NIST E-Authentication Guidance SP 800-63

Federal PKI TWG Feb. 18, 2004

Bill Burr william.burr@nist.gov

Information Technology Laboratory

Computer Security Division

NIST E-Authentication Tech Guidance

• OMB Guidance to agencies on E-Authentication

- OMB Memorandum M-04-04, E-Authentication Guidance for Federal Agencies, Dec. 16, 2003
 - http://www.whitehouse.gov/omb/memoranda/fy04/m04-04.pdf
- About identity authentication, not authorization or access control
- NIST SP800-63: Recommendation for Electronic Authentication
 - Companion to OMB e-Authentication guidance
 - Draft for comment at: <u>http://csrc.nist.gov/eauth</u>
 - Comment period ends: March 15
 - Covers conventional token based remote authentication
 - Does not cover Knowledge Based Authentication

Assurance Levels

- OMB guidance defines 4 assurance levels
 - Level 1 little or no confidence in asserted identity's validity
 - Level 2: Some confidence in asserted identity's validity
 - Level 3: High confidence in asserted identity's validity
 - Level 4: Very high confidence in asserted identity's validity
- Needed assurance level determined for each type of transaction by the risks and consequences of authentication error with respect to:
 - Inconvenience, distress & damage to reputation
 - Financial loss
 - Harm to agency programs or reputation
 - Civil or criminal violations
 - Personal safety

E-Auth Guidance Process

- Risk assessment
 - Potential impacts
 - likelihood
- Map risks to assurance level
 profile
- Select technology
 - NIST Technical E-Authentication Guidance, SP800-63
- Validate implemented system
- Periodically reassess

Max. Potential Impacts Profiles

Potential Impact Categories for Authentication Errors	Assurance Level Impact Profiles			
	1	2	3	4
Inconvenience, distress, reputation	Low	Mod	Mod	High
Financial loss or agency liability	Low	Mod	Mod	High
Harm to agency prog. or pub. interests	N/A	Low	Mod	High
Unauth. release of sensitive info	N/A	Low	Mod	High
Personal safety	N/A	N/A	Low	Mod High
Civil or criminal violations	N/A	Low	Mod	High

Technical Guidance Constraints

- Technology neutral (if possible)
 - Required (if practical) by e-Sign, Paperwork Elimination and other laws
 - Premature to take sides in web services wars
 - Difficult: many technologies, apples and oranges comparisons
- Practical with COTS technology
 - To serve public must take advantage of existing solutions and relationships
- Only for remote network authentication
 - Not in person, therefore not about biometrics
- Only about identity authentication
 - Not about attributes, authorization, or access control
 - This is inherited from OMB guidance
 - Agency owns application & makes access control decisions

Personal Authentication Factors

- Something you know
 - A password
- Something you have: a token
 - for remote authentication typically a key
 - Soft token: a copy on a disk drive
 - Hard token: in a special hardware cryptographic device
- Something you are
 - A biometric
 - But biometrics don't work well in remote authentication protocols, because you can't keep a biometric secret

Remote Authentication Protocols

- Conventional, secure, remote authentication protocols all depend on proving possession of some secret "token"
 - May result in a shared cryptographic session key, even when token is a only password
- Remote authentication protocols assume that you can keep a secret
 - Private key
 - Symmetric key
 - Password
- Can be "secure" against defined attacks if you keep the secret
 - Amount of work required in attack is known
 - Make the amount of work impractical
 - Hard for people to remember passwords that are "strong" enough to make the attack impractical

Multifactor Remote Authentication

- The more factors, the stronger the authentication
- Multifactor remote authentication typically relies on a cryptographic key
 - Key is protected by a password or a biometric
 - To activate the key or complete the authentication, you need to know the password, or poses the biometric
 - Works best when the key is held in a hardware device (a "hard token")
 - Ideally a biometric reader is built into the token, or a password is entered directly into token

E-Authentication Model

- A claimant proves his/her identity to a verifier by proving possession of a token, often in conjunction with electronic credentials that bind the identity and the token. The verifier may then inform a relying party of the claimant's identity with an assertion. The claimant got his/her token and credentials from a Credentials Service Provider (CSP), after proving his identity to a Registration Authority (RA). The roles of the verifier, relying party, CSP and RA may be variously combined in one or more entities.
 - Claimant: Wants to prove his or her identity
 - *Electronic credentials:* Bind an identity or attribute to a token or something associated with a claimant
 - Token: Secret used in an authentication protocol
 - Verifier: verifies the claimant's identity by proof of possession of a token
 - *Relying party:* Relies on an identity
 - Assertion: Passes information about a claimant from a verifier to a relying party
 - Credentials Service Provider (CSP): Issues electronic credentials and registers or issues tokens
 - Registration Authority (RA): Identity proofs the subscriber

Tokens

- Hard token
 - Cryptographic key in a hardware device
 - FIPS 140 level 2, with level 3 physical security
 - Key is unlocked by password or biometrics
- Soft token
 - Cryptographic key encrypted under password
 - FIPS 140 Level 1 or higher crypto module
- One-time password device (1TPD)
 - Symmetric key in a hardware device with display FIPS 140 level 1
 - Generates password from key plus time or counter
 - User typically inputs password through browser
- Zero Knowledge Password
 - Strong password used with special "zero knowledge" protocol
- Password
 - Password or PIN with conventional protocol

Token Type by Level

Assurance Level

Allowed Token Types	1	2	3	4
Hard crypto token	\checkmark	\checkmark	\checkmark	\checkmark
Soft crypto token	\checkmark	\checkmark	\checkmark	
Zero knowledge password	\checkmark	\checkmark	\checkmark	
One-time Password Device	\checkmark	\checkmark	\checkmark	
Strong password	\checkmark	\checkmark		
PIN	\checkmark			

Protections by Level

Assurance Level

	1	2	3		4
Protection Against			Soft/ZKP	1TPD	
Eavesdropper		\checkmark	\checkmark	\checkmark	\checkmark
Replay	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
On-line guessing	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Verifier Impersonation			\checkmark	\checkmark	\checkmark
Man-in-the-middle			\checkmark	*	\checkmark
Session Hijacking			\checkmark		

* Protection for shared secret only

Auth. Protocol Type by Level

Assurance Level

Authentication Protocol Types	1	2	3	4
Private key PoP	\checkmark	\checkmark	\checkmark	\checkmark
Symmetric key PoP	\checkmark	\checkmark	\checkmark	\checkmark
Zero knowledge password	\checkmark	\checkmark	\checkmark	
Tunneled password	\checkmark	\checkmark		
Challenge-reply password	\checkmark			

ID Proofing

Level 1

- Self assertion, minimal records
- Level 2

- On-line, more or less instant gratification may be possible

• Close the loop by mail, phone or (possibly) e-mail

Level 3

- in-person registration not required

- Close the loop by mail or phone
- Level 4
 - In person proofing
 - Record a biometric
 - Can later prove who got the token
 - Consistent with FICC Common Certificate Policy

Passwords

Password is a secret character string you commit to memory.
 — Secret and memory are the key words here

- As a practical matter we often do write our passwords down
- A password is really a (weak) key
 People can't remember good keys
- We all live in Password Hell too many passwords
 And they try to make us change them all the time
- In E-auth we're only concerned with on-line authentication
 Assume that the verifier is secure and can impose rules to detect or limit attacks
- What is the "strength" of a password?

Attacks on Passwords

In-band

-Attacker repeatedly tries passwords until he is successful

• guessing, dictionary, or brute force exhaustion

-Can't entirely prevent these attacks

- can ensure they don't succeed very often
- Out of band everything else
 - -Eavesdropper
 - -Man-in-the-middle
 - -Shoulder surfing
 - -Social engineering

Password Strength

- Over the life of the password the probability of an attacker with no a priori knowledge of the password finding a given user's password by an in-band attack shall not exceed
 - one in 2¹⁶ (1/65,563) for Level 2

— one in 2¹¹ (1/2048) for Level 1

- Strength is function of both password entropy, the system and how it limits or throttles in-band guessing attacks
- Many ways to limit password guessing attack
 - 3-strikes and reset password, hang up on bad login attempt...
 - Limited password life, but...
 - Note that there is not necessarily a time limit
 - Many things are trade-offs with help desk costs

Password Entropy

 Entropy of a password is roughly speaking, the uncertainty an attacker has in his knowledge of the password, that is how hard it is to guess it.

$$H(X) \coloneqq -\sum_{x} P(X = x) \log_2 P(X = x)$$

- Easy to compute entropy of random passwords
- We typically state entropy in bits. A random 32-bit number has 2³² values and 32-bits of entropy
- A password of length *l* selected at random from the keyboard set of 94 printable (nonblank) characters has 94^l values and about 6.55× *l* bits of entropy.

Password Entropy

Entropy is measure of randomness in a password

- Stated in bits: a password with 24 bits of entropy is as hard to guess as a 24 bit random number
- The more entropy required in the password, the more trials the system can allow

It's easy to calculate the entropy of a system generated random password

- But users can't remember these

Much harder to estimate the entropy of user chosen passwords

- Composition rules and dictionary rules may increase entropy
- NIST estimates of password entropy

Shannon's Estimate of Entropy

- Shannon used 26 English letters plus space
 Left to their own devices user will choose only lower case letters.
- Shannon's method involves knowing the *i*-1 first letters of a string of English text; how well can we guess the *i*th letter?
- Entropy per character decreases for longer strings
 - -1 character 4.7 bits/character
 - ≤ 8 characters 2.3 bits per character
 - —order of 1 bit/char for very long strings

Use Shannon as Estimate

- Shannonn gives us an estimate of the number of bits needed to represent ordinary English text
 - Seems intuitive that if it takes n bits to represent a text string, that is related to how hard it is to guess the string
- It should be as hard to guess or compress passwords as ordinary English text
 - Users are supposed to pick passwords that don't look like ordinary English, to make them harder to guess
 - But, of course, users want to remember passwords
 - Attacker won't have a perfect dictionary or learn much by each unsuccessful trial
 - Surely, the only long passwords that are easy to remember are based on phrases of text that make sense to the person selecting the password
- Give "bonuses" for composition rules and dictionary

Very Rough Password Entropy Estimate

password length in characters

PKI & E-Auth

- PKI solutions widely available
 - Can use TLS with client certs. for levels 3 & 4
- May be the predominant solution for levels 3 & 4 in gov.
 - Federal Identity Credentialing Committee
 - Common Credential and Federal Identity Card
 - Common certificate policy and shared service providers
 - Gov. Smart Card Interoperability Standard (GSC-IS)
- Fed. Bridge CA and Fed. Policy Authority are PKI vehicle
- Non-PKI level 3 & 4 solutions
 - One-time password devices in common use can meet level 3
 - Cell phones could be a good 1TPD platform
 - Zero knowledge passwords for level 3 not widely implemented
 - Level 4 could be done with symmetric key tokens

PKI & E-Auth

- PKI solutions widely available
 - Can use TLS with client certs. for levels 3 & 4
- May be the predominant solution for levels 3 & 4 in gov.
 - Federal Identity Credentialing Committee
 - Common Credential and Federal Identity Card
 - Common certificate policy and shared service providers
 - Gov. Smart Card Interoperability Standard (GSC-IS)
- Fed. Bridge CA and Fed. Policy Authority are PKI vehicle
- Non-PKI level 3 & 4 solutions
 - One-time password devices in common use can meet level 3
 - Cell phones could be a good 1TPD platform
 - Zero knowledge passwords for level 3 not widely implemented
 - Level 4 could be done with symmetric key tokens

Federal Employee Credentials

- Employees & affiliates
- Primarily levels 3 & 4
 - Most will eventually be hard token (CAC card)
 - Near term a lot will be soft token
- PKI based
 - New agency PKIs will be use shared service provider CAs
 - Common certificate policy framework
 - Legacy agency operated PKIs will be around for a while
 - Bridge CA will remain for policy mapping
 - Legacy agency operated PKIs
 - States & local government, business, foreign, etc.
 - Commerce & citizen class

Common Policy Framework

- Applies to Federal Employees, Affiliates (e.g., guest researchers), & Devices (e.g., servers)
- Three policies
 - Two user policies
 - FIPS 140 Level 2 Hardware Cryptomodule
 - Meets e_Auth assurance level 4
 - FIPS 140 Level 1 Software Cryptomodule
 - Meets e-Auth assurance level 3
 - One device policy (Level 1 Cryptomodule)
- Assurance comparable to FBCA Medium
 - More detailed Identity Proofing requirements
 - Transition strategy to 2048 bit RSA, SHA-256

Identity Proofing of Fed. Applicants

- A priori request from management required
- Employees' employment verified through use of "official agency records"
- In-person identity proofing
 - Credentials verified for legitimacy
 - Biometric recorded for nonrepudiation
- Trusted Agent may perform proofing
 - RA still verifies credentials

Cryptographic Transition Strategy

- Certs and CRLs expiring after 12/31/2008 must be signed using 2048 bit RSA keys
- User Certs generated after 12/31/2008 must contain 2048 bit RSA keys
- Certs and CRLs generated after 12/31/2008 must be signed using SHA-256

FPKI Certificate Policies

- Federal Certificate Policy
 - Rudimentary, Basic, Medium and High
 - Federal Policy Authority "maps" agency policy
 - currently x-certified
 - Medium: Treasury, DoD, Agriculture (NFC), NASA, DST ACES, Illinois
 - High: State Dept & Treasury
- Common Certificate Policy
 - Shared Service providers
- Citizen and Commerce Class
 - Streamlined process based on memo of agreement rather than detailed review of CP & CPS
 - Does anybody want this?

Knowledge Based Authentication (KBA)

- Not covered in 800-63
 - Symposium on 9-10 Feb. at NIST
- Can we just ask questions to authenticate users?
 - People do it now
 - "Walk-in" customers, real business need
 - It's the age of instant gratification
- Similar to ID proofing process, but without closing the loop
- Could view KBA as similar to passwords
 - Only these passwords are not very secret
 - Valid claimant might not know them all
- How can we quantify KBA, what are the standards?

KBA: some questions

• What is a reasonable model for KBA?

- What are the functions and features of each component?
- What are the security implications of the components?
- For Users:
 - How much confidence do you need? Can KBA get there?
- What are the information sources and how do we evaluate them?
 How accurate are the sources?
- What are the Mechanisms and Metrics?
- How do we score responses and what does a score mean?
- What can we standardize?

Questions

