

Optimization Under Uncertainty Research at Sandia National Laboratories

Michael S. Eldred Optimization and Uncertainty Estimation Dept. August 31, 2005

http://endo.sandia.gov/DAKOTA

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Introduction

Uncertainties/variabilities must be properly modeled in order to quantify risk and design systems that are robust and reliable

We use a UQ-based approach to optimization under uncertainty

– Concern: do safety factors, multiple operating conditions, or local sensitivity metrics accurately convey the full nature of the uncertainty?

Uncertainty comes in different flavors:

- Aleatory/irreducible: inherent uncertainty/variability with sufficient data
 → probabilistic models
- Epistemic/reducible: uncertainty from lack of knowledge
 → nonprobabilistic models
 Harder problem

Optimization under uncertainty (OUU) methods encompass both:

- design for robustness (moment statistics: mean, variance)
- design for reliability (tail statistics: probability of failure) Harder problem

Introduction (cont.)

Focus is simulation-based engineering applications

- response mappings are nonlinear and implicit
- distinct from chance-constrained stochastic programming (often linear/explicit)

Standard NLP	:
Minimize Subject to	$f(d)$ $g_l \le g(d) \le g_u$ $h(d) = h_t$ $d_l \le d \le d_u$

Augment with statistics s_u (e.g., μ , σ , $z/\beta/p$) using a linear mapping:

Minimize $f(d) + Ws_u(d)$ Subject to $g_l \leq g(d) \leq g_u$ $h(d) = h_t$ $a_l \leq A_i s_u(d) \leq a_u$ $A_e s_u(d) = a_t$ $d_l \leq d \leq d_u$

Introduction

Foundations

- Uncertainty Quantification
 - Sampling methods
 - Reliability methods
 - Epistemic methods
- Surrogate-based optimization
- DAKOTA

OUU Algorithms

- Surrogate-based OUU methods: TR-SBOUU
 - Example: Robust capsule design for ICF
- Reliability-based Design Optimization (RBDO): bi-level, sequential, unilevel
 - Examples: computational benchmarks
- Intrusive OUU: SFE + SAND, Unilevel RBDO + SAND

Concluding Remarks

aboratories

Active UQ development (new, developing, planned).

- Sampling: LHS/MC, <u>QMC/CVT</u>, Bootstrap/Importance/Jackknife. Gunzburger collaboration.
- Reliability: MVFOSM, x/u AMV, x/u AMV+, FORM (RIA/PMA mappings), MVSOSM, x/u AMV², x/u AMV²+, TANA, SORM (RIA/PMA) Renaud/Mahadevan collaborations.
- SFE: Polynomial chaos expansions (quadrature/cubiture extensions).
 Ghanem/Walters collaborations.
- Metrics: Importance factors, partial correlations, main effects, and variance decomposition.
- Epistemic: 2nd-order probability, Dempster-Schafer, Bayesian.

Uncertainty applications: penetration, joint mechanics, abnormal environments, shock physics, ...

Sampling Capabilities

Motivations:

- Surrogates: Data fit, spanning ROM
- UQ

Types:

- Pseudo Monte Carlo: Latin Hypercube Sampling (LHS) is a stratified, structured sampling method that picks random samples from equal probability bins for all 1-D projections.
- Quasi Monte Carlo: deterministic sequences constructed to uniformly cover a unit hypercube with low discrepancy.

New

E.g., Halton, Hammersley, Sobol

 Centroidal Voronoi Tesselation (CVT): generates nearly uniform spacing over arbitrarily shaped parameter spaces; originally developed for "meshless" mechanics methods.

Associated Tools:

- Volumetric quality, Latinization
- Correlations, variance-based decomposition

UQ with Reliability Methods

Mean Value Method

Variations: MPP search alg., Linearizations, Integrations, Warm starting

Uncertainty Quantification (cont.) Reliability Index/Performance Measure

Cover range of accuracy vs. expense:

- Relative to FORM:
 - MV ~100x faster but only accurate near means
 - AMV ~10x faster but MPP not converged
 - AMV+ ~3x faster with full accuracy
- Broad foundation for OUU via RBDO

Given success w/ 1st-order UQ/RBDO approximations → 2nd-order reliability methods for UQ/RBDO

2nd-order local limit state approximations

• e.g., x-space AMV²+:

$$g(\mathbf{x}) \cong g(\mathbf{x}^*) + \nabla_x g(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^*)^T \nabla_x^2 g(\mathbf{x}^*) (\mathbf{x} - \mathbf{x}^*)$$

• Hessians may be full/FD/Quasi

Multipoint limit state approximations

• e.g., TPEA, TANA:

$$\begin{split} g(\mathbf{x}) &\cong g(\mathbf{x}_{2}) + \sum_{i=1}^{n} \frac{\partial g}{\partial x_{i}}(\mathbf{x}_{2}) \frac{x_{i,2}^{1-p_{i}}}{p_{i}} (x_{i}^{p_{i}} - x_{i,2}^{p_{i}}) + \frac{1}{2} \epsilon(\mathbf{x}) \sum_{i=1}^{n} (x_{i}^{p_{i}} - x_{i,2}^{p_{i}})^{2} \\ p_{i} &= 1 + \ln \left[\frac{\partial g}{\partial x_{i}}(\mathbf{x}_{1}) \\ \frac{\partial g}{\partial x_{i}}(\mathbf{x}_{2}) \right] \Big/ \ln \left[\frac{x_{i,1}}{x_{i,2}} \right] \\ \epsilon(\mathbf{x}) &= \frac{H}{\sum_{i=1}^{n} (x_{i}^{p_{i}} - x_{i,1}^{p_{i}})^{2} + \sum_{i=1}^{n} (x_{i}^{p_{i}} - x_{i,2}^{p_{i}})^{2}} \\ H &= 2 \left[g(\mathbf{x}_{1}) - g(\mathbf{x}_{2}) - \sum_{i=1}^{n} \frac{\partial g}{\partial x_{i}}(\mathbf{x}_{2}) \frac{x_{i,2}^{1-p_{i}}}{p_{i}} (x_{i,1}^{p_{i}} - x_{i,2}^{p_{i}}) \right] \end{split}$$

2nd-order integrations

(accounts for curvature in limit state):

$$p = \Phi(-\beta) \prod_{i=1}^{n-1} \frac{1}{\sqrt{1+\beta\kappa_i}} \quad \text{Also, AIS, } \dots$$

curvature correction

More accurate probability estimates More rapid convergence Best performer to date: • AMV²+ with SR1 Hessian updates

Epistemic UQ

Second-order probability

- Two levels: distributions/intervals on distribution parameters
- New Outer level can be epistemic (e.g., interval)
 - Inner level can be aleatory (probability distrs)
 - Strong regulatory history (NRC, WIPP).

Dempster-Schafer theory of evidence

- Basic probability assignment (interval-based)
- Solve opt. problems (currently sampling-based)

In to compute belief/plausibility for output intervals progress

0.2 0.0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1**0**% Source 1 + 10% 70% 20% Source 2 33% 33% Source 3

Optimization with Surrogate Models

Purpose:

- Reduce the number of expensive, high-fidelity simulations by using a succession of approximate (surrogate) models
- Approximations generally have a limited range of validity
- Trust regions adaptively manage this range based on efficacy during opt
- With trust region globalization and local 1st-order consistency, SBO algorithms are *provably-convergent*

Surrogate models of interest:

- <u>Data fits</u>
- <u>Multifidelity</u> (special case: <u>multigrid</u> optimization)
- <u>Reduced-order models</u>

Future connections to *multi-scale* for managing approximated scales

Trust-Region Surrogate-Based Optimization

...******

Multifidelity

Data fit surrogates:

- Global: polynomial regress., splines, neural net, kriging, radial basis fn
- Local: 1st/2nd-order Taylor
- Multipoint: TANA, ...

Data fits in SBO

- Smoothing: extract global trend
- DACE: number of des. vars. limited
- Local consistency must be balanced with global accuracy

Multifidelity surrogates:

 Coarser discretizations, looser conv. tols., reduced element order

Δ

• Omitted physics: e.g., Euler CFD, panel methods

Multifidelity SBO

Ð

- 1

 \rightarrow

- 1

-2

- HF evals scale better w/ des. vars.
- Requires smooth LF model
- Design vector maps may be reqd.
- Correction quality is crucial

ROM surrogates:

- 1

UUUUU

-2

.2

2

• Spectral decomposition (str. dynamics)

0

ROM

New area

- POD/PCA w/ SVD (CFD, image analysis)
- KL/PCE (random fields, stoch. proc.)
- RBGen/Anasazi

ROMs in SBO

- Key issue: capture parameter changes
 - Extended ROM, Spann

Laboratories

Shares features of data fit

DAKOTA Framework

Optimization Under Uncertainty

OUU techniques categorized based on UQ approach:

- Sampling-based (noise-tolerant opt.; design for robustness)
- FY03 TR-SBOUU: trust region surrogate-based
 - Nongradient-based (Trosset)
 - Robust design of experiments (Taguchi)
 - Reliability-based (exploit structure; design for reliability)
- FY04 Bi-level RBDO (nested)
- FY05 Sequential RBDO (iterative)
 - Unilevel RBDO (all at once)
 - Stochastic finite element-based (multiphysics)
- Exploit PCE coeffs & random process structure
 - Leverage SBO with deterministic ROMs
 - Epistemic uncertainty
 - Evidence theory-based (Agarwal)
 - Bayesian inference: model calibration under uncertainty
 - 2nd-order probability: 3-level SBOUU?
 - Intrusive OUU (all at once approaches)
 - SFE + SAND: intrusive PCE variant amenable to SAND
 - Unilevel RBDO + SAND

Augment NLP with statistics $s_u (\mu, \sigma, p/\beta/z)$ using a linear mapping: Minimize $f(d) + Ws_u(d)$ Subject to $g_1 \le g(d) \le g_u$ $h(d) = h_t$ $a_1 \le A_i s_u(d) \le a_u$ $A_e s_u(d) = a_t$ $d_1 \le d \le d_u$

SBOUU Formulations

For surrogate-based OUU, the surrogate can appear

- at the optimization level (fit S(d))
- at the UQ level (fit R(d, u))
- at both levels (fit S(d) and R(d, u))

Surrogate can be

- local/global/multipoint data fit (either level)
- model hierarchy approximation (UQ level only)

SBOUU with two surrogate levels:

Optimization under Uncertainty with Surrogates

Nested model: internal iterators/models execute a complete iterative study as part of every evaluation.

Surrogate model: internal iterators/models used for periodic update and verification of data fit (global/local/multipoint) or hierarchical (variable fidelity) surrogates.

Nested/Surrogate models can recurse

Formulation 1: Nested

Formulation 2: Surrogate containing Nested

Formulation 3: Nested containing Surrogate

Formulation 4: Surrogate containing Nested containing Surrogate

Formulations 2 & 4 amenable to trust-region approaches

Goals: maintain quality of results, provable convergence (for a selected confidence level)

TR-SBOUU Results

- Direct nested OUU is expensive and requires seed reuse
- SBOUU expense much lower (up to 100x), but unreliable.
- TR-SBOUU maintains quality of results and reduces expense ~10x
 - Ex. 1: formulation 4 with TR 5-7x less expensive than direct nesting
 - Ex. 2: formulation 4 with TR 8-12x less expensive than direct nesting
 - ICF Ex.: formulations 2/4 with TR locate vicinity of a min in a single cycle
- Additional benefits:
 - Navigation of nonsmooth engineering problems
 - Less sensitive to seed reuse: variable patterns OK and often helpful, possibility of exploitation reduced
 - Less sensitive to starting point: data fit SBO provides some global ident.

Minimize $f + p_{fail_r1} + p_{fail_r3}$ Subject to $g_i \le 0$, for i = 1,2,3 $\mu_{r2} + 3\sigma_{r2} \le 1.6e5$

Conference papers at AIAA MA&O, SIAM CS&E, USNCCM: Eldred, M.S., Giunta, A.A., Wojtkiewicz, S.F., Jr., and Trucano, T.G., "Formulations for Surrogate-Based Optimization Under Uncertainty."

Robust Hohlraum Design for Inertial Confinement Fusion

Uncertainties in: plasma, drive, and capsule characteristics

ICF Capsule Design – 1D Param Study

Design goal: maximize the implosion velocity w.r.t. ablator radius r and fuel density ρ , but remain robust w.r.t. manufacturing variability

ICF Capsule Design 2D Optimization

Sandia National

aboratories

• TR-SBOUU finds solution vicinity in a single cycle, effectively stepping over nonmoothness in V(r), $\sigma_V(r)$

(objective/constraint are multimodal \rightarrow min dependent on initial TR)

• Less sensitive to seed reuse and starting point

Trust Region Surrogate-Based Optimization under Uncertainty (TR-SBOUU)

Sequence of trust regions

From SBO to SBOUU:

SBO is provably convergent with TR globalization

- (at least) 1st order consistency with correction
- verification of approx. steps

Extensions to SBOUU

- 1st order consistency, assuming a worthwhile stoch. gradient
- verification of stats. in relative sense. Three levels of verification rigor:
 - Least: nominal statistics.
 - Most: ordinal opt. (Chen/Romero) → nonoverlap confidence bounds on every step ("provable" convergence for a selected confidence level).

 Affordable compromise: stochastic approximation (Igusa) → probability of erroneous TR steps is decreased in proportion to iteration count.

RBDO Algorithms

Bi-level RBDO

- Constrain RIA $z \rightarrow p/\beta$ result
- Constrain PMA $p/\beta \rightarrow z$ result

Fully analytic Bi-level RBDO

 Analytic reliability sensitivities avoid numerical differencing at design level

$$\begin{array}{cccc} {\rm RIA} \\ {\rm RBDO} \end{array} \left\{ \begin{array}{cccc} {\rm minimize} & f \\ {\rm subject \ to} & \beta \geq \bar{\beta} \\ {\rm or} & p \leq \bar{p} \end{array} \right. \quad \begin{array}{cccc} {\rm PMA} \\ {\rm RBDO} \end{array} \left\{ \begin{array}{ccc} {\rm minimize} & f \\ {\rm subject \ to} & z \geq \bar{z} \end{array} \right. \end{array} \right.$$

$$\nabla_{d} z = \nabla_{d} G$$

$$\nabla_{d} \beta_{cdf} = \frac{1}{\|\nabla_{u} G\|_{2}} \nabla_{d} G$$

$$\nabla_{d} p_{cdf} = -\phi(-\beta_{cdf}) \nabla_{d} \beta_{cdf}$$

Sequential/Surrogate-based RBDO:

• Break nesting: iterate between opt & UQ until target is met. TR-SB linkage is non-heuristic.

 $\begin{array}{ll} \text{minimize} & f(\mathbf{d}_0) + \nabla_d f(\mathbf{d}_0)^T (\mathbf{d} - \mathbf{d}_0) \\ \text{subject to} & \beta(\mathbf{d}_0) + \nabla_d \beta(\mathbf{d}_0)^T (\mathbf{d} - \mathbf{d}_0) \ge \bar{\beta} \\ & \| \mathbf{d} - \mathbf{d}_0 \|_{\infty} \le \Delta^k \end{array} \right) \quad 1^{\text{st order}}$

Unilevel RBDO:

- All at once: apply KKT conditions of MPP search as equality constraints
 - Opt. increases in scale (*d*, *u*)
 - Requires 2nd-order info for derivatives of 1st-order KKT

$$\begin{array}{c} \min_{\mathbf{d}_{aug}=(\mathbf{d},\mathbf{u}_{1},..,\mathbf{u}_{N_{hard}})} : f(\mathbf{d},\mathbf{p},\mathbf{y}(\mathbf{d},\mathbf{p})) \\ \text{s. t.} : G_{i}^{R}(\mathbf{u}_{i},\eta) = 0 \\ \beta_{allowed} - \beta_{i} \geq 0 \\ \|\mathbf{u}_{i}\| \| \nabla_{\mathbf{u}}G_{i}^{R}(\mathbf{u}_{i},\eta)\| + \mathbf{u}_{i}^{T} \nabla_{\mathbf{u}}G_{i}^{R}(\mathbf{u}_{i},\eta) = 0 \\ \beta_{i} = \||\mathbf{u}_{i}\| \\ \mathbf{d}^{l} \leq \mathbf{d} \leq \mathbf{d}^{u} \end{array} \right) \begin{array}{c} \mathsf{KKT} \\ \mathsf{of MPP} \\ \beta_{i} = \|\mathbf{u}_{i}\| \\ \mathsf{d}^{l} \leq \mathbf{d} \leq \mathbf{d}^{u} \end{array}$$

RBDO Results

 $\frac{\text{Short Column}}{\min bh}$ s.t. $\beta \ge 2.5$

$$g(\mathbf{x}) = 1 - \frac{4M}{bh^2Y} - \frac{P^2}{b^2h^2Y^2}$$

Kuschel & Rackwitz, 1997

P = N(500, 100)	$\rho_{P.M} = 0.5$
M = N(2000, 400)	$b_{nom} = 5$
Y = LogN(5, 0.5)	$h_{nom} = 15$

р	i-level RBDO		
В	I-level RDDO		
RBDO	Function Evals	Objective	Constraint
Approach	(Cold/Warm Start)	Function	Violation
RIA $z \to p \text{ MV}$	50	197.8	0.01913
RIA $z \rightarrow p$ x-space AMV	150	197.5	0.01962
RIA $z \rightarrow p$ u-space AMV	147	198.9	0.01721
RIA $z \rightarrow p$ x-space AMV+	370/354	217.1	0.0
RIA $z \rightarrow p$ u-space AMV+	400/371	217.1	0.0
RIA $z \rightarrow p$ FORM	1877/1781	217.1	0.0
RIA $z \rightarrow \beta$ MV	16	197.7	0.5475
RIA $z \rightarrow \beta$ x-space AMV	48	197.4	0.5559
RIA $z \rightarrow \beta$ u-space AMV	48	198.2	0.5326
RIA $z \rightarrow \beta$ x-space AMV+	195/185	216.7	0.0
RIA $z \rightarrow \beta$ u-space AMV+	211/193	216.7	0.0
RIA $z \rightarrow \beta$ FORM	916/1088	216.7	0.0
PMA $p, \beta \rightarrow z$ MV	35	197.7	0.1547
PMA $p, \beta \rightarrow z$ x-space AMV	124	214.8	0.01367
PMA $p, \beta \rightarrow z$ u-space AMV	124	215.6	0.008390
PMA $p,\beta \rightarrow z$ x-space AMV+	268/212	216.8	0.0
PMA $p, \beta \rightarrow z$ u-space AMV+	328/214	216.8	0.0
PMA $p,\beta \rightarrow z$ FORM	1567/707	216.8	0.0

Analyt	tic bi-level RBD(C	
RBDO	Function Evals	Objective	Constraint
Approach	(Cold/Warm Start)	Function	Violation
RIA $z \rightarrow p$ x-space AMV+	161/149	217.1	0.0
RIA $z \rightarrow p$ u-space AMV+	171/160	217.1	0.0
RIA $z \to p$ FORM	865/911	217.1	0.0
RIA $z \rightarrow \beta$ x-space AMV+	76/72	216.7	0.0
RIA $z \rightarrow \beta$ u-space AMV+	82/76	216.7	0.0
RIA $z \rightarrow \beta$ FORM	538/612	216.7	0.0
PMA $p, \beta \rightarrow z$ x-space AMV+	105/100	216.8	0.0
PMA $p, \beta \rightarrow z$ u-space AMV+	125/102	216.8	0.0
PMA $p,\beta \rightarrow z$ FORM	508/285	216.8	0.0

Surrogate-based RBDO					
RBDO	Function Evals	Objective	Constraint		
Approach	(Cold/Warm Start)	Function	Violation		
RIA $z \rightarrow p$ x-space AMV+	77/75	216.9	0.0		
RIA $z \rightarrow p$ u-space AMV+	82/81	216.9	0.0		
RIA $z \to p$ FORM	573/577	216.9	0.0		
RIA $z \rightarrow \beta$ x-space AMV+	67/65	216.7	0.0		
RIA $z \rightarrow \beta$ u-space AMV+	72/72	216.7	0.0		
RIA $z \rightarrow \beta$ FORM	508/561	216.7	0.0		
PMA $p, \beta \rightarrow z$ x-space AMV+	79/76	216.7	2.1e-4		
PMA $p, \beta \rightarrow z$ u-space AMV+	87/79	216.7	2.1e-4		
PMA $p, \beta \rightarrow z$ FORM	333/228	216.7	2.1e-4		

RBDO Results

Cantilever

$stress = \frac{600}{2}Y + \frac{600}{2}X \le R$

Limit state eqns (unnormalized):

$$displacement = \frac{4L^3}{Ewt} \sqrt{\left(\frac{Y}{t^2}\right)^2 + \left(\frac{X}{w^2}\right)^2} \le D_0$$

- wu et al., 2001
- 2 design vars: w, t
- 4 uncorr. normal uncertain vars: E, R, X, Y

Bi-level RBDO

Analytic bi-level RBDO

RBDO Approach	Function Evals	Objective Eurotian	Constraint
RIA $z \rightarrow p$ x-/u-space AMV+	279/319	9.529	1.1e-5
RIA $z \to p$ FORM	623/531	9.563	0.0
RIA $z \rightarrow \beta$ x-/u-space AMV+	207/208	9.520	0.0
$\frac{PMA \ p, \beta \rightarrow z \ x-/u-space \ AMV+}{PMA \ p, \beta \rightarrow z \ x-/u-space \ AMV+}$	247/232	9.520	0.0
PMA $p, \beta \rightarrow z$ FORM	1408/843	9.521	0.0

285	11.37	0.0			
597/624	9.563	0.0	Su	rrogate based RB	DO
1522/1111	9.563	0.0	Du.	nogate-based nd	DU
44	9.392	0.2958	RBDO	Function Evals	Objective
132	9.392	0.2958	Approach	(Cold/Warm Start)	Function
540/493	9.520	0.0	RIA $z \rightarrow p$ x-/u-space AMV+	197/186	9.520
1082/865	9.520	0.0	RIA $z \to p$ FORM	342/457	9.520
53	9.393	0.03216	RIA $z \rightarrow \beta$ x-/u-space AMV+	189/203	9.520
159	9.504	0.003602	RIA $z \rightarrow \beta$ FORM	372/442	9.520
547/428	9.521	0.0	PMA $p, \beta \rightarrow z$ x-/u-space AMV+	181/181	9.520
3631/1148	9.521	0.0	PMA $p, \beta \rightarrow z$ FORM	759/487	9.520

Constraint

Violation

1.0e-9

1.0e-9

9.5e-5

9.5e-5

2.7e-9

2.7e-9

RBDO	Function Evals	Objective	Constraint
Approach	(Cold/Warm Start)	Function	Violation
RIA $z \to p \text{ MV}$	95	11.37	0.0
RIA $z \rightarrow p$ x-/u-space AMV	285	11.37	0.0
RIA $z \rightarrow p$ x-/u-space AMV+	597/624	9.563	0.0
RIA $z \to p$ FORM	1522/1111	9.563	0.0
RIA $z \rightarrow \beta$ MV	44	9.392	0.2958
RIA $z \rightarrow \beta$ x-/u-space AMV	132	9.392	0.2958
RIA $z \rightarrow \beta$ x-/u-space AMV+	540/493	9.520	0.0
RIA $z \rightarrow \beta$ FORM	1082/865	9.520	0.0
PMA $p, \beta \rightarrow z$ MV	53	9.393	0.03216
PMA $p, \beta \rightarrow z$ x-/u-space AMV	159	9.504	0.003602
PMA $p, \beta \rightarrow z$ x-/u-space AMV+	547/428	9.521	0.0
PMA $p, \beta \rightarrow z$ FORM	3631/1148	9.521	0.0

OUU Progress To Date

- 2003: Surrogate-based OUU with sampling methods
- 2004: Bi-level RBDO with numerical reliability gradients
- 2005: Fully analytic bi-level RBDO Sequential/surrogate-based RBDO (1st-order)

Intrusive OUU: DAKOTA/MOOCHO w/ SIERRA/NEVADA

Next-generation multi-physics simulation architectures:

- SIERRA: mechanics framework ("S. DAKOTA")
- NEVADA: physics framework ("N. DAKOTA")

Architecture extensions underway for:

- Opt.: SAND optimization (MOOCHO)
- UQ: (intrusive) stochastic finite elements
- Other: Stability analysis (LOCA), Nonlinear equations (NOX), Fully-coupled MDA

Impact:

Conclusions

OUU Aspects:

- UQ-based
- Aleatory and Epistemic uncertainties
- Design for Robustness and Reliability
- Nonlinear, implicit, large-scale, expensive simulations

OUU Algorithms:

- SBOUU
 - Good: trustworthy UQ, TR-SBOUU ~10x better than brute force w/ additional benefits (nonsmooth navigation/limited global ID/seed insensitivity)
 - Bad: low probability events/reliability constraints difficult to resolve efficiently
 - Ugly: multiple surrogates lead to complex input specifications
- RBDO
 - Good: efficient for well-behaved problems, handles low prob. events, industry workhorse
 - Bad: UQ not trustworthy for nonsmooth/highly nonlinear problems or multiple failure pts.
 - Ugly: high-consequence apps? (some communities possibly over-subscribed to this approach)
- Intrusive OUU
 - Good: next level of performance
 - Bad: requires simulation code intrusion (few sites w/ in-house sim code development)

Sandia National

aboratories

- Ugly: level of effort is extensive for general support of production-scale apps.