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Introduction
Uncertainties/variabilities must be properly modeled in order to 
quantify risk and design systems that are robust and reliable

We use a UQ-based approach to optimization under uncertainty
– Concern: do safety factors, multiple operating conditions, or local 

sensitivity metrics accurately convey the full nature of the uncertainty?

Uncertainty comes in different flavors:
– Aleatory/irreducible: inherent uncertainty/variability with sufficient data

probabilistic models
– Epistemic/reducible: uncertainty from lack of knowledge

nonprobabilistic models

Optimization under uncertainty (OUU) methods encompass both:
– design for robustness (moment statistics: mean, variance)
– design for reliability (tail statistics: probability of failure)

Harder problem

Harder problem



Focus is simulation-based engineering applications
– response mappings are nonlinear and implicit
– distinct from chance-constrained stochastic programming

(often linear/explicit)

Introduction (cont.)

Standard NLP:
Minimize f(d)
Subject to gl ≤ g(d) ≤ gu

h(d) = ht
dl ≤ d ≤ du

Augment with statistics su
(e.g., μ, σ, z/β/p) using a linear mapping:

Minimize f(d) + Wsu(d)
Subject to gl ≤ g(d) ≤ gu

h(d) = ht
al ≤ Aisu(d) ≤ au
Aesu(d) = at
dl ≤ d ≤ du



Introduction

Foundations

• Uncertainty Quantification

– Sampling methods

– Reliability methods

– Epistemic methods

• Surrogate-based optimization

• DAKOTA

OUU Algorithms

• Surrogate-based OUU methods: TR-SBOUU

– Example: Robust capsule design for ICF

• Reliability-based Design Optimization (RBDO): bi-level, sequential, unilevel

– Examples: computational benchmarks

• Intrusive OUU: SFE + SAND, Unilevel RBDO + SAND

Concluding Remarks

Outline



Uncertainty Quantification
Active UQ development (new, developing, planned).

– Sampling: LHS/MC, QMC/CVT, Bootstrap/Importance/Jackknife.
Gunzburger collaboration.

– Reliability: MVFOSM, x/u AMV, x/u AMV+, FORM (RIA/PMA mappings),
MVSOSM, x/u AMV2, x/u AMV2+, TANA, SORM (RIA/PMA)
Renaud/Mahadevan collaborations.

– SFE: Polynomial chaos expansions (quadrature/cubiture extensions). 
Ghanem/Walters collaborations.

– Metrics: Importance factors, partial correlations, main effects, and 
variance decomposition.

– Epistemic: 2nd-order probability, Dempster-Schafer, Bayesian.

d

Uncertainty applications: penetration, joint mechanics, abnormal environments, shock physics, …

LHS/MC

UQ

SFEReliability

DSTE



Motivations:
– Surrogates: Data fit, spanning ROM
– UQ

Types:
– Pseudo Monte Carlo: Latin Hypercube Sampling 

(LHS) is a stratified, structured sampling method 
that picks random samples from equal probability 
bins for all 1-D projections. 

– Quasi Monte Carlo: deterministic sequences 
constructed to uniformly cover a unit hypercube 
with low discrepancy. 
E.g., Halton, Hammersley, Sobol

– Centroidal Voronoi Tesselation (CVT): generates 
nearly uniform spacing over arbitrarily shaped 
parameter spaces; originally developed for 
“meshless” mechanics methods.

Associated Tools: 
– Volumetric quality, Latinization
– Correlations, variance-based decomposition

100 CVT Samples in 2-D
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UQ with Reliability Methods
Mean Value Method

Frequently 
used by SNL 
analysts

Reliability Index 
Approach (RIA)

Performance Measure
Approach (PMA)

Find min dist to G level curve
Better for z p/β

Find min G at β radius
Better for p/β zG(u)

MPP search methods

Variations: MPP search alg., Linearizations, Integrations, Warm starting



Uncertainty Quantification (cont.)
Reliability Index/Performance Measure

RIA PMA

Cover range of
accuracy vs. expense:
• Relative to FORM:

• MV ~100x faster but 
only accurate near 
means

• AMV ~10x faster but 
MPP not converged

• AMV+ ~3x faster
with full accuracy

• Broad foundation for 
OUU via RBDO

RIA PMA

Lognormal ratio

Short column



Given success w/ 1st-order UQ/RBDO approximations
2nd-order reliability methods for UQ/RBDO

2nd-order local limit state approximations
• e.g., x-space AMV2+:

• Hessians may be full/FD/Quasi

G(u)

Failure
region

2nd-order integrations
(accounts for curvature in limit state):

curvature correction

Also, AIS, …

Multipoint limit state approximations
• e.g., TPEA, TANA:

More accurate probability estimates

More rapid convergence

Best performer to date:

• AMV2+ with SR1 Hessian updates



Epistemic UQ

Second-order probability
– Two levels: distributions/intervals on 

distribution parameters
– Outer level can be epistemic (e.g., interval)
– Inner level can be aleatory (probability distrs)
– Strong regulatory history (NRC, WIPP).

Dempster-Schafer theory of evidence
– Basic probability assignment (interval-based)
– Solve opt. problems (currently sampling-based)

to compute belief/plausibility for output intervals

New

In
progress



Optimization with Surrogate Models

Purpose:
• Reduce the number of expensive, high-fidelity simulations by 

using a succession of approximate (surrogate) models
• Approximations generally have a limited range of validity
• Trust regions adaptively manage this range based on efficacy during opt
• With trust region globalization and local 1st-order consistency,

SBO algorithms are provably-convergent

Surrogate models of interest:
• Data fits
• Multifidelity (special case: multigrid optimization)
• Reduced-order models

Future connections to multi-scale for managing approximated scales



Trust-Region 
Surrogate-Based Optimization

Data Fit

Data fit surrogates:
• Global: polynomial regress., splines, 

neural net, kriging, radial basis fn

• Local: 1st/2nd-order Taylor

• Multipoint: TANA, …

Data fits in SBO
• Smoothing: extract global trend

• DACE: number of des. vars. limited

• Local consistency must be balanced 
with global accuracy

Multifidelity surrogates:
• Coarser discretizations, looser 

conv. tols., reduced element order

• Omitted physics: e.g., Euler CFD, 
panel methods

Multifidelity SBO
• HF evals scale better w/ des. vars.

• Requires smooth LF model

• Design vector maps may be reqd.

• Correction quality is crucial

Multifidelity

ROM surrogates:
• Spectral decomposition (str. dynamics)

• POD/PCA w/ SVD (CFD, image 
analysis)

• KL/PCE (random fields, stoch. proc.)

• RBGen/Anasazi

ROMs in SBO
• Key issue: capture parameter changes

– Extended ROM, Spanning ROM

• Shares features of data fit 
d l ifid li

New area

ROM



Iterator

Model 

Strategy: control of multiple iterators and models

Iterator

Model 

Iterator

Model 

Coordination:
Nested
Layered
Cascaded
Concurrent
Adaptive/Interactive

Parallelism:
Asynchronous local
Message passing
Hybrid
4 nested levels with

Master-slave/dynamic
Peer/static

DAKOTA Framework

Parameters

Model:

Design
continuous
discrete

Uncertain
normal/logn
uniform/logu

histogram
State

continuous
discrete

Application
system call
fork
direct
grid

Approximation
polynomial
neural network
splines

Functions
objectives
constraints
least sq. terms
generic

kriging

EV I, II, III

Taylor series
hierarchical

ResponsesInterfaceParameters

Hybrid

SurrBased
OptUnderUnc

Branch&Bound/PICO

Strategy

Optimization Uncertainty

2ndOrderProb

UncOfOptima

LHS/MC

Iterator

Optimizer
ParamStudy

COLINYNPSOLDOT OPT++

LeastSqDoE
GN

Vector

Center MultiD

List

DDACE

CCD/BB

UQ

SFEMReliability

DSTE

MOOCHO

Pareto/MStart

CONMIN

NLSSOL

NL2SOL
QMC

beta/gamma
triangular Gradients

numerical
analytic

Hessians
numerical
analytic
quasi



OUU techniques categorized based on UQ approach:
– Sampling-based (noise-tolerant opt.; design for robustness)

• TR-SBOUU: trust region surrogate-based
• Nongradient-based (Trosset)
• Robust design of experiments (Taguchi)

– Reliability-based (exploit structure; design for reliability)
• Bi-level RBDO (nested)
• Sequential RBDO (iterative)
• Unilevel RBDO (all at once)

– Stochastic finite element-based (multiphysics)
• Exploit PCE coeffs & random process structure
• Leverage SBO with deterministic ROMs

– Epistemic uncertainty
• Evidence theory-based (Agarwal)
• Bayesian inference: model calibration under uncertainty
• 2nd-order probability: 3-level SBOUU?

– Intrusive OUU (all at once approaches)
• SFE + SAND: intrusive PCE variant amenable to SAND
• Unilevel RBDO + SAND

Opt 

UQ 

{d} {Su}
Data Fit

{d} {Su}

Sim

{u} {Ru}
Data Fit/Hier
{d} {Ru}{u}

Optimization Under Uncertainty

Augment NLP with 
statistics su (μ, σ, p/β/z) 
using a linear mapping:

Minimize f(d) + Wsu(d)
Subject to gl ≤ g(d) ≤ gu

h(d) = ht
al ≤ Aisu(d) ≤ au
Aesu(d) = at
dl ≤ d ≤ du

FY03

FY04
FY05

FY06



SBOUU Formulations
For surrogate-based OUU, the surrogate can appear

– at the optimization level (fit S(d))
– at the UQ level (fit R(d, u))
– at both levels (fit S(d) and R(d, u))

Surrogate can be
– local/global/multipoint data fit (either level)
– model hierarchy approximation (UQ level only)

Opt 

UQ 

Sim 

{d} {Su}

{u} {Ru}

Simple Nested OUU: Opt 

UQ 

{d} {Su}
Data Fit

{d} {Su}

Sim

{u} {Ru}
Data Fit/Hier
{d} {Ru}
{u}

SBOUU with two surrogate levels:



Optimization under Uncertainty 
with Surrogates

Opt 

UQ 

Sim 

{d} {Su}

{u} {Ru}

Opt 

UQ 

Sim

{d} {Su}

{u} {Ru}

Data Fit

{d} {Su}

Opt 

UQ 

{d} {Su}
Data Fit

{d} {Su}

Sim

{u} {Ru}
Data Fit/Hier
{d} {Ru}
{u}

Opt 

UQ 

Sim

{d} {Su}

{u} {Ru}
Data Fit/Hier
{d} {Ru}
{u}

Formulations 2 & 4 amenable to trust-region approaches
Goals: maintain quality of results, provable convergence (for a selected confidence level)

DakotaModel

Single Layered Nested

Data Fit Hierarchical

Nested model: internal iterators/models 
execute a complete iterative study as 
part of every evaluation.

Surrogate model: internal 
iterators/models used for periodic 
update and verification of data fit 
(global/local/multipoint) or hierarchical 
(variable fidelity) surrogates.

Nested/Surrogate models can recurse

Formulation 1: Nested

Formulation 2: Surrogate 
containing Nested

Formulation 3: Nested 
containing Surrogate

Formulation 4: Surrogate 
containing Nested 

containing Surrogate



TR-SBOUU Results
• Direct nested OUU is expensive and requires seed reuse
• SBOUU expense much lower (up to 100x), but unreliable.
• TR-SBOUU maintains quality of results and reduces expense ~10x

– Ex. 1: formulation 4 with TR 5-7x less expensive than direct nesting
– Ex. 2: formulation 4 with TR 8-12x less expensive than direct nesting
– ICF Ex.: formulations 2/4 with TR locate vicinity of a min in a single cycle

• Additional benefits:
– Navigation of nonsmooth engineering problems
– Less sensitive to seed reuse: variable patterns OK and often helpful,

possibility of exploitation reduced
– Less sensitive to starting point: data fit SBO provides some global ident.

L = 100”

w
t

X

Y
Minimize f + pfail_r1 + pfail_r3

Subject to gi ≤ 0, for i = 1,2,3
μr2 + 3σr2 ≤ 1.6e5

Conference papers at AIAA MA&O, SIAM CS&E, USNCCM:
Eldred, M.S., Giunta, A.A., Wojtkiewicz, S.F., Jr., and Trucano, T.G., "Formulations for 
Surrogate-Based Optimization Under Uncertainty."



Robust Hohlraum Design for
Inertial Confinement Fusion

r

Z

Capsule

Wire initiation 
creates a “high 
Z” dense plasma 

3D ALEGRA MHD

Encapsulant converts the plasma 
radiation to a “drive” i.e., pressure on 
the capsule.

1D, 2D, 3D ALEGRA, rad-MHD

Drive and implosion of capsule.

1D, 2D ALEGRA rad-hydro

Sample 
Hohlraum

Configuration

Encapsulant

Metal wires

Uncertainties in: plasma, drive, and capsule characteristics



ICF Capsule Design – 1D Param Study
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Design goal: maximize the implosion 
velocity w.r.t. ablator radius r and 
fuel density ρ, but remain robust 
w.r.t. manufacturing variability

Fuel
(ρ)

Ablator

Outward
radial

direction

design variable r

rfuel = 0.100 cm



ICF Capsule Design
2D Optimization
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Minimize V(r, ρ)
Subject to σV(r, ρ) ≤ 3.e+5 cm/s

0.103 cm ≤ r ≤ 0.14 cm
0.001 cm ≤ ρ ≤ 0.003 g/cc
uniform: ur =  [-2.5e-3, 2.5e-3]
uniform: uρ = [-2.5e-5, 2.5e-5]

Fixed
seed

Variable
seed

DOT SQP
DOT MMFD
TR-SBOUU2
TR-SBOUU4

• Nested OUU stalls
• TR-SBOUU finds solution vicinity in a single cycle, effectively stepping over nonmoothness in V(r), σV(r) 

(objective/constraint are multimodal min dependent on initial TR)
• Less sensitive to seed reuse and starting point



Trust Region Surrogate-Based 
Optimization under Uncertainty (TR-SBOUU)

From SBO to SBOUU:
SBO is provably convergent with TR globalization
• (at least) 1st order consistency with correction
• verification of approx. steps

Extensions to SBOUU
• 1st order consistency, assuming a worthwhile 

stoch. gradient
• verification of stats. in relative sense. Three 

levels of verification rigor:
– Least: nominal statistics.
– Most: ordinal opt. (Chen/Romero) nonoverlap

confidence bounds on every step (“provable”
convergence for a selected confidence level).

– Affordable compromise: stochastic approximation 
(Igusa) probability of erroneous TR steps is 
decreased in proportion to iteration count.

Sequence of trust regions



RBDO Algorithms

Bi-level RBDO
• Constrain RIA z p/β result
• Constrain PMA p/β z result

RIA
RBDO

PMA
RBDO

Fully analytic Bi-level RBDO
• Analytic reliability sensitivities avoid 

numerical differencing at design level

1st order

Sequential/Surrogate-based RBDO:
• Break nesting: iterate between opt & UQ until target is met. TR-SB linkage is non-heuristic.

KKT
of MPP

Unilevel RBDO:
• All at once: apply KKT conditions of 

MPP search as equality constraints
• Opt. increases in scale (d,u)
• Requires 2nd-order info for 

derivatives of 1st-order KKT



RBDO Results

Short Column
min bh
s.t. β > 2.5

P = N(500, 100) ρP,M = 0.5
M = N(2000, 400) bnom = 5
Y = LogN(5, 0.5) hnom = 15

Kuschel & Rackwitz, 
1997



RBDO Results
Cantilever

min wt
s.t. βD, βS > 3

• Wu et al., 2001
• 2 design vars: w, t
• 4 uncorr. normal uncertain vars: E, R, X, Y

L = 100”

w
t

X

Y

Limit state eqns (unnormalized):



OUU Progress To Date
– 2003: Surrogate-based OUU with sampling methods
– 2004: Bi-level RBDO with numerical reliability gradients
– 2005: Fully analytic bi-level RBDO

Sequential/surrogate-based RBDO (1st-order)

OUU Performance vs. Time - Cantilever Problem
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Intrusive OUU: 
DAKOTA/MOOCHO w/ SIERRA/NEVADA

Next-generation multi-physics simulation architectures:
– SIERRA: mechanics framework (“S. DAKOTA”)
– NEVADA: physics framework (“N. DAKOTA”)

Architecture extensions underway for:
– Opt.: SAND optimization (MOOCHO)
– UQ: (intrusive) stochastic finite elements
– Other: Stability analysis (LOCA), Nonlinear equations (NOX), Fully-coupled MDA

Impact:
– Performance enhancements for existing nested methods

• Model I/O in core in parallel
• SPMD execution on compute nodes of ASCI MPPs

– Next-generation, tightly-coupled opt. & UQ
• Direct/adjoint sensitivities & AD

Intrusive OUU:
– SFE + SAND

– Unilevel RBDO + SAND

SierraSierra
Common Code Common Code 
ArArcchitecturehitecture

shock
physics
shock
physics

transient
dynamics
transient
dynamics

Incomp
Fluids
Incomp
Fluids

structural
dynamics
structural
dynamics

comp fluidcomp fluid

FireFire

DSMCDSMC

Opt./UQOpt./UQ

Solid
Mech
Solid
Mech

ThermalThermal

radiationDakota
Optimization
Uncertainty Quantification
Parameter Estimation
Sensitivity Analysis

MOOCHO
Veltisto

O3D
SFE



Conclusions
OUU Aspects:
• UQ-based
• Aleatory and Epistemic uncertainties
• Design for Robustness and Reliability
• Nonlinear, implicit, large-scale, expensive simulations
OUU Algorithms:
• SBOUU

– Good: trustworthy UQ, TR-SBOUU ~10x better than brute force w/ additional benefits 
(nonsmooth navigation/limited global ID/seed insensitivity)

– Bad: low probability events/reliability constraints difficult to resolve efficiently
– Ugly: multiple surrogates lead to complex input specifications

• RBDO
– Good: efficient for well-behaved problems, handles low prob. events, industry workhorse
– Bad: UQ not trustworthy for nonsmooth/highly nonlinear problems or multiple failure pts.
– Ugly: high-consequence apps? (some communities possibly over-subscribed to this approach)

• Intrusive OUU
– Good: next level of performance
– Bad: requires simulation code intrusion (few sites w/ in-house sim code development)
– Ugly: level of effort is extensive for general support of production-scale apps.


