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Endocrine disruptors (EDs) have a variety of adverse effects in humans and animals. About 58 000 chemicals,
most having little safety data, must be tested in a group of tiered assays. As assays will take years, it is
important to develop rapid methods to help in priority setting. For application to large data sets, we have
developed an integrated system that contains sequential four phases to predict the ability of chemicals to
bind to the estrogen receptor (ER), a prevalent mechanism for estrogenic EDs. Here we report the results
of evaluating two types of QSAR models for inclusion in phase III to quantitatively predict chemical binding
to the ER. Our data set for the relative binding affinities (RBAs) to the ER consists of 130 chemicals
covering a wide range of structural diversity and a 6 orders of magnitude spread of RBAs. CoMFA and
HQSAR models were constructed and compared for performance. The CoMFA model had ar2 ) 0.91 and
a q2

LOO ) 0.66. HQSAR showed reduced performance compared to CoMFA withr2 ) 0.76 andq2
LOO )

0.59. A number of parameters were examined to improve the CoMFA model. Of these, a phenol indicator
increased theq2

LOO to 0.71. When up to 50% of the chemicals were left out in the leave-N-out cross-
validation, theq2 remained significant. Finally, the models were tested by using two test sets; theq2

pred for
these were 0.71 and 0.62, a significant result which demonstrates the utility of the CoMFA model for
predicting the RBAs of chemicals not included in the training set. If used in conjunction with phases I and
II, which reduced the size of the data set dramatically by eliminating most inactive chemicals, the current
CoMFA model (phase III) can be used to predict the RBA of chemicals with sufficient accuracy and to
provide quantitative information for priority setting.

INTRODUCTION

Experimental and epidemiological studies suggest that
some man-made and naturally occurring chemicals released
to the environment have the potential to interrupt normal
functioning of the endocrine systems of humans and wild-
life.1,2 These chemicals, termed EDs, may pose serious threats
to the reproductive capability of humans and wildlife and
are thought to be the cause of declines in some wildlife
populations.3,4 In response to scientific and public concerns
on EDs, the U.S. Congress in 1996 mandated that the
Environmental Protection Agency (EPA) develop a strategy
for screening and testing a large number of chemicals
(∼58 000) found in drinking water, food additives, and other
sources for their endocrine disruption potential.5 Because of
the high cost associated with screening and testing, it is
crucial that priorities be set to ensure that compounds with
the highest predicted or measured activities be given first
priority for entry into the screening procedure.6

Several types of hormonal activities, including, but not
limited to, estrogenic, androgenic, and thyroidal, are believed
to contribute to endocrine disruption.1 Recently, we proposed
an integrated “four-phase” approach for priority setting of
potential estrogenic EDs.7 The general approach is expected

to be equally applicable to other endocrine disruption
mechanisms, such as androgen and thyroid hormonal activi-
ties. The four-phase approach integrates a suite of compu-
tational models that can be used in setting priorities for a
large number of chemicals. Phase I uses four Lipinski “rule
of 5”-type simple rejection filters to eliminate the chemicals
that are most unlikely to bind the ER.8 The chemicals
surviving phase I are then classified as active or inactive in
phase II on the basis of the presence or absence of three key
2D structural alerts, seven pharmacophore features, and the
predictions of two classification models using K-nearest
neighbor (KNN) and classification and regression tree
(CART) methods. In phase III, QSAR models are used
quantitatively to predict activity of the chemicals categori-
cally predicted to be active in phase II. In phase IV of the
integrated system, the phase II and III predictions are
combined with other available information, such as human
exposure level, environmental fate, and production volume,
to determine a chemical’s priority for testing. The feasibility
and application of the first two phases were assessed for
priority setting of the∼58 000 chemicals identified by
Walker et al.9 as candidates for entry into screening and
testing. Some 9100 chemicals were predicted to bind to ER.
Of these, only 3600 were expected to bind to ER at binding
affinity up to 100 000-fold less than that of the endogenous
hormone, 17â-estradiol (E2), which might need to be assessed
in phase III using QSAR models. Here, we report two QSAR
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methods that were thoroughly evaluated for application in
phase III.

QSAR methods have proven successful in molecular
design and drug discovery.10 The endocrine disruptor screen-
ing and testing advisory committee (EDSTAC) organized
by EPA considers QSAR as an important part of its priority
setting process, as described in its final report.6 In the past
few years, a number of QSAR models have been developed
for ligand binding to the ER.11-19 Most of these QSAR
models were constructed using the comparative molecular
field analysis (CoMFA). Although a predictive CoMFA
model is dependent on a number of factors, a training set
with a broad representation over the chemistry space is
critical to ensure its predictive capability for a large number
of diverse chemicals. Unfortunately, most CoMFA models
for ER binding developed previously were based on data
sets available in the literature, which to date had been small
data sets with limited structural diversity.11-19 Although these
models yield good statistical results and explain some
structural determinants for ER binding, they have limited
applicability in predicting the ER-ligand binding affinity
of chemicals that, in fact, cover a wide range of structural
diversity.

To obtain an adequate training set to develop a more robust
QSAR model for regulatory purpose, a rat ER binding assay
was developed and validated in the U.S. FDA’s National
Center for Toxicological Research (NCTR) to provide a large
data set for model development.20,21The resulting NCTR data
set contains chemicals that were selected to cover the
structural diversity of chemicals that bind to ER with an
activity distribution ranging over 6 orders of magnitude,
which is an essential requirement for a robust predictive
model for structurally diverse estrogens. The selection
process was highly interdisciplinary, involving computational
chemists, biologists, and experimental toxicologists and has
resulted in the steady improvement in performance of the
QSAR models.22 To the best of our knowledge, the NCTR
data set is the best consistent data set available to develop
models for estrogens and was the primary basis for construc-
tion of the phase I and II models in the integrated “four-
phase” approach.

The rat uterine cytosol ER competitive binding assay is
the gold standard for in vitro ER assays. When compared to
results from other ER binding assays, there is a general
consistency between relative ER activities across different
assay methods and species.23 For example, we found a high
linear correlation for ER binding affinities among a diverse
group of chemicals assayed with ER from rat uterine cytosol
and hERR. Further, we also found that ER assay results
correlated very well with those from a yeast-based reporter
gene assay and MCF-7 cell proliferation assay. These
findings demonstrate that ER binding is the major determi-
nant across three levels of biological complexity (receptor
binding, a yeast reporter gene response, and cell proliferation)
of estrogen action. Moreover, chemicals positive in utero-
trophic responses (in vivo estrogenic activity) are also
positive in the ER binding assay, indicating that binding
affinity is a good predictor of in vivo activity with few false
negatives observed.24 Therefore, the prediction of ER binding
activity provides an important piece of information for
priority setting.

We have previously evaluated three different techniques
for the generation of QSAR models-CoMFA, CODESSA
(comprehensive descriptors for structural and statistical
analysis), and HQSAR (hologram QSAR)-for their utility
(predictivity, speed, accuracy, and reproducibility) to screen
a large number of compounds for ER binding activity.13

Common to the three QSAR methods in the derivation of a
regression model is the use of PLS; the differences among
these QSAR techniques are primarily in the type of the
descriptors used to represent chemical structure. Specifically,
CoMFA employs steric and electrostatic field descriptors that
encode detailed information concerning intermolecular in-
teraction in three dimensions. CODESSA calculates molec-
ular descriptors on the basis of 2D and 3D structures and
quantum-chemical properties; whereas HQSAR uses molec-
ular holograms constructed from counts of substructural
molecular fragments. For three relatively small data sets
under investigation, the QSAR models generated using
CoMFA and HQSAR techniques demonstrated comparable
high quality for potential usage to identify ER ligands that
may act as EDs. In this paper, these two techniques are
further investigated and compared, particularly for their
predictivity, by using the NCTR data set.

MATERIAL AND METHODS

Data Sets.The training set for QSAR model development
was comprised of 130 diverse chemicals (Table 1).20,21 The
binding affinities of the chemicals in the data set were
determined by a competitive ER binding assay with [3H]E2,
using rat uterine cytosol.20 RBA, which is defined as 100
times the ratio of the molar concentrations of E2 and the
competing chemical required to decrease the receptor-bound
radioactivity by 50%, was used for QSAR model develop-
ment. Each experimental datum is replicated at least twice.
The mean value was used for modeling.

The constructed QSAR models were validated using
external test data sets. There are a number of experimental
data sets reported in the literature for estrogenic activity.
Some of them have been used to develop various types of
QSAR models either by us or by other researchers.11-19 Our
earlier analysis on comparison of various in vitro assays
demonstrates that there is generally a good linear correlation
among activity measurements from the ER binding assay,
the yeast-based reporter gene assay and the E-SCREEN
assay.23 The data sets from other ER binding assays were
used as primary sources for the test sets. To select appropriate
test data sets to validate the models, the following general
criteria were applied:

1. Since the QSAR models developed in this study were
primarily used to predict the activity of xenoestrogens, the
test data sets should contain a substantial portion of xe-
noestrogens.

2. A literature survey revealed a great variability in the
absolute activity value of a chemical obtained from different
assays, or conducted on different species, or with the same
assay performed by different labs.23 For these reasons, the
activity value of the selected literature data set was normal-
ized to the NCTR data set (the training set). The detailed
procedure of normalization is reported in our previous
publication.23 Briefly, the selected data set was first correlated

QSAR MODELS USING A SET OF ESTROGENS J. Chem. Inf. Comput. Sci., Vol. 41, No. 1, 2001187



with the NCTR data set on the basis of the shared compounds
in both data sets, and then the activity value for each
compound not in the NCTR data set was normalized to the

NCTR data set on the basis of the correlation equation. To
ensure a valid normalization, the selected data set should
include a sufficient number of chemicals shared with the

Table 1. Experimental, CoMFA-Calculated, and HQSAR-Calculated log RBA for 130 Chemicals

name expt CoMFA HQSAR name expt CoMFA HQSAR

diethylstilbestrol (DES) 2.60 1.880 0.591 3-methylestriol -1.65 -1.257 -0.240
meso-hexestrol 2.48 1.975 1.545 4-dodecylphenol -1.73 -1.506 -1.401
ethynyl estradiol 2.28 1.455 0.928 ethylhexylparaben -1.74 -2.105 -2.304
4-OH-tamoxifen 2.24 1.702 1.077 4-tert-octylphenol -1.82 -2.229 -2.138
17â-estradiol 2.00 0.855 0.404 phenolphthalein -1.87 -2.673 -2.143
4-OH-estradiol 1.82 1.154 0.669 kepone -1.89 -1.803 -1.779
R-zearalenol 1.63 1.548 -0.009 heptylparaben -2.09 -2.430 -2.329
ICI 182 780 1.57 1.102 1.791 bisphenol A -2.11 -2.079 -2.773
dienestrol 1.57 1.938 0.070 naringenin -2.13 -2.737 -2.577
R-zearalanol 1.48 1.437 0.180 4-chloro-4′-biphenylol -2.18 -2.024 -2.822
2-OH-estradiol 1.47 0.475 0.898 3-deoxyestrone -2.20 -0.683 -0.615
diethylstibestrol monomethyl ether 1.31 1.141 0.286 octylphenol -2.31 -2.063 -1.995
3,3′-dihydroxyl hexestrol 1.19 1.116 2.161 fisetin -2.35 -2.298 -2.577
droloxifene Citrate 1.18 0.930 0.978 biochanin A -2.37 -2.693 -1.979
ICI 164 384 1.16 1.137 1.769 4′-hydroxychalcone -2.43 -2.958 -2.444
dimethylstibestrol 1.16 0.487 -0.206 2,2′-methylenebis(4-chlorophenol) -2.45 -2.607 -2.824
moxestrol 1.14 1.6 1.007 4,4′-dihydoxybenzophenone -2.46 -1.773 -2.626
17-deoxyestradiol 1.14 0.444 0.294 benzylparaben -2.54 -2.471 -2.22
2,6-dimethylhexestrol 1.11 -0.171 2.079 4-hydroxychalcone -2.55 -2.040 -2.417
estriol 0.99 0.324 0.038 2,4-dihydroxybenzophenone -2.61 -2.209 -2.708
monomethyl ether hexestrol 0.97 1.221 1.240 4′-hydroxyflavanone -2.65 -2.118 -2.911
estrone 0.86 0.900 -0.112 3R-androstanediol -2.67 -2.565 -2.144
p-(R,â-diethyl-p-methyl-phenethyl)-

meso-phenol
0.60 0.931 1.533 4-phenethylphenol -2.69 -2.221 -1.500

17R-estradiol 0.49 0.465 0.404 doisynoestrol -2.74 -1.736 -1.239
dihydroxymethoxychloroolefin 0.42 -0.556 -0.624 5,4′-dihydroxy-7-methoxyiso-

flavone (prunetin)
-2.74 -2.812 -1.973

mestranol 0.35 -0.125 0.649 myricetin -2.75 -2.249 -2.343
zearalanone 0.32 0.209 0.170 2-chloro-4-biphenylol -2.77 -2.370 -2.685
tamoxifen 0.21 1.220 0.720 triphenylethylene -2.78 -2.217 -0.822
toremifene citrate 0.14 0.747 0.714 3′-hydroxyflavanone -2.78 -3.782 -2.987
R,R-dimethyl-â-ethyl allenolic acid -0.02 0.885 0.166 chalcone -2.82 -2.839 -2.742
coumestrol -0.05 0.164 -1.187 o,p′-DDT -2.85 -2.348 -1.644
4-ethyl-7-OH-3-(p-methoxyphenyl)-

dihydro-1-benzopyran-2-one
-0.05 -0.255 -0.223 4-heptyloxyphenol -2.88 -2.173 -3.456

Clomiphene -0.14 0.232 -0.123 dihydrotestosterone (DHT) -2.89 -3.141 -2.321
nafoxidine -0.14 -0.252 1.560 formononetin -2.98 -1.935 -2.069
6R-OH-estradiol -0.15 0.934 0.452 bis(4-hydroxyphenyl)methane -3.02 -2.928 -2.518
b-zearalanol -0.19 -0.137 0.180 p-phenylphenol -3.04 -2.638 -2.800
3-hydroxy-estra-1,3,5(10)-trien-16-one-0.29 0.144 0.073 6-hydroxyflavanone -3.05 -2.170 -3.091
3-deoxyestradiol -0.30 -0.573 -0.099 4,4′-sulfonyldiphenol -3.07 -3.154 -3.410
7,3′,4′-trihydroxyisoflavone -2.35 -0.913 -1.473 butylparaben -3.07 -2.805 -2.714
3,6,4′-trihydroxyflavone -0.35 -0.900 -2.896 diphenolic acid -3.13 -3.478 -1.625
genistein -0.36 -1.786 -1.673 1,3-diphenyltetramethyldisiloxane -3.16 -2.508 -3.288
4,4′-dihydroxystibene -0.55 -0.699 -1.496 ethylparaben -3.22 -3.184 -2.777
HPTE -0.60 -1.096 -0.778 propylparaben -3.22 -2.899 -2.760
monohydroxy methoxychloroolefin -0.63 -0.162 -0.930 3,3′,5,5′-tetrachloro-4,4′-biphenyldiol -3.25 -2.914 -2.021
2,3,4,5-tetrachloro-4′-biphenylol -0.64 -1.023 -2.170 phenol red -3.25 -3.765 -3.347
norethynodrel -0.67 0.670 -0.614 4-tert-amylphenol -3.26 -3.019 -2.242
2,2′,4,4′-tetrahydroxybenzil -0.68 -0.048 -0.986 baicalein -3.35 -2.683 -2.983
â-zearalenol -0.69 -0.661 -0.009 morin -3.35 -2.809 -2.594
equol -0.82 -0.564 -1.078 4-sec-butylphenol -3.37 -3.078 -2.416
6,4′-dihydroxyflavone -0.82 -1.126 -2.858 4-chloro-3-methylphenol -3.38 -3.723 -3.107
monohydroxy methoxychlor -0.89 -0.845 -1.083 6-hydroxyflavone -3.41 -2.560 -3.208
3â-androstanediol -0.92 -0.711 -2.144 3-phenylphenol -3.44 -4.062 -2.878
bisphenol B -1.07 -1.229 -1.562 4-benzyloxphenol -3.44 -3.638 -3.446
phloretin -1.16 -1.565 -1.473 methylparaben -3.44 -3.297 -2.957
diethylstibestrol dimethyl ether -1.25 -0.690 -0.020 2-sec-butylphenol -3.54 -3.904 -2.744
4,2′,4′-trihydroxychalcone -1.26 -1.362 -1.983 4-tert-butylphenol -3.61 -3.177 -2.922
2,5-dichloro-4′-biphenylol -1.44 -2.103 -2.618 2,4′-dichlorobiphenyl -3.61 -3.350 -3.046
4,4′-(1,2-ethanediyl)bisphenol -1.44 -1.128 -1.160 2-chloro-4-methylphenol -3.66 -4.305 -3.025
16b-hydroxy-16-methyl-3-methyl

ether estradiol
-1.48 -1.470 -0.680 phenolphthalin -3.67 -3.351 -2.446

aurin -1.50 -1.593 -0.653 4-chloro-2-methylphenol -3.67 -4.182 -3.218
nordihydroguaiaretic acid -1.51 -1.338 -0.071 7-hydroxyflavanone -3.73 -3.944 -3.035
nonylphenol -1.53 -1.769 -1.847 3-ethylphenol -3.87 -3.641 -3.011
apigenin -1.55 -2.436 -2.691 rutin -4.09 -4.235 -5.620
kaempferol -1.61 -2.245 -2.729 4-ethylphenol -4.17 -4.220 -2.948
daidzein -1.65 -1.075 -1.764 4-methylphenol -4.50 -4.435 -3.037
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NCTR data set to establish a statistically significant linear
correlation. The normalized activity value of a chemical can
then be compared with the model-predicted value to assess
the performance of the QSAR model.

Two data sets reported by Kuiper25 and Waller,15 respec-
tively, were selected. The activity values of both data sets
were obtained from ER competitive binding assays: In
Kuiper’s study, the pure human ERR was used; whereas the
mouse uterine cytosol that primarily contains ERR was used
in Waller’s data. Kuiper’s data set contains 60 chemicals,
of which 35 chemicals are assayed in the NCTR data set.
Of 35 common chemicals, 19 chemicals are active in both
data sets. A nice linear correlation was observed between
the Kuiper and NCTR data sets based on these 19 chemicals
(Figure 1). Similarly, Waller’s data set contains 58 chemicals
with 33 common chemicals. The linear correlation between
the Waller and NCTR data sets was also observed for 21
common active chemicals (Figure 1). Both Kuiper’s and
Waller’s data sets contain 25 chemicals that are not assayed
in the NCTR data set, which are used to test the QSAR
models.

Molecular Modeling. All molecular modeling and statisti-
cal analyses were performed using Sybyl 6.5 (Tripos, St.
Louis, MO).

As shown in Figure 2, the basic chemical structures for
the study consisted of several categories: (1) steroidal
compounds; (2) two benzene rings separated by two carbons
(DES derivatives and most phytoestrogens); (3) two benzene
rings separated by one carbon (DDTs and bisphenol A
derivatives); (4) biphenyls (PCBs); (5) chemicals with a
single phenolic ring (alkylphenols and parabens); (6) miscel-
laneous chemicals. The putative bioactive molecular con-
formation for each chemical used for CoMFA and its rules
for structural alignment were determined by selecting a
starting conformation that was followed by energy optimiza-
tion using the standard Tripos force field and parameter
settings. The crystal structures of four ligands, E2, raloxifene
(Ral), diethylstilbestrol (DES), and 4-hydroxytamoxifen
(OHT), binding to the ERR were used to determine the
starting conformation of steroids and DES derivatives, as
well as for antiestrogens.26,27 The chemical structures of
phytoestrogens are obtained or modified from the Cambridge
Structural Database. The starting conformation of the rest

of the chemicals was determined using a systematic search
tool for torsion angles.

CoMFA Alignment. To develop a CoMFA model, the
molecules of interest must first be aligned to maximize
superposition of their steric and electrostatic fields. Although
a statistically robust CoMFA model is dependent on a
number of factors, proper alignment is essential to produce
a valid QSAR model. For chemical congeners, the alignment
rule is normally defined on the basis of the maximum
common substructure among the training set chemicals,
which usually leads to a statistically robust CoMFA model.
The drawback for such models is predicting activities of
chemicals whose structures are not similar to the training
set. In contrast, a CoMFA model based on a structurally
diverse data set provides more robust predictions. But the

Figure 1. Correlation of the NCTR data with Kuiper’s and Waller’s data.

Figure 2. Structural categories and representative chemicals of
the NCTR data set.
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critical and difficult aspect for such a CoMFA model, like
the one in this study, is choosing the most appropriate set of
alignment rules for the structurally diverse training set.
Fortunately, crystal structures of four ligands binding to the
ER have been published,26,27 which aided our derivation of
rational CoMFA alignment rules. The backbone of theR
helices (except helix 12, which shows a dramatic confor-
mational difference when binding to estrogens vs antiestro-
gens) were used to superimpose the four complexes. The
superimposed complex structures revealed the conformational
conservation and flexibility of the ER ligand binding domain.
Furthermore, by overlapping of the backbone of theR
helices, the corresponding superimposition of the four ligands
(note: coordinates of these ligands were not used in the
superimposition of the complexes), as shown in Figure 3,
could be examined in detail with respect to the binding
contribution from different structural features, individually
and in combination. It appears that the A-rings overlap very
nicely, whereas there is considerable flexibility at the D-ring
end. This is consistent with the observation of the importance
of the A-ring phenolic group in ER-ligand binding, where
the 3-OH group forms three hydrogen bond interactions with
the ER ligand binding domain and a water molecule.

Systematic studies on the influence of substituents at
various positions of E2 revealed that for most positions the
introduction of substituents produces a loss of binding
affinity.16-29 However, introducing a substituent to the 7R
or 11â positions generally enhances binding. The degree of
increase in activity is strongly dependent on the nature of
substituents. Small steric substituents increase the activity,30

while rather large substituents reduce it, but also give rise
to antiestrogenic activity, exemplified by ICI 180 780 and
ICI 164 384. The two ethyl groups of DES functionally
resemble substituents at the 7R and 11â positions of E2. One
of the ethyl groups is in the precise space that is occupied
by the 11â-substituent of E2.31 Dimethystilbestrol (DMS)
(RBA ) 14.50) and 4,4′-dihydroxystilbene (RBA) 0.38)
are in the order of one carbon atom less on both side chains.
The loss of RBAs for these two chemicals was 28- and 1423-
fold compared to that of DES.

The aforementioned evidences indicate that the structural
features of E2 important for ER binding include (1) a phenolic
A ring, (2) a D ring, (3) 7R and/or 11â substituents, and (4)

a hydrophobic backbone. The combination of any three of
the structural features generally yields a strong estrogen.
Using E2 as a template molecule, these four structural features
were the basis for the alignment rules. Specifically, six
pharmacophoric elements of E2-the centroids of the A-, B-,
C-, and D-rings and 7 and 11 positions-were used for
alignment. The corresponding pharmacophoric elements for
each structural category are shown in Figure 2 (left panel).
The alignment rules employ a least-squares fitting of
pharmacophoric elements between E2 and the molecule from
the training set, and specifically the following: (1) Steroids
were aligned on the basis of the centers of the A- and D-rings
and positions 7 and 11. (2) The corresponding pharmacoph-
oric elements for DES derivatives and phytoestrogens were
the centers of the A- and D-rings and position 11. (3) For
DDT- and bisphenol A-type chemicals the corresponding
aligned positions were the centers of the A- and D-rings and
the 11 position of E2. (4) PCBs were aligned on the basis of
the positions 1, 3, 5, and 11 of E2. (5) Alignment of
alkylphenols and parabens was based on the superposition
of their phenolic rings to that of E2. (6) The alignment of
the miscellaneous chemicals was determined individually on
the basis of an appropriate rationalization consistent with
overall alignment strategy.

Calculation of QSAR Descriptors. The calculation of
CoMFA steric and electrostatic descriptors, as well as
HQSAR holograms, is described in our previous publica-
tions.13 Briefly, there is the following:

CoMFA Descriptors. After alignment, the molecules in
the training set were placed in a three-dimensional cubic
lattice with 2 Å spacing. The steric (van der Waals) and
electrostatic (Coulombic) fields were calculated for each
molecule at each mesh point using an sp3 carbon probe with
+1.0 charge. Any calculated steric and electrostatic energies
that were greater than 30 kcal/mol were truncated to this
value. Column filtering was set to 1 kcal/mol.

HQSAR Holograms. The substructual fragments in the
predefined size range of atoms (the default range is 4-7)
were generated for each molecule in the training set. The
information contained in each fragment is defined by
fragment distinction parameters, including atoms, bonds,
connections, hydrogen, and chirality. The generated frag-
ments were then hashed into a fixed length array to produce
the molecular hologram. The hologram length defines the
dimensionality of the descriptor space, which is determined
from a range of predefined hologram lengths using a trial-
and-error approach evaluated by the smallest error generated
in the models. HQSAR descriptors encode all possible
molecular fragments (linear, branched, and overlapping).
Additional 3D information such as hybridization and chirality
are encoded in the molecular holograms.

PLS-QSAR.To form the basis for a predictive statistical
model, the method of partial least-squares (PLS) regression32

was used to correlate variations in the biological activities
with variations in the respective descriptors for the NCTR
data set. The optimal number of principal components
(PCs), corresponding to the smallest standard error of
prediction, was determined by the leave-one-out (LOO)
cross-validation procedure, which yields a cross-validated
q2

LOO to measure the model’s predictivity. Using the optimal
number of PCs, the final PLS analysis was carried out
without cross-validation to generate a predictive QSAR

Figure 3. Relative positions of E2, DES, raloxifene, and 4-OH-
tamoxifen in the ER binding site derived from superposition of
their bound receptor crystal structures.
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model with a conventional correlation coefficient,r2. In
addition, the leave-N-out (LNO) cross-validation procedure
was employed to further validate the models. In this method,
the data set is first randomly divided intoN groups with
approximately equal numbers of chemicals in each group.
Each group is systematically excluded once from the data
set, and the activities of the chemicals in the omitted group
are predicted by a model derived from the remaining
chemicals in the data set. Similar to theq2

LOO value derived
from the LOO process, theq2

LNO value for this procedure
can also be calculated on the basis of the prediction of the
left-out chemicals. In this study, a range ofN groups (N )
2-10, 13, 20, 50) was used to perform the LNO cross-
validation. For each group, the cross-validation was carried
100 times to determine the mean and standard error ofq2

LNO.
Model Prediction. The QSAR models were further

validated for prediction of the external validation data sets.
A statistical measure,q2

pred, was used to compare the
predictive capability among different QSAR models. The
predictiveq2

pred is calculated from33

where PRESS is the sum of squared differences between the
“actual activity” (normalized to the NCTR data set in this

study) and the predicted activity data for each molecule in
the test set and SD is the sum of squared deviations between
the “actual activity” data for each molecule in the test set
and the mean activity of the training set.

RESULTS

CoMFA Model. The CoMFA-calculated versus experi-
mental RBAs (as logs) for the training-set compounds are
plotted in Figure 4A and listed in Table 1. The conventional
r2 and cross-validatedq2

LOO were 0.91 and 0.66 (Table 2),
respectively, indicating that the CoMFA model was both
internally consistent and highly predictive. The steric and
electrostatic field contributions to the CoMFA model were
43% and 57%, respectively, which were similar to those we
reported for our earlier CoMFA models for much smaller
ER ligand data sets.11-13

Each experimental datum for the NCTR data set is
replicated at least twice. The experimental fold-difference
for each data point can be calculated by dividing the highest
value by the lowest value. Figure 5 shows two different
distributions: (1) the range of fold-differences for experi-
mental replications; (2) the range of fold-differences for
CoMFA predicted and experimental means. It is apparent
that the CoMFA prediction error is in a similar range as the
experimental deviation. Predictions fell within 5-fold of
experimental values for some 85% of the chemicals.

On the basis of the evaluation of 30 DES congeners, Sadler
et al. reported significant improvement of the CoMFA model
by applying the cross-validatedr2-guided region selection
method.18 It provides more weight on the CoMFA regions
that show greater influence on the standard CoMFA PLS
model, as determined by the PLS coefficients and CoMFA
field variations for particular grids. The weighted CoMFA
fields are calculated and used to correlate with biological
activity. A similar approach, called region focusing, imple-
mented in the Sybyl software was also applied for the NCTR
data set. It appears that region focusing did not significantly
improve the statistical results of the model (data not shown).

Figure 4. CoMFA (A) and HQSAR (B) models for the NCTR
data set.

q2
pred) 1 - PRESS/SD

Figure 5. Fold differences for experimental measurements and
CoMFA calculated results.

Table 2. Summary of Statistical Results for the CoMFA and
HQSAR Models

statistics CoMFA HQSAR statistics CoMFA HQSAR

q2
LOO 0.655 0.585 SE 0.568 0.901

r2 0.908 0.756 PCs 6 5
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For a given set of aligned molecules, CoMFA results
(q2

LOO) have been reported to be largely dependent on the
way in which these aligned molecules are placed in the
CoMFA region.34 To explore all the possible orientations
and placements of aligned molecules in the CoMFA region,
Wang et al. recently developed all-orientation search (AOS)
and all-placement search (APS) methods.35 These have been
shown to be able to generate CoMFA models withq2

LOO

significantly higher than those obtained with standard
CoMFA. However, no significant improvement ofq2

LOO was
observed by applying AOS and APS to the NCTR data set.

To increase the precision and predictive ability of the
QSAR models, several factors were considered, such as
reducing the lattice spacing and/or the value of the filtering
energy. Reducing these two parameters did improve theq2

LOO

value slightly but not enough to justify the extra computing
time, which was consistent with our previous studies for
several smaller data sets.12

HQSAR Model. The performance of an HQSAR model
can be optimized by varying the fragment type and length
parameters. The fragment type parameters determine the
compositional and topological structural information encoded
in the molecular hologram, while the fragment length
parameter controls the minimum and maximum length of
fragments to be included in the hologram. Through system-
atic investigation of these parameters, we used only elemental
and bond-type information with the fragment length between
4 and 7 to construct the final model. The model results are
shown in Figure 4B and Table 1. The model’sq2

LOO andr2

values were lower than those for the CoMFA model.
Leave-N-Out Cross Validation. In addition to the stan-

dard LOO validation, extensive LNO validation was con-
ducted for both CoMFA and HQSAR models. The predictive
capability of a QSAR model for CoMFA and HQSAR is
generally determined byq2

LOO using the LOO cross-
validation procedure. Theq2

LOO is primarily considered a
measure of the ability of the model to interpolate within the
training set population. Compared to the LOO procedure,
the LNO procedure allows more chemicals to be omitted
for prediction to test the model’s stability. Thus,q2

LNO

accounts for more extrapolation of the model than doesq2
LOO.

In contrast toq2
LOO, q2

LNO is varied for a selectedN group
in each run because of the random nature of selection of
chemicals in the process. It is necessary to run LNO multiple

times (100 times in the study) for each randomN group for
valid statistical analysis. Consequently, the standard deviation
(SD) of q2

LNO can be used to assess the model’s stability of
prediction for diverse chemicals. As shown in Tables 3 and
4, the meanq2

LNO values decreased to about the same extent
for both CoMFA and HQSAR models as the left-out
compounds were increased. CoMFA generated better models
than HQSAR for all left-out groups. Even when randomly
leaving 33% of the training compounds out, the worst
CoMFA model selected from randomly trying 100 times still
gave a highly robustq2

LNO > 0.5. Moreover, the SD ofq2
LNO

was smaller for CoMFA than for HQSAR, indicating that
CoMFA provided much more robust QSAR models for
prediction of structurally diverse chemicals.

Enhancement of the CoMFA Model.The initial com-
parison between CoMFA and HQSAR for the NCTR data
set demonstrated that the CoMFA model was more statisti-
cally robust. To further improve the quality of the CoMFA
model, the effects of hydrophobic/hydrophilic characteristics
and of a phenolic ring indicator were also evaluated in
combination with the standard CoMFA field descriptors.

(i) Inclusion of log P. While the CoMFA descriptors
encode information for steric/electrostatic distribution on the
molecular surface, the absence of explicit representations that
encode for hydrophobic/lipophilic balance reduces its ability
to model many in vitro systems. To address this limitation,
the CoMFA model was modified by supplementing values
of log P (log of the octanol-water partition coefficient) with
the CoMFA descriptors. As shown in Table 5, the model
was not improved with inclusion of logP values. The

Table 3. Leave-N-Out Cross-Validation Results for CoMFA

no. of
CV

groups
cmpds
left (%)

min
q2

LNO

max
q2

LNO

mean
q2

LNO

SD of
q2

LNO

mean no
of PCsa

2 50 0.339 0.684 0.569 0.0540 4.4
3 33.3 0.512 0.671 0.607 0.0372 4.8
4 25 0.534 0.706 0.623 0.0350 5.0
5 20 0.528 0.676 0.623 0.0335 5.16
6 16.7 0.557 0.693 0.634 0.0288 5.2
7 14.3 0.587 0.683 0.637 0.0220 5.3
8 12.5 0.579 0.690 0.641 0.0229 5.4
9 11.1 0.595 0.689 0.645 0.0209 5.5

10 10 0.600 0.690 0.649 0.0188 5.5
13 7.7 0.583 0.686 0.647 0.0185 5.6
20 5 0.617 0.680 0.652 0.0126 5.5
50 2 0.630 0.674 0.656 0.0074 5.6

130 0.77 0.655 0.655 0.655 NA 6

a The maximum PC) 6.

Table 4. Leave-N-Out Cross-Validation Results for HQSAR

no. of
CV

groups
cmpds
left (%)

min
q2

LNO

max
q2

LNO

mean
q2

LNO

SD of
q2

LNO

mean
no. of
PCs

mean
HLa

2 50 0.276 0.652 0.503 0.0718 5 347
3 33.3 0.430 0.655 0.546 0.0535 5.4 380
4 25 0.445 0.637 0.565 0.0399 5.5 384
5 20 0.466 0.647 0.574 0.0343 5.6 382
6 16.7 0.444 0.640 0.572 0.0338 5.6 387
7 14.3 0.481 0.633 0.575 0.0298 5.5 386
8 12.5 0.496 0.645 0.576 0.0309 5.6 389
9 11.1 0.464 0.628 0.584 0.0271 5.5 394

10 10 0.524 0.631 0.584 0.0219 5.6 392
13 7.7 0.513 0.634 0.587 0.0216 5.5 397
20 5 0.514 0.620 0.585 0.0189 5.5 397
50 2 0.563 0.608 0.589 0.0098 5.35 401

130 0.77 0.585 0.585 0.585 NA 5 401

a Hologram lengths (HL) were set to “53 59 61 71 83 97 151 199
257 307 353 401”, with fragment length 4-7, and only atom and bonds
flags are turned on.

Table 5. Statistical Results of the CoMFA Models with or without
Inclusion of the Phenolic Ring Indicator and the logP Descriptors

statistics CoMFA

CoMFA
with log

P descriptors

CoMFA
with phenolic

indicator

q2
LOO 0.655 0.648 0.707

r2 0.908 0.880 0.903
SE 0.568 0.635 0.570
contributions (%)

steric 43 41.4 44.4
electrostatic 57 56.3 48.8
log P and/or PhOH NA 2.3 6.8

PCs 6 6 6
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contribution of logP to the model was insignificant (2.3%),
which was consistent with our previous observation for
several smaller estrogen data sets.12

(ii) Inclusion of Phenol Indicator (PhOH). The crystal
structure of the E2-ER complex reveals that the hydroxyl
group at the 3 position of the A-ring forms hydrogen bonds
with Glu 353 and Arg 394 and a water molecule in the
receptor binding site,26 thus stabilizing the binding conforma-
tion. Moreover, crystal evidence suggests this binding action

is exactly the same for the other three ligands, DES, 4-OH-
tamoxifen, and raloxifene. That is, the crystal structure data
are consistent with historical observation that a chemical with
a phenolic ring structure is likely to exhibit estrogenic
activity. Accordingly, a phenolic indicator (PhOH) for the
presence or absence of a phenolic ring of a molecule was
included in conjunction with the basic CoMFA descriptors.
As shown in Table 5, the inclusion of PhOH significantly
enhanced the quality of the model. Although the steric/

Table 6. Prediction Results of the CoMFA Models with and without PhOH and the HQSAR Model for Kuiper’s Dataset

CoMFA CoMF A with PhOH HQSAR

name
normali zed

log RBA predicted residual predict ed residual predicted residual

2,2′,3,3′,4′,5,5′-heptachloro-4-biphenylo l -1.498 -2.031 0.533 -1.792 0.294 -1.686 0.188
2,2′,3,3′,4′,5-hexachloro-4-biphenylol -1.650 -2.439 0.789 -1.920 0.270 -1.943 0.293
2,2′,3′,4,4′,5,5′-heptachloro-3-biphenylo l -1.549 -2.164 0.615 -1.710 0.161 -1.770 0.221
2,2′,3,4′,5,5′6-heptachloro-4-biphenylol -1.498 -2.194 0.696 -2.184 0.686 -1.640 0.142
2,2′,3,4′,5,5′-hexachloro-4-biphenylol -2.023 -2.175 0.152 -2.219 0.196 -2.012 0.011
2,2′,3′,4′,5′-pentachloro-4-biphenylol -1.498 -0.939 0.559 -0.820 0.678 -2.098 0.600
2,2′,3′,4′,6′-pentachloro-4-biphenylol -1.014 -1.211 0.197 -1.293 0.279 -1.999 0.985
2,2′,3′,5′,6′-pentachloro-4-biphenylol -1.549 -1.696 0.147 -1.187 0.362 -1.979 0.430
2,2′,4′,6′-tetrachloro-4-biphenylol -1.014 -1.464 0.450 -1.376 0.362 -2.263 1.249
2′,3,3′,4′,5′-pentachloro-4-biphenylol -1.458 -0.917 0.541 -1.076 0.382 -2.097 0.639
2,3,3′,4′,5-pentachloro-4-biphenylol -2.023 -2.537 0.514 -2.536 0.513 -2.255 0.232
2′,3,3′,4′,5-pentachloro-4-biphenylol -2.507 -2.252 0.255 -1.894 0.613 -2.212 0.295
2′,3,3′,4′,6′-pentachloro-4-biphenylol -1.387 -1.264 0.123 -1.125 0.262 -1.971 0.584
2′,3,3′,5′,6′-pentachloro-4-biphenylol -1.720 -1.500 0.220 -1.291 0.429 -1.947 0.227
2′,3,4′,6′-tetrachloro-4-biphenylol -1.236 -1.506 0.270 -1.615 0.379 -2.238 1.002
2,4,6-trichloro-4′-biphenylol -0.106 -1.604 1.498 -1.496 1.390 -2.307 2.201
5-androstenediol -0.489 -0.658 0.169 -0.790 0.301 -2.450 1.961
16a-bromoestradiol 1.408 0.332 1.076 0.868 0.540 0.278 1.130
16-ketoestradiol -0.378 0.582 0.960 1.104 1.482 0.264 0.642
17-epi-estriol 0.984 -0.158 1.142 -0.112 1.096 0.038 0.946
2-OH-estrone -0.187 0.358 0.545 0.305 0.492 0.382 0.569
Raloxifene 1.367 -0.236 1.603 -0.521 1.888 -1.840 3.207
Zearalenone 0.368 -0.121 0.489 0.210 0.158 0.003 0.365
4,4′-biphenol <-2.510 -1.805 -2.622 -2.473
Ipriflavone <-2.510 -4.252 -5.358 -2.712
predictiveq2

pred 0.63 0.62 0.15

Table 7. Prediction Results of the CoMFA Models with and without PhOH and the HQSAR Model for Waller’s Data Set

CoMFA CoMFA with PhOH HQSAR

name
normalized

logRBA predicted residual predicted residual predicted residual

2-tert-butylphenol -4.546 -3.831 0.715 -3.946 0.600 -3.393 1.153
3-tert-butylphenol -4.819 -3.225 1.594 -3.181 1.638 -3.009 1.810
2,4,6-trichloro-4′-biphenylol -0.158 -1.604 1.446 -1.496 1.338 -2.307 2.149
2-chloro-4,4′-biphenyldiol -0.610 -1.486 0.876 -1.532 0.922 -2.359 1.749
2,6-dichloro-4′-biphenylol -1.110 -2.406 1.296 -1.905 0.795 -2.488 1.378
2,3,5,6-tetrachloro-4,4′-bipheny ldiol -2.180 -0.815 1.365 -0.572 1.608 -1.528 0.652
2,2′,3,3′,6,6′-hexachloro-4-biph enylol -2.739 -3.055 0.316 -1.917 0.822 -1.852 0.887
2,2′3,4′,6,6′-hexachloro-4-biph enylol -2.596 -2.479 0.117 -1.985 0.611 -1.850 0.746
2,2′,3,6,6′-pentachloro-4-biphe nylol -1.966 -3.073 1.107 -2.280 0.314 -2.031 0.065
2,2′,5,5′-tetrachlorobiphenyl -2.667 -2.737 0.070 -3.956 1.289 -2.806 0.139
2,2′,4,4′,5,5′-hexachlorobiphe nyl -2.834 -1.522 1.312 -3.282 0.448 -2.568 0.266
2,2′,4,4′,6,6′-hexachlorobiphe nyl -1.870 -1.826 0.045 -2.982 1.111 -2.282 0.411
2,2′,3,3′,5,5′-hexachloro-6′-bip henylol -2.691 -3.008 0.317 -2.176 0.515 -2.158 0.533
4′-deoxyindenestrol -1.371 -0.526 0.845 -0.010 1.361 2.281 3.652
4′-deoxyindenestrol -0.230 0.111 0.341 0.629 0.859 2.281 2.511
5′-deoxyindenestrol -0.587 -0.999 0.413 -0.382 0.204 2.129 2.715
5′-deoxyindenestrol 0.353 -0.591 0.944 0.267 0.086 2.129 1.776
indenestrol A (R) 1.078 0.288 0.790 0.473 0.605 2.637 1.559
indenestrol A (S) 2.386 0.622 1.764 0.993 1.393 2.637 0.251
R5020 -1.811 -0.703 1.108 -1.413 0.398 -2.306 0.495
Zearalenone 0.912 -0.121 1.033 0.210 0.702 0.003 0.909
DACT NAa -5.255 -6.258 -3.642
Hydroxyflutamide NA -1.041 -3.224 -4.049
M1 NA -2.550 -3.526 -3.761
M2 NA -4.353 -5.672 -3.766
predictiveq2

pred 0.68 0.71 0.22

a NA ) no activity.
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electrostatic field contributed predominately to the ER
binding, the 6.8% contribution from PhOH confirms the
appropriateness of inclusion of appreciable contribution of
the phenolic functional group.

Prediction of the Test Sets.Estrogenic EDs cover a wide
range of structurally diverse chemicals. The current challenge
in developing QSAR models for ER binding is no longer in
constructing a statistically robust model but in developing a
model with the capability to accurately predict the activity
of such structurally diverse estrogens. The three QSAR
models, i.e., the CoMFA models with and without phenolic
indicator as well as the HQSAR model, were compared in
their ability to predict RBAs of two test sets. The predicted
vs normalized activities for Waller’s and Kuiper’s data sets
as well as the predictiveq2

pred results are listed in Tables 6
and 7, respectively. The CoMFA models generally provided
better prediction than the HQSAR model, which was
confirmed by much lowerq2

predvalues of the HQSAR model
for both test sets compared to those of the CoMFA models.
Of 44 active chemicals, the number of predictions with the
residuals larger than 1.0 (a 10-fold difference between
predicted and normalized activity value) was 13, 11, and 16
for the CoMFA, CoMFA with PhOH, and HQSAR models,
respectively. Moreover, 6 out of 16 predictions were off 100-
fold or more for the HQSAR models. The CoMFA models
with and without PhOH were comparable for prediction of
active chemicals. However, the CoMFA with PhOH was
better in discriminating inactive from active chemicals. For
6 chemicals that were reported to be inactive or to have
undetectable activity in the original references, the CoMFA
model with PhOH provided best estimation of their activities.
4,4′-Biphenol shows undetectable activity from the maximum
experimentally determined limit in Kuiper’s data set, while
it is active with log RBA) -1.7 in the ER binding assay
using mouse uterine cytosol.18 All three models predicted it
to be active with an average log RBA around-2.1.

DISCUSSION

Two QSAR methods, CoMFA and HQSAR, were evalu-
ated for their ability to predict ER binding of chemicals based
on a larger structurally diverse data set. The resultant QSAR
models were compared with respect to the statistical mea-
sures from the leave-one-out and leave-N-out cross-validation
processes. The CoMFA yielded the best QSAR models in
terms of self-consistency and ability to predict test chemicals.
Furthermore, the results showed that it was advantageous to
include the phenolic indicator (PhOH) in the CoMFA model.
The CoMFA model with PhOH was not only internally
robust but also provided the best activity predictions for both
active and inactive chemicals.

The rate of false positives and false negatives should be
considered for application of QSAR models for priority
setting of a large number of environmental chemicals. The
positives or negatives are defined for the chemicals whose
activity values are larger or less than a predefined cutoff
activity value, respectively. The criteria to use for determin-
ing a cutoff are dependent on the nature of application. For
drug discovery, false positives are of primary concern
because of the cost to bring such a chemical with a low
probability of being efficacious to the development phase.
A relativly higher cutoff value could be used for such

application. In contrast, minimizing false negatives is more
important for regulatory purpose. Once a toxicant is labeled
as a low priority, it will cause more potential threat to public
health than the one without such a label, even though it might
show active at lower doses. With application of the present
QSAR models for the prediction of 42 unique active
chemicals from Waller’s and Kuiper’s data sets, no false
negatives were observed, even for the chemicals with
activities 1 million-fold below that of E2. This indicates that
the QSAR models reported in the study, particularly the
CoMFA model with PhOH, have potential utility for regula-
tory purposes.

The utility of CoMFA has been demonstrated in a wide
range of applications.36-39 Since CoMFA employs steric and
electrostatic field descriptors that encode detailed information
concerning intermolecular interaction in three dimensions,
it is able to provide the best model by capturing the salient
features associated with molecular recognition in ER binding.
However, aligning molecules requires substantial chemical
and biological knowledge and may be too time-consuming
to allow processing of a large number of diverse structures
in CoMFA. This difficulty limits the potential usage of
CoMFA for screening tens of thousands of chemicals. In
the current form of our integrated four-phase approach, the
CoMFA model with PhOH is being applied in phase III to
provide quantitative predictions for chemicals passing through
phases I and II. To optimize the efficiency of phase III, a
suite of computational models in phase I and II with rapid
screening capability was used to eliminate the majority of
chemicals that are the most unlikely to bind to the ER. Care
was exercised to minimize false negatives when constructing
the first two phases. The reduced data set is now tractable
for CoMFA prediction in phase III.

The use of CoMFA and other QSAR models can likely
be used to predict activity of chemicals that may act by other
mechanisms, such as androgen or other receptor binding, or
mechanisms with more biological complexity. This provides
the possibility of developing a suite of models for predicting
multiple activities of a single chemical and/or linking models
through a mechanism sequence to predict activity at a
downstream event. This more comprehensive suite of models
provides an additional alternative for priority setting of
potential EDs.
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