 & 41 & \(<1.0\) & 82 & <1.0 & \(<1.0\) \\
\hline \multicolumn{13}{|l|}{DEC} \\
\hline 17.. & . 12 & 2.0 & . 04 & . 042 & 4.2 & <1.0 & 1 & 28 & <1.0 & 44 & <1.0 & <1.0 \\
\hline \multicolumn{13}{|l|}{} \\
\hline 28... & . 10 & 5.6 & . 04 & . 050 & 5.1 & <1.0 & <1 & 30 & <1.0 & 27 & <1.0 & 2.1 \\
\hline 28... & -- & -- & -- & . 001 & <. 30 & <. 20 & -- & <. 20 & <. 20 & 3.2 & <. 30 & <. 20 \\
\hline \multicolumn{13}{|l|}{MAR} \\
\hline 16.. & . 05 & 6.5 & . 04 & . 032 & -- & -- & <1 & -- & -- & 20 & -- & -- \\
\hline \multicolumn{13}{|l|}{APR} \\
\hline 14... & . 06 & 5.4 & . 04 & . 029 & -- & -- & <1 & -- & -- & 38 & -- & -- \\
\hline 14.. & . 05 & 5.4 & . 04 & . 030 & -- & -- & <1 & -- & -- & 38 & -- & -- \\
\hline 27... & -- & 9.9 & . 05 & . 032 & 6.2 & <1.0 & <1 & 37 & <1.0 & 41 & <1.0 & <1.0 \\
\hline \multicolumn{13}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{lllllllllll} 
MAY & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline
\end{tabular}}} \\
\hline & & & & & & & & & & & & \\
\hline 12... & . 05 & 4.6 & . 06 & . 024 & -- & -- & <1 & -- & -- & 37 & -- & -- \\
\hline 12... & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & \\
\hline 25... & . 08 & 6.1 & . 06 & . 021 & -- & -- & 1 & -- & -- & 40 & -- & -- \\
\hline 25... & -- & -- & -- & -- & -- & -- & - & -- & -- & -- & -- & -- \\
\hline \multicolumn{13}{|l|}{JUN \({ }^{\text {a }}\)} \\
\hline 09... & . 09 & 6.9 & . 23 & . 039 & 3.8 & <1.0 & 1 & 36 & <1.0 & 40 & \(<1.0\) & \(<1.0\) \\
\hline 09... & . 01 & -- & -- & . 001 & <. 30 & <. 20 & -- & <. 20 & <. 20 & <2.0 & <. 30 & <. 20 \\
\hline 24... & -- & 4.5 & . 07 & . 016 & 7.9 & <1.0 & 1 & 33 & <1.0 & 45 & <1.0 & <1.0 \\
\hline \multicolumn{13}{|l|}{} \\
\hline 08... & -- & 1.7 & . 07 & . 019 & -- & -- & \(<1\) & -- & -- & 43 & -- & -- \\
\hline 08... & -- & 2.0 & . 08 & . 022 & -- & -- & <1 & -- & -- & 42 & -- & -- \\
\hline 26... & -- & . 81 & . 06 & . 018 & -- & -- & <1 & -- & -- & 37 & -- & -- \\
\hline 26... & -- & . 79 & . 06 & . 016 & -- & -- & <1 & -- & -- & 39 & -- & -- \\
\hline
\end{tabular}


OHIO RIVER MAIN STEM
03612500 OHIO RIVER AT LOCK AND DAM 53, NEAR GRAND CHAIN, IL--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & DEETHYL & & & & & & & & & \\
\hline DATE & \[
\begin{aligned}
& \text { CYANA- } \\
& \text { ZINE, } \\
& \text { WATER, } \\
& \text { DISS, } \\
& \text { REC } \\
& \text { (UG/L) } \\
& (04041)
\end{aligned}
\] & ```
ATRA-
    ZINE,
    WATER,
    DISS,
    REC
(UG/L)
(04040)
``` & \[
\begin{gathered}
\text { DI- } \\
\text { AZINON, } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L) } \\
(39572)
\end{gathered}
\] & \[
\begin{gathered}
\text { DI- } \\
\text { ELDRIN } \\
\text { DIS- } \\
\text { SOLVED } \\
\text { (UG/L) } \\
(39381)
\end{gathered}
\] & \begin{tabular}{l}
FONOFOS \\
WATER \\
DISS \\
REC \\
(UG/L) \\
(04095)
\end{tabular} & \[
\begin{aligned}
& \text { LINDANE } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L) } \\
& (39341)
\end{aligned}
\] & \[
\begin{aligned}
& \text { MALA- } \\
& \text { THION, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L) } \\
& (39532)
\end{aligned}
\] & \begin{tabular}{l}
METRI- \\
BUZIN \\
SENCOR \\
WATER \\
DISSOLV \\
(UG/L) \\
(82630)
\end{tabular} & \[
\begin{aligned}
& \text { METO- } \\
& \text { LACHLOR } \\
& \text { WATER } \\
& \text { DISSOLV } \\
& \text { (UG/L) } \\
& \text { (39415) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { P, P' } \\
& \text { DDE } \\
& \text { DISSOLV } \\
& \text { (UG/L) } \\
& (34653)
\end{aligned}
\] & \[
\begin{aligned}
& \text { PARA- } \\
& \text { THION, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L) } \\
& (39542)
\end{aligned}
\] \\
\hline \multicolumn{12}{|l|}{NOV} \\
\hline 13. & . 0420 & E. 0434 & \(<.002\) & \(<.001\) & <. 0030 & <. 004 & \(<.005\) & <. 004 & . 041 & <. 0060 & <. 004 \\
\hline \multicolumn{12}{|l|}{DEC} \\
\hline 17. & . 0150 & E. 0375 & \(<.002\) & \(<.001\) & \(<.0030\) & \(<.004\) & \(<.005\) & <. 004 & . 032 & <. 0060 & \(<.004\) \\
\hline \multicolumn{12}{|l|}{JAN} \\
\hline 28. & . 0130 & E. 0213 & \(<.002\) & <. 001 & \(<.0030\) & \(<.004\) & \(<.005\) & . 005 & . 033 & <. 0060 & \(<.004\) \\
\hline 28. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{MAR} \\
\hline 16. & . 0071 & E. 0133 & \(<.002\) & \(<.001\) & \(<.0030\) & \(<.004\) & \(<.005\) & \(<.004\) & . 018 & <. 0060 & \(<.004\) \\
\hline \multicolumn{12}{|l|}{APR} \\
\hline 14. & . 0683 & E. 0336 & E. 003 & \(<.001\) & \(<.0030\) & \(<.004\) & \(<.005\) & . 020 & . 084 & \(<.0060\) & \(<.004\) \\
\hline 14. & . 0652 & E. 0327 & <. 002 & <. 001 & <. 0030 & \(<.004\) & \(<.005\) & . 019 & . 081 & <. 0060 & <. 004 \\
\hline 27. & . 0454 & E. 0410 & E. 003 & <. 001 & <. 0030 & \(<.004\) & <. 005 & . 032 & . 291 & <. 0060 & \(<.004\) \\
\hline 27. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{MAY} \\
\hline 12. & \(<.0040\) & \(<.0020\) & \(<.002\) & \(<.001\) & \(<.0030\) & \(<.004\) & \(<.005\) & \(<.004\) & \(<.002\) & \(<.0060\) & \(<.004\) \\
\hline 12. & . 173 & E. 118 & <. 002 & <. 001 & <. 0030 & <. 004 & \(<.005\) & . 023 & . 473 & <. 0060 & <. 004 \\
\hline 25. & . 102 & E. 0955 & E. 004 & <. 001 & <. 0030 & <. 004 & <. 005 & . 011 & . 505 & <. 0060 & <. 004 \\
\hline 25. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JUN} \\
\hline 09. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 09. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 24. & E. 124 & E. 317 & <. 002 & \(<.001\) & <. 0030 & <. 004 & \(<.005\) & \(<.004\) & . 440 & <. 0060 & \(<.004\) \\
\hline \multicolumn{12}{|l|}{JUL} \\
\hline 08. & . 0799 & E. 159 & <. 002 & \(<.001\) & \(<.0030\) & \(<.004\) & \(<.005\) & <. 004 & . 149 & \(<.0060\) & \(<.004\) \\
\hline 08. & . 0660 & E. 156 & E. 002 & \(<.001\) & <. 0030 & <. 004 & \(<.005\) & <. 004 & . 146 & <. 0060 & \(<.004\) \\
\hline 26. & . 127 & E. 0931 & <. 002 & \(<.001\) & <. 0030 & <. 004 & \(<.005\) & \(<.004\) & . 113 & <. 0060 & \(<.004\) \\
\hline 26... & . 131 & E. 113 & \(<.002\) & \(<.001\) & <. 0030 & \(<.004\) & \(<.005\) & \(<.004\) & . 108 & <. 0060 & \(<.004\) \\
\hline
\end{tabular}

OHIO RIVER MAIN STEM
03612500 OHIO RIVER AT LOCK AND DAM 53, NEAR GRAND CHAIN, IL--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DATE & PROP-
CHLOR,
WATER,
DISS,
REC
(UG/L)
\((04024)\) & \[
\begin{aligned}
& \text { PRO- } \\
& \text { METON, } \\
& \text { WATER, } \\
& \text { DISS, } \\
& \text { REC } \\
& \text { (UG/L) } \\
& (04037)
\end{aligned}
\] & \begin{tabular}{l}
SI- \\
MAZINE, \\
WATER, \\
DISS, \\
REC \\
(UG/L) \\
(04035)
\end{tabular} & \[
\begin{aligned}
& \text { BEN- } \\
& \text { FLURR- } \\
& \text { ALIN } \\
& \text { WAT FLD } \\
& 0.7 \mathrm{U} \\
& \text { GF, REC } \\
& \text { (UG/L) } \\
& (82673)
\end{aligned}
\] & \begin{tabular}{l}
CAR- \\
BARYL \\
WATER \\
FLTRD \\
0.7 U \\
GF, REC \\
(UG/L) \\
(82680)
\end{tabular} & \[
\begin{aligned}
& \text { CARBO- } \\
& \text { FURAN } \\
& \text { WATER } \\
& \text { FLTRD } \\
& 0.7 \text { U } \\
& \text { GF, REC } \\
& \text { (UG/L) } \\
& (82674)
\end{aligned}
\] & \[
\begin{aligned}
& \text { DCPA } \\
& \text { WATER } \\
& \text { FLTRD } \\
& 0.7 \mathrm{U} \\
& \text { GF, REC } \\
& \text { (UG/L) } \\
& (82682)
\end{aligned}
\] & 2,6-DIETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) & \[
\begin{aligned}
& \text { DISUL- } \\
& \text { FOTON } \\
& \text { WATER } \\
& \text { FLTRD } \\
& 0.7 \mathrm{U} \\
& \text { GF, REC } \\
& \text { (UG/L) } \\
& (82677)
\end{aligned}
\] & \[
\begin{aligned}
& \text { ETHAL- } \\
& \text { FLUR- } \\
& \text { ALIN } \\
& \text { WAT FLT } \\
& 0.7 \mathrm{U} \\
& \text { GF, REC } \\
& \text { (UG/L) } \\
& \text { (82663) }
\end{aligned}
\] & PENDI-
METH-
ALIN
WAT FLT
\(0.7 \quad \mathrm{U}\)
GF, REC
(UG/L)
\((82683)\) \\
\hline \multicolumn{12}{|l|}{NOV} \\
\hline DEC & & & & & & & & & & & \\
\hline \multicolumn{12}{|l|}{\multirow[t]{2}{*}{\(17 \ldots\)
JAN}} \\
\hline & & & & & & & & & & & \\
\hline & \(\stackrel{.0070}{-}\) & <. 0180 & . 0452 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & <. 0030 & <. 0170 & \(<.0040\) & <. 0040 \\
\hline \multicolumn{12}{|l|}{MAR} \\
\hline 16. & <. 0070 & <. 0180 & . 0115 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & <. 0030 & <. 0170 & <. 0040 & <. 0040 \\
\hline \multicolumn{12}{|l|}{APR} \\
\hline 14. & \(<.0070\) & E. 0055 & . 358 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & \(<.0030\) & \(<.0170\) & \(<.0040\) & \(<.0040\) \\
\hline 14. & <. 0070 & E. 0055 & . 344 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & <. 0030 & <. 0170 & <. 0040 & <. 0040 \\
\hline 27.. & <. 0070 & E. 0049 & . 0478 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & <. 0030 & <. 0170 & <. 0040 & <. 0040 \\
\hline 27. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{MAY} \\
\hline 12.. & <. 0070 & <. 0180 & <. 0050 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & <. 0030 & <. 0170 & <. 0040 & <. 0040 \\
\hline 12. & <. 0070 & E. 0088 & . 557 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & <. 0030 & <. 0170 & <. 0040 & <. 0040 \\
\hline 25.. & <. 0070 & E. 0112 & . 285 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & <. 0030 & <. 0170 & <. 0040 & <. 0040 \\
\hline 25. & & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JUN} \\
\hline 09... & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 09... & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 24. & <. 0070 & E. 0117 & . 197 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & <. 0030 & <. 0170 & <. 0040 & <. 0040 \\
\hline \multicolumn{12}{|l|}{JUL} \\
\hline 08... & <. 0070 & E. 0119 & . 0759 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & \(<.0030\) & <. 0170 & \(<.0040\) & \(<.0040\) \\
\hline 08... & <. 0070 & E. 0118 & . 0721 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & <. 0030 & <. 0170 & <. 0040 & \(<.0040\) \\
\hline 26. & <. 0070 & <. 0180 & . 0654 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & <. 0030 & <. 0170 & <. 0040 & \(<.0040\) \\
\hline 26... & <. 0070 & <. 0180 & . 0636 & <. 0020 & <. 0030 & <. 0030 & <. 0020 & <. 0030 & <. 0170 & <. 0040 & <. 0040 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DATE & \begin{tabular}{l}
ETHO-
PROP \\
WATER
FLTRD \\
0.7 U \\
GF, REC
(UG/L) \\
(82672)
\end{tabular} & \begin{tabular}{l}
EPTC \\
WATER \\
FLTRD \\
0.7 U \\
GF, REC \\
(UG/L) \\
(82668)
\end{tabular} & LINURON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) & \begin{tabular}{l}
METHYL \\
AZINPHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)
\end{tabular} & \begin{tabular}{l}
METHYL \\
PARA- \\
THION WAT FLT 0.7 U GF, REC (UG/L) (82667)
\end{tabular} & MOLINATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671) & NAPROPAMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) & \begin{tabular}{l}
PEBULATE \\
WATER FILTRD 0.7 U GF, REC (UG/L) (82669)
\end{tabular} & PERMETHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) & \begin{tabular}{l}
PHORATE \\
WATER \\
FLTRD \\
0.7 U \\
GF, REC \\
(UG/L) \\
(82664)
\end{tabular} & \begin{tabular}{l}
PRON-
AMIDE \\
WATER \\
0.7 U \\
GF, REC
(UG/L) \\
(82676)
\end{tabular} \\
\hline \multicolumn{12}{|l|}{} \\
\hline DEC 17. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline JAN & & & & & & & & & & & \\
\hline \[
28 \ldots
\] & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{MAR} \\
\hline 16. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{APR} \\
\hline 14.. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 14. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <.0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 27. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 27. & & & & & & & & & & & \\
\hline \multicolumn{12}{|l|}{MAY} \\
\hline 12.. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 12. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 25. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 25. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{12}{|l|}{JUN} \\
\hline 09... & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 09.. & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline 24. & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline \multicolumn{12}{|l|}{JUL} \\
\hline 08... & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 08... & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline 26... & \(<.0030\) & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <. 0040 & \(<.0030\) & <. 0040 & <. 0050 & <. 0020 & \(<.0030\) \\
\hline 26... & <. 0030 & <. 0020 & <. 0020 & <. 0010 & <. 0060 & <.0040 & <. 0030 & <. 0040 & <. 0050 & <. 0020 & <. 0030 \\
\hline
\end{tabular}

OHIO RIVER MAIN STEM
03612500 OHIO RIVER AT LOCK AND DAM 53, NEAR GRAND CHAIN, IL--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


07024000 BAYOU DE CHIEN NEAR CLINTON, KY
LOCATION.--Lat \(36^{\circ} 37^{\prime} \mathbf{4 3}^{\prime \prime}\), long \(88^{\circ} 57^{\prime} 50^{\prime \prime}\), Hickman County, Hydrologic Unit 08010201 , on right bank at downstream side of bridge on U.S. Highway 51, 1.1 mi upstream from Cane Creek, 3.2 mi southeast of Clinton, and at mile 15.1 .
DRAINAGE AREA. \(--68.7 \mathrm{mi}^{2}\).
PERIOD OF RECORD.--October 1939 to September 1950 (monthly discharge only for some periods, published in WSP 1311), October 1950 to September 1978, September 1984 to current year. Published as "Bayou du Chien near Clinton," October 1954 to September 1968.

REVISED RECORDS.--WSP 1311: 1940 (M), 1942-44 (M). WSP 1711: Drainage area. WDR-KY-89: 1985-89 (m).
GAGE.--Water-Stage recorder. Datum of gage is 307.71 ft above sea level. Prior to Aug. 2 , 1951 , nonrecording gage at same site and datum.

REMARKS.-- Records fair except for periods of estimated record, which are poor. Minium flow affected by backwater from the Mississippi River.

PEAKS ABOVE BASE.--Peak discharges above base of \(2,000 \mathrm{ft}^{3} / \mathrm{s}\) and maximum*.
\begin{tabular}{cccc} 
Date & Time & \begin{tabular}{c} 
Discharge \\
\(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\)
\end{tabular} & \begin{tabular}{c} 
Gage Height \\
\((\mathrm{ft})\)
\end{tabular} \\
Jan. 23 & 1000 & \(* 3780\) & 16.05
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 20 & 26 & 30 & 52 & 204 & 55 & 74 & 40 & 32 & 221 & e20 & 19 \\
\hline 2 & 20 & 26 & 30 & 382 & 114 & 49 & 58 & 38 & 83 & 52 & e18 & 19 \\
\hline 3 & 22 & 26 & 30 & 142 & 76 & 50 & 83 & 37 & 37 & 41 & e16 & 19 \\
\hline 4 & 21 & 26 & 46 & 61 & 60 & 41 & 428 & 36 & 31 & 36 & e15 & 19 \\
\hline 5 & 21 & 26 & 274 & 53 & 51 & 47 & 115 & 202 & 29 & 30 & 14 & 19 \\
\hline 6 & 44 & 25 & 55 & 50 & 51 & 549 & 266 & 785 & 33 & e28 & 14 & 19 \\
\hline 7 & 255 & 25 & 54 & 51 & 65 & 106 & 102 & 113 & 38 & e26 & 16 & 19 \\
\hline 8 & 36 & 29 & 86 & 478 & 52 & 72 & 81 & 60 & 30 & e24 & 18 & 20 \\
\hline 9 & 27 & 32 & 50 & 410 & 48 & 136 & 174 & 46 & 27 & e22 & 19 & 20 \\
\hline 10 & 25 & 64 & 41 & 147 & 45 & 80 & 86 & 39 & 26 & e22 & 19 & 20 \\
\hline 11 & 24 & 38 & 38 & 91 & 46 & 69 & 70 & 36 & 25 & e21 & 19 & 20 \\
\hline 12 & 24 & 30 & 51 & 84 & 75 & 58 & 59 & 38 & 24 & e21 & 19 & 21 \\
\hline 13 & 24 & 29 & 80 & 88 & 49 & 154 & 56 & 53 & 31 & 21 & 22 & 22 \\
\hline 14 & 23 & 29 & 45 & 124 & 44 & 996 & 141 & 38 & 41 & 20 & 20 & 20 \\
\hline 15 & 23 & 29 & 41 & 73 & 43 & 377 & 603 & 40 & 28 & 20 & 20 & 19 \\
\hline 16 & 24 & 29 & 38 & 65 & 42 & 125 & 145 & 46 & 26 & 20 & 20 & 19 \\
\hline 17 & 24 & 28 & 37 & 119 & 43 & 95 & 79 & 35 & 24 & 20 & 18 & 19 \\
\hline 18 & 29 & 29 & 37 & 299 & 40 & 78 & 66 & 66 & 24 & 20 & 18 & 19 \\
\hline 19 & 31 & 28 & 39 & 85 & 39 & 70 & 54 & 39 & 26 & 20 & 19 & 20 \\
\hline 20 & 25 & 36 & 37 & 73 & 37 & 67 & 46 & 36 & 63 & 20 & 18 & 22 \\
\hline 21 & 25 & 35 & 178 & 72 & 37 & 64 & 43 & 38 & 41 & 20 & 19 & 21 \\
\hline 22 & 25 & 34 & 407 & 1210 & 35 & 60 & 39 & 40 & 28 & 19 & 18 & 20 \\
\hline 23 & 25 & 38 & 70 & 3320 & 38 & 55 & 38 & 34 & 33 & 19 & 18 & 20 \\
\hline 24 & 25 & 34 & 50 & 830 & 41 & 58 & 37 & 33 & 171 & 20 & 20 & 20 \\
\hline 25 & 26 & 33 & 46 & 108 & 38 & 52 & 36 & 32 & 55 & 19 & 19 & 23 \\
\hline 26 & 29 & 30 & 45 & 65 & 37 & 49 & 40 & 31 & 39 & 19 & 19 & 19 \\
\hline 27 & 28 & 29 & 45 & 54 & 127 & 49 & 353 & 29 & 34 & 25 & 19 & 18 \\
\hline 28 & 27 & 31 & 55 & 47 & 95 & 49 & 106 & 28 & 39 & 24 & 19 & 18 \\
\hline 29 & 27 & 33 & 57 & 54 & --- & 61 & 59 & 28 & 107 & 21 & 19 & 19 \\
\hline 30 & 26 & 31 & 52 & 227 & -- & 53 & 46 & 27 & 43 & e21 & 19 & 21 \\
\hline 31 & 26 & --- & 52 & 484 & --- & 62 & -- & 39 & -- & e21 & 19 & - \\
\hline TOTAL & 1031 & 938 & 2196 & 9398 & 1672 & 3886 & 3583 & 2182 & 1268 & 933 & 570 & 593 \\
\hline MEAN & 33.3 & 31.3 & 70.8 & 303 & 59.7 & 125 & 119 & 70.4 & 42.3 & 30.1 & 18.4 & 19.8 \\
\hline MAX & 255 & 64 & 407 & 3320 & 204 & 996 & 603 & 785 & 171 & 221 & 22 & 23 \\
\hline MIN & 20 & 25 & 30 & 47 & 35 & 41 & 36 & 27 & 24 & 19 & 14 & 18 \\
\hline CFSM & . 48 & . 46 & 1.03 & 4.41 & . 87 & 1.82 & 1.74 & 1.02 & . 62 & . 44 & . 27 & . 29 \\
\hline IN. & . 56 & . 51 & 1.19 & 5.09 & . 91 & 2.10 & 1.94 & 1.18 & . 69 & . 51 & . 31 & . 32 \\
\hline
\end{tabular}

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1940 - 1999, BY WATER YEAR (WY)
\begin{tabular}{lrrrrrrrrrrrr} 
MEAN & 32.5 & 81.4 & 127 & 156 & 184 & 213 & 138 & 100 & 75.9 & 59.3 & 40.5 & 34.4 \\
MAX & 165 & 520 & 557 & 586 & 672 & 1138 & 335 & 470 & 419 & 397 & 206 & 268 \\
(WY) & 1985 & 1958 & 1991 & 1950 & 1989 & 1975 & 1970 & 1978 & 1976 & 1976 & 1977 & 1977 \\
MIN & 7.27 & 9.41 & 12.1 & 12.7 & 16.2 & 14.2 & 18.6 & 12.1 & 11.7 & 10.7 & 9.43 & 8.74 \\
(WY) & 1944 & 1944 & 1944 & 1944 & 1941 & 1941 & 1986 & 1969 & 1952 & 1943 & 1953 & 1941
\end{tabular}

07024000 BAYOU DE CHIEN NEAR CLINTON, KY--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SUMMARY STATISTICS & FOR 1998 CALEND & R YEAR & FOR 1999 WAT & R YEAR & WATER YEARS & 1940 & \multicolumn{2}{|r|}{1999} \\
\hline ANNUAL TOTAL & 39021 & & 28250 & & & & & \\
\hline ANNUAL MEAN & 107 & & 77.4 & & 103 & & & \\
\hline HIGHEST ANNUAL MEAN & & & & & 268 & & & 1976 \\
\hline LOWEST ANNUAL MEAN & & & & & 18.7 & & & 1941 \\
\hline HIGHEST DAILY MEAN & 2950 & Jun 6 & 3320 & Jan 23 & 7150 & Jan & 2 & 1966 \\
\hline LOWEST DAILY MEAN & 19 & Sep 15 & 14 & Aug 5 & 4.0 & May & 29 & 1943 \\
\hline ANNUAL SEVEN-DAY MINIMUM & 20 & Sep 13 & 16 & Aug 2 & 4.7 & Jun & 20 & 1942 \\
\hline INSTANTANEOUS PEAK FLOW & & & 3780 & Jan 23 & 9460 & Jan & 2 & 1966 \\
\hline INSTANTANEOUS PEAK STAGE & & & 16.06 & Jan 23 & 16.48 & Mar & 2 & 1997 \\
\hline ANNUAL RUNOFF (CFSM) & 1.56 & & 1.13 & & 1.50 & & & \\
\hline ANNUAL RUNOFF (INCHES) & 21.13 & & 15.30 & & 20.40 & & & \\
\hline 10 PERCENT EXCEEDS & 197 & & 117 & & 190 & & & \\
\hline 50 PERCENT EXCEEDS & 37 & & 37 & & 24 & & & \\
\hline 90 PERCENT EXCEEDS & 24 & & 19 & & 11 & & & \\
\hline
\end{tabular}


\section*{DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES}

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the U.S. Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

\section*{Crest-stage partial-record stations}

The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. At a few of these stations crest stages are determined from continuous water-stage recorder graphs. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

Annual maximum discharge at crest-stage partial-record stations during water year 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & & \multicolumn{3}{|c|}{Annual maximum} \\
\hline Station number & Station name & Location & Drainage area \(\left(\mathrm{mi}^{2}\right)\) & Period of record & Date & Gage height (feet) & Discharge ( \(\mathrm{ft}^{3} / \mathrm{s}\) ) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{7}{|c|}{CUMBERLAND RIVER BASIN} \\
\hline 03400500 & Poor Fork at Cumberland, Ky. & Lat \(36^{\circ} 58^{\prime} 26^{\prime \prime}\), long \(82^{\circ} 59^{\prime} 38^{\prime \prime}\), Harlan County, Hydrologic Unit 05130101, at left upstream side of New York Avenue bridge at Cumberland, 250 ft upstream from Cloverlick Creek, 0.6 mi downstream from Looney Creek, and at river mile 718.8. & 82.3 & \[
\begin{gathered}
\text { 1941-92† } \\
\text { 1993-99 }
\end{gathered}
\] & 01-09-99 & 6.96 & 1,820 \\
\hline 03404820 & Laurel River at Municipal Dam, near Corbin, Ky. & Lat \(36^{\circ} 58^{\prime} 13^{\prime \prime}\), long \(84^{\circ} 07^{\prime} 11^{\prime \prime}\), Lauren County, Hydrologic Unit 05130101, on left bank adjacent to State Highway 709, 200 ft upstream from Corbin Municipal Dam, 0.1 mi upstream from Lynn Camp Creek, 2.0 mi northwest of Corbin, and at mile 21.4. & 140 & \[
\begin{gathered}
\text { 1974-92† } \\
1993-99
\end{gathered}
\] & 01-09-99 & 23.39 & 4,240 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\dagger}\) Operated as a continuous-record gaging station.
}

\section*{DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES}

\section*{Low-flow partial-record station}

Measurements of streamflow in the area covered by this report made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of the stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or pratically the same site.

Discharge measurements made at low-flow partial-record stations during water year 1999
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Station no.} & \multirow[b]{2}{*}{Station name} & \multirow[b]{2}{*}{Location} & \multirow[b]{2}{*}{Drainage area \(\left(\mathrm{mi}^{2}\right)\)} & \multirow[b]{2}{*}{Period of record} & \multicolumn{2}{|r|}{Measurements} \\
\hline & & & & & Date & Discharge \(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\) \\
\hline
\end{tabular}

\section*{BIG SANDY RIVER BASIN}
\begin{tabular}{|c|c|c|c|c|}
\hline 03209300 & Russell Fork at Elkhorn City, Ky. & Lat \(37^{\circ} 18^{\prime} 14^{\prime \prime}\), long \(82^{\circ} 20^{\prime} 35^{\prime \prime}\), Pike County, Hydrologic Unit 05070202, on left bank 10 ft downstream from steel highway bridge on abandoned section of State Highway 80, at Elkhorn City, 0.9 mi upstream from Elkhorn Creek, and at mile 13.2. & 1999 & 09-28-99 115 \\
\hline 03209800 & \begin{tabular}{l}
Levisa Fork \\
at Prestonsburg, Ky.
\end{tabular} & Lat \(37^{\circ} 40^{\prime} 15^{\prime \prime}\), long \(82^{\circ} 46^{\prime} 38^{\prime \prime}\), Floyd 1702 County, Hydrologic Unit 05070203, on right bank, 50 ft downstream from concrete highway bridge on State Highway 114 at Prestonburg, 150 ft downstream from mouth of Trimble Branch, 450 ft upstream from Middle Creek and at mile 81.4 & 1999 & 09-28-99 257 \\
\hline
\end{tabular}

\section*{LICKING RIVER BASIN}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 03248380 & Burning Fork near Salyersville, Ky. & Lat \(37^{\circ} 44^{\prime} 28^{\prime \prime}\), long \(83^{\circ} 03^{\prime} 22^{\prime \prime}\), Magoffin County, Hydrologic Unit 05100101, at bridge on Mountain Parkway, 1.0 mile above mouth and 0.3 mi east of Saylersville. & 17.51999 & \[
\begin{aligned}
& 08-12-99, \\
& 09-28-99
\end{aligned}
\] & \[
\begin{aligned}
& 0.20 \\
& 0.12
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 03248620 & Licking River at Gordon Ford, Ky. & Lat \(37^{\circ} 56^{\prime} 52^{\prime \prime}\), long \(83^{\circ} 12^{\prime} 58^{\prime \prime}\), Morgan County, Hydrologic Unit 05100101, at bridge on unmarked road off Federal Highway 460, 6.6 mi below Jones Creek and 2.6 mi south of West Liberty. & 327 & \[
\begin{aligned}
& \text { 1987-88, } \\
& 1999
\end{aligned}
\] & \[
\begin{aligned}
& 08-12-99, \\
& 09-27-99
\end{aligned}
\] & \[
\begin{gathered}
18.2 \\
6.76
\end{gathered}
\] \\
\hline
\end{tabular}

Discharge measurements made at low-flow partial-record stations during water year 1999--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & \multicolumn{2}{|r|}{Measurements} \\
\hline Station no. & Station name & Location & Drainage area \(\left(\mathrm{mi}^{2}\right)\) & Period of record & Date & Discharge (ft \({ }^{3} / \mathrm{s}\) ) \\
\hline
\end{tabular}

\section*{LICKING RIVER BASIN--Continued}

03250000 Triplett Creek Lat \(38^{\circ} 10^{\prime} 46^{\prime \prime}\), long \(83^{\circ} 25^{\prime} 55^{\prime \prime}\), at Morehead, Rowan County, Hydrologic Unit Ky. 05100101, at bridge on road off Federal Highway 670, 1.3 mi below Christy Creek, and at Morehead.
03250100 \begin{tabular}{ll} 
North Fork & Lat \(38^{\circ} 11^{\prime} 57^{\prime \prime}\), long \(83^{\circ} 28^{\prime} 50^{\prime \prime}\), \\
Triplett & Rowan County, Hydrologic Unit \\
Creek near & 05100101 , on right bank at downstream \\
& Morehead, Ky. \\
& \\
& side of bridge on State Highway 32, \\
& 6.2 mi upstream from Triplett Creek, \\
& 2.0 mi downstream from Big Bushy \\
& Creek, 2.8 mi northwest of Morehead.
\end{tabular}

03250115 Salt Lick Lat \(38^{\circ} 06^{\prime} 45^{\prime \prime}\), long \(83^{\circ} 37^{\prime} 15^{\prime \prime}\),
Creek at Bath County, Hydrologic Unit
Salt Lick, Ky. 05100101, at bridge on State Highway
\(211,2.5 \mathrm{mi}\) above mouth and 0.5 mi south of Salt Lick.

03250195 Spencer Creek Lat \(38^{\circ} 01^{\prime} 45^{\prime \prime}\), long \(83^{\circ} 50^{\prime} 24^{\prime \prime}\),
near Montgomery County, Hydrologic Unit
Howards 05100101, at bridge on Ridge Road, Mill, Ky. \(\quad 0.7 \mathrm{mi}\) above mouth, 2.5 mi south of Howards Mill, and 3.8 mi west of Hope.
\begin{tabular}{rlll}
47.9 & \(1941-80\), & \(08-10-99\), & 0.16 \\
& \(1987-88\), & \(09-27-99\) & 0.19 \\
& 1999 & &
\end{tabular}

1999
84.7 1968-94, \(08-10-99, \quad 0.08\)

1999 09-27-99 0.03
38.6 1988, 08-11-99 0

1999
11.5 1988, 08-11-99, <0.01

1999 09-27-99 0.01
21.1 1988, 08-11-99 0

1999
\(\begin{array}{ccc}03250220 & \text { Mill Creek } & \text { Lat } 38^{\circ} 05^{\prime} 53^{\prime \prime} \text {, long } 83^{\circ} 44^{\prime} 55^{\prime \prime}, \\ \text { near } & \text { Bath County, Hydrologic Unit } \\ & \text { Preston, Ky. } & \begin{array}{l}05100101 \text {, at bridge on State Highway } \\ \\ \end{array} \\ & 965,1.3 \mathrm{mi} \text { above mouth, } 4 \text { mi north }\end{array}\)
of Preston, and 2.8 mi west of Olympia.

Discharge measurements made at low-flow partial-record stations during water year 1999--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & \multicolumn{2}{|r|}{Measurements} \\
\hline Station no. & Station name & Location & Drainage area \(\left(\mathrm{mi}^{2}\right)\) & Period of record & Date & Discharge ( \(\mathrm{ft}^{3} / \mathrm{s}\) ) \\
\hline
\end{tabular}

\section*{LICKING RIVER BASIN--Continued}




\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 03252000 & Stoner Creek at Paris, Ky. & Lat \(38^{\circ} 13^{\prime} 45^{\prime \prime}\), long \(8415^{\prime} 22^{\prime \prime}\), Bourbon County, Hydrologic Unit 05100102, on left bank 25 ft upstream from bridge on county road, 0.5 mi north of Paris, 1.5 mi downstream from Houston Creek, and at mi 79.2 & 239 & \[
\begin{aligned}
& \text { 1953-74, } \\
& 1999
\end{aligned}
\] & \[
\begin{aligned}
& 08-11-99 \\
& 09-27-99
\end{aligned}
\] & \[
\begin{aligned}
& 0.97 \\
& 1.43
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{llllll}
03252190 & Hinston Creek & Lat \(38^{\circ} 10^{\prime} 03^{\prime \prime}\), long \(83^{\circ} 58^{\prime} 32^{\prime \prime}\), & 79.8 & \(1973-77\), & \(08-11-99\), \\
near & Bath County, Hydrologic Unit & 1.46 \\
Sharpsburg, & 05100101 , at bridge on county & \(1979-81\), & \(09-27-99\) & 0.54 \\
Ky. & road, 0.8 mi below Grassy Lick Creek, & \(1987-88\), & & \\
& 2.9 mi above Paytons Lick Branch, & & & \\
& 3.4 mi southwest of Sharpsburg, & & & \\
& 43.7 mi upstream from Stoner Creek, & & & \\
& and at mi 113.4.
\end{tabular}

Discharge measurements made at low-flow partial-record stations during water year 1999--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & \multicolumn{2}{|r|}{Measurements} \\
\hline Station no. & Station name & Location & Drainage area \(\left(\mathrm{mi}^{2}\right)\) & Period of record & Date & Discharge \(\left(\mathrm{ft}^{3} / \mathrm{s}\right)\) \\
\hline
\end{tabular}

\section*{LICKING RIVER BASIN--Continued}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 03252500 & South Fork Licking River at Cynthiana, Ky. & \begin{tabular}{l}
Lat \(38^{\circ} 23^{\prime} 27^{\prime \prime}\), long \(84^{\circ} 18^{\prime} 11^{\prime \prime}\), \\
Harrison County, Hydrologic Unit 05100102, on left bank at downstream side of bridge on State Highway 356 and 36 at Cynthiana 0.3 mi downstream from Grays Run, in pool formed by old mill dam 2.6 mi downstream, and at mi 49.1
\end{tabular} & \[
\begin{aligned}
& \text { 1938-74, } \\
& 1999
\end{aligned}
\] & \[
\begin{aligned}
& 08-11-99 \\
& 09-27-99
\end{aligned}
\] & \[
\begin{aligned}
& 5.50 \\
& 1.72
\end{aligned}
\] \\
\hline 03252600 & \begin{tabular}{l}
Mill Creek \\
near Cynthiana, Ky.
\end{tabular} & \begin{tabular}{l}
Lat \(38^{\circ} 26^{\prime} 27^{\prime \prime}\), long \(84^{\circ} 20^{\prime} 15^{\prime \prime}\), \\
Harrison County, Hydrologic Unit 05100101, at bridge on unmarked road off State Highway 36, 2.8 mi above Licking River, 1.8 mi west of Poindexter, and 3.9 mi northwest of Cynthiana.
\end{tabular} & \[
\begin{aligned}
& 1988, \\
& 1999
\end{aligned}
\] & 08-11-99 & 0 \\
\hline
\end{tabular}

\section*{SALT RIVER BASIN}


03299445 Pottinger Lat \(37^{\circ} 38^{\prime} 35^{\prime \prime}\), long \(85^{\circ} 31^{\prime} 57^{\prime \prime}, \quad 43.5\) 1974-81, 08-12-99, <0.01
Creek near Nelson County, Hydrologic Unit 1988, 09-27-99 0 New Hope, 05140103, at low-water bridge on Ky. unmarked road, 0.8 mi below Monks Creek, 1.5 mi northwest of New Hope, and 3.3 mi above mouth.

Discharge measurements made at low-flow partial-record stations during water year 1999--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & \multicolumn{2}{|r|}{Measurements} \\
\hline Station no. & Station name & Location & Drainage area \(\left(\mathrm{mi}^{2}\right)\) & Period of record & Date & \begin{tabular}{l}
Dis- \\
charge \\
(ft \({ }^{3} / \mathrm{s}\) )
\end{tabular} \\
\hline
\end{tabular}

\section*{SALT RIVER BASIN--Continued}
\begin{tabular}{cccccc}
03300100 & Beech Fork & Lat \(37^{\circ} 49^{\prime} 57^{\prime} \prime\), long \(85^{\circ} 17^{\prime} 46^{\prime \prime}\), & 159 & 1988, & \(08-12-99\), \\
near & WashingtonCounty, Hydrologic Unit & 1999 & \(09-27-99\) & 0 \\
Maud, Ky. & 05140103 , at bridge on State Highway & & & \\
& \(458,3.8\) mi above Chaplin River and & & & \\
& 2.3 mi east of Maud. & & &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 03300350 & Beaver Creek & Lat \(37^{\circ} 55^{\prime} 01^{\prime \prime}\), long \(85^{\circ} 07^{\prime} 37^{\prime \prime}\), & 20.6 1988, & 08-13-99, & 0.02 \\
\hline & near & Washington County, Hydrologic Unit & 1999 & 09-27-99 & 0 \\
\hline & Johnsonville, & 05140103, at bridge on unmarked road & & & \\
\hline & Ky. & off Federal Highway 62, 4.9 mi above & & & \\
\hline & & mouth and 5.0 mi east of Chaplin. & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 03300390 & Chaplin River near Chaplin, Ky. & Lat \(37^{\circ} 52^{\prime} 14^{\prime \prime}\), long \(85^{\circ} 13^{\prime} 51^{\prime \prime}\), Washington County, Hydrologic Unit 05140103, at bridge on State Highway 458, 200 ft above Jessie Run, 2.0 mi south of Chaplin, and 6.8 mi above mouth. & 262 & \[
\begin{aligned}
& \text { 1973-76, } \\
& \text { 1988, } \\
& 1999
\end{aligned}
\] & \[
\begin{aligned}
& 08-12-99 \\
& 09-27-99
\end{aligned}
\] & \[
\begin{aligned}
& 0.55 \\
& 0.02
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 03300498 & Cartwright & Lat \(37^{\circ} 45^{\prime} 45^{\prime \prime}\), long \(85^{\circ} 19^{\prime} 29^{\prime \prime}\), & 82.3 1972-76, & 08-11-99, & 0.56 \\
\hline & Creek at & Washington County, Hydrologic Unit & 1988, & 09-27-99 & 0.30 \\
\hline & Frederick- & 05140103 , at rural bridge, 0.7 mi & 1999 & & \\
\hline & town, Ky. & below Parker Run, 0.9 mi east of & & & \\
\hline & & Fredericktown, and 1.8 mi above & & & \\
\hline
\end{tabular}
\begin{tabular}{cccccc}
03300980 Beech Fork & Lat \(37^{\circ} 45^{\prime} 38^{\prime \prime}\), long \(85^{\circ} 27^{\prime} 37 \prime \prime\) & 645 & 1988, & \(08-11-99\), & 6.36 \\
near & Nelson County, Hydrologic Unit & 1999 & \(09-27-99\) & 0.08 \\
Bardstown, & 05140103 , at bridge on State Highway & & & \\
Ky. & \(49,0.3\) mi above Glickey Run and & & & \\
& 3.0 mi south of Bardstown. & & &
\end{tabular}

Discharge measurements made at low-flow partial-record stations during water year 1999--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & \multicolumn{2}{|r|}{Measurements} \\
\hline Station no. & Station name & Location & Drainage area \(\left(\mathrm{mi}^{2}\right)\) & Period of record & Date & Discharge ( \(\mathrm{ft}^{3} / \mathrm{s}\) ) \\
\hline
\end{tabular}

\section*{GREEN RIVER BASIN}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 03314000 & \begin{tabular}{l}
Drakes Creek \\
near Alvaton, Ky.
\end{tabular} & Lat \(36^{\circ} 53^{\prime} 43^{\prime \prime}\), long \(86^{\circ} 22^{\prime} 50^{\prime \prime}\), Warren County, Hydrologic Unit 05110002, near right bank at downstream side of U.S. Highway 231 bridge, 2.1 miles northwest of Alvaton, and 5.3 miles downstream from Trammel Fork. & 478 & 1999 & 09-28-99 & 25.6 \\
\hline
\end{tabular}

03314500 Barren River Lat \(37^{\circ} 00^{\prime} 04^{\prime \prime}\), long \(86^{\circ} 25^{\prime} 51^{\prime \prime}, \quad 18491999 \quad\) 09-28-99 208
at Warren County, Hydrologic Unit
Bowling 05110002, near center of downstream
Green, Ky. side of abandoned College Street bridge, 700 ft upstream from bridge on U.S. Highways 31W and 68 at Bowling Green, 6.0 mi downstream from Drakes Creek, 8.9 miles upstream from Jennings Creek, and at mile 37.6

\section*{CUMBERLAND RIVER BASIN}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 03400500 & \begin{tabular}{l}
Poor Fork \\
at Cumberland, Ky.
\end{tabular} & Lat \(36^{\circ} 58^{\prime} 26^{\prime \prime}\), long \(82^{\circ} 59^{\prime} 38^{\prime \prime}\), Harlan County, Hydrologic Unit 05130101, at left upstream side of New York Avenue bridge at Cumberland, 250 ft upstream from from Cloverlick Creek, 0.6 mi downstream from Looney Creek, and at river mile 718.8 & 82.31999 & 09-27-99 & 6.70 \\
\hline
\end{tabular}

Discharge Measurments made at miscellaneous sites during water year 1999.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station no. & Station name & Location & Period of record & Date & Discharge (ft \({ }^{3} / \mathrm{s}\) ) \\
\hline 03410540 & White Oak Creek above Cabin Branch at Co-operative, Ky. & Lat \(36^{\circ} 41^{\prime} 27^{\prime \prime}\), Long \(84^{\circ} 37^{\prime} 24^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104, 20 ft upstream of mouth of Cabin Branch, 400 ft downstream of Old Kidds Grocery, and 1,650 ft upstream of Boarding House Hollow. & 1999 & \[
\begin{aligned}
& \hline 04-28-99 \\
& 05-25-99 \\
& 06-22-99 \\
& 07-20-99 \\
& 08-30-99 \\
& 09-15-99
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1.53 \\
& .64 \\
& .10 \\
& .57 \\
& .03 \\
& 0
\end{aligned}
\] \\
\hline 03410542 & Cabin Branch at Mouth at Co-operative, Ky & Lat \(36^{\circ} 41^{\prime} 28^{\prime \prime}\), Long \(84^{\circ} 37^{\prime} 25^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104, 20 ft upstream of State Highway 1363, 40 ft upstream of Rock Creek, and 1600 ft above Boarding House Hallow. & 1999 & \[
\begin{aligned}
& 04-28-99 \\
& 05-25-99 \\
& 06-22-99 \\
& 07-20-99 \\
& 08-30-99 \\
& 09-15-99
\end{aligned}
\] & \[
\begin{aligned}
& .59 \\
& .14 \\
& .05 \\
& .08 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline 03410545 & \begin{tabular}{l}
Unnamed \\
Tributary at Mouth Below Boarding House Hollow at Co-operative, Ky
\end{tabular} & Lat \(36^{\circ} 41^{\prime} 36^{\prime \prime}\), Long \(84^{\circ} 36^{\prime} 56^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104, 10 ft downstream of State Highway 1363, 10 ft upstream of Rock Creek, and 1000 ft above Unnamed Tributary at Co-operative. & 1999 & \[
\begin{aligned}
& 04-28-99 \\
& 05-25-99 \\
& 06-22-99 \\
& 07-20-99 \\
& 08-30-99 \\
& 09-15-99
\end{aligned}
\] & \[
\begin{aligned}
& .12 \\
& .04 \\
& .01 \\
& .02 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline 03410547 & \begin{tabular}{l}
Unnamed \\
Tributary to White Oak Creek at Culvert at Co-operative, Ky.
\end{tabular} & Lat \(36^{\circ} 41^{\prime} 34^{\prime \prime}\), Long \(84^{\circ} 36^{\prime} 37^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104, 10 ft downstream of State Highway 1363, 20 ft upstream of Rock Creek, and 1000 ft below Boarding House Hollow. & 1999 & \[
\begin{aligned}
& 04-28-99 \\
& 05-25-99 \\
& 06-22-99 \\
& 07-20-99 \\
& 08-30-99 \\
& 09-15-99
\end{aligned}
\] & \[
\begin{aligned}
& 3.23 \\
& 1.40 \\
& .48 \\
& .99 \\
& .08 \\
& 0
\end{aligned}
\] \\
\hline 03410552 & \begin{tabular}{l}
White Oak Creek \\
Above Jones Branch at White Oak Junction, Ky.
\end{tabular} & Lat \(36^{\circ} 42^{\prime} 06^{\prime \prime}\), Long \(84^{\circ} 35^{\prime} 52^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104, 20 ft above Mouth of Jones Branch, 220 ft upstream of Bridge near Mouth of White Oak Creek, and 240 ft upstream of Rock Creek. & 1999 & \[
\begin{aligned}
& 04-28-99 \\
& 05-25-99 \\
& 06-22-99 \\
& 07-20-99 \\
& 08-30-99 \\
& 09-15-99
\end{aligned}
\] & \[
\begin{aligned}
& .51 \\
& .21 \\
& .01 \\
& .70 \\
& .02 \\
& 0
\end{aligned}
\] \\
\hline 03410555 & \begin{tabular}{l}
Jones Branch \\
Above Unnamed Tributary at White Oak Junction, Ky.
\end{tabular} & Lat \(36^{\circ} 42^{\prime} 29^{\prime \prime}\) Long \(84^{\circ} 36^{\prime} 33^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104, 20 ft downstream of Forest Service Road 821, 2000 ft upstream of State Highway 1363, and 2050 ft upstream of Mouth Of Jones Branch. & 1999 & \[
\begin{aligned}
& 04-28-99 \\
& 05-25-99 \\
& 06-22-99 \\
& 07-20-99 \\
& 08-30-99 \\
& 09-15-99
\end{aligned}
\] & \[
\begin{array}{r}
4.99 \\
1.55 \\
.47 \\
1.50 \\
.03 \\
0
\end{array}
\] \\
\hline 03410557 & White Oak Creek at Mouth at White Oak Junction, Ky. & Lat \(36^{\circ} 42^{\prime} 09^{\prime \prime}\), Long \(84^{\circ} 35^{\prime} 47^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104, 20 ft upstream of bridge near Mouth of White Oak Creek, 40 ft upstream of Rock Creek, and 200 ft below Mouth of Jones Branch. & 1999 & \[
\begin{aligned}
& 04-28-99 \\
& 05-25-99 \\
& 06-22-99 \\
& 07-20-99 \\
& 08-30-99 \\
& 09-15-99
\end{aligned}
\] & \[
\begin{array}{r}
19.6 \\
1.55 \\
4.58 \\
9.00 \\
3.95 \\
.52
\end{array}
\] \\
\hline
\end{tabular}

Discharge Measurments made at miscellaneous sites during water year 1999.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station no. & Station name & Location & Period of record & Date & Discharge ( \(\mathrm{ft}^{3} / \mathrm{s}\) ) \\
\hline 03410559 & Rock Creek Above White Oak Creek at White Oak Junction, Ky. & Lat \(36^{\circ} 42^{\prime} 09^{\prime \prime}\), Long \(84^{\circ} 35^{\prime} 43^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104, 250 ft upstream of confluence with White Oak Creek, 1.0 mile upstream of Mouth of Roberts Hollow, and at mile 2.85 . & 1999 & \[
\begin{aligned}
& \hline 04-28-99 \\
& 05-25-99 \\
& 06-22-99 \\
& 07-20-99 \\
& 08-30-99 \\
& 09-15-99
\end{aligned}
\] & \[
\begin{gathered}
\hline 43.9 \\
21.2 \\
7.59 \\
13.7 \\
7.03 \\
3.34
\end{gathered}
\] \\
\hline 03410565 & Limestone Spring Below unnamed Tributary at White Oak Junction, Ky. & Lat \(36^{\circ} 42^{\prime} 27^{\prime \prime}\), Long \(84^{\circ} 35^{\prime} 26^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104, 15 ft upstream of Rock Creek, 25 ft downstream of Old Kentucky \& Tennessee Railroad Grade, and 2600 ft downstream of White Oak Junction. & 1999 & \[
\begin{aligned}
& 04-28-99 \\
& 05-25-99 \\
& 06-22-99 \\
& 07-20-99 \\
& 08-30-99 \\
& 0-15-99
\end{aligned}
\] & \[
\begin{gathered}
46.2 \\
25.9 \\
8.60 \\
17.5 \\
6.57 \\
3.29
\end{gathered}
\] \\
\hline 03410569 & Rock Creek Above Roberts Hollow at White Oak Junction, Ky. & Lat \(36^{\circ} 42^{\prime} 35^{\prime \prime}\), Long \(84^{\circ} 35^{\prime} 03^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104, 50 ft above Mouth of Roberts Hollow, 4600 ft downstream of White Oak Junction, and at mile 3.75 & 1999 & \[
\begin{aligned}
& 04-28-99 \\
& 05-25-99 \\
& 06-22-99 \\
& 07-20-99 \\
& 08-30-99 \\
& 09-15-99
\end{aligned}
\] & \[
\begin{aligned}
& .13 \\
& 0 \\
& 0 \\
& .04 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline 03410570 & Roberts Hollow at Mouth at Paint Cliff, Ky. & Lat \(36^{\circ} 42^{\prime} 37^{\prime \prime}\), Long \(84^{\circ} 35^{\prime} 02^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104, 20 ft upstream of Rock Creek, 30 ft downstream of State Highway 1363, and 75 ft above Unnamed Tributary Below Roberts Hollow. & 1999 & \[
\begin{aligned}
& 04-28-99 \\
& 05-25-99 \\
& 06-22-99 \\
& 07-20-99 \\
& 08-30-99 \\
& 09-15-99
\end{aligned}
\] & \[
\begin{aligned}
& .56 \\
& .14 \\
& .02 \\
& .47 \\
& .01 \\
& 0
\end{aligned}
\] \\
\hline 03410571 & \begin{tabular}{l}
Unnamed \\
Tributary at Culvert Below Roberts Hollow at Paint Cliff, Ky.
\end{tabular} & Lat \(36^{\circ} 42^{\prime} 38^{\prime \prime}\), Long \(84^{\circ} 34^{\prime} 57^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104, 20 ft downstream of State Highway 1363, 20 ft upstream of Rock Creek, and 75 ft downstream of Mouth of Roberts Hollow. & 1999 & \[
\begin{aligned}
& 04-28-99 \\
& 05-25-99 \\
& 06-22-99 \\
& 07-20-99 \\
& 08-30-99 \\
& 09-15-99
\end{aligned}
\] & \[
\begin{gathered}
43.5 \\
40.5 \\
9.25 \\
15.9 \\
7.41 \\
3.31
\end{gathered}
\] \\
\hline 03410575 & \begin{tabular}{l}
Paint Cliff \\
Discharge at Paint Cliff, Ky.
\end{tabular} & Lat \(36^{\circ} 42^{\prime} 25^{\prime \prime}\), Long \(84^{\circ} 34^{\prime} 36^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104, 20 ft upstream of State Highway 1363, 150 ft upstream of Rock Creek, and 1800 ft above mouth of Poplar Spring Hollow. & 1999 & \[
\begin{aligned}
& 04-28-99 \\
& 05-25-99 \\
& 06-22-99 \\
& 07-20-99 \\
& 08-30-99 \\
& 09-15-99
\end{aligned}
\] & \[
\begin{array}{r}
1.90 \\
.18 \\
.13 \\
1.19 \\
.05 \\
.03
\end{array}
\] \\
\hline 03410578 & Poplar Spring Hollow at Mouth at Paint Cliff, Ky. & Lat \(36^{\circ} 42^{\prime} 22^{\prime \prime}\), Long \(84^{\circ} 34^{\prime} 06^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104, 20 ft downstream of State Highway 1363, 40 ft upstream of Rock Creek, and 50 ft downstream of Old Kentucky and Tennessee Railroad Grade. & 1999 & \[
\begin{aligned}
& 04-28-99 \\
& 05-25-99 \\
& 06-22-99 \\
& 07-20-99 \\
& 08-30-99 \\
& 0-15-99
\end{aligned}
\] & \[
\begin{gathered}
52.3 \\
27.4 \\
7.25 \\
21.2 \\
8.87 \\
2.80
\end{gathered}
\] \\
\hline
\end{tabular}

Discharge Measurments made at miscellaneous sites during water year 1999.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station no. & Station name & Location & Period of record & Date & Discharge
\[
\left(\mathrm{ft}^{3} / \mathrm{s}\right)
\] \\
\hline 03410580 & \begin{tabular}{l}
Rock Creek Below \\
Poplar Spring \\
Hollow at Paint Cliff, Ky.
\end{tabular} & Lat \(36^{\circ} 42^{\prime} 11^{\prime \prime}\), Long \(84^{\circ} 33^{\prime} 50^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104, 75 ft upstream of Forest Service Road 1271, 1100 ft downstream of Mouth of Poplar Spring Hollow, and at mile 1.7 & 1999 & \[
\begin{aligned}
& \hline 04-28-99 \\
& 05-25-99 \\
& 06-22-99 \\
& 07-20-99 \\
& 08-30-99 \\
& 09-15-99
\end{aligned}
\] & \[
\begin{aligned}
& .31 \\
& .32 \\
& .16 \\
& .08 \\
& .22 \\
& .06
\end{aligned}
\] \\
\hline 03410585 & Koger Fork above Mouth at Paint Cliff, Ky. & Lat \(36^{\circ} 42^{\prime} 03^{\prime \prime}\), Long \(84^{\circ} 32^{\prime} 49^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104, 10 ft upstream of Rock Creek, 60 ft above Forest Service Road 1271, and 1400 ft downstream of Forks of Koger Fork. & 1999 & \[
\begin{aligned}
& 04-28-99 \\
& 05-25-99 \\
& 06-22-99 \\
& 07-20-99 \\
& 08-30-99 \\
& 09-15-99
\end{aligned}
\] & \[
\begin{aligned}
& .15 \\
& .02 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline 03410594 & \begin{tabular}{l}
Water Tank \\
Hollow above \\
Mouth at \\
Yamacraw, Ky.
\end{tabular} & Lat \(36^{\circ} 42^{\prime} 44^{\prime \prime}\), Long \(84^{\circ} 33^{\prime} 05^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104, 20 ft upstream of State Highway 1363, 130 ft upstream of Rock Creek, and 1000 ft above Mouth of Grassy Fork. & 1999 & \[
\begin{aligned}
& 04-28-99 \\
& 05-25-99 \\
& 06-22-99 \\
& 07-20-99 \\
& 08-30-99 \\
& 09-15-99
\end{aligned}
\] & \[
\begin{aligned}
& .22 \\
& .05 \\
& .01 \\
& .33 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline 03410595 & Water Tank Hollow at Mouth at Yamacraw, Ky. & Lat \(36^{\circ} 42^{\prime} 43^{\prime \prime}\), Long \(84^{\circ} 33^{\prime} 01^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104, 10 ft upstream of Rock Creek, 100 ft downstream of State Highway 1363, and 1000 ft above Mouth of Grassy Fork. & 1999 & \[
\begin{aligned}
& 04-28-99 \\
& 05-25-99 \\
& 06-22-99 \\
& 07-20-99 \\
& 08-30-99 \\
& 09-15-99
\end{aligned}
\] & \[
\begin{aligned}
& .73 \\
& .10 \\
& 0 \\
& .39 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline 03410597 & Rock Creek Below Grassy Fork at Yamacraw, Ky. & Lat \(36^{\circ} 42^{\prime} 54^{\prime \prime}\), Long \(84^{\circ} 32^{\prime} 49^{\prime \prime}\), McCreary County, Hydrologic Unit 05130104, 20 ft below Mouth of Grassy Fork, 1000 ft downstream from Mouth of Water Tank Hollow, and at mile 0.35 . & 1999 & \[
\begin{aligned}
& 04-28-99 \\
& 05-25-99 \\
& 06-22-99 \\
& 07-20-99 \\
& 08-30-99 \\
& 09-15-99
\end{aligned}
\] & \[
\begin{aligned}
& .73 \\
& .10 \\
& 0 \\
& .39 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline
\end{tabular}

Discharge Measurments made at miscellaneous sites during water year 1999.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station no. & Station name & Location & Period of record & Date & Discharge
\[
\left(\mathrm{ft}^{3} / \mathrm{s}\right)
\] \\
\hline \multirow[t]{20}{*}{37531508601350} & \multirow[t]{20}{*}{McCraken Spring near Fort Knox, Ky.} & \multirow[t]{20}{*}{Lat \(37^{\circ} 53^{\prime} 15^{\prime \prime}\), Long \(86^{\circ} 01^{\prime} 35^{\prime \prime}\), Meade County, Hydrologic Unit \(05140104,0.4 \mathrm{mi}\) southeast of the intersection of Grahamton-Vine Grove Road and Highway 60, 1.0 mi south of Grahamton, and 5.0 mi west of Fort Knox.} & \multirow[t]{20}{*}{1997-98} & 11-05-96 & 3.13 \\
\hline & & & & 12-03-96 & 25.2 \\
\hline & & & & 02-06-97 & 63.5 \\
\hline & & & & 04-08-97 & 35.7 \\
\hline & & & & 07-29-97 & 7.25 \\
\hline & & & & 07-29-97 & 7.25 \\
\hline & & & & 08-13-97 & 5.69 \\
\hline & & & & 08-29-97 & 4.62 \\
\hline & & & & 09-12-97 & 6.41 \\
\hline & & & & 10-06-97 & 3.39 \\
\hline & & & & 10-22-97 & 2.55 \\
\hline & & & & 11-06-97 & 2.61 \\
\hline & & & & 12-05-97 & 3.50 \\
\hline & & & & 12-19-97 & 3.31 \\
\hline & & & & 01-09-98 & 38.2 \\
\hline & & & & 01-29-98 & 8.77 \\
\hline & & & & 02-25-98 & 18.9 \\
\hline & & & & 04-24-98 & 9.65 \\
\hline & & & & 08-06-98 & 5.31 \\
\hline & & & & 08-06-98 & 6.75 \\
\hline
\end{tabular}


Figure 6. Location of observation wells in downtown Louisville, Kentucky.


Figure 7. Location of observation wells in northeast Jefferson County, Kentucky.

365210088391301 . Viola well.
LOCATION.--Lat \(36^{\circ} 52^{\prime} 10^{\prime \prime}\), long \(88^{\circ} 39^{\prime} 1^{\prime \prime}{ }^{\prime \prime}\), Hydrologic Unit 08010201, County Code 083, Hickory quadrangle, in a cultivated
field, 200 ft east of a private road, 1.2 mi northwest of Viola. Ownwer: J. Whittemore.
AQUIFER.--Sand of Claiborne Group of Eocene age. Aquifer code: 124CLBR.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 10 in., depth 105 ft, cased to 85 ft , screened \(85-105 \mathrm{ft}\). INSTRUMENTATION.--EDL recorder, 60 minute interval.
DATUM.--Elevation of land-surface datum is 405.65 ft above sea level. Measuring point: Floor of shelter, 4.03 ft above land-surface datum.
PERIOD OF RECORD.--February 1951 to September 1984 and October 1988 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.98 ft below land-surface datum, June 15, 1998: lowest measured, 19.24 ft below land-surface datum, Jan. 10, 1975.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 11.20 & 11.45 & 11.97 & 11.02 & 8.80 & 9.00 & 8.74 & 8.60 & 8.72 & 8.03 & 9.97 & 11.32 \\
\hline 2 & 11.18 & 11.20 & 11.76 & 10.32 & 8.52 & 8.72 & 8.78 & 8.53 & 8.86 & 7.98 & 10.14 & 11.31 \\
\hline 3 & 11.09 & 11.35 & 11.65 & 10.71 & 8.55 & 8.97 & 8.66 & 8.49 & 9.03 & 7.96 & 10.21 & 11.28 \\
\hline 4 & 11.24 & 11.59 & 11.66 & 10.88 & 8.85 & 9.19 & 8.57 & 8.41 & 9.05 & 8.03 & 10.14 & 11.26 \\
\hline 5 & 11.19 & 11.64 & 11.53 & 10.81 & 8.98 & 9.00 & 8.35 & 8.30 & 9.08 & 8.04 & 10.14 & 11.27 \\
\hline 6 & 11.23 & 11.78 & 11.43 & 10.54 & 8.75 & 9.11 & 8.35 & 8.21 & 9.18 & 8.03 & 10.22 & 11.33 \\
\hline 7 & 11.27 & 11.85 & 11.54 & 10.73 & 8.54 & 9.28 & 8.31 & 8.15 & 9.05 & 8.10 & 10.24 & 11.39 \\
\hline 8 & 11.40 & 11.69 & 11.69 & 10.29 & 8.85 & 8.89 & 8.03 & 8.26 & 8.81 & 8.19 & 10.26 & 11.33 \\
\hline 9 & 11.37 & 11.56 & 11.83 & 10.54 & 8.94 & 8.48 & 7.77 & 8.34 & 8.73 & 8.27 & 10.31 & 11.47 \\
\hline 10 & 11.35 & 11.22 & 11.75 & 10.36 & 8.99 & 8.71 & 8.00 & 8.33 & 8.75 & 8.38 & 10.28 & 11.49 \\
\hline 11 & 11.35 & 11.85 & 11.70 & 10.17 & 8.90 & 8.77 & 8.20 & 8.34 & 8.80 & 8.55 & 10.38 & 11.54 \\
\hline 12 & 11.39 & 11.90 & 11.49 & 9.99 & 9.25 & 8.78 & 8.61 & 8.34 & 8.88 & 8.62 & 10.42 & 11.57 \\
\hline 13 & 11.39 & 11.67 & 11.34 & 10.02 & 9.44 & 8.59 & 8.58 & 8.33 & 8.87 & 8.70 & 10.41 & 11.67 \\
\hline 14 & 11.34 & 11.43 & 11.52 & 10.21 & 9.34 & 8.22 & 8.38 & 8.53 & 8.85 & 8.80 & 10.65 & 11.71 \\
\hline 15 & 11.37 & 11.58 & 11.54 & 10.04 & 9.10 & 8.41 & 7.78 & 8.65 & 8.88 & 8.90 & 10.75 & 11.66 \\
\hline 16 & 11.45 & 11.40 & 11.23 & 9.85 & 8.89 & 8.38 & 8.00 & 8.68 & 8.82 & 9.00 & 10.79 & 11.71 \\
\hline 17 & 11.43 & 11.70 & 11.34 & 9.70 & 9.03 & 8.28 & 8.13 & 8.68 & 8.99 & 9.10 & 10.80 & 11.81 \\
\hline 18 & 11.35 & 11.65 & 11.23 & 9.77 & 8.97 & 8.50 & 8.31 & 8.77 & 9.09 & 9.17 & 10.74 & 11.69 \\
\hline 19 & 11.57 & 11.66 & 11.27 & 9.74 & 9.02 & 8.64 & 8.14 & 8.89 & 9.04 & 9.21 & 10.65 & 11.62 \\
\hline 20 & 11.64 & 11.74 & 11.47 & 9.59 & 9.27 & 8.49 & 8.18 & 8.87 & 9.05 & 9.24 & 10.87 & 11.65 \\
\hline 21 & 11.54 & 11.85 & 11.18 & 9.39 & 9.50 & 8.47 & 8.09 & 8.79 & 8.89 & 9.35 & 10.93 & 11.77 \\
\hline 22 & 11.76 & 11.80 & 11.59 & 9.29 & 9.53 & 8.63 & 8.15 & 8.63 & 8.80 & 9.41 & 10.90 & 11.84 \\
\hline 23 & 11.74 & 11.69 & 11.19 & 9.01 & 9.15 & 8.53 & 8.37 & 8.39 & 8.69 & 9.41 & 10.86 & 11.77 \\
\hline 24 & 11.63 & 11.77 & 11.16 & 9.25 & 9.46 & 8.67 & 8.65 & 8.42 & 8.44 & 9.41 & 10.82 & 11.67 \\
\hline 25 & 11.52 & 11.46 & 11.00 & 9.31 & 9.30 & 8.82 & 8.60 & 8.48 & 8.31 & 9.51 & 10.92 & 11.77 \\
\hline 26 & 11.51 & 11.77 & 10.83 & 9.22 & 9.34 & 8.89 & 8.42 & 8.56 & 8.18 & 9.59 & 11.02 & 11.83 \\
\hline 27 & 11.50 & 11.75 & 10.75 & 9.00 & 9.00 & 8.91 & 8.38 & 8.72 & 8.12 & 9.66 & 11.09 & 11.85 \\
\hline 28 & 11.34 & 11.73 & 10.74 & 9.08 & 8.95 & 8.88 & 8.34 & 8.78 & 8.04 & 9.72 & 11.15 & 11.91 \\
\hline 29 & 11.35 & 11.66 & 10.53 & 9.26 & --- & 9.02 & 8.46 & 8.82 & 8.05 & 9.69 & 11.18 & 11.94 \\
\hline 30 & 11.39 & 11.61 & 10.95 & 9.24 & --- & 9.06 & 8.63 & 8.84 & 8.04 & 9.72 & 11.28 & 12.04 \\
\hline 31 & 11.55 & --- & 10.97 & 8.96 & --- & 8.81 & --- & 8.74 & --- & 9.81 & 11.29 & --- \\
\hline MAX & 11.76 & 11.90 & 11.97 & 11.02 & 9.53 & 9.28 & 8.78 & 8.89 & 9.18 & 9.81 & 11.29 & 12.04 \\
\hline MIN & 11.09 & 11.20 & 10.53 & 8.96 & 8.52 & 8.22 & 7.77 & 8.15 & 8.04 & 7.96 & 9.97 & 11.26 \\
\hline
\end{tabular}

WTR YR 1999 HIGH 7.77 LOW 12.04

381441085452701. Local number 45-14-71, (owner's number A-2), map number 1.

LOCATION.--Lat \(38^{\circ} 14^{\prime} 41^{\prime \prime}\), long \(85^{\circ} 45^{\prime} 27^{\prime \prime}\), Hydrologic Unit 05140101 , County Code 111 , Louisville West quadrangle, at the Louisville Free Public Library, 301 West York Street, on east side of building at base of the TV-radio tower, in Louisville. Owner: City of Louisville.
AQUIFER.--Glacial sand and gravel of Quaternary age. Aquifer code: 1120TSH.
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter \(8 \mathrm{in}\). , depth 105 ft , cased and screened.
INSTRUMENTATION.--Continuous recorder, 30 minute interval.
DATUM.--Elevation of land-surface datum is 454.23 ft above sea level. Measuring point: Top of casing, 1.00 ft above landsurface datum.
REMARKS.--Water-quality sample collected May 8, 1956.
PERIOD OF RECORD.--February 1937 to current year. February 1937 to September 1976 published in hydrograph form and on file at district office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level observed, 27.51 ft below land-surface datum, June 1, 1997 ; lowest, 77.82 ft below land-surface datum, Sept. 18, 1955.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
DAILY OBSERVATION AT 12:00 VALUES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline DAY & OCT & Nov & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 29.19 & 29.34 & 29.64 & 29.83 & 29.30 & 29.46 & 29.04 & 29.19 & 29.55 & 29.83 & 30.54 & 30.82 \\
\hline 2 & 29.18 & 29.33 & 29.56 & 29.65 & 29.24 & 29.31 & 29.05 & 29.21 & 29.62 & 29.89 & 30.61 & 30.73 \\
\hline 3 & 29.02 & 29.32 & 29.55 & 29.79 & 29.24 & 29.20 & 29.08 & 29.16 & 29.70 & 29.88 & 30.58 & 30.66 \\
\hline 4 & 29.07 & 29.36 & 29.65 & 29.86 & 29.28 & 29.38 & 29.10 & 29.22 & 29.72 & 29.88 & 30.54 & 30.67 \\
\hline 5 & 29.02 & 29.47 & 29.62 & 29.95 & 29.30 & 29.31 & 29.15 & 29.28 & 29.71 & 29.94 & 30.56 & 30.61 \\
\hline 6 & 29.16 & 29.43 & 29.63 & 29.82 & 29.19 & 29.32 & 29.13 & 29.23 & 29.74 & 29.98 & 30.59 & 30.60 \\
\hline 7 & 29.14 & 29.44 & 29.60 & 29.92 & 29.11 & 29.69 & 29.24 & 29.29 & 29.82 & 30.02 & 30.54 & 30.68 \\
\hline 8 & 29.10 & 29.38 & 29.67 & 29.78 & 29.26 & 29.56 & 29.11 & 29.27 & 29.87 & 29.95 & 30.51 & 30.64 \\
\hline 9 & 29.07 & 29.38 & 29.84 & 29.88 & 29.22 & 29.23 & 29.09 & 29.29 & 29.90 & 29.97 & 30.58 & 30.65 \\
\hline 10 & 29.03 & 29.27 & 29.83 & 29.87 & 29.34 & 29.39 & 29.17 & 29.32 & 29.93 & 30.03 & 30.58 & 30.64 \\
\hline 11 & 29.02 & 29.46 & 29.73 & 29.86 & 29.40 & 29.29 & 29.18 & 29.36 & 30.00 & 29.97 & 30.65 & 30.61 \\
\hline 12 & 29.01 & 29.48 & 29.67 & 29.81 & 29.47 & 29.37 & 29.27 & 29.43 & 29.88 & 29.88 & 30.67 & 30.65 \\
\hline 13 & 29.01 & 29.41 & 29.61 & 29.82 & 29.44 & 29.38 & 29.14 & 29.39 & 29.73 & 29.98 & 30.68 & 30.61 \\
\hline 14 & 28.98 & 29.35 & 29.71 & 29.89 & 29.35 & 29.15 & 29.17 & 29.43 & 29.81 & 30.03 & 30.68 & 30.59 \\
\hline 15 & 28.98 & 29.41 & 29.71 & 29.88 & 29.25 & 29.38 & 28.96 & 29.44 & 29.89 & 30.00 & 30.61 & 30.57 \\
\hline 16 & 29.00 & 29.36 & 29.61 & 29.81 & 29.17 & 29.32 & 29.00 & 29.38 & 29.90 & 30.08 & 30.63 & 30.53 \\
\hline 17 & 29.00 & 29.49 & 29.65 & 29.82 & 29.16 & 29.17 & 29.31 & 29.49 & 29.88 & 30.08 & 30.68 & 30.59 \\
\hline 18 & 28.94 & 29.47 & 29.67 & 29.83 & 29.13 & 29.19 & 29.54 & 29.50 & 29.80 & 30.00 & 30.73 & 30.49 \\
\hline 19 & 28.98 & 29.46 & 29.70 & 29.90 & 29.12 & 29.20 & 29.47 & 29.46 & 29.72 & 30.09 & 30.74 & 30.50 \\
\hline 20 & 29.02 & 29.47 & 29.74 & 29.72 & 29.16 & 29.11 & 29.26 & 29.46 & 29.74 & 30.16 & 30.80 & 30.49 \\
\hline 21 & 28.93 & 29.63 & 29.64 & 29.60 & 29.48 & 29.07 & 29.17 & 29.48 & 29.77 & 30.20 & 30.75 & 30.47 \\
\hline 22 & 28.96 & 29.70 & 29.77 & 29.55 & 29.46 & 29.09 & 29.22 & 29.54 & 29.81 & 30.31 & 30.66 & 30.46 \\
\hline 23 & 28.95 & 29.51 & 29.72 & 29.48 & 29.24 & 29.05 & 29.30 & 29.51 & 29.69 & 30.36 & 30.71 & 30.43 \\
\hline 24 & 29.04 & 29.55 & 29.70 & 29.54 & 29.25 & 29.22 & 29.31 & 29.47 & 29.73 & 30.28 & 30.77 & 30.42 \\
\hline 25 & 29.09 & 29.46 & 29.72 & 29.66 & 29.15 & 29.11 & 29.21 & 29.52 & 29.73 & 30.36 & 30.78 & 30.44 \\
\hline 26 & 29.03 & 29.52 & 29.70 & 29.66 & 29.15 & 29.15 & 29.12 & 29.58 & 29.81 & 30.40 & 30.79 & 30.48 \\
\hline 27 & 28.99 & 29.54 & 29.70 & 29.44 & 29.33 & 29.33 & 29.16 & 29.52 & 29.72 & 30.42 & 30.82 & 30.55 \\
\hline 28 & 29.08 & 29.55 & 29.72 & 29.42 & 29.51 & 29.09 & 29.17 & 29.57 & 29.79 & 30.44 & 30.84 & 30.58 \\
\hline 29 & 29.19 & 29.55 & 29.64 & 29.59 & -- & 29.08 & 29.21 & 29.58 & 29.81 & 30.48 & 30.86 & 30.66 \\
\hline 30 & 29.28 & 29.59 & 29.80 & 29.41 & - & 29.08 & 29.23 & 29.51 & 29.76 & 30.53 & 30.85 & 30.61 \\
\hline 31 & 29.32 & & 29.78 & 29.36 & --- & 29.03 & & 29.47 & & 30.54 & 30.81 & \\
\hline MAX & 29.32 & 29.70 & 29.84 & 29.95 & 29.51 & 29.69 & 29.54 & 29.58 & 30.00 & 30.54 & 30.86 & 30.82 \\
\hline MIN & 28.93 & 29.27 & 29.55 & 29.36 & 29.11 & 29.03 & 28.96 & 29.16 & 29.55 & 29.83 & 30.51 & 30.42 \\
\hline
\end{tabular}

WTR YR 1999 HIGH 28.93 LOW 30.86

381442085444801. (Metro United Way), map number 2.

LOCATION.--Lat \(38^{\circ} 14^{\prime \prime} 42^{\prime \prime}\), long \(85^{\circ} 44^{\prime \prime} 48^{\prime \prime}\), Hydrologic Unit 05140101, County Code 111, Louisville East quadrangle, near the southwest corner of east Broadway and Preston strret on west side of Metro United Way Buliding in window vault next to parking lot in rear.
AQUIFER.--Glacial sand and gravel of Quanternary age. Aquifer code: 1120TSH.
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 10 in., depth, 104 ft, screen unknown.
INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 461.78 ft above sea level. Measuring point: Top of casing 5.99 ft below landsurface datum.
PERIOD OF RECORD.--April 1991 to May 1992 and February 1998 to currnet year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 35.40 ft below land-surface datum, May 6 , 1998: lowest measured, 38.81 ft below land-surface datum, Oct. 29, 1991.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{ccllc}
\hline \multicolumn{2}{c}{ Date } & Water & & \\
Level & Date & Water \\
Level \\
\hline Dec. 4, 1998 & 35.80 & Jun. & 22 & 1999 \\
Feb. 22, 1999 & 36.58 & Sept. 28, & 1999 & 36.74 \\
\hline
\end{tabular}
381445085460201. (QW well 9th and Broadway), map number 3.

LOCATION.--Lat \(38^{\circ} 14^{\prime} 45^{\prime \prime}\), long \(85^{\circ} 46^{\prime} 02^{\prime \prime}\) Hydrologic Unit 05140101 , County Code 111, Louisville West quadrangle, in median of South 9th street 300 ft south of West Broadway. Owner: City of Louisville.
AQUIFER.--Glacial sand and gravel of Quaternary age. Aquifer sode: 1120TSH.
WELL CHARACTERISTICS.--Augered observation water-table well, diameter 2 in., depth 77 ft, screened \(67-77\) ft.
INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 454.14 ft above sea level. Measuring point: Top of casing, 0.34 ft below landsurface datum.
REMARKS.--Deeper of two wells drilled for water quality study 10 feet south of shallow well.
PERIOD OF RECORD.--August 1996 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 26.95 ft below land-surface datum Feb. 20, 1998: lowest measured, 29.60 ft below land-surface datum Aug. 7, 1996.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{ccccc}
\hline \multicolumn{2}{c}{ Date } & \begin{tabular}{c} 
Water \\
Level
\end{tabular} & Date & \begin{tabular}{c} 
Water \\
Level
\end{tabular} \\
\hline Dec. 4, 1998 & 27.07 & Jun. 22, 1999 & 27.95 \\
Feb. 22, 1999 & 27.83 & Sept. 28, 1999 & 28.84 \\
\hline
\end{tabular}
381447085454001. Local number 45-14-66. (owner number 5), map number 4.

LOCATION.--Lat \(38^{\circ} 14^{\prime \prime} 47^{\prime \prime}\), long \(85^{\circ} 45^{\prime \prime} 40^{\prime \prime}\), Hydrologic Unit 05140101, County Code 111, Louisville West quadrangle, at Courier Journal-Louisville Times, Sixth and Broadway Streets in subbasement below building entrance walkway from Armory Street, in Louisville. Owner Gannett.
AQUIFER.--Louisville Limestone and Laurel Dolomite of Middle Silurian age. Aquifer code: 354LVLL.
WELL CHARACTERISTICS.--Drilled unsused water-table well, diameter \(12 \mathrm{in} ., \mathrm{depth} 190 \mathrm{ft}\), eased to 121 ft , open-hole \(121-\) 190 ft.
INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 455.83 ft above sea level. Measuring point: Top of metal well cover, 15.87 ft below land-surface datum.
PERIOD OF RECORD.--October 1953 to current year. October 1953 to September 1998 published in hydrograph form an on file in district office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level observed, 28.49 ft below land-surface datum, June 1, 1997 ; lowest, 86.85 ft below land-surface datum, Sept. 20, 1955.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|}
\hline Date & Water Level & Date & Water Level \\
\hline Dec. 3, 1998 & 30.07 & Jun. 22, 1999 & 30.33 \\
\hline Feb. 22, 1999 & 29.96 & Sept. 28, 1999 & 31.23 \\
\hline
\end{tabular}
381501085445601. (QW Well U OF L Medical School), map number 5.

LOCATION.--Lat \(38^{\circ} 15^{\prime} 01^{\prime \prime}\), long \(85^{\circ} 44^{\prime} 6^{\prime \prime}\), Hydrologic Unit 05140101, County Code 111, Jeffersonville quardrangle, near southeast corner of Floyd Street and Muhammad Ali Blvd, 250 feet east of Floyd Street and 10 ft South of Muhammad Ali Blvd. Owner: University of Louisville.
AQUIFER.--Glacial sand and gravel of Quanternary age. Aquifer code: 1120TSH.
WELL CHARACTERISTICS.--Augered observation water-table well, diameter \(2 \mathrm{in} .\), depth 83.2 ft , screened 73.2 ft to 83.2 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 459.97 ft above sea level. Measuring point: Top of casing, 0.25 ft below land-surface datum.
REMARKS.--Deeper of two wells drlled for water-quality study 10 ft east of shallow well.
PERIOD OF RECORD.--September 1996 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 35.44 ft below land-surface datum, May 4 , 1998: lowest measured, 37.98 ft below land-surface datum, Sept. 28, 1999.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{cccc}
\hline Date & \begin{tabular}{c} 
Water \\
Level
\end{tabular} & \multicolumn{3}{c}{ Date } & \begin{tabular}{c} 
Water \\
Level
\end{tabular} \\
\hline Dec. 4, 1998 & 36.75 & Jun. 22, 1999 & 37.11 \\
Feb. 22, 1999 & 36.76 & Sept. 28, 1999 & 37.98 \\
\hline
\end{tabular}
381503085453301. Local number 45-15-36, map 6.

LOCATION.--Lat \(38^{\circ} 15^{\prime} 03^{\prime \prime}\), long \(85^{\circ} 45^{\prime} 3^{\prime \prime}\) Hydrologic Unit 05140101, County Code 111, New Albany quardrangle, in subbasement of Kentucky Towers Apartments, on east side of South Fifth Street, at Fifth and Muhammand Ali Blvd., in Louisville. Owner: Kentucky Towers (formerly Kentucky Hotel).
AQUIFER.--Glacial sand and gravel of Quaternary age. Aquifer sode: 1120TSH.
WELL CHARACTERISTICS.--Drilled unused water-table well, diamete 10 in., depth 104 ft , screened \(84-104 \mathrm{ft}\).
INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 460.00 ft above sea level. Measuring point: Floor of recorder shelter 22.81 ft below land-surface datum.
PERIOD OF RECORD.--September 1948 to current year. November 1973 to September 1976 published in hydrograph form and on file at district office.
EXTREMES FOR PERIOD OF RECORD.--Hightest water level measured, 33.53 ft below land-surface datum, Apr. 24, 1984: lowest measured, 87.74 ft below land-surface datum, Sept. 23, 1955.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{ccccc}
\hline \multicolumn{2}{c}{ Date } & Water & & Water \\
Level & Date & Level \\
\hline Dec. 3, 1998 & 35.30 & Jun. 22, 1999 & 35.96 \\
Feb. 22, 1999 & 35.18 & Sept. 28, 1999 & 36.80 \\
\hline
\end{tabular}
381504085443202. Local number CP7A, map number 7.

LOCATION.--Lat \(38^{\circ} 15^{\prime} 04^{\prime \prime}\), long \(85^{\circ} 44^{\prime} 3^{\prime \prime}\), Hydrologic Unit 05140101, County Code 111, Jeffersonville quardrangle, at the southwest corner of east Louisville Park, 13.7 ft west of a tennis court fence, 16.5 ft east of curb on south Hancock Street, 58.2 ft north of curb on east Liberty Street, in Louisville. Owner: City of Louisville.
AQUIFER.--Glacial sand and gravel of Quanternary age. Aquifer code: 1120TSH.
WELL CHARACTERISTICS.--Augered observation water-table well, diameter \(1.5 \mathrm{in.}\),depth 84.6 ft , screened \(71.1-74.1 \mathrm{ft}\).
INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 467.19 ft above sea level. Measuring point: Top of casing, at land-surface datum.
REMARKS.--Replaces destroyed well 381504085443201 (CP7), which was 10 ft north.
PERIOD OF RECORD.--July 1980 to currnet year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 42.41 ft below land-surface datum, May 6, 1997: lowest measured, 47.69 ft below land-surface datum, Oct. 25, 1995.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{ccccc}
\hline \multicolumn{2}{c}{ Date } & Water & & Water \\
Level & Date & Level \\
\hline Dec. 3, 1998 & 44.38 & Jun. 22, 1999 & 45.38 \\
Feb. 22, 1999 & 45.10 & Sept. 28, 1999 & 46.34 \\
\hline
\end{tabular}

JEFFERSON COUNTY
381517085455501. Local number 86-6 (Roy Wilkins Blvd.), map number 8.

LOCATION.--Lat \(38^{\circ} 15^{\prime} 17^{\prime \prime}\), long \(85^{\circ} 45^{\prime} 5^{\prime \prime}\), Hydrologic Unit 05140101 , County Code 111 , New Albany quardrangle, in median of Roy Wilkins Blvd. near Market Street, in Louisville. Owner: City Of Louisville.
AQUIFER.--Glacial sand and gravel of Quaternary age. Aquifer sode: 1120TSH.
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 2.5 in, depth 86.4 ft , screened \(82.4-86.4 \mathrm{ft}\). INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 457.59 ft above National Geodetic Vertical Datum Measuring point: Top of casing, at land-surface datum.
REMARKS.--Water levels affected by Ohio River stage and pumping from nearby wells.
PERIOD OF RECORD.--October 1986 to May 1991 and February 1998 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 32.08 ft below land-surface datum Feb. 20, 1998: lowest measured, 38.41 ft below land-surface datum Sept. \(26,27,29,30\), and Oct. 5, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{cccc}
\hline \multicolumn{2}{c}{ Date } & \begin{tabular}{c} 
Water \\
Level
\end{tabular} & Date
\end{tabular} \begin{tabular}{c} 
Water \\
Level
\end{tabular}
381518085453402. Local number 86-11 (Courthouse Annex), map number 9.

LOCATION.--Lat \(38^{\circ} 15^{\prime} 18^{\prime \prime}\), long \(85^{\circ} 45^{\prime} 34^{\prime \prime}\), Hydrologic Unit 05140101, County Code 111, New Albany quadrangle, at northwest corner behind Courthouse Annex building between 5 th and 6 th Streets, east of walkway to parking garage. Owner: City of Louisville.
AQUIFER.--Glacial sand and gravel of Quaternary age. Aquifer code: 1120TSH.
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter \(2.5 \mathrm{in}\). depth 102 ft , screened \(42-44 \mathrm{ft}\), \(61-63 \mathrm{ft}\), \(99-\) 101 ft .
INSTRUMENTATION.--Continuous recorder, 30 minute interval.
DATUM.--Elevation of land-surface datum is 461.63 ft above sea level. Measuring point: Top of casing, 3.0 ft above landsurface datum.
REMARKS.--Water levels affected by Ohio River stage and pumping from nearby wells.
PERIOD OF RECORD.--November 1986 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 37.49 ft below land-surface datum, March 8, 1998; lowest, 46.82 ft below land-surface datum, July 27, 1991.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999



\section*{JEFFERSON COUNTY}

381522085445201 (Louisville Scrap Metal), map number 10.
LOCATION.--Lat \(38^{\circ} 15^{\prime} 22^{\prime \prime}\), long \(85^{\circ} 50^{\prime} 26^{\prime \prime}\), Hydrologic Unit 05140101, County Code 111, Jeffersonville quadrangle, at northeast corner of Floyd and Main Streets behind Louisville Scrap Meatal Office. Owner: Louisville Scrap Metal.
AQUIFER.--Glacial sand and gravel of Quanternary age. Aquifer code: 1120TSH.
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 10 in. with \(2 "\) PVC casing and screen inserted for measurement access, depth 90.0 ft , screened \(85.0-90.0 \mathrm{ft}\).
INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 460.04 ft above sea level. Measuring point: Top of 2 " coupling 1.11 ft above land-surface datum.
PERIOD OF RECORD.--May 1991 to June 1993 and May 1996 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 34.22 ft below land-surface datum, Mar. 7, 1997:: lowest measured, 40.29 ft below land-surface, datum, Oct. 29, 1991.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{cclcc}
\hline \multicolumn{2}{c}{ Date } & \begin{tabular}{c} 
Water \\
Level
\end{tabular} & \multicolumn{2}{c}{ Date }
\end{tabular} \begin{tabular}{c} 
Water \\
Level
\end{tabular}
381527085453001. Local number 86-7 (Belvedere Well), map number 11.

LOCATION.--Lat \(38^{\circ} 15^{\prime} 27^{\prime \prime}\), long \(85^{\circ} 45^{\prime} 30^{\prime \prime}\), Hydrologic Unit 05140101 , County Code 111 , New Albany quadrangle, at Place Montpelier and Main Street, 3 ft east of east sidewalk. Owner: City of Louisville.
AQUIFER.--Glacial sand and gravel of Quaternary age. Aquifer code: 1120TSH.
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter \(2.5 \mathrm{in.}\),depth 89.9 ft , screened \(85.1-87.1 \mathrm{ft}\).
INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel..
DATUM.--Elevation of land-surface datum is 452.43 ft above sea level. Measuring point: Top of casing, 3.0 ft above landsurface datum.
REMARKS.-- Water levels affected by Ohio River stage and pumping from nearby wells .
PERIOD OF RECORD.--October 1986 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 23.92 ft below land-surface datum, Mar. 9, 1997; lowest, 39.64 ft below land-surface datum, Sept. 2-3, 1993, Aug. 31, 1995.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|}
\hline Date & Water Level & Date & Water Level \\
\hline Dec. 3, 1998 & 31.08 & Jun. 22, 1999 & 32.90 \\
\hline Feb. 22, 1999 & 30.82 & Sept. 28, 1999 & 33.15 \\
\hline
\end{tabular}
381638085415801. Local number 41-16-3, (WC-4), map number 12.

LOCATION.--Lat \(38^{\circ} 16^{\prime} 38^{\prime \prime}\), long \(85^{\circ} 41^{\prime} 58^{\prime \prime}\), Hydrologic Unit 05140101, County Code 111 , Jeffersonville quadrangle, at the northwest corner of River Road and Zorn Avenue, in Louisville. Owner: Louisville Wtaer Company.
AQUIFER.--Glacial sand and gravel of Quaternary age. Aquifer code: 1120TSH.
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter \(4 \mathrm{in.}\),depth 104 ft , screened \(98-100 \mathrm{ft}\).
INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 435.79 ft above sea level. Measuring point: Floor of recorder shelter, 4.41 ft above land-surface datum.
REMARKS.-- Water levels affected by Ohio River, which causes level to rise above land-surface and nearby pumpage. Waterquality sample collected July 10, 1979.
PERIOD OF RECORD.--October 1946 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level observed, 3.71 ft above land-surface datum, Mar. 13, 1967; lowest, 19.61 ft below land-surface datum, Feb. 13, 1948.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|}
\hline Date & Water Level & Date & Water Level \\
\hline Dec. 2, 1998 & 15.29 & Jul. 7, 1999 & 15.11 \\
\hline Mar. 1, 1999 & 14.52 & Sept. 27, 1999 & 15.66 \\
\hline May 5, 1999 & 14.53 & & \\
\hline
\end{tabular}

JEFFERSON COUNTY
381648085421201. Local number 42-16-15, (WC-5), map number 13.

LOCATION.--Lat \(38^{\circ} 16^{\prime} 48^{\prime \prime}\), long \(85^{\circ} 42^{\prime} 12^{\prime \prime}\), Hydrologic Unit 05140101 , County Code 111 , Jeffersonville quadrangle, 200 ft west of Louisville Water Company pump house, 200 ft south of the Ohio River, 0.2 mi northwest of junction of River Road and Zorn Avenue, in Louisville. Owner: Louisville Water Company.
AQUIFER.--Glacial sand and gravel of Quaternary age. Aquifer code: 1120TSH.
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 4 in., depth 98 ft, screened 96-98 ft.
INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 435.11 ft above sea level. Measuring point: Top of pipe flange, 2.21 ft above land-surface datum.
REMARKS.-- Water levels affected by Ohio River, which causes level to rise above land-surface. Water-quality collected Apr. 30, 1948.
PERIOD OF RECORD.--May 1946 to current year. May 1946 to April 1977 published in hydrograph form and on file at the district office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.04 ft above land-surface datum, Jan. 17, 1950: lowest measured, 18.31 ft below land-surface datum, Nov. 6, 1946.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{ccccc}
\hline \multicolumn{2}{c}{ Date } & \begin{tabular}{l} 
Water \\
Level
\end{tabular} & \multicolumn{2}{c}{ Date }
\end{tabular}

\section*{JEFFERSON COUNTY}
381653085413302. Local number (WC-9A), map number 14.

LOCATION.--Lat \(38^{\circ} 16^{\prime} 53^{\prime \prime}\), long \(85^{\circ} 41^{\prime} 33^{\prime \prime}\), Hydrologic Unit 05140101 , County Code 111 , Jeffersonville quadrangle, 45 ft east
of River Road at Wagner Lane, opposite the southwest corner of Cox Park, in Louisville. Owner: Louisville Water Company. AQUIFER.--Glacial sand and gravel of Quaternary age. Aquifer code: 1120TSH.
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter \(1.5 \mathrm{in.}\),depth 90 ft , screened 76-78 ft, 88-90 ft. INSTRUMENTATION.--Continuous recorder, 30 minute interval.
DATUM.--Elevation of land-surface datum is 437.65 ft above sea level. Measuring point: Top of casing, 3.00 ft above landsurface datum.
PERIOD OF RECORD.--December 1979 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.40 ft below land-surface datum, May 20, 1996; lowest measured, 19.04 ft below land-surface datum, July 21, 1980.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


WTR YR 1999 HIGH 12.60 LOW 18.13


\section*{JEFFERSON COUNTY}
381701085414002. Local number (WC-8A), map number 15.

LOCATION.--Lat \(38^{\circ} 17^{\prime} 01^{\prime \prime}\), long \(85^{\circ} 41^{\prime} 40^{\prime \prime}\), Hydrologic Unit 05140101 , County Code 111 , Jeffersonville quadrangle, on the south bank of the Ohio River at the northwest corner of Cox Park, in Louisville. Owner: Louisville Water Company.
AQUIFER.--Glacial sand and gravel of Quaternary age. Aquifer code: 1120TSH.
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter \(1.5 \mathrm{in.}\),depth 86.8 ft , screened \(86.8-90.8 \mathrm{ft}\). INSTRUMENTATION.--Continuous recorder, 30 minute interval.
DATUM.--Elevation of land-surface datum is 432.62 ft above sea level. Measuring point: Top of casing, 2.65 ft above landsurface datum.
REMARKS.--Replaces well 381702085414001 (WC-8) which was 100 ft north. Water levels affected by Ohio River. PERIOD OF RECORD.--August 1979 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 5.38 ft below land-surface datum, Mar. 21, 1998; lowest measured, 14.35 ft below land-surface datum, Oct. 18, 1991.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999



JEFFERSON COUNTY
381742085402001. Local number 40-17-5, (WC-13), map number 16.

LOCATION.--Lat \(38^{\circ} 17^{\prime} 42^{\prime \prime}\), long \(85^{\circ} 40^{\prime} 20^{\prime \prime}\), Hydrologic Unit 05140101 , County Code 111 , Jeffersonville quadrangle, 30 ft east of River Road, 300 ft northeast of junction of River Road and Blankenbaker Lane, in Louisville. Owner: Louisville Water Company.
AQUIFER.--Glacial sand and gravel of Quaternary age. Aquifer code: \(1120 T S H\).
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 4 in., depth 106 ft , screened \(104-106\) ft.
INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 438.87 ft above sea level. Measuring point: Top of plug, 3.07 ft above landsurface datum.
PERIOD OF RECORD.--June 1946 to current year. June 1946 to November 1976 published in hydrograph form and on file at the district office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.28 ft below land-surface datum, Jan. 18, 1950: lowest measured, 19.75 ft below land-surface datum, Jan. 29, 1954.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|}
\hline Date & Water Level & \multicolumn{3}{|c|}{Date} & Water Level \\
\hline Dec. 2, 1998 & 18.05 & Jul. & 7, & 1999 & 17.84 \\
\hline Mar. 1, 1999 & 17.15 & Sept. & 7, & & 18.25 \\
\hline May 5, 1999 & 17.26 & & & & \\
\hline
\end{tabular}
381827085392401. Local number 39-18-1, (WC-26), map number 17.

LOCATION. --Lat \(38^{\circ} 18^{\prime} 27^{\prime \prime}\), long \(85^{\circ} 39^{\prime} 24^{\prime \prime}\), Hydrologic Unit 05140101 , County Code 111 , Jeffersonville quadrangle, 20 ft east of River Road, opposite River Valley' Club in Louisville. Owner: Louisville Water Company.
AQUIFER.--Glacial sand and gravel of Quaternary age. Aquifer code: 1120TSH.
WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 4 in., depth 130 ft, screened \(128-130\) ft.
INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 455.94 ft above sea level. Measuring point: Top of plug, 4.68 ft above landsurface datum.
PERIOD OF RECORD.--July 1946 to current year. July 1946 to November 1976 published in hydrograph form and on file at the district office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 19.93 ft below land-surface datum, Jan. 18 , 1950 : lowest measured, 38.53 ft below land-surface datum, Feb. 3, 1948.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|}
\hline Date & Water Level & Date & Water Level \\
\hline Dec. 2, 1998 & 34.27 & Jul. 7, 1999 & 34.33 \\
\hline Mar. 1, 1999 & 34.01 & Sept. 27, 1999 & 34.55 \\
\hline May 5, 1999 & 33.93 & & \\
\hline
\end{tabular}

381904085384801 . Local number 38-19-2, (WC-27), map number 18.
LOCATION.--Lat \(38^{\circ} 19^{\prime} 04^{\prime \prime}\), long \(85^{\circ} 38^{\prime} 48^{\prime \prime}\), Hydrologic Unit 05140101 , County Code 111 , Jeffersonville quadrangle, 30 ft west of River Road, 250 ft north of north end of bridge over Goose Creek, in Louisville. Owner: Louisville Water Company. AQUIFER.--Glacial sand and gravel of Quaternary age. Aquifer code: 1120TSH.
WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 4 in., depth 96 ft , screened \(94-96\) ft.
INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 438.46 ft above sea level. Measuring point: Top of plug, 2.29 ft above landsurface datum.
PERIOD OF RECORD.--August 1946 to current year. August 1946 to November 1976 published in hydrograph form and on file at the district office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.84 ft above land-surface datum, Jan. 17, 1950: lowest measured, 20.97 ft below land-surface datum, Feb. 3, 1948.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|}
\hline Date & Water Level & Date & Water Level \\
\hline Dec. 2, 1999 & 18.25 & Jul. 7, 1999 & 18.26 \\
\hline Mar. 1, 1999 & 17.60 & Sept. 27, 1999 & 18.47 \\
\hline May 3, 1999 & 17.62 & & \\
\hline
\end{tabular}
382039085375201. Local number (WP-7), map number 19.

LOCATION.--Lat \(38^{\circ} 20^{\prime} 39^{\prime \prime}\), long \(85^{\circ} 37^{\prime} 52^{\prime \prime}\), Hydrologic Unit 05140101 , County Code 111 , Jeffersonville quadrangle, at
Louisville Water Company B.E. Payne treatment plant. Owner: Louisville Water Company.
AQUIFER.--Glacial sand and gravel of Quaternary age. Aquifer code: \(1120 T S H\).
WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2.0 in., depth 83.5 ft, screen: unknown. INSTRUMENTATION.--Continuous recorder, 30 minute interval.
DATUM.--Elevation of land-surface datum is 462.66 ft above sea level. Measuring point: Top of casing, 3.80 ft above landsurface datum.
REMARKS.--Water levels affected by pumping.
PERIOD OF RECORD.--December 1997 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 34.44 ft below land-surface datum, May 12 , 1998 ; lowest measured, 41.21 ft below land-surface datum, Sept. 30, 1999.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{DAILY OBSERVATION AT 12:00 VALUES} \\
\hline DAY & OCT & NOV & DEC & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP \\
\hline 1 & 41.12 & 41.10 & 40.93 & 39.02 & 35.53 & 37.26 & 37.10 & 37.59 & 37.88 & 39.18 & 38.75 & 40.41 \\
\hline 2 & 41.12 & 41.10 & 40.95 & 38.90 & 35.58 & 37.22 & 37.13 & 37.62 & 37.87 & 39.29 & 38.71 & 40.46 \\
\hline 3 & 41.09 & 41.12 & 40.99 & 38.91 & 35.71 & 37.25 & 37.19 & 37.65 & 37.93 & 39.36 & 38.67 & 40.49 \\
\hline 4 & 41.08 & 41.15 & 41.01 & 38.87 & 35.88 & 37.20 & 37.24 & 37.69 & 37.91 & 39.45 & 38.63 & 40.52 \\
\hline 5 & 41.11 & 41.11 & 41.03 & 38.82 & 35.98 & 37.05 & 37.29 & 37.73 & 37.93 & 39.53 & 38.61 & 40.55 \\
\hline 6 & 41.13 & 41.11 & 41.03 & 38.77 & 36.04 & 36.86 & 37.33 & 37.75 & 37.94 & 39.59 & 38.57 & 40.61 \\
\hline 7 & 41.14 & 41.12 & 41.02 & 38.78 & 36.06 & 36.54 & 37.38 & 37.75 & 37.96 & 39.66 & 38.53 & 40.61 \\
\hline 8 & 41.16 & 41.09 & 41.03 & 38.71 & 36.15 & 36.24 & 37.37 & 37.80 & 37.96 & 39.71 & 38.52 & 40.66 \\
\hline 9 & 41.13 & 41.09 & 41.06 & 38.72 & 36.22 & 36.00 & 37.41 & 37.79 & 37.98 & 39.76 & 38.50 & 40.70 \\
\hline 10 & 41.13 & 41.08 & 41.02 & 38.58 & 36.23 & 35.89 & 37.46 & 37.80 & 37.99 & 39.80 & 38.81 & 40.68 \\
\hline 11 & 41.11 & 41.10 & 40.95 & 38.41 & 36.20 & 35.78 & 37.48 & 37.82 & 38.03 & 39.84 & 39.01 & 40.64 \\
\hline 12 & 41.13 & 41.05 & 40.85 & 38.22 & 36.31 & 35.81 & 37.53 & 37.81 & 38.05 & 39.88 & 39.18 & 40.61 \\
\hline 13 & 41.15 & 41.04 & 40.79 & 38.20 & 36.37 & 35.92 & 37.46 & 37.83 & 37.98 & 39.94 & 39.28 & 40.65 \\
\hline 14 & 41.15 & 41.01 & 40.72 & 38.19 & 36.39 & 36.06 & 37.42 & 37.88 & 38.01 & 39.95 & 39.41 & 40.67 \\
\hline 15 & 41.17 & 41.00 & 40.63 & 38.15 & 36.44 & 36.27 & 37.35 & 37.82 & 37.98 & 39.97 & 39.52 & 40.67 \\
\hline 16 & 41.18 & 41.01 & 40.50 & 38.09 & 36.51 & 36.33 & 37.43 & 37.86 & 37.97 & 39.99 & 39.60 & 40.68 \\
\hline 17 & 41.18 & 41.01 & 40.42 & 38.02 & 36.59 & 36.34 & 37.47 & 37.84 & 38.00 & 40.00 & 39.68 & 40.72 \\
\hline 18 & 41.18 & 40.98 & 40.29 & 37.87 & 36.65 & 36.30 & 37.51 & 37.85 & 37.96 & 40.04 & 39.76 & 40.74 \\
\hline 19 & 41.19 & 40.97 & 40.19 & 37.63 & 36.73 & 36.24 & 37.52 & 37.86 & 37.99 & 40.07 & 39.81 & 40.76 \\
\hline 20 & 41.15 & 40.98 & 40.09 & 37.45 & 36.80 & 36.19 & 37.56 & 37.82 & 38.02 & 40.09 & 39.90 & 40.81 \\
\hline 21 & 41.15 & 40.97 & 39.96 & 37.24 & 36.87 & 36.20 & 37.58 & 37.81 & 38.01 & 40.10 & 39.95 & 40.84 \\
\hline 22 & 41.17 & 40.92 & 39.85 & 37.00 & 36.92 & 36.25 & 37.57 & 37.80 & 38.00 & 40.12 & 40.01 & 40.86 \\
\hline 23 & 41.19 & 40.97 & 39.70 & 36.60 & 36.94 & 36.34 & 37.56 & 37.82 & 37.99 & 39.82 & 40.04 & 40.91 \\
\hline 24 & 41.19 & 40.95 & 39.58 & 36.30 & 37.05 & 36.45 & 37.56 & 37.81 & 38.24 & 39.61 & 40.08 & 40.96 \\
\hline 25 & 41.16 & 40.92 & 39.46 & 36.03 & 37.11 & 36.54 & 37.52 & 37.81 & 38.44 & 39.44 & 40.11 & 41.01 \\
\hline 26 & 41.14 & 40.93 & 39.38 & 35.74 & 37.17 & 36.61 & 37.51 & 37.82 & 38.60 & 39.28 & 40.14 & 41.06 \\
\hline 27 & 41.17 & 40.92 & 39.32 & 35.48 & 37.18 & 36.68 & 37.50 & 37.81 & 38.73 & 39.14 & 40.19 & 41.10 \\
\hline 28 & 41.15 & 40.93 & 39.24 & 35.31 & 37.23 & 36.76 & 37.55 & 37.82 & 38.85 & 39.05 & 40.24 & 41.14 \\
\hline 29 & 41.16 & 40.93 & 39.16 & 35.18 & , & 36.85 & 37.59 & 37.85 & 38.98 & 38.93 & 40.29 & 41.16 \\
\hline 30 & 41.12 & 40.92 & 39.13 & 35.18 & --- & 36.95 & 37.60 & 37.87 & 39.10 & 38.85 & 40.33 & 41.19 \\
\hline 31 & 41.12 & --- & 39.07 & 35.37 & --- & 37.03 & --- & 37.86 & --- & 38.79 & 40.38 & --- \\
\hline MAX & 41.19 & 41.15 & 41.06 & 39.02 & 37.23 & 37.26 & 37.60 & 37.88 & 39.10 & 40.12 & 40.38 & 41.19 \\
\hline MIN & 41.08 & 40.92 & 39.07 & 35.18 & 35.53 & 35.78 & 37.10 & 37.59 & 37.87 & 38.79 & 38.50 & 40.41 \\
\hline
\end{tabular}

WTR YR 1999 HIGH 35.18 LOW 41.19


\section*{CHEMICAL QUALITY OF PRECIPITATION}

380706083324900 - CLARK STATE FISH HATCHERY, ROWAN COUNTY, KY
(National Atmospheric Deposition Program network station)
LOCATION.--Lat \(38^{\circ} 06^{\prime} 58^{\prime \prime}\), Long \(83^{\circ} 33^{\prime} 18^{\prime \prime}\), Rowan County, Hydrologic Unit 05100101 at Clark State Fish Hatchery, 0.9 mi southwest of Clark State Fish Hatchery office, 1.2 mi west of Cave Run Reservoir Dam.

PERIOD OF RECORD.--September 1983 to current year.
INSTRUMENTATION.--Wet/dry precipitation collector, weighing bucket type recording rain gage.
REMARKS.--Samples collected on weekly basis by observer.
COOPERATION.--Chemical quality data were provided by the National Atmospheric Deposition Program.


CHEMICAL QUALITY OF PRECIPITATION
380706083324900 - CLARK STATE FISH HATCHERY, ROWAN COUNTY, KY--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline DATE & \[
\begin{aligned}
& \text { POTAS- } \\
& \text { SIUM } \\
& \text { ATM DEP } \\
& \text { WET DIS } \\
& \text { (MG/L) } \\
& (83120)
\end{aligned}
\] & \begin{tabular}{l}
SULFATE \\
ATM DEP \\
WET DIS \\
AS SO4 \\
(MG/L) \\
(83160)
\end{tabular} & \[
\begin{aligned}
& \text { CHLO- } \\
& \text { RIDE } \\
& \text { ATM DEP } \\
& \text { WET DIS } \\
& \text { (MG/L) } \\
& (82944)
\end{aligned}
\] & NITROGEN NITRATE ATM DEP WET DIS AS NO3 (MG/L) (83071) & NITROGEN AMMON. ATM DEP WET DIS AS NH4 (MG/L) (83047) & PHOSPHORUS ORTHO ATM DEP WET DIS AS PO4 (MG/L) (83111) \\
\hline \[
\begin{aligned}
& \text { OCT } \\
& 06-13
\end{aligned}
\] & . 074 & 1.89 & . 17 & 1.49 & . 120 & <. 003 \\
\hline \[
\begin{aligned}
& \text { OCT } \\
& 13-20
\end{aligned}
\] & . 295 & 3.46 & . 46 & 2.19 & . 490 & <. 003 \\
\hline \[
\begin{aligned}
& \text { OCT } \\
& 20-27
\end{aligned}
\] & . 027 & 5.63 & . 21 & 4.50 & . 980 & <. 003 \\
\hline \begin{tabular}{l}
OCT 27- \\
NOV 03
\end{tabular} & . 090 & 3.65 & . 18 & 2.61 & . 470 & <. 003 \\
\hline \[
\begin{aligned}
& \text { NOV } \\
& 03-10
\end{aligned}
\] & . 083 & 2.89 & . 52 & 2.18 & . 730 & . 587 \\
\hline \[
\begin{aligned}
& \text { NOV } \\
& 10-17
\end{aligned}
\] & . 026 & . 82 & . 05 & . 28 & . 080 & <. 003 \\
\hline \[
\begin{aligned}
& \text { NOV } \\
& 17-24
\end{aligned}
\] & . 029 & 3.35 & . 21 & 3.21 & . 620 & <. 003 \\
\hline NOV 24DEC 01 & . 013 & 1.30 & . 04 & 1.07 & . 230 & <. 003 \\
\hline \[
\begin{aligned}
& \text { DEC } \\
& 01-08
\end{aligned}
\] & . 055 & . 75 & . 09 & . 40 & . 070 & <. 003 \\
\hline \[
\begin{aligned}
& \text { DEC } \\
& 08-15
\end{aligned}
\] & . 015 & 1.68 & . 10 & . 71 & . 110 & . 142 \\
\hline DEC
15-22 & . 047 & 1.55 & . 13 & 1.53 & . 290 & <. 003 \\
\hline DEC
22-29 & . 038 & 2.40 & . 18 & 2.59 & . 370 & <. 003 \\
\hline DEC 29 1998JAN 051999 & . 023 & 1.03 & . 06 & 1.25 & . 200 & <. 003 \\
\hline JAN
\(05-12\) & . 012 & . 84 & . 05 & . 94 & . 070 & <. 003 \\
\hline JAN
12-19 & . 189 & 2.42 & . 35 & 1.96 & . 250 & <. 003 \\
\hline JAN
\[
19-26
\] & . 122 & 1.97 & . 18 & 1.28 & . 730 & . 430 \\
\hline \[
\begin{gathered}
\text { JAN } 26- \\
\text { FEB } 02
\end{gathered}
\] & . 013 & . 58 & . 05 & . 42 & <. 020 & <. 003 \\
\hline \[
\begin{aligned}
& \text { FEB } \\
& 02-09
\end{aligned}
\] & . 271 & 5.86 & . 56 & 5.58 & . 980 & <. 003 \\
\hline \[
\begin{aligned}
& \text { FEB } \\
& 09-16
\end{aligned}
\] & . 050 & 1.47 & . 09 & 1.04 & . 250 & <. 003 \\
\hline \begin{tabular}{l}
FEB \\
16-23
\end{tabular} & . 381 & 4.10 & . 61 & 4.52 & . 550 & <. 010 \\
\hline \begin{tabular}{l}
FEB 23- \\
MAR 02
\end{tabular} & .087 & 1.92 & . 15 & 2.62 & . 430 & <. 003 \\
\hline MAR
\[
02-09
\] & . 065 & 1.66 & . 14 & 2.31 & . 230 & <. 003 \\
\hline \[
\begin{aligned}
& \text { MAR } \\
& 09-16
\end{aligned}
\] & . 031 & 2.62 & . 07 & 1.29 & . 120 & <. 003 \\
\hline MAR
\[
16-23
\] & . 032 & 3.15 & . 11 & 3.02 & . 530 & <. 003 \\
\hline MAR
\[
23-30
\] & . 012 & 1.35 & . 04 & 1.18 & . 180 & <. 003 \\
\hline \[
\begin{gathered}
\text { MAR } 30- \\
\text { APR } 06
\end{gathered}
\] & . 090 & 3.52 & . 19 & 2.26 & . 340 & <. 003 \\
\hline \[
\begin{aligned}
& \text { APR } \\
& 06-13
\end{aligned}
\] & . 326 & 3.44 & . 41 & 2.25 & . 700 & <. 003 \\
\hline \[
\begin{aligned}
& \text { APR } \\
& \quad 13-20
\end{aligned}
\] & . 037 & 2.25 & . 10 & 2.13 & . 630 & <. 003 \\
\hline \[
\begin{aligned}
& \text { APR } \\
& 20-27
\end{aligned}
\] & . 228 & 4.57 & . 31 & 3.52 & . 800 & <. 003 \\
\hline APR 27MAY 04 & . 048 & 1.43 & . 10 & 1.94 & . 180 & <. 003 \\
\hline \[
\begin{aligned}
& \text { MAY } \\
& 04-11
\end{aligned}
\] & . 247 & 3.05 & . 48 & 1.12 & 7.84 & 2.56 \\
\hline \[
\begin{aligned}
& \text { MAY } \\
& 11-18
\end{aligned}
\] & . 035 & 4.71 & . 17 & 3.99 & . 880 & . 026 \\
\hline \[
\begin{aligned}
& \text { MAY } \\
& 18-25
\end{aligned}
\] & . 012 & 1.52 & . 05 & 1.09 & . 340 & <. 003 \\
\hline \[
\begin{aligned}
& \text { JUN } \\
& 01-08
\end{aligned}
\] & . 257 & 3.66 & . 53 & 1.34 & 6.14 & 1.47 \\
\hline JUN
08-15 & . 103 & 1.91 & . 12 & 1.28 & . 730 & . 332 \\
\hline
\end{tabular}

CHEMICAL QUALITY OF PRECIPITATION
380706083324900 - CLARK STATE FISH HATCHERY, ROWAN COUNTY, KY--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999


DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{STATION NAME AND LOCATION} & \multicolumn{3}{|c|}{DRAINAGE} & \multicolumn{4}{|c|}{COM-} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { MISC } \\
& \text { FLOW } \\
& \text { MEAS }
\end{aligned}
\]} \\
\hline & STATION NUMBER & \[
\begin{gathered}
\text { AREA } \\
\left(\mathrm{MI}^{2}\right)
\end{gathered}
\] & PERIOD OF RECORD & COMPLETE FLOW & \[
\begin{aligned}
& \text { PLETE } \\
& \text { STAGE }
\end{aligned}
\] & \begin{tabular}{l}
PEAK \\
FLOW
\end{tabular} & \[
\begin{aligned}
& \text { LOW } \\
& \text { FLOW }
\end{aligned}
\] & \\
\hline CARD CR AT MOUTHCARD, KY & 03207845 & 4.18 & 1973-75 & E & E & & & \\
\hline FEDS CR AT FEDS CR, KY & 03207875 & 11.60 & 1973-75 & E & E & & & \\
\hline BIG CR AT DUNLAP, KY & 03207905 & 9.55 & 1974-76 & E & E & & & \\
\hline ELKFOOT BRANCH NR NIGH, KY & 03207915 & . 70 & 1980-84 & E & E & & & \\
\hline ISLAND CR NR PHYLLIS, KY & 03207925 & 2.42 & 1974 & E & E & & & \\
\hline LICK CR AT LICK CR, KY & 03207935 & 6.70 & 1973-76 & E & E & & & \\
\hline MILLERS CR NR PHYLLIS, KY & 03207940 & 1.68 & 1973-75 & E & E & & & \\
\hline DICKS FK AT PHYLLIS, KY & 03207962 & . 82 & 1975-84 & E & E & & & \\
\hline \multirow[t]{2}{*}{GRAPEVINE CR NR PHYLLIS, KY} & 03207965 & 6.20 & 1974-82 & E & & E & E & \\
\hline & & & 1989-92 & & & & & \\
\hline LEVISA FK BELOW FISHTRAP DAM, NR MILLARD, KY & 03208000 & 392 & 1938-92* & E & & C & E & \\
\hline RUSSELL FORK AT ELKHORN CITY, KY & 03209300 & 554.00 & 1960-92 & E & E & & E & \\
\hline ELKHORN CR NR ELKHORN CITY, KY & 03209400 & 48.80 & 1967-72 & E & & E & E & \\
\hline SHELBY CR AT DORTON, KY & 03209440 & 12.60 & 1971-76* & E & E & E & E & \\
\hline \multirow[t]{2}{*}{SHELBY CR AT SHELBIANA, KY} & 03209460 & 112.00 & 1965 & & & & E & \\
\hline & & & 1972-81 & & & & & \\
\hline MUD CR AT HAROLD, KY & 03209545 & 51.90 & 1975-81 & & & & E & \\
\hline BILL D BR NR KITE, KY & 03209575 & 3.17 & 1976-86 & & & E & & \\
\hline RIGHT FK BEAVER CR AT WAYLAND, KY & 03209600 & 73.90 & 1959-75 & & & & E & \\
\hline BEAVER CR AT MARTIN, KY & 03209700 & 228.00 & 1953-72 & & & & E & \\
\hline LEVISA FK AT PRESTONSBURG, KY & 03209800 & 1702.00 & 1964-81 & & E & & & \\
\hline MIDDLE CR NR PRESTONSBURG, KY & 03209890 & 62.10 & 1975-81 & & & & E & \\
\hline RACCOON CR NR ZEBULON, KY & 03210040 & 14.80 & 1974-75* & E & E & & & \\
\hline CANEY FK NR GULNARE, KY & 03210160 & 3.74 & 1974-75* & E & E & E & & \\
\hline BRUSHY FK AT HEENON, KY & 03210310 & 20.40 & 1974-76 & E & E & & & \\
\hline BUFFALO CR NR ENDICOTT, KY & 03210420 & 6.21 & 1974-75* & E & E & & & \\
\hline JOHNS CR NR PRESTONSBURG KY & 03210500 & 197.00 & 1938-40 & & E & & & \\
\hline JOHNS CR NR VAN LEAR, KY & 03211500 & 206 & 1939-92* & E & & C & E & \\
\hline OPEN FK PAINT CR NR RELIEF, KY & 03211945 & 25.50 & 1975-81 & & & & E & \\
\hline PAINT CR NR STAFFORDSVILLE, KY & 03212000 & 103.00 & 1950-75* & E & E & E & E & \\
\hline KERSHAW BR NR HURLEY, VA & 03213577 & . 60 & 1981-82 & & E & & & \\
\hline CAMP CR NR ARGO, KY & 03213594 & 1.60 & 1981-82 & & E & & & \\
\hline KNOX CR AT ARGO, KY & 03213600 & 95.90 & 1958-72 & & & & E & \\
\hline R FK HURRICANE CR NR STOPOVER, KY & 03213630 & . 82 & 1980-83 & & E & & & \\
\hline BIG CR NR HATFIELD, KY & 03213790 & 59.10 & 1975-81 & & & & E & \\
\hline WOLF CR AT PILGRIM, KY & 03214400 & 62.80 & 1975-81 & & & & E & \\
\hline \multirow[t]{2}{*}{ROCKCASTLE CR AT CLIFFORD, KY} & 03214730 & 121.00 & 1965-65 & & & & & E \\
\hline & & & 1972-81 & & & & & \\
\hline BIG SANDY R AUXILIARY AT LOUISA, KY & 03214980 & 3885.00 & 1938-76 & & E & & & \\
\hline BIG SANDY R AT LOUISA, KY & 03215000 & 3897.00 & 1939-77 & & E & & & C \\
\hline BLAINE CR ABOVE CAINS CR NR BLAINE, KY & 03215362 & 64.70 & 1975-81 & & & & E & \\
\hline BLAINE CR NR BLAINE, KY & 03215410 & 119.00 & 1972-76 & & & & E & \\
\hline BLAINE CR AT YATESVILLE, KY & 03215500 & 217.00 & 1915-75* & E & E & E & E & \\
\hline OHIO R AT ASHLAND, KY & 03216000 & 60750.00 & 1939-75 & & E & & & \\
\hline LITTLE SANDY R AT SANDY HOOK, KY & 03216190 & 35.70 & 1970-74 & & & & E & \\
\hline LITTLE SANDY R NR SANDY HOOK, KY & 03216200 & 60.40 & 1954-69 & & & & E & \\
\hline LITTLE SANDY R BELOW GRAYSON DAM NR LEON, KY & 03216350 & 196 & 1966-92 & E & & C & E & \\
\hline LITTLE SANDY R AT LEON, KY & 03216400 & 255.00 & 1962-80 & & C & & & \\
\hline LITTLE FK LITTLE SANDY R NR WILLARD, KY & 03216438 & 58.10 & 1975-81 & & & & E & \\
\hline \multirow[t]{2}{*}{LITTLE FK LITTLE SANDY R NR GRAYSON, KY} & 03216480 & 132.00 & 1965-65 & & & & & E \\
\hline & & & 1972-81 & & & & & \\
\hline BECKWITH BR TRIBUTARY NR GRAYSON, KY & 03216505 & . 51 & 1977-86 & & & E & & \\
\hline E FK LITTLE SANDY R NR FALLSBURG, KY & 03216540 & 12.20 & 1972-91 & E & E & E & E & \\
\hline E FK LITTLE SANDY R NR CANNNONSBURG, KY & 03216550 & 38.20 & 1980-81 & & E & & E & \\
\hline MILE BRANCH NR RUSH, KY & 03216563 & . 94 & 1976-90 & & & E & & \\
\hline MILE BR NR COALTON, KY & 03216564 & 1.61 & 1977-86 & & & E & & \\
\hline E FK LITTLE SANDY R NR ARGILLITE, KY & 03216570 & 138.00 & 1968-76 & & & & E & \\
\hline TYGARTS CREEK AT OLIVE HILL, KY & 03216800 & 59.6 & 1957-94 & E & E & E & E & \\
\hline TROUGH CAMP CR TRIB NR OLIVE HILL, KY & 03216901 & 1.11 & 1976-86 & & & E & & \\
\hline TYGARTS CR NR KEHOE, KY & 03216935 & 124.00 & 1963-74 & & E & & & E \\
\hline BUFFALO CR BELOW GRASSY CR AT KEHOE, KY & 03216965 & 54.60 & 1975-81 & & & & E & \\
\hline KINNICONICK CR NR KINNICONICK, KY & 03237225 & 60.10 & 1975-81 & & & & E & \\
\hline KINNICONICK CR NR RUGLESS, KY & 03237230 & 109.00 & 1954-72 & & & & E & \\
\hline LAUREL FK NR CAMP DIX, KY & 03237246 & 57.00 & 1975-81 & & & & E & \\
\hline SALT LICK CR NR VANCEBURG, KY & 03237285 & 47.50 & 1954-62 & & & & & \\
\hline INDIAN RUN TRIB NR TOLLESBORO, KY & 03237895 & . 23 & 1975-86 & & & & & \\
\hline CABIN CR NR TOLLESBORO, KY & 03237900 & 22.40 & 1972-91 & E & E & E & E & \\
\hline \multirow[t]{2}{*}{CABIN CR NR PLUMVILLE, KY} & 03237985 & 57.60 & 1975-78 & & & & E & \\
\hline & & & 1980-81 & & & & & \\
\hline OHIO R AT MAYSVILLE, KY & 03238000 & 70130.00 & 1939-80 & & E & E & & \\
\hline LAWRENCE CR NR MAYSVILLE, KY & 03238030 & 1.90 & 1975-86 & & & E & & \\
\hline
\end{tabular}

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{STATION NAME AND LOCATION} & \multicolumn{3}{|c|}{DRAINAGE} & \multicolumn{3}{|c|}{COM-} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{cc} 
& MISC \\
LOW & FLOW \\
FLOW & MEAS
\end{tabular}}} \\
\hline & STATION NUMBER & \[
\begin{gathered}
\text { AREA } \\
\left(\mathrm{MI}^{2}\right)
\end{gathered}
\] & PERIOD OF RECORD & COMPLETE FLOW & \begin{tabular}{l}
PLETE \\
STAGE
\end{tabular} & PEAK FLOW & & \\
\hline \multirow[t]{2}{*}{BRACKEN CR NR AUGUSTA, KY} & 03238620 & 28.80 & 1975-78 & & & & E & \\
\hline & & & 1980-81 & & & & & \\
\hline \multirow[t]{2}{*}{LOCUST CR NR AUGUSTA, KY} & 03238660 & 41.70 & 1975-78 & & & & E & \\
\hline & & & 1980-81 & & & & & \\
\hline TWELVEMILE CR NR CALIFORNIA, KY & 03238750 & 44.30 & 1975-81 & & & & E & \\
\hline DUCK CR AT COLD SPRING, KY & 03238795 & . 49 & 1975-78 & & & E & & \\
\hline LICKING R AT FREDVILLE, KY & 03248170 & 40.30 & 1973-76 & & & & E & \\
\hline LICKING R AT ROYALTON, KY & 03248250 & 76.70 & 1973-76 & & & & E & \\
\hline LICKING R NR SALYERSVILLE, KY & 03248500 & 140 & \[
\begin{aligned}
& 1939-92, \\
& 1994-97
\end{aligned}
\] & E & E & E & E & \\
\hline ELK FK NR LENOX, KY & 03248685 & 59.40 & 1958-73 & & & & E & \\
\hline CANEY CR NR W LIBERTY, KY & 03248730 & 41.40 & 1973-75 & & & & E & \\
\hline \multirow[t]{2}{*}{GRASSY CR NR W LIBERTY, KY} & 03248765 & 46.10 & 1974-79 & & & & E & \\
\hline & & & 1981 & & & & & \\
\hline BLACKWATER CR NR EZEL, KY & 03248815 & 38.30 & 1974-81 & & & & & \\
\hline N FK LICKING R NR WRIGLEY, KY & 03248855 & 33.70 & 1974-81 & & & E & & \\
\hline LICKING R AT YALE, KY & 03249000 & 714.00 & 1937-42 & & E & & & \\
\hline \multirow[t]{4}{*}{LICKING R AT FARMERS, KY} & 03249500 & 827 & 1915-20 & & E & & & \\
\hline & & & 1928-31 & E & E & & & \\
\hline & & & 1936-87 & E & E & & & \\
\hline & & & 1938-94 & E & E & E & E & \\
\hline \multirow[t]{2}{*}{TRIPLETT CR AT MOREHEAD, KY} & 03250000 & 47.5 & 1941-82 & E & & E & E & \\
\hline & & & 1989-92 & & & & & \\
\hline JACKS BRANCH NR MOREHEAD, KY & 03250080 & . 19 & 1976-86 & & & E & & \\
\hline N FK TRIPLETT CR AT MOREHEAD, KY & 03250100 & 84.7 & 1967-94 & E & E & E & E & \\
\hline INDIAN CR NR OWINGSVILLE, KY & 03250150 & 2.43 & 1975-90 & & & E & & \\
\hline SLATE CR NR JEFFERSNVILLE, KY & 03250185 & 56.70 & 1973-81 & & & & E & \\
\hline SLATE CR NR OWINGSVILLE, KY & 03250240 & 185.00 & 1954-72 & & & & E & \\
\hline ROSE RUN TRIB NR OLYMPIA, KY & 03250243 & . 70 & 1975-86 & & & E & & \\
\hline ROCK LICK CR NR SHARKEY, KY & 03250320 & 4.01 & 1973-82 & & E & & & \\
\hline FOX CR NR HILLSBORO, KY & 03250330 & 110.00 & 1953-72 & & & E & E & \\
\hline FLEMING CR NR HILL TOP, KY & 03250470 & 77.20 & 1954-72 & & & & E & \\
\hline LICKING R AT BLUE LICK SPRINGS, KY & 03250500 & 1785.00 & 1938-59* & E & E & E & & \\
\hline JOHNSON CR TRIB NR FAIRVIEW, KY & 03250620 & . 33 & 1976-86 & & & E & & \\
\hline JOHNSON CR AT PIQUA, KY & 03250640 & 72.40 & 1973-74 & & & & E & \\
\hline N FK LICKING R NR LEWISBURG, KY & 03251000 & 119.00 & 1946-91 & E & E & E & E & \\
\hline WELLS CR TRIB NR WASHINGTON, KY & 03251008 & . 96 & 1977-86 & & E & E & & \\
\hline LEES CR TRIB AT MAYS LICK, KY & 03251015 & . 45 & 1975-86 & & E & E & & \\
\hline N FK LICKING R NR MILFORD, KY & 03251400 & 286.00 & 1954-72 & & E & E & & \\
\hline \multirow[t]{2}{*}{LICKING R AT MCKINNEYSBURG, KY} & 03251500 & 2326.00 & 1924-26 & E & E & E & E & \\
\hline & & & 1939-94 & & & & & \\
\hline STONER CR NR N MIDDLETOWN, KY & 03251665 & 51.60 & 1974-81 & & & E & & \\
\hline STRODES CR NR N MIDDLETOWN, KY & 03251790 & 53.60 & 1973-81 & & & E & & \\
\hline STONER CR AT PARIS, KY & 03252000 & 239.00 & 1953-91 & E & E & E & E & \\
\hline GRASSY LICK CR NR SHARPSBURG, KY & 03252188 & 40.60 & 1973-74 & & & E & & \\
\hline HINKSTON CR NR SHARPSBURG, KY & 03252190 & 78.90 & 1973-77 & & & E & & \\
\hline HINKSTON CR NR CARLISLE, KY & 03252300 & 154.00 & 1968-76 & & & E & & \\
\hline S FK LICKING R AT CYNTHIANA, KY & 03252500 & 621.00 & 1938-94 & E & & E & E & \\
\hline RAVEN CR NR BERRY, KY & 03252770 & 46.60 & 1973-81 & & & E & & \\
\hline FK LICK CR AT MORGAN, KY & 03252940 & 50.20 & 1973-81 & & & E & & \\
\hline SF LICKING R AT HAYES, KY & 03253000 & 920.00 & 1915-31 & & E & & & \\
\hline LICKING R AT BUTLER, KY & 03254000 & 3385.00 & 1938-42 & & & E & & C \\
\hline N FK GRASSY CR NR PINER, KY & 03254400 & 13.60 & 1967-83 & & E & & & \\
\hline GRASSY CR AT DEMOSSVILLE, KY & 03254460 & 119.00 & 1950-72 & & & & E & \\
\hline LICKING R AT MORNING VIEW, KY & 03254500 & 3539.00 & 1914-16 & & E & & & \\
\hline BANKLICK CR NR S FT MITCHELL, KY & 03254680 & 54.60 & 1974-81 & & & E & & \\
\hline OHIO R AT CINCINNATI, OH & 03255000 & 76580.00 & 1936-76 & & E & E & & \\
\hline FOWLERS FORK AT UNION, KY & 03277070 & 1.54 & 1976-90 & & & E & & \\
\hline PLEASANT RUN CR AT CRESENT SPRINGS, KY & 03260010 & . 68 & 1973-86 & & & E & & \\
\hline PLEASANT RUN CR TRIB AT FT MITCHELL, KY & 03260012 & 1.62 & 1973-90 & & & E & & \\
\hline GUNPOWDER CR NR UNION, KY & 03277100 & 50.20 & 1975-81 & & & & E & \\
\hline CRAIGS CR TRIB NR WARSAW, KY & 03277185 & . 68 & 1976-86 & & & & & \\
\hline OHIO R AT MARKLAND D NR WARSAW, KY & 03277210 & 83170.00 & 1915-65 & & & & & \\
\hline BOTTOM FK NR MAYKING, KY & 03277290 & 3.03 & 1976-87 & & & E & & \\
\hline N FK KENTUCKY R AT WHITESBURG, KY & 03277300 & 66.40 & 1953-75 & & E & E & & \\
\hline N FK KENTUCKY R AT BLACKEY, KY & 03277340 & 131.00 & 1965-65 & & & & E & \\
\hline & & & 1972-81 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline STATION NAME AND LOCATION & STATION NUMBER & DRAINAG AREA (MI \({ }^{2}\) ) & PERIOD OF RECORD & COMPLETE FLOW & \begin{tabular}{l}
COM- \\
PLETE \\
STAGE
\end{tabular} & PEAK FLOW & \[
\begin{aligned}
& \text { LOW } \\
& \text { FLOW }
\end{aligned}
\] & \[
\begin{aligned}
& \text { MISC } \\
& \text { FLOW } \\
& \text { MEAS }
\end{aligned}
\] \\
\hline ROCKHOUSE CR NR FLETCHER, KY & 03277360 & 51.60 & 1958-67 & & & & E & \\
\hline LINE FK AT DEFEATED CR, KY & 03277370 & 40.80 & 1958-76 & & & & E & \\
\hline LEATHERWOOD CR AT DAISY, KY & 03277400 & 40.9 & \[
\begin{aligned}
& 1964-74, \\
& 1991-98
\end{aligned}
\] & E & E & E & E & \\
\hline N FK KENTUCKY R AT CORNETTSVILLE, KY & 03277411 & 322.00 & 1958-72 & & & & E & \\
\hline BREEDING CR NR ISOM, KY & 03277437 & . 69 & 1977-85 & & & E & & \\
\hline CARR FORK NR SASSAFRAS, KY & 03277450 & 60.6 & 1963-94 & E & E & E & E & \\
\hline N FK KENTUCKY R AT HAZARD, KY & 03277500 & 466 & 1940-92 & E & & E & E & \\
\hline BRIAR FK NR HAZARD, KY & 03277630 & 1.32 & 1976-85 & & & E & & \\
\hline TROUBLESOME CR AT DRAWF, KY & 03277835 & 59.90 & 1958-67 & & & & E & \\
\hline BALLS FK AT ARY, KY & 03277915 & 45.40 & 1959-75 & & & & E & \\
\hline BEAR BR NR NOBLE, KY & 03278000 & 2.21 & 1955-73* & & E & E & & \\
\hline TROUBLESOME CR AT NOBLE, KY & 03278500 & 177.00 & 1950-81 & & E & & & \\
\hline TROUBLESOME CR NR CLAYHOLE, KY & 03279000 & 187.00 & 1928-31 & & E & & & \\
\hline QUICKSAND CR AT LUNAH, KY & 03279400 & 101.00 & 1958-72 & & & & E & \\
\hline QUICKSAND CR NR JACKSON, KY & 03279500 & 153.00 & 1928-31 & & E & & & \\
\hline N FK KENTUCKY R NR AIRDALE, KY & 03280500 & 1294.00 & 1928-42 & & E & & & \\
\hline MIDDLE FK KENTUCKY R AT ASHER, KY & 03280551 & 70.60 & 1958-76 & & & & E & \\
\hline GREASY CR AT NAPIER, KY & 03280570 & 37.70 & 1975-81 & & & & E & \\
\hline GREASY CR AT HOSKINSTON, KY & 03280590 & 95.00 & 1958-67 & & & & E & \\
\hline MIDDLE FK KENTUCKY R NR HYDEN, KY & 03280600 & 202 & 1957-92 & E & & E & E & \\
\hline BULL CR NR HYDEN, KY & 03280728 & 1.84 & 1976-86 & & & E & & \\
\hline MIDDLE FK KENTUCKY R AT BUCKHORN, KY & 03280900 & 420.00 & 1957-75* & E & E & E & & \\
\hline STAMPER FK AT CANOE, KY & 03280935 & 1.57 & 1975-87 & & & E & & \\
\hline RED BIRD R NR SPRING CR, KY & 03281016 & 52.70 & 1976-81 & & & & E & \\
\hline RED BIRD R AT BIG CR, KY & 03281030 & 125.00 & 1954-72 & & & E & E & \\
\hline GOOSE CR AT GOOSEROCK, KY & 03281065 & 49.60 & 1976-81 & & & & E & \\
\hline COLLINS FK AT BLUEHOLE, KY & 03281080 & 67.40 & 1958-76 & & & & E & \\
\hline PACES CR NR GARRARD, KY & 03281090 & . 47 & 1976-85 & & & E & & \\
\hline S FK KENTUCKY R AT ONEIDA, KY & 03281200 & 486.00 & 1958-82 & & & E & & \\
\hline SEXTON CR AT TAFT, KY & 03281350 & 71.00 & 1959-64 & & & & E & \\
\hline & & & 1967 & & & & & \\
\hline & & & 1975-77 & & & & & \\
\hline & & & 1979-81 & & & & & \\
\hline STURGEON CR NR HEIDELBERG, KY & 03282045 & 96.40 & 1942-72 & & & & E & \\
\hline BIG SINKING CR NR CRYSTAL, KY & 03282075 & 23.4 & 1988-89* & E & E & & & \\
\hline FURNACE FK NR CRYSTAL, KY & 03282100 & 9.94 & 1988-89* & E & E & & & \\
\hline S FK STATION CAMP CR NR DRIP ROCK, KY & 03282135 & 41.40 & 1959-76 & & & & E & \\
\hline STATION CAMP CR AT WAGERSVILLE, KY & 03282170 & 115.00 & 1954-72 & & & & E & \\
\hline REDLICK CR NR STATION CAMP, KY & 03282190 & 69.50 & 1959-76 & & & & E & \\
\hline CLEAR CR TRIB NR WEST IRVINE, KY & 03282198 & . 59 & 1975-86 & & & E & & \\
\hline STILLWATER CR AT STILLWATER, KY & 03283000 & 24.00 & 1954-73* & E & E & E & & \\
\hline RED R NR PINE RIDGE, KY & 03283100 & 142.00 & 1969-76 & & & & & \\
\hline M FK RED R AT ZACHARIAH, KY & 03283305 & . 58 & 1975-86 & & & E & & \\
\hline CAT CR NR STANTON, KY & 03283370 & 8.30 & 1987-89* & E & E & & & \\
\hline LULBEGRUD CR TRIB AT WESTBEND, KY & 03283610 & . 33 & 1975-86 & & & & & \\
\hline LULBEGRUD CR AT LOG LICK, KY & 03283630 & 49.30 & 1973-81 & & & & E & \\
\hline MUDDY CR AT DOYLESVILLE, KY & 03283830 & 63.80 & 1973-77 & & & & E & \\
\hline & & & 1979-81 & & & & & \\
\hline OTTER CR NR FORD, KY & 03283995 & 63.50 & 1973-77 & & & & E & \\
\hline BOONE CR AT GRIMES MILL RD NR LOCUST GROVE, KY & 03284100 & 41.80 & 1967-74 & & & & E & \\
\hline SILVER CR NR KINGSTON, KY & 03284300 & 28.60 & 1967-83 & & E & & & \\
\hline SILVER CR NR BEREA, KY & 03284310 & 53.40 & 1975-83 & & & E & E & \\
\hline OLD TOWN BR TR NR RICHMOND, KY & 03284340 & 1.83 & 1976-85 & & & E & & \\
\hline SILVER CR NR RICHMOND, KY & 03284350 & 98.50 & 1972-77 & & & & E & \\
\hline & & & 1979-81 & & & & & \\
\hline PAINT LICK CR AT PAINT LICK, KY & 03284415 & 54.40 & 1973-74 & & & & E & \\
\hline PAINT LICK CR NR MCCREARY, KY & 03284450 & 97.60 & 1954-74 & & & & E & \\
\hline SUGAR CR NR BUCKEYE, KY & 03284495 & 41.50 & 1975-77 & & & & E & \\
\hline KENTUCKY R AT LOCK 8 NR CAMP NELSON, KY & 03284500 & 4414.00 & 1910-71* & E & E & E & & \\
\hline W HICKMAN CR AT JONESTOWN, KY & 03284550 & 11.00 & 1975-84 & & E & & & \\
\hline KENTUCKY R AT CAMP NELSON, KY & 03284600 & 4528.00 & 1940-71 & & E & E & & \\
\hline DIX R AB COPPER CR NR CRAB ORCHARD, KY & 03284720 & 44.40 & 1973-76 & & & & E & \\
\hline DIX R BL COPPER CR NR CRAB ORCHARD, KY & 03284750 & 70.60 & 1973-76 & & & & E & \\
\hline DIX R NR STANFORD, KY & 03284800 & 160.00 & 1973-76 & & & & E & \\
\hline HANGING FK CR NR STANFORD, KY & 03284935 & 46.90 & 1973-74 & & & & E & \\
\hline HANGING FK CR NR HUBBLE, KY & 03284995 & 91.10 & 1973-74 & & & & E & \\
\hline
\end{tabular}

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS



DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{STATION NAME AND LOCATION} & \multicolumn{3}{|c|}{DRAINAGE} & \multicolumn{3}{|c|}{COM-} & & \multirow[t]{2}{*}{MISC FLOW MEAS} \\
\hline & STATION NUMBER & \[
\begin{gathered}
\text { AREA } \\
\left(\mathrm{MI}^{2}\right)
\end{gathered}
\] & PERIOD OF RECORD & \begin{tabular}{l}
COMPLETE \\
FLOW
\end{tabular} & PLETE STAGE & PEAK FLOW & \begin{tabular}{l}
LOW \\
FLOW
\end{tabular} & \\
\hline & & & 1972-94 & E & E & E & E & \\
\hline BEAR CR NR LEITCHFIELD, KY & 03312000 & 30.80 & 1950-71* & E & E & E & & \\
\hline BEAR CR NR ROUNDHILL, KY & 03312100 & 137.00 & 1953-72 & & & & E & \\
\hline BARREN R NR PAGEVILLE, KY & 03312500 & 533.00 & 1939-63 & E & E & E & & \\
\hline LITTLE BEAVER CR NR GLASGOW, KY & 03312795 & . 89 & 1976-86 & & & E & & \\
\hline BARREN R NR FINNEY, KY & 03313000 & 942 & 1941-50 & E & E & E & E & \\
\hline & & & 1960-94 & E & E & E & E & \\
\hline SOLOMON CR TRIB NR SCOTTSVILLE, KY & 03313020 & . 24 & 1976-90 & & & E & & \\
\hline W BAYS FK AT SCOTTSVILLE, KY & 03313500 & 7.47 & 1951-72 & & E & E & & \\
\hline LICK CR NR FRANKLIN, KY & 03313800 & 21.60 & 1959-83 & & & E & & \\
\hline TRAMMEL CR NR SCOTTSVILLE, KY & 03313900 & 93.40 & 1953-72 & & & & E & \\
\hline DRAKES CR NR ALVATON, KY & 03314000 & 478.00 & 1940-71 & E & C & E & E & \\
\hline BARREN R AT BOWLING GREEN, KY & 03314500 & 1,849 & 1938-94 & E & E & E & E & \\
\hline LOST R BLUE HOLE NR BOWLING GREEN, KY & 03314670 & & 1985-86 & E & E & E & E & \\
\hline LOST R RISE AT LAMPKIN PK AT BOWLING GREEN, KY & 03314675 & & 1985-86 & E & E & E & E & \\
\hline BARREN R TRIB NR BOWLING GREEN, KY & 03314750 & . 50 & 1976-90 & & & E & & \\
\hline BARREN R AT LOCK 1 AT GREENCASTLE, KY & 03315000 & 1968.00 & 1923-37 & E & E & E & & \\
\hline GASPER R NR RICHELIEU, KY & 03315265 & & 1972-77 & & & & E & \\
\hline GREEN R AT WOODBURY, LOCK \#4, KY & 03315500 & 5404.00 & 1936-92 & E & & E & E & \\
\hline GASPER R AT HADLEY, KY & 03315300 & 190.00 & 1953-72 & & & & E & \\
\hline MUDDY CR AT DUNBAR, KY & 03315810 & 94.30 & 1953-74 & & & & E & \\
\hline POINDEXTER BR TRIB NR RUSSELLVILLE, KY & 03315885 & . 25 & 1976-86 & & & E & & \\
\hline MUD R NR LEWISBURG, KY & 03316000 & 90.50 & 1940-72* & E & E & E & & \\
\hline WOLFLICK CR NR LEWISBURG, KY & 03316200 & 116.00 & 1953-72 & & & & E & \\
\hline MUD RIVER NR HUNTSVILLE, KY & 03316275 & 268.00 & 1991-94 & E & E & E & E & \\
\hline GREEN R NR PARADISE, KY & 03316500 & 6182.00 & 1940-81 & & E & & & \\
\hline & & & 1961-81 & & & & & \\
\hline MUD R NR HUNTSVILLE, KY & 03316275 & 268 & 1974-80 & & & & E & \\
\hline & & & 1991-94 & E & E & E & E & \\
\hline ROUGH R NR MADRID, KY & 03317000 & 225.00 & 1936-59 & E & E & E & & \\
\hline N FK ROUGH T NR WESTVIEW, KY & 03317500 & 42.00 & 1954-73* & E & E & E & & \\
\hline LONG LICK CR TRIB NR AXTEL, KY & 03317965 & . 38 & 1975-86 & & & E & & \\
\hline ROUGH R NR FALLS OF ROUGH, KY & 03318000 & 454.00 & 1940-56 & & E & & & \\
\hline ROCK LICK CR NR GLEN DEAN, KY & 03318200 & 20.10 & 1955-71* & E & E & & E & \\
\hline ROUGH R AT FALLS OF ROUGH, KY & 03318500 & 504 & 1939-94 & E & E & E & E & \\
\hline PLEASANT RUN TRIB NR FALLS OF ROUGH, KY & 03318505 & . 22 & 1975-90 & & & E & & \\
\hline CANEY CR NR HORSE BRANCH, KY & 03318800 & 124 & 1956-92 & E & E & E & E & \\
\hline ROUGH R NR DUNDEE, KY & 03319000 & 757 & 1939-92 & E & & E & E & \\
\hline W FK ADAMS FK NR FORDSVILLE, KY & 03319520 & . 26 & 1976-86 & & & E & & \\
\hline ROUGH RIVER AT HARTFORD, KY & 03319600 & 880.00 & 1991-94 & E & E & E & E & \\
\hline POND R NR WHITE PLAINS, KY & 03321000 & 343.00 & 1927-40 & E & E & E & & \\
\hline CYPRESS CR NR CALHOUN, KY & 03321210 & 142 & 1979-81 & E & E & & & \\
\hline & & & 1990-94 & E & E & E & E & \\
\hline CYPRESS CR NR RUMSEY, KY & 03321215 & 149.00 & 1972-76 & & & & E & \\
\hline E FK DEER CR TRIB NR ONTON, KY & 03321275 & . 95 & 1976-86 & & & E & & \\
\hline S FK PANTHER CR NR WHITESVILLE, KY & 03321350 & 58.20 & 1968-83 & & E & & & \\
\hline S FK PANTHER CR NR MASONVILLE, KY & 03321370 & 109.00 & 1954-72 & & & & E & \\
\hline N FK PANTHER CR NR MASONVILLE, KY & 03321410 & 88.30 & 1954-72 & & & & E & \\
\hline RHODES CR TRIB NR OWENSBORO, KY & 03321465 & . 29 & 1975-86 & & & E & & \\
\hline GREEN R AT LOCK AND DAM 1 AT SPOTTSVILLE, KY & 03321500 & 9181.00 & 1928-31 & & E & & & \\
\hline OHIO R AT MOUNT VERNON, KY & 03322250 & & 1977-80 & & E & & & \\
\hline HIGHLAND CR NR WAVERLY, KY & 03322350 & 62.30 & 1975-77 & & & & E & \\
\hline BEAVERDAM CREEK NR CORYDON, KY & 03322360 & 14.3 & 1972-94 & E & E & E & E & \\
\hline HIGHLAND CR NR UNIONTOWN, KY & 03322400 & 166.00 & 1953-77 & & & & E & \\
\hline OHIO R UNIONTOWN DAM & 03322420 & 108000.00 & 1985-93 & E & E & E & E & \\
\hline WARD CR AT LEWISTOWN, KY & 03382975 & . 91 & 1975-86 & & & E & & \\
\hline TRADEWATER R NR DALTON, KY & 03383500 & 283.00 & 1927-40 & & E & E & & \\
\hline W FK DONALDSON CR NR FREDONIA, KY & 03383605 & 2.52 & 1975-86 & & & E & & \\
\hline CLEAR CR NR RICHLAND, KY & 03383755 & 17.0 & 1966-80 & & & & E & \\
\hline & & & 1991-94 & & E & & & \\
\hline ROSE CR AT NEBO, KY & 03384000 & 2.10 & 1952-70* & E & E & E & & \\
\hline TRADEWATER R & 03384180 & 861 & 1975-80 & & & & & E \\
\hline & & & 1980-81 & E & E & & & \\
\hline OHIO R AT DAM 51 AT GOLCONDA, IL & 03384500 & 143900.00 & 1941-52 & & C & & & \\
\hline POOR FK AT HARLAN, KY & 03400000 & 51.70 & 1940-43 & & E & & & \\
\hline POOR FK AT CUMBERLAND, KY & 03400500 & 82.3 & 1940-92 & E & & C & E & \\
\hline POOR FK AT ROSSPOINT, KY & 03400585 & 142.00 & 1972-77 & & & & E & \\
\hline
\end{tabular}

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS


DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{STATION NAME AND LOCATION} & \multicolumn{3}{|c|}{DRAINAGE} & \multicolumn{3}{|c|}{COM-} & & \multirow[t]{2}{*}{\begin{tabular}{l}
MISC \\
FLOW \\
MEAS
\end{tabular}} \\
\hline & \begin{tabular}{l}
STATION \\
NUMBER
\end{tabular} & \[
\begin{gathered}
\text { AREA } \\
\left(\mathrm{MI}^{2}\right)
\end{gathered}
\] & PERIOD OF RECORD & COMPLETE FLOW & \begin{tabular}{l}
PLETE \\
STAGE
\end{tabular} & \begin{tabular}{l}
PEAK \\
FLOW
\end{tabular} & LOW
FLOW & \\
\hline BEAR CR NR BURKESVILLE, KY & 03414102 & 352.00 & 1976-87, 90 & & & E & & \\
\hline MARROWBONE CR AT GRIDER, KY & 03414175 & 80.70 & 1975-81 & & & & E & \\
\hline RED R NR ADAIRVILLE, KY & 03435100 & 229.00 & 1957-72 & & & & E & \\
\hline WHIPPOORILL CR NR CLAYMOUR, KY & 03435140 & 20.80 & 1973-91 & E & E & E & E & \\
\hline ELBOW CR TRIB NR CANTON, KY & 03437380 & . 83 & 1975-86 & & & E & & \\
\hline LICK CR NR CANTON, KY & 03437390 & . 39 & 1977-86 & & & E & & \\
\hline S FK LITTLE R TRIB NR HOPKINSVILLE, KY & 03437490 & 2.62 & 1977-87, 90 & & & E & & \\
\hline S FK LITTLE R AT HOPKINSVILLE, KY & 03437500 & 46.50 & 1950-73* & E & E & E & & \\
\hline WHITE CR TR NR HOPKINSVILLE, KY & 03437610 & . 19 & 1975-76 & & E & & & \\
\hline MUDDY R NR DERULEAN, KY & 03438070 & 30.50 & 1968-83 & & E & & & \\
\hline N FK DRYDEN CR TRIB NR CONFEDERATE, KY & 03438120 & . 10 & 1975-90 & & & E & & \\
\hline DRY CR NR LAMASCO, KY & 03438167 & 34.60 & 1968-72 & & & E & E & \\
\hline EDDY CR NR LAMASCO, KY & 03438170 & 71.70 & 1968-74 & & & & E & \\
\hline BARKLEY-KENTUCKY CANAL NR GRAND RIVERS, KY & 03438190 & & 1966-97 & E & E & E & E & \\
\hline KENTUCKY-BARKLEY CANAL NR GRAND RS, KY & 03438191 & & 1971-74 & & E & & & \\
\hline CUMBERLAND R AT EUREKA, KY & 03438200 & 17594.00 & 1939-64 & & E & & & \\
\hline CUMBERLAND RIVER NR GRAND RIVERS & 03438220 & 17598.00 & 1939-97 & E & E & E & E & \\
\hline LIVINGSTON CR NR DYCUSBURG, KY & 03438470 & 112.00 & 1954-74 & & & & E & \\
\hline TENNESSEE R AT SHANNON DAM SITE NR MURRAY, KY & 03608000 & 39780.00 & 1931-37 & & E & & & \\
\hline TENNESSEE R AT AURORA LANDING, KY & 03608500 & 40010.00 & 1930-32 & & E & & & \\
\hline TENNESSEE R NR PADUCAH, KY & 03609500 & 40200.00 & 1941-89 & E & & E & & \\
\hline CLARKS R AT MURRAY, KY & 03610000 & 89.70 & 1952-71* & E & E & E & & \\
\hline YORK CR NR BENTON, KY & 03610470 & . 96 & 1975-90 & & & E & & \\
\hline CLARKS R NR BENTON, KY & 03610500 & 227.00 & 1938-73* & E & E & E & & \\
\hline WEST FK CLARKS R NR BREWERS, KY & 03610545 & 68.7 & 1968-83 & E & E & E & E & \\
\hline & & & 1988-94 & E & E & E & E & \\
\hline CHESTNUT CR NR BENTON, KY & 03610503 & . 82 & 1975-86 & & & E & & \\
\hline CLARKS R TRIB NR REIDLAND, KY & 03610820 & . 13 & 1975-86 & & & E & & \\
\hline OHIO R AT PADUCAH, KY & 03611000 & 202800.00 & 1873-75 & & C & & & \\
\hline LITTLE BAYOU CR NR GRAHAMVILLE, KY & 03611600 & 5.78 & 1990-91 & E & E & E & E & \\
\hline BAYOU CR NR HEATH, KY & 03611800 & 6.55 & 1990-91 & E & E & E & E & \\
\hline BAYOU CR NR GRAHAMVILLE, KY & 03611850 & 14.90 & 1990-91 & E & E & E & E & \\
\hline HUMPHREY CR AT LACENTER, KY & 03613000 & 44.20 & 1953-72 & & & & E & \\
\hline PERRY CR NR MAYFIELD, KY & 07022500 & 1.72 & 1953-65* & E & E & & E & \\
\hline & & & 1968-72 & & & & & \\
\hline & & & 1973-90 & & & E & & \\
\hline LICK CR TRIB NR KERBYTON, KY & 07023040 & . 53 & 1975-90 & & & E & & \\
\hline MAYFIELD CR NR BLANDVILLE, KY & 07023100 & 295 & 1938-72 & E & E & & & \\
\hline & & & 1991-94 & & E & & & \\
\hline MAYFIELD CR AT MAYFIELD, KY & 07022600 & 95.10 & 1954-72 & & & & E & \\
\hline MAYFIELD CR AT LOVELACEVILLE, KY & 07023000 & 204.00 & 1938-72* & E & E & E & & \\
\hline MISSISSIPPI R AT COLUMBUS, KY & 07023200 & 921900.00 & 1843-58 & & & E & & \\
\hline OBION CR AT PRYORSBURG, KY & 07023500 & 36.30 & 1951-73 & E & E & E & & \\
\hline OBION CR NR ARLINGTON, KY & 07023700 & 203.00 & 1953-72 & & & & E & \\
\hline S FK BAYOU de CHIEN TRIB AT WATER VALLEY, KY & 07023935 & . 23 & 1975-90 & & & E & & \\
\hline MISSISSIPPI R AT HICKMAN, KY & 07024070 & 922500.00 & 1926-58 & & & E & & \\
\hline
\end{tabular}

\footnotetext{
* Period of complete flow only

C Currently operated
E Eliminated
}

DISCONTINUED SURFACE-WATER-QUALITY STATIONS


DISCONTINUED SURFACE-WATER-QUALITY STATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & & & & \\
\hline STATION NAME AND NUMBER & \begin{tabular}{l}
STATION \\
NUMBER
\end{tabular} & \begin{tabular}{l}
DRAINAGE \\
AREA \\
(MI \({ }^{2}\) )
\end{tabular} & \begin{tabular}{l}
PERIOD \\
OF \\
RECORD
\end{tabular} & \begin{tabular}{l}
BIO. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular} & \begin{tabular}{l}
PHY. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular} & \begin{tabular}{l}
SED. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular} & \[
\begin{gathered}
\text { ICAL } \\
\text { AC- } \\
\text { TIVE } \\
\text { STA- } \\
\text { TUS }
\end{gathered}
\] \\
\hline BIG SANDY R AT LOUISA, KY & 03215000 & 3897 & 1950, 1966-72, 1974-92 & N & N & N & N \\
\hline LEFT FK BLAINE CR NR MARTHA, KY & 03215250 & & 1980-82 & & N & N & N \\
\hline LOWER LAUREL CR NR FLATGAP, KY & 03215320 & & 1967 & & N & & N \\
\hline CAINES CR NR BLAINE, KY & 03215367 & & 1980-82 & & N & N & N \\
\hline BLAINE CR AT HWY 32 BR AT BLAINE, KY & 03215370 & 73.80 & 1978-80 & & N & & N \\
\hline HOOD CR AT BLAINE, KY & 03215380 & & 1980-82 & & N & N & N \\
\hline BRUSHY CR NR CORDELL, KY & 03215420 & & 1980-82 & & N & N & N \\
\hline BLAINE CR BELOW BRUSHY CR NR BLAINE, KY & 03215430 & 151.00 & 1971-80 & & N & & N \\
\hline RICH CR NR ADAMS, KY & 03215440 & & 1971-72 & & N & & N \\
\hline LITTLE BLAINE CR NR EVERGREEN, KY & 03215470 & & 1980-82 & & N & N & N \\
\hline LITTLE BLAINE CR AT EVERGREEN, KY & 03215480 & 23.00 & 1971-80 & & N & & N \\
\hline BLAINE CR NR YATESVILLE, KY & 03215490 & 206.00 & 1971-72 & & N & & N \\
\hline BLAINE CR AT YATESVILLE, KY & 03215500 & 217.00 & 1965-79 & & Y & & N \\
\hline CAT FK CR AT FALLSBURG, KY & 03215550 & & 1980-82 & & N & N & N \\
\hline BIG SANDY R AT CATLETTSBURG, KY & 03215700 & 4281.00 & 1955-75 & & N & & N \\
\hline LITTLE SANDY R AT SANDY HOOK, KY & 03216180 & & 1980-82 & & N & N & N \\
\hline BIG CANEY CR NR STARK, KY & 03216230 & & 1980-82 & & N & N & N \\
\hline LITTLE SANDY R BELOW GRAYSON DAM NR LEON, KY & 03216350 & 196.00 & 1966-79 & & N & & N \\
\hline BIG SINKING CR NR ADEN, KY & 03216370 & & 1980-82 & & N & N & N \\
\hline LITTLE SANDY R AT LEON, KY & 03216400 & 255.00 & 1978-80 & & N & & \\
\hline LITTLE SANDY R AT DOBBINS, KY & 03216430 & & 1980-82 & & N & N & N \\
\hline DRY FK AT WILLARD, KY & 03216450 & & 1980-82 & & N & N & N \\
\hline LITTLE FK LITTLE SANDY R NR GRAYSON, KY & 03216480 & 132.00 & 1973-75 & & N & & N \\
\hline BERET CR NR GRAYSON, KY & 03216520 & & 1980-82 & & N & N & N \\
\hline E FK LITTLE SANDY R NR FALLSBURG, KY & 03216540 & 12.20 & 1978-83 & & N & & \\
\hline E FK LITTLE SANDY R NR CANNONSBURG, KY & 03216558 & & 1980-82 & & N & N & N \\
\hline WILLIAMS CR AT PRINCESS, KY & 03216567 & & 1980-82 & & N & N & N \\
\hline E FK LITTLE SANDY R NR ARGILLITE, KY & 03216570 & 138.00 & 1970-72 & & N & & N \\
\hline OHIO R AT GREENUP DAM, KY & 03216600 & 62000.00 & 1974-86 & N & N & N & N \\
\hline SOLDIER FK AT LAWTON, KY & 03216770 & & 1971-72 & & N & & N \\
\hline TYGARTS CR AT IRON HILL, KY & 03216930 & & 1971-72 & & N & & N \\
\hline BUFFALO CR NR GESLING, KY & 03216960 & & 1980-82 & & N & N & N \\
\hline KINNICONICK CR NR RUGLESS, KY & 03237230 & 109.00 & 1970-72 & & N & & N \\
\hline OHIO R AT MELDAHL DAM NR CHILO, OH & 03238680 & 70800.00 & 1967-70 & & N & & N \\
\hline OHIO R AT RAW WATER INTAKE, CINCINNATI, OH & 03238800 & & 1970 & & & & N \\
\hline LICKING R NR FREDVILLE, KY & 03248165 & & 1980-82 & & N & N & N \\
\hline BURNING FK AT SAYLERSVILLE, KY & 03248380 & & 1980-82 & & N & N & N \\
\hline LEFT FK NR HENDRICKS, KY & 03248520 & & 1980-82 & & N & N & N \\
\hline RIGHT FK AT FRITZ, KY & 03248530 & & 1980-82 & & N & N & N \\
\hline JOHNSON CR AT KERNIE, KY & 03248560 & & 1980-82 & & N & N & N \\
\hline LICK CR NR BLOOMINGTON, KY & 03248580 & & 1980-82 & & N & N & N \\
\hline WHITE OAK CR AT WHITE OAK, KY & 03248610 & & 1980-82 & & N & N & N \\
\hline WILLIAMS CR NR ELAMTON, KY & 03248670 & & 1980-82 & & N & N & N \\
\hline ELK FK NR LENOX, KY & 03248685 & 59.40 & 1980-82 & & N & N & N \\
\hline CANEY CR NR CANEY, KY & 03248710 & & 1980-82 & & N & N & N \\
\hline GRASSY CR AT GRASSY CREEK, KY & 03248750 & & 1980-82 & & N & N & N \\
\hline LICKING R AT FARMERS, KY & 03249500 & 827.00 & 1948-79 & & N & N & N \\
\hline TRIPLETT CR AT MOREHEAD, KY & 03250000 & 47.50 & 1978-80 & & N & & \\
\hline SLATE CR NR OWINGSVILLE, KY & 03250240 & 185.00 & 1970-71 & & N & & N \\
\hline ROCK LICK CR NR SHARKEY, KY & 03250320 & 4.01 & 1978-83 & & N & & \\
\hline LICKING R AT SHERBURNE, KY & 03250400 & & 1981-83 & N & N & N & N \\
\hline N FK LICKING R NR MILFORD, KY & 03251400 & 286.00 & 1970-72 & & N & & N \\
\hline LICKING R AT MCKINNEYSBURG, KY & 03251500 & 2326.00 & 1951-79 & & N & N & N \\
\hline STONER CR NR MIDDLETOWN, KY & 03251665 & 51.60 & 1974 & & N & & N \\
\hline HINKSTON CR NR SHARPSBURG, KY & 03252190 & 78.90 & 1973 & & N & & N \\
\hline HINKSTON CR NR CARLISLE, KY & 03252300 & 154.00 & 1970-74 & & N & & N \\
\hline S FK LICKING R AT CYNTHIANA, KY & 03252500 & 621.00 & 1949-83 & N & N & N & N \\
\hline LICKING R AT CATAWBA, KY & 03253500 & 3300.00 & 1962-79 & & N & & N \\
\hline LICKING R AT BUTLER, KY & 03254000 & 3375.00 & \[
\begin{aligned}
& \text { 1950, } \\
& \text { 1975-94 }
\end{aligned}
\] & N & N & N & N \\
\hline OHIO R AT MARKLAND DAM, KY & 03277200 & 83170.00 & 1960-70 & N & N & N & N \\
\hline
\end{tabular}

DISCONTINUED SURFACE-WATER-QUALITY STATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{STATION NAME AND NUMBER} & & \multirow[b]{2}{*}{DRAINAGE
AREA
\(\left(\mathrm{MI}^{2}\right)\)} & \multirow[b]{2}{*}{PERIOD OF RECORD} & \multirow[b]{2}{*}{\begin{tabular}{l}
BIO. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
PHY. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
SED. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
CHEM \\
ICAL \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular}} \\
\hline & \begin{tabular}{l}
STATION \\
NUMBER
\end{tabular} & & & & & & \\
\hline & & & 1974-86 & N & N & N & N \\
\hline OHIO R AT LOCK AND DAM 39 NR FLORENCE, KY & 03277205 & 82910.00 & 1953-75 & & N & & \\
\hline YONTS CR NR NEON, KY & 03277260 & & 1980-82 & & N & N & N \\
\hline N FK KENTUCKY R AT WHITESBURG, KY & 03277300 & 66.40 & 1970-75 & & N & & N \\
\hline KINGS CR NR ROXANA, KY & 03277320 & & 1980-82 & & N & N & N \\
\hline N FK KENTUCKY R AT BLACKEY, KY & 03277340 & 131.00 & 1971-75 & & N & & N \\
\hline ROCKHOUSE CR NR FLETCHER, KY & 03277361 & & 1980-82 & & N & N & N \\
\hline ROCKHOUSE CR AT LETCHER, KY & 03277362 & & 1971 & & N & & N \\
\hline LINE FK AT DEFEATED CREEK, KY & 03277370 & 40.80 & 1980-82 & & N & N & N \\
\hline LINE FK AT ULVAH, KY & 03277380 & & 1971 & & N & & N \\
\hline N FK KENTUCKY R AT CORNETTSVILLE, KY & 03277411 & 322.00 & 1970-72 & & N & & N \\
\hline RIGHT FK MACYS CR NR FARLAR, KY & 03277415 & & 1980-82 & & N & N & N \\
\hline YELLOW CR AT SASSAFRAS, KY & 03277455 & & 1965-75 & & N & & N \\
\hline CARR FK NR HAZARD, KY & 03277480 & & 1971 & & N & & N \\
\hline LOTTS CR NR DARFORK, KY & 03277515 & & 1980-82 & & N & N & N \\
\hline BIG CR NR AVAWAN, KY & 03277580 & & 1980-82 & & N & N & N \\
\hline GRAPEVINE CR NR LAMONT, KY & 03277700 & & 1980-82 & & N & N & N \\
\hline TROUBLESOME CR NR ARY, KY & 03277800 & & 1980-82 & & N & N & N \\
\hline BALLS FK NR TALCUM, KY & 03277900 & & 1980-82 & & N & N & N \\
\hline BUCKHORN CR NR NOBLE, KY & 03278100 & & 1980-82 & & N & N & N \\
\hline LOST CR NR LOST CREEK, KY & 03279150 & & 1980-82 & & N & N & N \\
\hline LAUREL FK NR ELMROCK, KY & 03279250 & & 1980-82 & & N & N & N \\
\hline MIDDLE FK QUICKSAND CR NR DECOY, KY & 03279300 & & 1980-82 & & N & N & N \\
\hline HAWLS FK NR TIPTOP, KY & 03279370 & & 1980-82 & & N & N & N \\
\hline QUICKSAND CR AT LUNAH, KY & 03279400 & 101.00 & 1970-72 & & N & & N \\
\hline CANEY CR NR CAMP LEWIS, KY & 03279430 & & 1980-82 & & N & N & N \\
\hline HUNTING CR NR ROUSSEAU, KY & 03279460 & & 1980-82 & & N & N & N \\
\hline S FK QUICKSAND CR AT PORTSMOUTH, KY & 03279650 & & 1980-82 & & N & N & N \\
\hline QUICKSAND CR AT QUICKSAND, KY & 03279700 & 203.00 & 1965-75 & & N & & N \\
\hline \multirow[t]{3}{*}{N FK KENTUCKY R AT JACKSON, KY} & 03280000 & 1101.00 & 1948-75 & N & N & N & N \\
\hline & & & 1979-81 & & & & \\
\hline & & & 1987-91 & & & & \\
\hline CANE CR NR JACKSON, KY & 03280100 & & 1980-82 & & N & N & N \\
\hline ROCKHOUSE CR NR HYDEN, KY & 03280360 & & 1980-82 & & N & N & N \\
\hline FROZEN CR NR TAULBEE, KY & 03280400 & & 1980-82 & & N & N & N \\
\hline BOONE FK NR VANCLEAVE, KY & 03280450 & & 1980-82 & & N & N & N \\
\hline MIDDLE FK KENTUCKY R NR WARBRANCH, KY & 03280520 & & 1980-82 & & N & N & N \\
\hline MIDDLE FK KENTUCKY R AT ASHER, KY & 03280530 & & 1971 & & N & & N \\
\hline BEECH FK NR HELTON, KY & 03280540 & & 1980-82 & & N & N & N \\
\hline BEECH FK AT ASHER, KY & 03280550 & 33.90 & 1971 & & N & & N \\
\hline GREASY CR NR NAPIER, KY & 03280560 & & 1980-82 & & N & N & N \\
\hline LAUREL FK NR LEWIS CREEK, KY & 03280575 & & 1980-82 & & N & N & N \\
\hline GREASY CR AT HOSKINSTON, KY & 03280590 & 95.00 & 1971 & & N & & N \\
\hline \multirow[t]{2}{*}{MIDDLE FK KENTUCKY R NR HAYDEN, KY} & 03280600 & 202.00 & 1975-82 & N & N & N & N \\
\hline & & & 1988 & & N & & N \\
\hline CUTSHIN CR NR CINDA, KY & 03280670 & & 1980-82 & & N & N & N \\
\hline HELL FOR CERTAIN CR NR KALIOPI, KY & 03280750 & & 1980-82 & & N & N & N \\
\hline TURKEY CR NR TURKEY, KY & 03280950 & & 1980-82 & & N & N & N \\
\hline \multirow[t]{3}{*}{MIDDLE FK KENTUCKY R AT TALLEGA, KY} & 03281000 & 537.00 & 1950-75 & N & N & N & N \\
\hline & & & 1978-83 & & & & \\
\hline & & & 1987-90 & & & & \\
\hline RED BIRD R AT BIG CREEK, KY & 03281030 & 125.00 & 1970-72 & & N & & N \\
\hline BIG CR NR BIG CREEK, KY & 03281035 & & 1980-82 & & N & N & N \\
\hline HECTOR BRANCH NR ERILINE, KY & 03281045 & & 1980-82 & & N & N & N \\
\hline GOOSE CR NR GOOSEROCK, KY & 03281065 & 49.60 & 1979-82 & & N & N & N \\
\hline COLLINS FK NR BLUEHOLE, KY & 03281075 & & 1980-82 & & N & N & N \\
\hline HORSE CR NR HIMA, KY & 03281097 & & 1980-82 & & N & N & N \\
\hline LITTLE GOOSE CR NR MANCHESTER, KY & 03281133 & & 1980-82 & & N & N & N \\
\hline BULLSKIN CR NR BRUTUS, KY & 03281175 & & 1980-82 & & N & N & N \\
\hline S FK KENTUCKY R AT ONEIDA, KY & 03281200 & 486.00 & 1970-72 & & N & & N \\
\hline SEXTON CR NR CHESTNUTBURG, KY & 03281340 & & 1980-82 & & N & N & N \\
\hline LOWER ALLEN CR NR CONKLING, KY & 03281360 & & 1980-82 & & N & N & N \\
\hline S FK KENTUCKY R AT BOONEVILLE, KY & 03281500 & 722.00 & 1950-75 & N & N & N & N \\
\hline
\end{tabular}

DISCONTINUED SURFACE-WATER-QUALITY STATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{STATION NAME AND NUMBER} & \multirow{3}{*}{\begin{tabular}{l}
STATION \\
NUMBER
\end{tabular}} & \multirow{3}{*}{\[
\begin{gathered}
\text { DRAINAGE } \\
\text { AREA } \\
\left(\mathrm{MI}^{2}\right)
\end{gathered}
\]} & & \multirow{3}{*}{\begin{tabular}{l}
BIO. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
PHY. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
SED. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular}} & \multirow[t]{2}{*}{CHEM ICAL ACTIVE STATUS} \\
\hline & & & \begin{tabular}{l}
PERIOD \\
OF \\
RECORD
\end{tabular} & & & & \\
\hline & & & \[
\begin{aligned}
& 1979-83 \\
& 1987-90
\end{aligned}
\] & & & & \\
\hline BIG SINKING CR NR CRYSTAL, KY & 03282075 & 23.40 & 1987-89 & & N & N & N \\
\hline FURNACE FK NR CRYSTAL, KY & 03282100 & 9.94 & 1987-89 & & N & N & N \\
\hline STATION CAMP CR AT WAGERSVILLE, KY & 03282170 & 115.00 & 1970-72 & & N & & N \\
\hline KENTUCKY R NR TRAPP, KY & 03282300 & & 1982-83 & & N & N & N \\
\hline RED R AT DAYSBORO, KY & 03282400 & & 1980-82 & & N & N & N \\
\hline RED R NR PINE RIDGE, KY & 03283100 & 142.00 & 1968-76 & & N & & N \\
\hline CAT CR NR STANTON, KY & 03283370 & 8.30 & 1987-89 & & N & N & N \\
\hline KENTUCKY R AT LOCK 10 NR WINCHESTER, KY & 03284000 & 3955.00 & 1987-91 & N & N & N & N \\
\hline BAUGHMAN FK AT GENTRY ROAD NR ATHENS, KY & 03284090 & 7.18 & 1967-68 & & N & & N \\
\hline BOONE CR AT GRIMES MILL RD NR LOCUST GROVE, KY & 03284100 & 41.80 & 1967-68 & & N & & N \\
\hline KENTUCKY R NR LEXINGTON, KY & 03284105 & & 1970 & & & & N \\
\hline SILVER CR NR KINGSTON, KY & 03284300 & 28.60 & 1978-83 & & N & & \\
\hline SILVER CR NR RICHMOND, KY & 03284350 & & 1973-75 & & N & & N \\
\hline PAINT LICK CR NR MCCREARY, KY & 03284450 & 97.60 & 1970-72 & & N & & N \\
\hline KENTUCKY R AT LOCK 8 NR CAMP NELSON, KY & 03284500 & 4414.00 & 1948-75 & & N & & N \\
\hline DIX R NR STANFORD, KY & 03284800 & 160.00 & 1973-75 & & N & & N \\
\hline HANGING F CR NR STANFORD, KY & 03284935 & 46.90 & 1974 & & N & & N \\
\hline DIX R NR DANVILLE, KY & 03285000 & 318.00 & 1988 & & N & & N \\
\hline DIX R AT DIX DAM NR BURGIN, KY & 03286200 & 439.00 & 1961-79 & & N & & N \\
\hline \multirow[t]{2}{*}{KENTUCKY R AT LOCK 4 AT FRANKFORT, KY} & 03287500 & 5411.00 & 1949-73 & N & N & N & N \\
\hline & & & 1987-90 & & & & \\
\hline BENSON CR AT FRANKFORT, KY & 03287530 & 71.20 & 1973 & & N & & N \\
\hline BENSON CR NR FRANKFORT, KY & 03287550 & 107.00 & 1970-72 & & N & & N \\
\hline N ELKHORN CR AT BRYAN STATION RD AT MONTROSE, KY & 03287600 & 21.50 & 1967-68 & & N & & N \\
\hline N ELKHORN CR UNNAMED TR AT MUIR STA RD NR MUI, KY & 03287620 & 15.80 & 1967-68 & & N & & N \\
\hline N ELKHORN CR AT HUFFMAN MILL RD NR MATTOXTOWN, KY & 03287700 & 62.70 & 1967-68 & & N & & N \\
\hline GOOSE CR AT MT HOREB RD NR NEWTOWN, KY & 03287800 & 14.20 & 1967-68 & & N & & N \\
\hline GOOSE CR AT NEWTOWN RD, NR NEW ZION, KY & 03287810 & & 1967 & & N & & N \\
\hline N ELKHORN CR NR GEORGETOWN, KY & 03288000 & 119.00 & 1988-89 & & N & & N \\
\hline CANE RUN AT BEREA ROAD NR DONERAIL, KY & 03288200 & 19.90 & 1967-68 & & N & & N \\
\hline CANE RUN NR GEORGETOWN, KY & 03288260 & 45.40 & 1973 & & N & & N \\
\hline CAVE CR NR FORT SPRING, KY & 03288500 & 2.53 & 1968 & & N & & N \\
\hline STEELES RUN AT OLD FRANKFORT RD AT FAYWOOD, KY & 03289100 & 6.67 & 1967-68 & & N & & N \\
\hline TOWN BRANCH AT YARNALLTON RD AT YARNALLTON, KY & 03289200 & & 1967-68 & & N & & N \\
\hline ELKHORN CR NR FRANKFORT, KY & 03289500 & 473.00 & 1987-91 & N & N & N & N \\
\hline SIX MILE NR DEFOE, KY & 03290420 & 42.60 & 1973 & & N & & N \\
\hline SIX MILE CR NR LOCKPORT, KY & 03290490 & 76.50 & 1973-74 & & N & & N \\
\hline KENTUCKY R AT LOCK \#2 AT LOCKPORT, KY & 03290500 & 6180.00 & 1974-95 & N & N & N & N \\
\hline DRENNON CR AT DRENNON SP, KY & 03290675 & 82.50 & 1973-74 & & N & & N \\
\hline EAGLE CR NR HOLBROOK, KY & 03291270 & 258.00 & 1973-75 & & N & & N \\
\hline TEN MILE CR NR FOLSOM, KY & 03291490 & 68.40 & 1973 & & N & & N \\
\hline EAGLE CR AT GLENCOE, KY & 03291500 & 437.00 & 1948-79 & & N & N & N \\
\hline LITTLE KY R NR BEDFORD, KY & 03291700 & 73.20 & 1970-72 & & N & & N \\
\hline HARRODS CR NR SKYLIGHT, KY & 03292467 & 60.30 & 1974-75 & & N & & N \\
\hline HARRODS CR NR PROSPECT, KY & 03292473 & 92.1 & 1988-98 & & N & & N \\
\hline GOOSE CR AT OLD WESTPORT RD AT ST. MATTHEWS, KY & 03292474 & & 1988-98 & & N & & N \\
\hline GOOSE CR AT U.S. HWY 42 AT GLENVIEW ACRES, KY & 03292475 & 10.1 & 1988-98 & & N & & N \\
\hline LITTLE GOOSE CR NR HARRODS CR, KY & 03292480 & 5.8 & 1988-98 & & N & & N \\
\hline OHIO R AT WATER SUPPLY INTAKE AT LOUISVILLE, KY & 03292494 & & 1970 & & & & N \\
\hline S FK BEARGRASS CR AT LOUISVILLE, KY & 03292500 & 17.2 & \[
\begin{aligned}
& 1988-92, \\
& 95-98
\end{aligned}
\] & & N & & N \\
\hline S. FK. BEARGRASS CR NR EASTERN PKY AT LOUISVILLE, KY & 03292530 & 21.6 & 1995-98 & & N & & N \\
\hline S .FK BEARGRASS CR NR WINTER AVE., KY. & 03292550 & 22.6 & 1988-98 & & N & & N \\
\hline MIDDLE FK BEARGRASS CR AT LOUISVILLE, KY & 03293000 & 18.9 & \[
\begin{aligned}
& \text { 1988-92, } \\
& 96-98
\end{aligned}
\] & & N & & N \\
\hline M. FK. BEARGRASS CR NR SCENIC LOOP AT LOUISVILLE, KY & 03293200 & 22.7 & 1988-98 & & N & & N \\
\hline M. FK. BEARGRASS CR NR LEXINGTON RD AT LOUISVILLE, KY & 03293500 & 24.4 & 1996-98 & & N & & N \\
\hline MUDDY FK. MOCKINGBIRD VALLEY RD AT LOUISVILLE, KY & 03293550 & 6.2 & 1988-98 & & N & & N \\
\hline OHIO R AT LOUISVILLE, KY & 03294500 & 91170.00 & 1968-83 & & N & N & N \\
\hline MILL CR CUTOFF NR LOUISVILLE, KY & 03294550 & 24.4 & \begin{tabular}{l}
1988-92, \\
98
\end{tabular} & & N & & N \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline STATION NAME AND NUMBER & \begin{tabular}{l}
STATION \\
NUMBER
\end{tabular} & \begin{tabular}{l}
DRAINAGE \\
AREA \\
(MI \({ }^{2}\) )
\end{tabular} & PERIOD OF RECORD & \begin{tabular}{l}
BIO. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular} & \begin{tabular}{l}
PHY. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular} & \begin{tabular}{l}
SED. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular} & \begin{tabular}{l}
CHEM \\
ICAL \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular} \\
\hline MILL CR AT ORELL RD NR LOUIVILLE, KY & 03294570 & 13.5 & 1988-98 & & N & & N \\
\hline OHIO R AT KOSMOSDALE, KY & 03294600 & 91200.00 & 1970 & & & & N \\
\hline SALT R NR HARRODSBURG, KY & 03295000 & 41.40 & 1970-72 & & N & & N \\
\hline SALT R NR VAN BUREN, KY & 03295500 & 196.00 & 1970-79 & & N & & N \\
\hline SALT R AT TAYLORSVILLE, KY & 03295610 & 359.00 & 1970-72 & & N & & N \\
\hline BRASHEARS CR NR FINCHVILLE, KY & 03295800 & 147.00 & 1970-72 & & N & & N \\
\hline BRASHEARS CR AT TAYLORSVILLE, KY & 03295900 & 262.00 & 1973-75 & & N & & N \\
\hline PLUM CR SUBWATER SHED NO 4 NR SIMPSONVILLE, KY & 03296000 & 1.55 & 1953-64 & & & N & \\
\hline PLUM CR AT WATERFORD, KY & 03297500 & 31.80 & 1953-61 & & N & N & N \\
\hline COX CR NR HIGHGROVE, KY & 03297700 & 95.80 & 1970-72 & & N & & N \\
\hline FLOYDS FK NR CRESTWOOD, KY & 03297845 & 46.70 & 1979-83 & N & N & N & N \\
\hline LONG RUN NR FISHERVILLE, KY & 03297980 & 22.5 & 1988-98 & & N & & N \\
\hline FLOYDS FK AT FISHERVILLE, KY & 03298000 & 138. & 1988-98 & & N & & N \\
\hline POPE LICK AT POPE LICK RD AT MIDDLETOWN, KY & 03298100 & 2.9 & 1988-98 & & N & & N \\
\hline CHENOWETH RUN NR RUCKRIEGEL PKY, AT LOUISVILLE, KY & 03298135 & 5.47 & 1996-98 & & N & & N \\
\hline CHENOWETH RUN NR GELHAUS LANE, AT FERN CREEK, KY & 03298150 & 11.6 & 1988-98 & & N & & N \\
\hline FLOYDS FK NR MOUNT WASHINGTON, KY & 03298200 & 21.3 & 1988-98 & & N & & N \\
\hline CEDAR CR AT FAIRMOUNT RD NR MOUNT WASHINGTON, KY & 03298242 & 7.8 & 1992-98 & & N & & N \\
\hline CEDAR CREEK AT THIXTON RD NR LOUISVILLE, KY & 03298250 & 11.1 & 1988-98 & & N & & N \\
\hline PENNSYLVANIA R AT MT WASHINGTON RD AT LOUISVILLE, K & Y03298300 & 6.4 & 1988-98 & & N & & N \\
\hline FLOYDS FK NR GAP IN KNOB, KY & 03298390 & 259.00 & 1973-75 & & N & & N \\
\hline SALT R AT SHEPHERDSVILLE, KY & 03298500 & 1197 & 1948-75 & N & N & N & N \\
\hline & & & 1979-92 & & & & \\
\hline N ROLLING FK AT BRADSFORDVILLE, KY & 03298760 & 95.70 & 1973-75 & & N & & N \\
\hline ROLLING FK NR LEBANON, KY & 03299000 & 239.00 & 1970-80 & & N & & N \\
\hline BEECH FK NR SPRINGFIELD, KY & 03300000 & 85.90 & 1970-72 & & N & & N \\
\hline CHAPLIN R AT SHARPSVILLE, KY & 03300300 & 140.00 & 1970-72 & & N & & N \\
\hline BEECH FK AT MAUD, KY & 03300400 & 436.00 & 1979-83 & N & N & N & N \\
\hline CARTWRIGHT CR AT FREDRICKTOWN, KY & 03300498 & 82.30 & 1973-75 & & N & & N \\
\hline BEECH FK AT BARDSTOWN, KY & 03301000 & 669.00 & 1962-72 & & N & & N \\
\hline ROLLING FK NR BOSTON, KY & 03301500 & 1299.00 & 1948-79 & & N & & N \\
\hline WILSON CR HARRISON FK RD AT DEATSVILLE, KY & 03301575 & 5.7 & 1990-98 & & N & & N \\
\hline WILSON CR NR DEATSVILLE, KY & 03301580 & 27.7 & 1991-92 & & N & & \\
\hline & & & 1992-96 & & & & N \\
\hline ROLLING FORK NR LEBANON JUNCTION, KY & 03301630 & 1375.00 & 1975-94 & N & N & N & N \\
\hline SOUTHERN DITCH AT MINORS LN NR OKOLONA, KY & 03301880 & 12.8 & 1988-98 & & N & & N \\
\hline FERN CR NR OLD BARDSTOWN RD AT LOUISVILLE, KY & 03301900 & 3.5 & 1988-98 & & N & & N \\
\hline NORTHERN DITCH AT OKOLONA, KY & 03301940 & 11.1 & 1988-98 & & N & & N \\
\hline SPRING DITCH AT PRIVATE DRIVE NR OKOLONA, KY & 03301950 & 1.6 & 1988-98 & & N & & N \\
\hline POND CR NR LOUISVILLE, KY & 03302000 & 64.0 & 1988-98 & & N & & \\
\hline POND CR AT PENDLETON RD NR LOUISVILLE, KY & 03302030 & 80.3 & 1988-98 & & N & & N \\
\hline SALT R AT MOUTH NR LOUISVILLE, KY & 03302060 & & 1970 & & & & N \\
\hline OTTER CR NR VINE GROVE, KY & 03302080 & & 1970-71 & & N & & N \\
\hline OTTER CR AT GRAHAMTON, KY & 03302100 & 88.40 & 1970-72 & & N & & N \\
\hline OTTER CR AT OTTER CR PARK NR ROCKHAVEN, KY & 03302110 & 99.2 & 1993-98 & & N & & N \\
\hline DOE RUN NR BRANDENBURG STATION, KY & 03302150 & 52.70 & 1970-72 & & N & & N \\
\hline SINKING CR NR LODIBURG, KY & 03303205 & 125.00 & 1971 & & N & & N \\
\hline SINKING CR AT SAMPLE, KY & 03303210 & 222.00 & 1970 & & N & & N \\
\hline BEECH FK NR CLOVERPORT, KY & 03303220 & & 1980-82 & & N & N & N \\
\hline TAR FK NR CLOVERPORT, KY & 03303230 & & 1980-82 & & N & N & N \\
\hline OHIO R AT CANNELTON DAM, KY & 03303280 & 97000.00 & 1975-86 & N & N & N & N \\
\hline BLACKFORD CR NR MACEO, KY & 03303447 & & 1980-82 & & N & N & N \\
\hline BLACKFORD CR NR MACEO, KY & 03303450 & 111.00 & 1973-75 & & N & & N \\
\hline PUP CR NR MACEO, KY & 03303490 & & 1980-82 & & N & N & N \\
\hline OHIO R AT OWENSBORO, KY & 03303500 & 97200.00 & 1970 & & & & N \\
\hline GREEN R NR MCKINNEY, KY & 03305000 & 22.40 & 1970-72 & & N & & N \\
\hline GREEN R NR DUNNVILLE, KY & 03305660 & 221.00 & 1973-75 & & N & & N \\
\hline GREEN R AT NEATSVILLE, KY & 03305800 & 399.00 & 1959-72 & & N & N & N \\
\hline CASEY CR AT CASEY CR, KY & 03305865 & 74.70 & 1973-75 & & N & & N \\
\hline GREEN R AT GREENSBURG, KY & 03306500 & 736.00 & 1948-59 & & N & & \\
\hline BIG PITMAN CR NR GREENSBURG, KY & 03307300 & & 1966 & & N & & N \\
\hline LITTLE BARREN R NR MONROE, KY & 03307800 & 244.00 & 1960-72 & & N & & N \\
\hline GREEN RIVER AT MUNFORDVILLE, KY & 03308500 & 1673.00 & 1950-94 & N & N & N & N \\
\hline
\end{tabular}

DISCONTINUED SURFACE-WATER-QUALITY STATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & & & & \\
\hline STATION NAME AND NUMBER & \begin{tabular}{l}
STATION \\
NUMBER
\end{tabular} & \begin{tabular}{l}
DRAINAGE \\
AREA \\
(MI \({ }^{2}\) )
\end{tabular} & \begin{tabular}{l}
PERIOD \\
OF \\
RECORD
\end{tabular} & \begin{tabular}{l}
BIO. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular} & \begin{tabular}{l}
PHY. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular} & \begin{tabular}{l}
SED. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular} & \begin{tabular}{l}
ICAL \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular} \\
\hline ECHO R OUTLET AT MAMMOTH CAVE, KY & 03308950 & & 1974 & & N & & N \\
\hline GREEN R AT MAMMOTH CAVE, KY & 03309000 & 1983.00 & 1958-74 & & N & & N \\
\hline WET PRONG BUFFALO CR NR MAMMOTH CAVE, KY & 03309100 & 2.26 & 1962-74 & & N & N & N \\
\hline MCDOUGAL CR AT HODGENVILLE, KY & 03309600 & & 1970 & & N & & N \\
\hline N FK NOLIN R AT HODGENVILLE, KY & 03310000 & 36.40 & 1970-72 & & N & & N \\
\hline N FK NOLIN R NR EAGLE MILLS, KY & 03310030 & & 1970-79 & & N & & N \\
\hline NOLIN R AT EAGLE MILLS, KY & 03310100 & & 1970-72 & & N & & N \\
\hline MIDDLE CR AT NEELY BRANCH, KY & 03310117 & & 1971 & & N & & N \\
\hline MIDDLE CR NR TONIEVILLE, KY & 03310120 & & 1970-72 & & N & & N \\
\hline MIDDLE CR AT EAGLE MILLS, KY & 03310130 & & 1971-72 & & N & & N \\
\hline NOLIN R NR GLENDALE, KY & 03310160 & 185.00 & 1971-75 & & N & & N \\
\hline VALLEY CR AT ELIZABETHTOWN, KY & 03310210 & & 1970-73 & & N & & N \\
\hline VALLEY CR AT GAITHERS, KY & 03310225 & & 1971-73 & & N & & N \\
\hline W RHUDES CR NR CECILIA, KY & 03310250 & & 1970-72 & & N & & N \\
\hline VALLEY CR NR GLENDALE, KY & 03310270 & 90.10 & 1960-75 & & N & & N \\
\hline NOLIN R NR STAR MILLS, KY & 03310273 & & 1971-72 & & N & & N \\
\hline NOLIN R AT WAX, KY & 03310500 & 600.00 & 1949-61 & & N & N & N \\
\hline ROCK CR NR CLARKSON, KY & 03310550 & & 1980-82 & & N & N & N \\
\hline DOG CR NR MAMMOTH CAVE, KY & 03310600 & 8.12 & 1961-74 & & N & & N \\
\hline BYLEW CR NR MAMMOTH CAVE, KY & 03311100 & 5.16 & 1965-74 & & N & & N \\
\hline GREEN R AT LOCK 6 AT BROWNSVILLE, KY & 03311500 & 2762.00 & 1978-82 & & N & & \\
\hline BEAVERDAM CR AT RHODA, KY & 03311600 & 10.90 & 1965-79 & & N & & N \\
\hline BEAR CR NR BEE SPRING, KY & 03312040 & & 1980-82 & & N & N & N \\
\hline SUNFISH CR NR BEE SPRING, KY & 03312070 & & 1980-82 & & N & N & N \\
\hline BEAR CR NR ROUNDHILL, KY & 03312100 & 137.00 & 1960-72 & & N & & N \\
\hline BIG REEDY CR NR ROUNDHILL, KY & 03312120 & & 1980-82 & & N & N & N \\
\hline LITTLE REEDY CR NR ROUNDHILL, KY & 03312130 & & 1980-82 & & N & N & N \\
\hline BARREN R AT ACKERSVILLE, KY & 03312400 & 298.00 & 1970-72 & & N & & N \\
\hline SKAGGS CR NR GLASGOW, KY & 03312680 & 141.00 & 1970-72 & & N & & N \\
\hline BAYS FK AT CLAYPOOL, KY & 03313570 & 80.90 & 1960-68 & & N & & N \\
\hline UNNAMED NON-CONTRIB STREAM AT GREENHILL, KY & 03313590 & & 1968 & & N & & N \\
\hline TRAMMEL CR NR SCOTTSVILLE, KY & 03313900 & 93.40 & 1970-72 & & N & & N \\
\hline DRAKES CR NR ALVATON, KY & 03314000 & 478.00 & 1968-72 & & N & N & N \\
\hline UNNAMED NON-CONTRIB STREAM AT THREE SPRINGS, KY & 03314595 & & 1968 & & N & & N \\
\hline JENNINGS CR NR LOST RIVER, KY & 03314610 & & 1968 & & N & & N \\
\hline JENNINGS CR AT US 231 AT BOWLING GREEN, KY & 03314650 & & 1968 & & N & & N \\
\hline JENNINGS CR BELOW LOST R OUTLET AT BOWLING GREEN, KY & 03314680 & & 1968 & & N & & N \\
\hline JENNINGS CR AT BARREN R RD NR BOWLING GREEN, KY & 03314700 & & 1968 & & N & & N \\
\hline GASPER R AT HADLEY, KY & 03315300 & 190.00 & 1960-72 & & N & & N \\
\hline WELCH CR NR ABERDEEN, KY & 03315510 & & 1980-82 & & N & N & N \\
\hline INDIAN CAMP CR NR MORGANTOWN, KY & 03315590 & & 1980-82 & & N & N & N \\
\hline E PRONG INDIAN CAMP CR NR MORGANTOWN, KY & 03315600 & & 1980-82 & & N & N & N \\
\hline MUDDY CR AT DUNBAR, KY & 03315810 & 94.30 & 1960-82 & & N & N & N \\
\hline PANTHER CR NR ROCHESTER, KY & 03315830 & & 1980-82 & & N & N & N \\
\hline MUD R NR LEWISBURG, KY & 03316000 & 90.50 & 1960-72 & & N & & N \\
\hline WOLFLICK CR NR LEWISBURG, KY & 03316200 & 116.00 & 1970-72 & & N & & N \\
\hline ROCKY CR NR PENROD, KY & 03316300 & & 1980-82 & & N & N & N \\
\hline GREEN R AT PARADISE, KY & 03316500 & 6183.00 & 1978-82 & & N & & \\
\hline POND CR NR MARTWICK, KY & 03316640 & 125.00 & 1972-82 & & N & N & N \\
\hline LEWIS CR AT ROCKPORT, KY & 03316660 & & 1980-82 & & N & N & N \\
\hline MEETING CR NR BIG CLIFTY, KY & 03316885 & & 1980-82 & & N & N & N \\
\hline N FK ROUGH R NR WESTVIEW, KY & 03317500 & 42.00 & 1970-72 & & N & & N \\
\hline ROUGH R AT ROUGH R DAM NR FALLS OF ROUGH, KY & 03318010 & 454.00 & 1962-83 & & N & & \\
\hline ROCK LICK CR NR FALLS OF ROUGH, KY & 03318300 & & 1980-82 & & N & N & N \\
\hline SHORT CR NR FALLS OF ROUGH, KY & 03318600 & & 1980-82 & & N & N & N \\
\hline S FK CANEY CR AT CANEYVILLE, KY & 03318700 & & 1980-82 & & N & N & N \\
\hline ADAMS FK NR FORDSVILLE, KY & 03319510 & & 1980-82 & & N & N & N \\
\hline W FK ADAMS FK NR FORDSVILLE, KY & 03319530 & & 1980-82 & & N & N & N \\
\hline HALLS CR NR DUNDEE, KY & 03319570 & & 1980-82 & & N & N & N \\
\hline ROUGH R AT HARTFORD, KY & 03319600 & & 1966-72 & & N & & N \\
\hline MUDDY CR NR BEAVER DAM, KY & 03319615 & & 1980-82 & & N & N & N \\
\hline THREELICK CR NR BEAVER DAM, KY & 03319620 & & 1980-82 & & N & N & N \\
\hline BARNETT CR NR HARTFORD, KY & 03319700 & & 1980-82 & & N & N & N \\
\hline
\end{tabular}

DISCONTINUED SURFACE-WATER-QUALITY STATIONS


DISCONTINUED SURFACE-WATER-QUALITY STATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & & & & \\
\hline STATION NAME AND NUMBER & STATION NUMBER & \begin{tabular}{l}
DRAINAGE \\
AREA \\
(MI \({ }^{2}\) )
\end{tabular} & \begin{tabular}{l}
PERIOD \\
OF \\
RECORD
\end{tabular} & \begin{tabular}{l}
BIO. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular} & \begin{tabular}{l}
PHY. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular} & \begin{tabular}{l}
SED. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular} & \begin{tabular}{l}
ICAL \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular} \\
\hline CRABORCHARD CR NR CLAY, KY & 03384151 & & 1969 & & N & & N \\
\hline CRABORCHARD CR AT CLAY, KY & 03384152 & & 1966 & & N & & N \\
\hline CRABORCHARD CR AT CLAY, KY & 03384154 & 86.60 & 1969-72 & & N & N & N \\
\hline CANEY FK NR CLAY, KY & 03384158 & & 1980-82 & & N & N & N \\
\hline TRADEWATER R NR SULLIVAN, KY & 03384180 & 861.19 & 1975-77 & & N & N & N \\
\hline SMITH DITCH NR STURGIS, KY & 03384200 & & 1980-82 & & N & N & N \\
\hline LOONEY CR NR CLUTTS, KY & 03400480 & & 1980-82 & & N & N & N \\
\hline CLOVER FK NR SHIELDS, KY & 03400650 & & 1980-82 & & N & N & N \\
\hline CLOVER FK AT EVARTS, KY & 03400700 & 82.40 & 1960-72 & & N & & N \\
\hline MARTINS FK ABOVE SMITH, KY & 03400785 & 23.80 & 1986-88 & & & N & \\
\hline CRANE CR NR SMITH, KY & 03400796 & 1.63 & 1978-80 & & N & & \\
\hline BROWNICE CR NR OAKS, KY & 03401290 & & 1980-82 & & N & N & N \\
\hline CLEAR CR NR PINEVILLE, KY & 03402400 & & 1980-82 & & N & N & N \\
\hline LITTLE CLEAR CR NR PINEVILLE, KY & 03402450 & & 1980-82 & & N & N & N \\
\hline STRAIGHT CR NR KETTLE ISLAND, KY & 03402800 & & 1980-82 & & N & N & N \\
\hline LEFT FK STRAIGHT CR NR CARY, KY & 03402830 & & 1980-82 & & N & N & N \\
\hline MIDDLE FK STINKING CR NR WALKER, KY & 03403100 & & 1980-82 & & N & N & N \\
\hline ROAD FK CR NR BARNYARD, KY & 03403150 & & 1980-82 & & N & N & N \\
\hline LITTLE INDIAN CR NR PERMON, KY & 03403550 & & 1980-82 & & N & N & N \\
\hline FOURMILE BRANCH NR BRYANTS STORE, KY & 03403590 & & 1980-82 & & N & N & N \\
\hline WATTS CR NR WOFFORD, KY & 03404100 & & 1980-82 & & N & N & N \\
\hline JELLICO CR NR WILLIAMSBURG, KY & 03404200 & 103.00 & 1979-82 & & N & N & N \\
\hline MARSH CR NR DUCKRUN, KY & 03404350 & & 1980-82 & & N & N & N \\
\hline TRIBUTARY TO LAUREL R NR LESBAS, KY & 03404650 & & 1980-82 & & N & N & N \\
\hline TRIBUTARY TO LAUREL R NR PINE GROVE, KY & 03404800 & & 1980-82 & & N & N & N \\
\hline LAUREL R AT MUNICIPAL DAM NR CORBIN, KY & 03404820 & 140.00 & 1977-83 & & N & & \\
\hline LYNN CAMP CR AT CORBIN, KY & 03404900 & 53.80 & 1973-83 & & N & & \\
\hline LAUREL R AT CORBIN, KY & 03405000 & 201.00 & 1949-73 & & N & & N \\
\hline CRAIG CR NR HIGHTOP, KY & 03405550 & & 1980-82 & & N & N & N \\
\hline S FK TO ROCKCASTLE R NR CRAWFORD, KY & 03405600 & & 1980-82 & & N & N & N \\
\hline S FK ROCKCASTLE R NR PEOPLES, KY & 03405700 & 95.10 & 1961-72 & & N & & N \\
\hline POND CR NR PEOPLES, KY & 03405730 & & 1980-82 & & N & N & N \\
\hline LAUREL FK NR MCKEE, KY & 03405780 & & 1980-82 & & N & N & N \\
\hline INDIAN CR NR HURLEY, KY & 03405800 & & 1980-82 & & N & N & N \\
\hline ROUNDSTONE CR AT LIVINGSTON, KY & 03405900 & 144.00 & 1960-72 & & N & & N \\
\hline WOOD CR NR LONDON, KY & 03406000 & 3.89 & 1976-80 & N & N & & \\
\hline CANE BRANCH NR PARKERS LAKE, KY & 03407100 & . 67 & 1955-74 & & N & N & N \\
\hline W FK CANE BR NR PARKERS LAKE, KY & 03407200 & . 26 & 1957-73 & & N & Y & N \\
\hline HELTON BRANCH AT GREENWOOD, KY & 03407300 & . 85 & 1955-73 & & N & N & N \\
\hline BUCK CR AT DYKES, KY & 03407640 & 253.00 & 1973-75 & & N & & N \\
\hline S FK CUMBERLAND R NR STEARNS, KY & 03410500 & 954.00 & 1960-72 & & & & \\
\hline & & & 1979-95 & N & N & N & N \\
\hline ROARING PAUNCH CR NR BARTHELL, KY & 03410530 & & 1980-82 & & N & N & N \\
\hline ROCK CR AT WHITE OAK JUNCTION, KY & 03410560 & & 1980-82 & & N & N & N \\
\hline S FK CUMBERLAND R NR YAMACRAW, KY & 03410600 & 1083.00 & 1948-76 & & N & & \\
\hline WOLF CR AT WOLF CREEK, KY & 03410700 & & 1980-82 & & N & N & N \\
\hline LITTLE S FK CUMBERLAND R NR OIL VALLEY, KY & 03410900 & 98.20 & 1970-72 & & N & & N \\
\hline S FK CUMBERLAND R AT NEVELSVILLE, KY & 03411000 & 1271.00 & 1960-75 & & N & & \\
\hline SINKING CR NR GREGORY, KY & 03411100 & & 1980-82 & & N & N & N \\
\hline PUCKETT CR NR PATHFORK, KY & 03411250 & & 1980-82 & & N & N & N \\
\hline PITMAN CR AT SOMERSET, KY & 03412500 & 31.30 & 1970-72 & & N & & N \\
\hline FISHING CR NR HOGUE, KY & 03412700 & 59.80 & 1970-72 & & N & & N \\
\hline CUMBERLAND R NR ROWENA, KY & 03414000 & 5790.00 & 1965-79 & & N & & N \\
\hline CROCUS CR NR BAKERTON, KY & 03414080 & 108.00 & 1973-75 & & N & & N \\
\hline CUMBERLAND R NR BURKESVILLE, KY & 03414110 & 6050.00 & 1948-79 & & N & & N \\
\hline RED R NR ADAIRVILLE, KY & 03435100 & 229.00 & 1970-72 & & N & & N \\
\hline WHIPPOORWILL CR NR CLAYMOUR, KY & 03435140 & 20.80 & 1978-82 & & N & & \\
\hline WHIPPOORWILL CR AT DOT, KY & 03435265 & 115.00 & 1973-75 & & N & & N \\
\hline ELK FK NR HADENSVILLE, KY & 03435380 & 88.50 & 1973-75 & & N & & N \\
\hline W FK RED R NR SAINT ELMO, KY & 03436190 & 162.00 & 1973-75 & & N & & N \\
\hline S FK LITTLE R AT HOPKINSVILLE, KY & 03437500 & 46.50 & 1949-75 & & N & & \\
\hline LITTLE R NR CADIZ, KY & 03438000 & 244.00 & 1958-73 & & N & N & N \\
\hline MUDDY FK LITTLE R NR CERULEAN, KY & 03438070 & 30.50 & 1978-82 & & N & & \\
\hline
\end{tabular}

DISCONTINUED SURFACE-WATER-QUALITY STATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{STATION NAME AND NUMBER} & & \multirow[b]{2}{*}{DRAINAGE
AREA
\(\left(\mathrm{MI}^{2}\right)\)} & \multirow[b]{2}{*}{\begin{tabular}{l}
PERIOD \\
OF \\
RECORD
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
BIO. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
PHY. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
SED. \\
AC- \\
TIVE \\
STA- \\
TUS
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { CHEM- } \\
\text { ICAL } \\
\text { AC- } \\
\text { TIVE } \\
\text { STA- } \\
\text { TUS }
\end{gathered}
\]} \\
\hline & \begin{tabular}{l}
STATION \\
NUMBER
\end{tabular} & & & & & & \\
\hline EDDY CR NR LAMASCO, KY & 03438170 & 71.70 & 1970-74 & & N & & N \\
\hline BARKLEY-KENTUCKY CANAL NR GRAND RIVERS, KY & 03438190 & & 1978-82 & & N & & \\
\hline CUMBERLAND R NR GRAND RIVERS, KY & 03438220 & 17598.00 & 1969-86 & N & N & N & N \\
\hline LIVINGSTON CR NR DYCUSBURG, KY & 03438470 & 112.00 & 1970-72 & & N & & N \\
\hline TENNESSEE R NR PADUCAH, KY & 03609500 & 40200.00 & 1951-73 & & N & & N \\
\hline \multirow[t]{4}{*}{TENNESSEE R AT HWY 60 NR PADUCAH, KY} & 03609750 & 40330.00 & 1950 & & N & & \\
\hline & & & 1952 & & N & & \\
\hline & & & 1967-72 & & N & & \\
\hline & & & 1974-86 & N & N & N & N \\
\hline CLARKS R AT MURRAY, KY & 03610000 & 89.10 & 1970-72 & & N & & N \\
\hline CLARKS R AT ALMO, KY & 03610200 & 134.00 & 1982-83 & N & N & N & N \\
\hline CLARKS R NR BENTON, KY & 03610500 & 227.00 & 1948-61 & & N & & N \\
\hline W FK CLARKS R NR BREWERS, KY & 03610545 & 68.70 & 1970-81 & & N & N & N \\
\hline W FK CLARKS R AT KALER, KY & 03610585 & 150.00 & 1973-75 & & N & & N \\
\hline HUMPHREY CR AT LACENTER, KY & 03613000 & 44.20 & 1970-72 & & N & & N \\
\hline MAYFIELD CR AT LOVELACEVILLE, KY & 07023000 & 212.00 & 1960-72 & & N & & N \\
\hline BAYOU DE CHIEN NR CLINTON, KY & 07024000 & 68.70 & 1954-83 & N & N & N & N \\
\hline OBION CR NR ARLINGTON, KY & 07023700 & 203.00 & 1970-72 & & N & & N \\
\hline MISSISSIPPI R AT HICKMAN, KY & 07024070 & 922500.00 & 1969-70 & N & N & & N \\
\hline
\end{tabular}

\footnotetext{
N
Eliminated activity
}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{DISCONTINUED GROUND-WATER STATIONS} \\
\hline \begin{tabular}{l}
Station \\
Number
\end{tabular} & County & \begin{tabular}{l}
Station \\
Name
\end{tabular} & \[
\begin{aligned}
& \text { Period } \\
& \text { of } \\
& \text { Record }
\end{aligned}
\] \\
\hline 363634088191601 & Calloway & Joe Parks & \[
\begin{aligned}
& \text { 1948-83, } \\
& \text { 1988-97 }
\end{aligned}
\] \\
\hline 365142087270401 & Christian & Western State Hospital & \[
\begin{aligned}
& \text { 1950-83, } \\
& \text { 1988-97 }
\end{aligned}
\] \\
\hline 374638087054101 & Daviess & OMU & \[
\begin{aligned}
& \text { 1951-83, } \\
& \text { 1990-97 }
\end{aligned}
\] \\
\hline 380425083091901 & Elliott & Roy Adkins & \[
\begin{aligned}
& \text { 1952-84, } \\
& 1998-97
\end{aligned}
\] \\
\hline 375928084362001 & Fayette & M.A. Kehrt & \[
\begin{aligned}
& \text { 1952-84, } \\
& \text { 1988-97 }
\end{aligned}
\] \\
\hline 382031084553901 & Franklin & Harp Road & \[
\begin{aligned}
& \text { 1973-83, } \\
& \text { 1988-97 }
\end{aligned}
\] \\
\hline 373925085540301 & Hardin & OW-6 & 1989-95 \\
\hline 374020085530601 & Hardin & OW-5 & \[
\begin{aligned}
& \text { 1989-90, } \\
& 1994,95
\end{aligned}
\] \\
\hline 374035085525401 & Hardin & OW-1-82 & 1982-98 \\
\hline 374046085523501 & Hardin & OW-1-81 & \[
\begin{aligned}
& 1982-98 \\
& 1994,95
\end{aligned}
\] \\
\hline 375958085575401 & Hardin & Hart \#1 & 1980-92 \\
\hline 374441087421001 & Henderson & Town of Corydon & \[
\begin{aligned}
& \text { 1952-83, } \\
& \text { 1988-97 }
\end{aligned}
\] \\
\hline 380122085545001 & Jefferson & 80-1 & 1980-97 \\
\hline 380252085530601 & Jefferson & 79-3 & 1979-97 \\
\hline 380308085533501 & Jefferson & 79-4 & 1979-92 \\
\hline 380341085534501 & Jefferson & 83-1 & 1983-97 \\
\hline 380423085541501 & Jefferson & Genewein & 1976-97 \\
\hline 380434085525101 & Jefferson & E-1-d & 1980-92 \\
\hline 380458085523201 & Jefferson & 86-4 & 1986-97 \\
\hline 380517085535201 & Jefferson & 77-1 & 1977-97 \\
\hline 380532085515301 & Jefferson & 76-1 & 1976-97 \\
\hline 380616085532801 & Jefferson & Lou. Ext. Water District & 1962-92 \\
\hline 380619085512301 & Jefferson & 86-3 & 1986-97 \\
\hline 380637085521301 & Jefferson & D-1-d & 1980-92 \\
\hline 380709085531101 & Jefferson & C-5-m & 1980-97 \\
\hline 380716085521801 & Jefferson & RR-47 & 1945-97 \\
\hline 380718085515802 & Jefferson & C-3-s & 1984-92 \\
\hline 380718085524202 & Jefferson & C-4-m & 1983-92 \\
\hline 380816085520701 & Jefferson & Dohn & 1943-97 \\
\hline 380827085503001 & Jefferson & 86-5 & 1986-97 \\
\hline 380843085530701 & Jefferson & B-3-d & 1980-97 \\
\hline 380843085522801 & Jefferson & B-2-d & 1980-92 \\
\hline 380846085520101 & Jefferson & B-1-d & 1980-92 \\
\hline 380850085534701 & Jefferson & 78-2 & 1978-97 \\
\hline 380852085515901 & Jefferson & Waller & 1943-92 \\
\hline 380940085514001 & Jefferson & 81-1 & 1981-97 \\
\hline 380955085531801 & Jefferson & 83-2 & 1983-97 \\
\hline 381011085491601* & Jefferson & 86-1 & 1986-93 \\
\hline 381034085502601 & Jefferson & RR-30 & 1945-97 \\
\hline 381050085511001 & Jefferson & RR-29 & 1945-97 \\
\hline 381102085485601 & Jefferson & 86-2 & 1986-97 \\
\hline 381102085512102 & Jefferson & Kaufman & 1944-92 \\
\hline 381108085511301 & Jefferson & Baugh & 1945-92 \\
\hline 381123085491401 & Jefferson & RR-32 & 1945-87 \\
\hline 381130085515001 & Jefferson & Thienemen & 1944-97 \\
\hline 381139085502301 & Jefferson & 81-2 & 1991-97 \\
\hline
\end{tabular}

\section*{DISCONTINUED GROUND-WATER STATIONS}
\begin{tabular}{|c|c|c|c|}
\hline Station Number & County & \begin{tabular}{l}
Station \\
Name
\end{tabular} & Period of Record \\
\hline 381142085475702 & Jefferson & RR-42 & 1945-97 \\
\hline 381143085465801 & Jefferson & RR-25 & 1945-97 \\
\hline 381155085483401 & Jefferson & Mathis & 1944-92 \\
\hline 381157085510201 & Jefferson & RR-39 & 1945-92 \\
\hline 381204085455301 & Jefferson & CP-16 & 1979-97 \\
\hline 381207085484601 & Jefferson & RR-41 & 1945-97 \\
\hline 381209085472101 & Jefferson & C-7 & 1935-97 \\
\hline 381212085473801 & Jefferson & C-6 & 1935-92 \\
\hline 381213085521701 & Jefferson & RR-22 & 1945-97 \\
\hline 381221085475001 & Jefferson & C-5 & 1935-92 \\
\hline 381222085505201 & Jefferson & RR-27 & 1945-97 \\
\hline 381224085474001 & Jefferson & Early Times & 1947-92 \\
\hline 381229085510201 & Jefferson & Triangle Refinery & 1978-92 \\
\hline 381246085470601 & Jefferson & Seagrams TW \#2 & 1943-97 \\
\hline 381246085463201 & Jefferson & CP-18A & 1984-97 \\
\hline 381250085484901 & Jefferson & C-2 & 1935-92 \\
\hline 381251085500501 & Jefferson & RR-35 & 1945-97 \\
\hline 381256085471501 & Jefferson & National Distillery TW-2 & 1941-92 \\
\hline 381257085471801 & Jefferson & TW-4 & 1942-97 \\
\hline 381259085471502 & Jefferson & National Distillery TW-1 & 1941-92 \\
\hline 381259085511002 & Jefferson & RR-21 & 1945-97 \\
\hline 381305085501302 & Jefferson & Reynolds Metals & 1980-92 \\
\hline 381309085505302 & Jefferson & RR-24 & 1945-92 \\
\hline 381313085495501 & Jefferson & B.F. Goodrich TW-2 & 1947-92 \\
\hline 381315085501401 & Jefferson & Airco TW-11 & 1956-92 \\
\hline 381315085502602 & Jefferson & NC-TW-D & 1956-97 \\
\hline 381316085502101 & Jefferson & Airco TW-12 & 1956-92 \\
\hline 381320085464101 & Jefferson & CP-15 & 1978-97 \\
\hline 381324085460401* & Jefferson & American Standard & 1978-93 \\
\hline 381331085491601 & Jefferson & RR-26 & 1945-97 \\
\hline 381338085481601 & Jefferson & CP-8 & 1977-92 \\
\hline 381346085453801 & Jefferson & St. Patricks's well & 1981-97 \\
\hline 381346085454201 & Jefferson & CP-1 & 1977-97 \\
\hline 381355085465901 & Jefferson & Louisville Cooperage & 1948-92 \\
\hline 381400085445001 & Jefferson & CP-6 & 1977-97 \\
\hline 381406085463001 & Jefferson & United Catalyst & 1978-92 \\
\hline 381417085500301 & Jefferson & RR-23 & 1945-97 \\
\hline 381424085454602 & Jefferson & CP12A & 1980-92 \\
\hline 381428085485701 & Jefferson & 78-6 & 1978-97 \\
\hline 381430085452602 & Jefferson & Conna & 1943-92 \\
\hline 381430085472501 & Jefferson & CP-17 & 1982-97 \\
\hline 381500085445501 & Jefferson & 89-2 & 1989-92 \\
\hline 381500085454701 & Jefferson & 78-5 & 1978-92 \\
\hline 381501085464601 & Jefferson & CP-10 & 1977-97 \\
\hline 381503085452601 & Jefferson & Stewarts & 1981-92 \\
\hline 381505085475701 & Jefferson & CP-5 & 1977-92 \\
\hline 381508085455701 & Jefferson & CP-4 & 1977-97 \\
\hline 381514085453502 & Jefferson & CP11A & 1984-92 \\
\hline 381517085455501 & Jefferson & 86-6 & 1986-92 \\
\hline 381518085451801 & Jefferson & 87-1 & 1986-96 \\
\hline 381518085454401 & Jefferson & 86-10 & 1986-97 \\
\hline 381524085452301 & Jefferson & 86-8 & 1986-92 \\
\hline 381528085454201 & Jefferson & 86-9 & 1986-92 \\
\hline 381536085492801 & Jefferson & CP-2 & 1977-92 \\
\hline 381538085434401* & Jefferson & 78-7 & 1978-92 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{DISCONTINUED GROUND-WATER STATIONS} \\
\hline \begin{tabular}{l}
Station \\
Number
\end{tabular} & County & \begin{tabular}{l}
Station \\
Name
\end{tabular} & Period of Record \\
\hline 381539085465201 & Jefferson & CP-9 & 1977-97 \\
\hline 361343085480101 & Jefferson & CP-14 & 1978-97 \\
\hline 381553085431602 & Jefferson & M-2 & 1978-97 \\
\hline 381604085430501 & Jefferson & WC-1 & 1946-97 \\
\hline 381607085483601 & Jefferson & CP-3 & 1977-97 \\
\hline 381613085421901 & Jefferson & WC-14 & 1946-92 \\
\hline 381628085473101 & Jefferson & CP-13 & 1978-92 \\
\hline 381638085415801 & Jefferson & WC-4 & 1946-97 \\
\hline 381648085421201 & Jefferson & WC-5 & 1946-97 \\
\hline 381653085413302 & Jefferson & WC-9A & 1979-97 \\
\hline 381701085414002 & Jefferson & WC-8A & 1979-92 \\
\hline 381722085405801 & Jefferson & WC-11 & 1946-92 \\
\hline 381742085402001 & Jefferson & WC-13 & 1946-92 \\
\hline 381827085392401 & Jefferson & WC-26 & 1946-92 \\
\hline 374151085413201 & Larue & Wagner & \[
\begin{aligned}
& \text { 1971-83, } \\
& \text { 1988-97 }
\end{aligned}
\] \\
\hline 370757084045001 & Laurel & Hale & 1951-62, \\
\hline & & & 1965-84, \\
\hline 371033082374301* & Letcher & C\&ORR & 1962-92 \\
\hline & & & 1988-97 \\
\hline 372739084402101 & Lincoln & Peck & 1953-84 \\
\hline & & & 1988-97 \\
\hline 365046086444901 & Logan & Appling & 1988-97 \\
\hline 370551088510401 & Mccracken & Heath & 1969-83, \\
\hline & & & 1988-97 \\
\hline 370211085354301 & Metcalfe & Froedge & 1979-83, \\
\hline & & & 1988-97 \\
\hline 370342086080101 & Warren & Estes & 1961-83, \\
\hline & & & 1988-97 \\
\hline * destroyed & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{INDEX} \\
\hline Page & Page \\
\hline Access to USGS Data .....................................................21,22 & Bottom material, definition of............................................. 24 \\
\hline Acid neutralizing, definition of........................................... 23 & Bowling Green, Barren River at.......................................... 434 \\
\hline Acre-foot, definition of ..................................................... 23 & Brashears Creek at Taylorsville ....................................252,253 \\
\hline Adenosine triphosphate, definition of.................................... 23 & Brier Creek at Pendleton Road .....................................290,291 \\
\hline Algae, definition of ............................................................. 23 & Bullskin Creek near Simpsonville...................................250,251 \\
\hline Algal growth potential, definition of...................................... 23 & Burning Fork near Salyersville ........................................... 429 \\
\hline \multicolumn{2}{|l|}{Alkalinity, definition of...................................................... 23} \\
\hline Almo, Clarks River at ..................................................408,409 & Cadentown, East Hickman Creek at Andover Village near ..100,101 \\
\hline Annual seven-day minimum ............................................... 25 & Cadentown, North Elkhorn Creek at Bryant Road near........206,207 \\
\hline Apex, Pond River near .................................................318,319 & Cadiz, Little River near...............................................394,395 \\
\hline Ash mass, definition of ....................................................... 24 & Calhoun, Green River at lock 2, at....................................316,317 \\
\hline \multirow[t]{2}{*}{Alvaton, Drakes near....................................................... 434} & Cannelton Dam, Ohio River at...................................... 294-301 \\
\hline & Carlisle, Hinkston Creek near ............................................70,71 \\
\hline Bacteria, definition of....................................................... 23 & Cartwright Creek at Fredicktown........................................ 433 \\
\hline Barbourville, Cumberland River at................................370,371 & Catawba, Licking River at...............................................72,73 \\
\hline Bardstown, Beech Fork at............................................272,273 & Cedar Creek, \\
\hline Bardstown, Beech Fork near.............................................. 433 & at Thixton Road near Louisville ....................................262,263 \\
\hline Barren River at Bowling Green........................................... 434 & Cells/volume, definition of................................................. 24 \\
\hline Bayou Creek Basin, & Cfs-day, definition of ......................................................... 24 \\
\hline gaging-station records in .........................................414-419 & Chaplin River near Chaplin.................................................... 433 \\
\hline \multicolumn{2}{|l|}{Bayou Creek, Chemical Oxygen Demand, definition of ............................... 24} \\
\hline near Grahamville ..................................................416,417 & Chenoweth Run, at Gelhaus Lane near Fern Creek .............260,261 \\
\hline near Heath...............................................................414,415 & Chenoweth Run, at Ruckriegal Pky near Jeffersontown.......258,259 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Bayou de Chien Basin, \\
gaging-station records in \(\qquad\) 426,427
\end{tabular}} & Chlorophyll, definition of................................................... 24 \\
\hline & Clarks River at Almo ......................................................408,409 \\
\hline Bayou de Chien near Clinton.........................................426,427 & Classification size (mm) Method of Analysis, definition of ......... 28 \\
\hline Beargrass Creek Basin, & Clay City, Red River at ..................................................96, \({ }^{\text {a }}\). 97 \\
\hline gaging-station records in ......................................... 240-245 & Clear Fork at Saxton .......................................................372,373 \\
\hline Beargrass Creek, & Clermont, Long Lick near............................................268,269 \\
\hline Middle Fork, at Louisville........................................244,245 & Clinton, Bayou de Chien near.......................................426,427 \\
\hline South Fork, at Louisville .........................................240,241 & Color Unit, definition of......................................................... 24 \\
\hline South Fork, at Winter Avenue, at Louisville..................242,243 & Columbia, Russell Creek near.......................................302,303 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Beaver Creek (tributary to Green River) \\
at Hwy 31 E near Glasgow.
\end{tabular}} & Contents, definition of....................................................... 24 \\
\hline & Continuing-record station, definition of................................... 25 \\
\hline Beaver Creek near Johnsonville ........................................... 433 & Control, definition of........................................................ 25 \\
\hline Beaver Creek near Monticello .......................................392,393 & Cooperation...................................................................1,2 \\
\hline Bed load, definition of....................................................... 30 & Corbin, Laurel River at Municipal Dam near ......................... 428 \\
\hline Bedload, definition of......................................................... 24 & Lynn Camp Creek at...............................................376,377 \\
\hline Bed load discharge, definition of .......................................... 30 & Cressmont, Sturgeon Creek at.......................................... 92.93 \\
\hline Bed material, definition of ................................................. 24 & Cubic feet per second, definition of ....................................... 25 \\
\hline Beech Fork at Bardstown..............................................272,273 & Cumberland, Poor Fork at...........................................428,434 \\
\hline Beech Fork near Bardstown ............................................... 433 & Cumberland River, \\
\hline Beech Fork at Maud..................................................270,271 & near Grand Rivers ................................................ 396-401 \\
\hline Beech Fork near Maud...................................................... 433 & at Barbourville ......................................................370,371 \\
\hline Benthic invertebrates, definition of....................................... 24 & at Pine Street Bridge at Pineville...............................368,369 \\
\hline Big Creek, Red Bird River near.......................................84,85 & at Williamsburg ....................................................374,375 \\
\hline \multirow[t]{2}{*}{Big Sandy River Basin,} & near Harlan ..........................................................364,365 \\
\hline & South Fork, near Stearns ........................................ 380-384 \\
\hline gaging-station records in ...........................................42-49 & South Fork at Yamacraw .........................................386-390 \\
\hline Billows, Rockcastle River at.........................................378,379 & Cumberland River Basin, \\
\hline Biochemical Oxygen Demand, definition of ............................ 24 & crest-stage partial-record stations in................................. 428 \\
\hline Biomass, definition of ....................................................... 24 & gaging-station records in .........................................332-401 \\
\hline Blue-green algae, definition of............................................ 28 & low-flow partial-record stations in .................................. 434 \\
\hline Booneville, South Fork Kentucky River at ..........................88,89 & Currys Fork near Crestwood............................................. 432 \\
\hline Boston, Rolling Fork near...........................................274,275 & Crestwood, Currys Fork near............................................. 432 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{INDEX} \\
\hline Page & Page \\
\hline Cutshin Creek at Wooton ...............................................80,81 & Flat Creek near Sherburne \\
\hline Cynthiana, South Fork Licking River at ................................ 432 & Floyds Fork, \\
\hline \multirow[t]{2}{*}{Cynthiana, Mill Creek near............................................... 432} & at Fisherville .......................................................256,257 \\
\hline & near Pewee Valley .................................................254,255 \\
\hline Danville, Dix River near .............................................108,109 & Fort Knox, Mill Creek near ..................................... 278-281 \\
\hline Danville, Mocks Branch at Bluegrass Pike near................ 138-144 & Fort Spring, South Elkhorn Creek at..............................218-219 \\
\hline Danville, Mocks Branch at Highway 1915 near ................ 146-163 & Frankfort, \\
\hline Danville, Mocks Branch at Highway 127 near .................. 164-181 & Elkhorn Creek near................................................228,229 \\
\hline Danville, Mocks Branch at Highway 1896 near ................ 182-199 & Kentucky River at lock 4, at.....................................204,205 \\
\hline Danville, Spears Creek at Railroad Culvert near ................ 110-127 & Franklin, West Fork Drakes Creek near............................312,313 \\
\hline Danville, Spears Creek at Streamland Drive near............... 128-136 & Fredericktown, Cartwright Creek at........................................ 433 \\
\hline \multicolumn{2}{|l|}{Deatsville, Wilson Creek at Harrison Fork Road near.........276,277} \\
\hline Definition of terms ....................................................... 23-33 & Gaging-station records, \\
\hline Determinations of "suspended, recoverable" constituents, definition of \(\qquad\) &  \\
\hline Determinations of "suspended, total" constituents, definition of \(\qquad\) 31 & surface-water stations .................................................... 42-427 Georgetown, \\
\hline Diatoms, definition of ........................................................... 28 & North Elkhorn Creek at ............................................214,215 \\
\hline Discharge, definition of........................................................... 25 & North Elkhorn Creek near ........................................212,213 \\
\hline Discharge, miscellaneous measurements .......................... 435-438 & Royal Springs at ....................................................216,217 \\
\hline Discontinued records, gaging station................................456-472 & Glasgow, Beaver Creek at Hwy 31 E near........................310,311 \\
\hline ace-water .........................................................456-463 & Glencoe, Eagle Creek at..............................................232,233 \\
\hline water-quality ...............................................................464-472 & Glensboro, Salt River at ....................................................248,249 \\
\hline Discontinued records, ground water ..............................473-475 & Goose Creek Basin, (tributary to the Ohio River) \\
\hline Dissolved, definition of.......................................................... 25 & gaging-station records in \(\qquad\) 236-239 \\
\hline Dissolved-solids concentration, definition of ............................ 25 & Goose Creek, (tributary to Ohio River) \\
\hline Dix River near Danville ...............................................108,109 & at Old Westport Road near St. Matthews ......................236,237 \\
\hline Downstream order system..................................................... 8 & Goose Creek (tributary to South Fork \\
\hline Drainage area, definition of................................................. 25 & Kentucky River) at Manchester ....................................86,87 \\
\hline Drainage basin, definition of................................................. 25 & Gordon Ford, Licking River at ............................................ 429 \\
\hline Drakes Creek near Alvaton .................................................... 434 & Goshen, Harrods Creek at Highway 329 near .....................234,235 \\
\hline \multirow[t]{2}{*}{Dry mass, definition of...................................................... 24} & Grahamville, \\
\hline & Bayou Creek near ..................................................416,417 \\
\hline Eagle Creek, at Glencoe....................................................232,233 & Little Bayou Creek near ..............................................418,419 \\
\hline East Hickman, West Hickman Creek near........................106,107 & Grand Chain, Ill., Ohio River at lock and dam 53 near .......420-425 \\
\hline East Hickman Creek at Andover Village near Cadentown ...100,101 & Grand Rivers, Cumberland River near............................396-401 \\
\hline East Hickman Creek near East Hickman ..........................104,105 & Grapevine Creek near Phyllis ........................................... \(42-43\) \\
\hline East Hickman Creek Tributary near Lexington ..................102,103 & Graves County, ground-water levels ..................................... 441 \\
\hline Elkhorn City, Russell Fork at............................................. 429 & Grayson, Little Sandy River at......................................... 50-51 \\
\hline Elkhorn Creek near Frankfort .......................................228,229 & Green algae, definition of................................................... 28 \\
\hline Enterococcus bacteria, definition of.......................................... 23 & Green River, \\
\hline Explanation, of ground-water level records .........................19,20 & at lock 2, at Calhoun..............................................316,317 \\
\hline of precipitation quality records.................................... 20-22 & at Munfordville.....................................................304,305 \\
\hline of stage and water discharge records................................9-15 & at Paradise.............................................................314,315 \\
\hline of surface water-quality records ...................................... 15-19 & Green River Basin, \\
\hline Explanation of the records ............................................... 8-21 & gaging-station records in ......................................... 302-321 \\
\hline \multirow[t]{2}{*}{Extractable organic halides, definition of ................................ 25} & low-flow partial record................................................. 434 \\
\hline & Greenup, Ohio River at Greenup Dam near..........................52-58 \\
\hline Fecal-coliform bacteria, definition of .................................... 23 & Greenup, Tygarts Creek near ..........................................60-61 \\
\hline Fecal-streptococcal bacteria, definition of ............................... 23 & Ground-water levels \\
\hline Fern Creek, & by county ............................................................. \(4.41-452\) \\
\hline at Old Bardstown Road at Louisville .............................282,283 & explanation of ...............................................................19,20 \\
\hline Chenoweth Run at Gelhaus Lane near .........................260,261 & Ground-water, summary of hydrologic conditions ...................... 6 \\
\hline \multicolumn{2}{|l|}{Fisherville,} \\
\hline Floyds Fork at.........................................................256,257 & Hardness of water, definition of........................................... 26 \\
\hline
\end{tabular}

INDEX
\begin{tabular}{|c|c|}
\hline Page & Page \\
\hline Harlan, Cumberland River near .....................................364,365 & Levisa Fork, \\
\hline Harrods Creek Basin, gaging-station records in .................234,235 & at Paintsville ...........................................................48,49 \\
\hline Harrods Creek at Highway 329 near Goshen ....................234,235 & at Pikeville...............................................................44,45 \\
\hline Harrods Creek, Little Goose Creek near...........................238,239 & at Prestonsburg ................................................................ 429 \\
\hline Hazel Green, Red River near ...........................................94,95 & Lewisburg, North Fork Licking River near............................... 431 \\
\hline Heath, Bayou Creek near .................................................414,415 & Lexington, East Hickman Creek Tributary near ..................102,103 \\
\hline Heidelberg, Kentucky River at lock 14, at ...........................90,91 & Lexington, North Elkhorn Creek at Winchester Road ..........208,209 \\
\hline High Bridge, Kentucky River at lock 7 at .........................200,201 & Lexington, Wolf Run at Old Frankfort Pike at................... 220-223 \\
\hline High tide, definition of...................................................... 26 & Licking River, \\
\hline Hillsboro, Locust Creek near .............................................. 431 & \[
\begin{aligned}
& 73 \\
& 31
\end{aligned}
\] \\
\hline Hinkston Creek near Carlisle ................................................70,71 & North Fork, near Mount Olivet..............................................................68,69 \\
\hline Hinkston Creek near Little Rock ............................................. 432 & at Gordon Ford \(\qquad\) .429 \\
\hline Hinkston Creek near Sharpsburg ............................................ 431 & South Fork, at Cynthiana..................................................... 432 \\
\hline Howards Mill, Spencer Creek near ......................................... 430 & Licking River Basin, \\
\hline Hydrologic Bench-Mark Network ............................................... 6 & gaging-station records in ................................................ 64-73 \\
\hline definition of ..................................................................... 26 & low flow partial records..........................................429-432 \\
\hline Hydrologic conditions, summary of .......................................... 2-6 & Little Bayou Creek near Grahamville .............................418,419 \\
\hline Hydrologic unit, definition of .................................................. 26 & Little Goose Creek near Harrods Creek...........................238,239 \\
\hline & Little River near Cadiz................................................394,395 \\
\hline Instantaneous discharge, definition of................................... 25 & Little Rock, Hinkston Creek near ........................................ 432 \\
\hline Introduction..................................................................... 1 & \begin{tabular}{l}
Little Sandy River, \\
at Grayson.
\[
.50,51
\]
\end{tabular} \\
\hline Jackson, North Fork Kentucky River at ................................. 78-79 & Little Sandy River Basin, \\
\hline Jefferson County, ground-water levels...........................442-452 & gaging-station records in ............................................50,51 \\
\hline Jeffersontown, Chenoweth Run near Ruckriegal Pky......... 258-259 & Lockport, Kentucky River at lock 2, at..............................230,231 \\
\hline Johns Creek, & Locust Creek near Hillsboro ................................................ 431 \\
\hline near Meta.................................................................46,47 & Long Lick near Clermont....................................................268,269 \\
\hline Johnsonville, Beaver Creek near......................................... 433 & \begin{tabular}{l}
Louisville, \\
Brier Creek at Pendleton Road near. \(\qquad\) 290,291
\end{tabular} \\
\hline & Cedar Creek at Thixton Road near.............................262,263 \\
\hline Kentucky River, & Fern Creek at Old Bardstown Road at..........................282,283 \\
\hline at lock 2, at Lockport....................................................30,231 & Middle Fork Beargrass Creek at................................244,245 \\
\hline at lock 4, at Frankfort ..............................................204,205 & Ohio River at ........................................................246,247 \\
\hline at lock 6, near Salvisa ...................................................202,203 & Pennsylvania Run at Mount Washington Road near........264,265 \\
\hline at lock 7, at High Bridge .............................................200,201 & Pond Creek at Pendleton Road near ............................288,289 \\
\hline at lock 10, near Winchester ......................................... 98.99 & Pond Creek near ....................................................286,287 \\
\hline at lock 14, at Heidelberg............................................. 90.91 & South Fork Beargrass Creek at..................................240,241 \\
\hline Middle Fork, at Tallega .............................................82,83 & Winter Avenue, at ...............................................242,243 \\
\hline North Fork, at Jackson...............................................78,79 & Low tide, definition of............................................................ 26 \\
\hline North Fork at Whitesburg...........................................76,77 & Lynn Camp Creek at Corbin ...............................................376,377 \\
\hline South Fork, at Booneville...........................................88,89 & \\
\hline Kentucky River Basin, & Madisonville, Pond River near......................................320,321 \\
\hline gaging-station records in \(\qquad\) .76-233 & Manchester, Goose Creek at .............................................86,87 \\
\hline Kinniconick Creek at Tannery .........................................62,63 & Maps: \\
\hline \begin{tabular}{l}
Kinniconick Creek Basin, \\
gaging-station records in \(\qquad\) .62,63
\end{tabular} & \begin{tabular}{l}
location of gaging stations in Kentucky \(\qquad\) location of observation wells in downtown area in \\
Louisville \(\qquad\)
\end{tabular} \\
\hline Kyrock, Nolin River at......................................................308,309 & location of surface water-quality stations in Kentucky ............ 40 \\
\hline & Martins Fork, \\
\hline Lakes.
Martins Fork Lake at Martins Fork Dam near Smith...... 332-352 & Lake at Martins Fork Dam near Smith.................................................................................................354-362
near Smith............. \\
\hline Latitude-Longitude System...................................................... 9 & Massac Creek Basin, \\
\hline Laurel River, at Municipal Dam near Corbin .......................... 428 & gaging-station records in ........................................410,411 \\
\hline Levels, ground-water .....................................................441-452 & Massac Creek near Paducah.............................................410,411 \\
\hline
\end{tabular}
INDEX
Page
Maud, Beech Fork at ..... 270,271
Maud,Beech Fork near ..... 433
Mean concentration, definition of .....  .30
Mean discharge, definition of ..... 25
Mean high tide, definition of ..... 26
Mean low tide, definition of .....  .26
Mean water level, definition of ..... 26
Membrane filter, definition of ..... 26
Meta, Johns Creek near ..... 46,47
Metamorphic stage, definition of ..... 26
Methylene blue active substances, definition of ..... 26
Metropolis, Ill., Ohio River at ..... 412,413
Micrograms per gram, definition of ..... 26
Micrograms per liter, definition of .....  .26
Microsiemens per centimeter, definition of ..... 26
Middlesboro, Yellow Creek near ..... 366,367
Middletown
Midway, South Elkhorn Creek near ..... 226,227
Mill Creek near Cynthiana ..... 432
Mill Creek near Fort Knox ..... 278-281
Mill Creek near Preston ..... 430
Milligrams of carbon per area or volume per unit time ..... 29
Milligrams of oxygen per area or volume per unit time ..... 29
Milligrams per liter, definition of. .....  26
Miscellaneous discharge measurements ..... 435-438
Mocks Branch at Bluegrass Pike near Danville ..... 138-144
Mocks Branch at Highway 1915 near Danville ..... 146-163
Mocks Branch at Highway 127 near Danville ..... 164-181
Mocks Branch at Highway 1896 near Danville ..... 182-199
Monticello, Beaver Creek near ..... 392,393
Montrose, North Elkhorn Creek at Bryan Station Road ..... 210,211
Morehead, Triplett Creek at ..... 430
Morehead, North Fork Triplett Creek near ..... 430
Most probable number, definition of .....  .26
Mount Olivet, North Fork Licking River near ..... 68,69
Multiple plate samplers, definition of .....  .27
Munfordville, Green River at ..... 304,305
National Atmospheric Deposition Program/
National Trends Network ..... 6,7
definition of ..... 27
National Geodetic Vertical Datum of 1929, definition of .....  27
National stream-quality accounting
network, (NASQAN) .....  6
definition of ..... 27
National Water-Quality Assessment Network (NAWQA) ..... 7,8
definition of ..... 27
National trends network, definition of .....  27
New Harmony, Ind., Wabash River at ..... 322-327
New Hope, Pottinger Creek near ..... 432
Nolin River,
at Kyrock ..... 308,309
at White Mills ..... 306,307
North Elkhorn Creek,
at Bryan Station Road at Montrose ..... 210,211
at Bryant Road near Cadentown ..... 206,207
at Georgetown ..... 214,215
near Georgetown ..... 212,213
at Winchester Road at Lexington ..... 208,209
Northern Ditch at Okolona ..... 284,285
Numbering system for wells and miscellaneous sites .....  8
Ohio River, at Cannelton Dam ..... 294-301
at Greenup Dam. ..... 52-58
at lock and dam 53 near Grand Chain, Ill. ..... 420-425
at Louisville ..... 246,247
at Metropolis, Ill ..... 412,413
at Markland Dam near Warsaw ..... 74,75
at Smithland Dam ..... 330-331
Ohio River Main Stem,
gaging-station records i 52-58,74,75,246,247,294-301,
Olney, Tradewater River at ..... 328,329
Okolona,
Northern Ditch at. ..... 284,285
Order, downstream, of listing stations .....  8
Organism, definition of ..... 27
count/area ..... 27
count/volume ..... 27
organic mass ..... 24
Otter Creek Basin, gaging-station records in ..... 292,293
Otter Creek at Otter Creek Park near Rock Haven ..... 292,293
Owingsville, Slate Creek near. ..... 431
Paducah,
Massac Creek near ..... 410,411
Tennessee River at Highway 60 near ..... 402-407
Paintsville, Levisa Fork at ..... 48,49
Paradise, Green River at ..... 314,315
Parameter Code, definition of ..... 27
Paris, Stoner Creek at ..... 431
Partial-record station,
definition of ..... 28
discharge at ..... 428-438
Particle size, definition of ..... 28
Particle size classification, definition of .....  28
Particle size distribution, definition of ..... 28
Pewee Valley, Floyds Fork near ..... 254,255
Pennsylvania Run at Mt Washington Road near Louisville .264,265
Phyllis, Grapevine Creek near ..... 42,43
Phytoplankton, definition of ..... 28
Picocurie, definition of ..... 28
Pikeville, Levisa Fork at ..... \(.44,45\)
Pineville, Cumberland River at Pinestreet Bridge at ..... 368,369
Plankton, definition of ..... 28
Polychlorinated biphenyls, definition of . ..... 29
\begin{tabular}{|c|c|}
\hline Page & Page \\
\hline \begin{tabular}{l}
Pond Creek (tributary to Salt River), \\
at Pendleton Road near Louisville...................................................................................................... 287
near Louisville..........
\end{tabular} & Rock Lick Creek, above Unnamed tributary near Sharkey \(\qquad\) .64,65 at Highway 158 near Sharkey \(\qquad\) .66,67 \\
\hline Pond River near Apex ................................................318,319 & Rolling Fork, near Boston............................................274,275 \\
\hline Pond River near Madisonville.......................................320,321 & Rowan County, \\
\hline Poor Fork at Cumberland.............................................428,434 & chemical quality of precipitation, records in ..................253-255 \\
\hline Pottinger Creek near New Hope ......................................... 432 & Royal Springs at Georgetown .......................................216,217 \\
\hline Precipitation quality, records of ....................................453-455 & Runoff in inches, definition of ............................................. 29 \\
\hline Preston, Mill Creek near ....................................................... 430 & Russell Creek near Columbia...........................................302,303 \\
\hline Prestonsburg, Levisa Fork at.............................................. 429 & Russell Fork at Elkhorn City............................................. 429 \\
\hline Primary Productivity, definition of........................................ 29 & \\
\hline Publications of techniques of water resources investigations .. 34-38 & Salt Lick Creek at Salt Lick .................................................... 430 \\
\hline Quality of Water, Summary of Hydrologic Conditions ............... 2-6 & Salt River, \\
\hline Radiochemical Program, definition of .................................... 29 & Salt River Basin, \\
\hline Records of & gaging-station records in .......................................... 248-291 \\
\hline Data Table of daily mean values ...................................... 12 & low-flow partial-records .........................................432,433 \\
\hline Ground-Water Levels .............................................441-452 & Salvisa, Kentucky River at lock 6, near ............................202,203 \\
\hline Data Collection and Computation.................................. 19 & Salyersville, Burning Fork near ........................................... 429 \\
\hline Data Presentation .......................................................19,20 & Saxton, Clear Fork at ...................................................... 372,373 \\
\hline Precipitation Quality...................................... 20,21,453-455 & Sea level, definition of ...................................................... 29 \\
\hline On-site Measurements and Sample Collection...............20,21 & Sediment, definition of........................................................ 29 \\
\hline Data Presentation ........................................................ 21 & Sharpsburg, Hinkston Creek near ........................................ 431 \\
\hline Station Manuscript ....................................................11,12 & Sharkey, Rock Lick Creek \\
\hline Stage and Water Discharge .............................................. 9-15 & above unnamed tributary near .........................................64,65 \\
\hline Accuracy of the Records .............................................. 14 & at Highway 158 near...................................................66,67 \\
\hline Data Collection and Computation................................9,10 & Shepherdsville, Salt River at.........................................266,267 \\
\hline Data Presentation ..................................................... 10 & Sherburne, Flat Creek near ............................................... 431 \\
\hline Data Table of Daily Mean Values ................................. 12 & Slate Creek near Owingsville............................................ 431 \\
\hline Identifying Estimated Daily Discharge............................ 14 & Simpsonville, Bullskin Creek near .................................250,251 \\
\hline Other Records Available ................................................ 15 & Smith, \\
\hline Station Manuscript................................................11,12 & Martins Fork Lake at Martins Fork Dam near ............... 332-352 \\
\hline Statistics of Monthly Mean Data ................................... 12 & Martins Fork near .................................................. 354-362 \\
\hline Summary Statistics .................................................... 12-14 & Smithland Dam, Ohio River at.........................................330,331 \\
\hline Surface-Water Quality.............................................. 15-19 & Sodium-adsorption-ratio, definition of................................... 30 \\
\hline Arrangements of Records ........................................... 15 & Solute, definition of........................................................... 30 \\
\hline Change in National Trends Network Procedures............18,19 & South Elkhorn Creek at Fort Spring.....................................218,219 \\
\hline Classification of Records ............................................ 15 & near Midway ........................................................226,227 \\
\hline Data Presentation ...................................................17,18 & Spears Creek at Railroad Culvert near Danville ............ 110-127 \\
\hline Dissolved Trace-Element Concentrations......................... 18 & Spears Creek at Streamland Drive at Danville ............... 128-136 \\
\hline Laboratory Measurements .......................................... 17 & Special networks and programs ..........................................6-8 \\
\hline On-site Measurements and Sample Collection..............15,16 & Specific conductance, definition of........................................ 30 \\
\hline Remarks Codes .......................................................... 18 & Spencer Creek near Howards Mill....................................... 430 \\
\hline Sediment ................................................................ 16 & St. Matthews, Goose Creek near....................................236,237 \\
\hline Water Temperature ........................................................ 16 & Stage and water-discharge records, explanation of...................9-15 \\
\hline Recoverable from bottom material, definition of....................... 29 & Stage-discharge relation, definition of .................................... 30 \\
\hline Red Bird River near Big Creek ........................................84,85 & Station Identification Numbers .............................................. 8 \\
\hline Red River, & Stearns, South Fork Cumberland River near....................... 380-384 \\
\hline at Clay City..............................................................96,.97 & Streamflow, definition of..................................................... 30 \\
\hline near Hazel Green ......................................................94,95 & Stoner Creek at Paris........................................................ 431 \\
\hline Return period, definition of................................................. 29 & Sturgeon Creek, at Cressmont..........................................92,93 \\
\hline River mile as used herein, definition of .................................. 29 & Substrate, definition of...................................................... 31 \\
\hline Rockcastle River at Billows ...........................................378,379 & artificial, definition of...................................................... 31 \\
\hline Rock Haven, Otter Creek at Otter Creek Park near .............292,293 & natural, definition of ..................................................... 31 \\
\hline
\end{tabular}
INDEX
\begin{tabular}{|c|c|}
\hline Page & ge \\
\hline Surface area of a lake, definition of ...................................... 31 & USGS data, access to ...................................................21-22 \\
\hline Surface-water, summary of hydrologic conditions ..... & \\
\hline Surficial bed material, definition of ....................................... 31 & \multirow{3}{*}{Volatile Organic Compounds, definition of .............................. 33} \\
\hline Suspended, definition of...................................................... 31 & \\
\hline recoverable, definition of ................................................ 31 & \\
\hline Total, definition of............................................................ 31 & Wabash River Basin, \\
\hline Suspended-sediment, definition of........................................ 30 & \\
\hline concentration, definition of ............................................. 30 & \\
\hline discharge, definition of.................................................... 30 & Wabash River at New Harmony, Ind................................. 322-327 \\
\hline load, definition of ......................................................... 30 & Warsaw, Ohio River at Markland Dam near ......................... 74 \\
\hline mean concentration, definition of......................................... 30 & Water-quality records, \\
\hline Suspended total residue at 105 Deg. C concentration, definition of. \(\qquad\) & discontinued..............................................................464-472 \\
\hline Synoptic Studies Short-term Investigations, definition of ............ 31 & explanation of.......................................................... 15-19 \\
\hline System, Downstream Order .................................................. 8 & Water-resources investigations, \\
\hline Tallega, Middle Fork Kentucky River at.............................82,83 & Publications on techniques of..........................................34-38 \\
\hline Tannery, Kinniconick Creek at..........................................62,63 & Water year, definition of \\
\hline Taxonomy, definition of ...................................................... 32 & \multirow[t]{2}{*}{WDR, definition of.......................................................... 33} \\
\hline Taylorsville, Brashears Creek at ....................................252,253 & \\
\hline Tennessee River Basin, & Weighted average, definition of ................................................ 33 \\
\hline gaging-station records in .......................................... 402-409 & West Fork Drakes Creek near Franklin............................312,313 \\
\hline Tennessee River at Highway 60 near Paducah.................... 402-407 & West Hickman Creek near East Hickman.........................106,107 \\
\hline Time-weighted average, definition of ....................................... 32 & \multirow[b]{2}{*}{Wet mass, definition of ........................................................ 24} \\
\hline Tons per acre-foot, definition of............................................... 32 & \\
\hline Tons per day, definition of................................................. 32 & White Mills, Nolin River at................................................306,307 \\
\hline total, definition of.............................................................. 32 & Whitesburg, North Fork Kentucky River at .........................76,77 \\
\hline organism count, definition of .............................................. 27 & \multirow[t]{2}{*}{Williamsburg, Cumberland River at ...............................374,375} \\
\hline recoverable, definition of ................................................... 32 & \\
\hline total coliform bacteria \(\qquad\) & Wilson Creek, at Harrison Fork Road near Deatsville.........276,277 \\
\hline Total discharge, definition of ............................................... 32 & Winchester, Kentucky River at lock 10, near........................98,99 \\
\hline Total sediment discharge, definition of ...................................... 30 & \multirow[t]{2}{*}{Wolf Run at Old Frankfort Pike at Lexington..................... 220-223} \\
\hline Total sediment load or total load, definition of......................... 30 & \\
\hline Town Branch at Yarnallton ...........................................224,225 & Wooton, Cutshin Creek at..................................................80,81 \\
\hline Tradewater River at Olney ...........................................328,329 & WSP, definition of ................................................................... 33 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Tradewater River Basin, \\
gaging-station records in \(\qquad\) 328,329
\end{tabular}} \\
\hline Triplett Creek at Morehead ................................................ 430 & Yamacraw, South Fork Cumberland River at.................... 386-390 \\
\hline Triplette Creek, North Fork, near Morehead .......................... 430 & Yarnallton, Town Branch at ..............................................224,225 \\
\hline Tritium Network, definition of............................................. 33 & \multirow[t]{2}{*}{Yellow Creek near Middlesboro ....................................366,367} \\
\hline Tygarts Creek near Greenup ...........................................60,61 & \\
\hline \begin{tabular}{l}
Tygarts Creek Basin, \\
gaging-station records in
\end{tabular} & Zooplankton, definition of ....................................................... 28 \\
\hline
\end{tabular}
USGS data, access to ..... 21-22
Volatile Organic Compounds, definition of ..... 33
gaging-station records in ..... 322,327
Wabash River at New Harmony, Ind\(.74,75\)discontinued464-472Water-resources investigations,
Publications on techniques of ..... 34-38
33War yer denWeighted average, definition of33
West Fork Drakes Creek near Franklin ..... 312,313Wet mass, definition of24
White Mills, Nolin River at\(.76,77\)
Williamsburg, Cumberland River at ..... 374,375
wilson Creek, at Harrison Fork Road near Deatsville ..... 276,277Wolf Run at Old Frankfort Pike at Lexington220-223
Wooton, Cutshin Creek at ..... 80,81
WSP, definition of ..... 33
Yamacraw, South Fork Cumberland River at ..... 386-390
Yawalton, Town Branch at366,367
Zooplankton, definition of ..... 28```

