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Ensemble-based atmospheric data assimilation

Thomas M. Hamill
University of Colorado and NOAA-CIRES Climate Diagnostics Center, Boulder

Ensemble-based data assimilation techniques are being explored as possible alter-

natives to current operational analysis techniques such as three- or four-dimensional

variational assimilation. Ensemble-based assimilation techniques utilise an ensemble

of parallel data assimilation and forecast cycles. The background-error covariances

are estimated using the forecast ensemble and are used to produce an ensemble of

analyses. The background-error covariances are flow dependent and often have very

complicated structure, providing a very different adjustment to the observations than

are seen from methods such as three-dimensional variational assimilation. Though

computationally expensive, ensemble-based techniques are relatively easy to code,

since no adjoint nor tangent linear models are required, and previous tests in simple

models suggest that dramatic improvements over existing operational methods may

be possible.

A review of the ensemble-based assimilation is provided here, starting from the

basic concepts of Bayesian assimilation. Without some simplification, full Bayesian

assimilation is computationally impossible for model states of large dimension.

Assuming normality of error statistics and linearity of error growth, the state and

its error covariance may be predicted optimally using Kalman filter (KF) techniques.

The ensemble Kalman filter (EnKF) is then described. The EnKF is an approxi-

mation to the KF in that background-error covariances are estimated from a finite

ensemble of forecasts. However, no assumptions about linearity of error growth are

made. Recent algorithmic variants on the standard EnKF are also described, as well
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as methods for simplifying the computations and increasing the accuracy. Examples

of ensemble-based assimilations are provided in simple and more realistic dynamical

systems.

6.1 Introduction

The purpose of this chapter is to introduce the reader to promising new experimental

methods for atmospheric data assimilation involving the use of ensemble forecasts

(e.g. Evensen, 1994; Evensen and van Leeuwen, 1996; Houtekamer and Mitchell,

1998; Burgers et al., 1998; Tippett et al., 2003; Anderson, 2003; Evensen, 2003;

Lorenc, 2003). There is a natural linkage between data assimilation and ensemble

forecasting. Ensemble forecasts (Toth and Kalnay, 1993, 1997; Molteni et al., 1996;

Houtekamer et al., 1996a) are designed to estimate the flow-dependent uncertainty of

the forecast, while data assimilation techniques require accurate estimates of forecast

uncertainty in order to optimally blend the prior forecast(s) with new observations.

Ensemble-based assimilation methods integrate the two steps; the ensemble of fore-

casts is used to estimate forecast-error statistics during the data assimilation step,

and the output of the assimilation is a set of analyses. This process is cycled, the

short-term ensemble forecasts from the set of analyses providing the error statistics

again for the next assimilation cycle.

Rather than starting with the specifics of recently proposed ensemble-based assim-

ilation techniques, in this chapter we will take a step back and try to motivate their

use by quickly tracing them from first principles, noting the approximations that

have been made along the way. This will take us from Bayesian data assimilation

(Section 6.2), which is conceptually simple but computationally prohibitive, to the

Kalman filter (Section 6.3), a simplification assuming normality and linearity of error

growth, to ensemble-based data assimilation methods (Section 6.4), which may be

more computationally tractable and robust. This review will include a description of

stochastic and determininstic ensemble update algorithms, a simple pictorial exam-

ple, discussions of model error and covariance localisation, and some pseudocode

of an ensemble filter. Important ongoing research issues are discussed (Section 6.5)

and conclusions provided (Section 6.6).

Several other useful review papers on ensemble-based data assimilation are avail-

able. Evensen (2003) provides a review of most of the proposed ensemble-based

assimilation approaches, a more theoretical examination of the treatment of model

errors, and a wide array of references to ensemble-based assimilation in the atmo-

spheric and oceanographic literature. Lorenc (2003) also reviews ensemble meth-

ods, and in particular provides some thoughts on the potential relative strengths and

weaknesses compared with the current state-of-the-art assimilation algorithm, four-

dimensional variational analysis (4D-Var). Tippett et al. (2003) discusses the simi-

larities and differences between a number of the proposed algorithms, and Anderson
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(2003) discusses a way of interpreting ensemble-based techniques using simple linear

regression terminology.

To keep the size of this chapter manageable, several topics will be omitted. We

will not describe the full variety of ensemble filters nor Kalman filters, in particular

leaving out a discussion of reduced-order Kalman filters (e.g. Farrell and Ioannou,

2001). Related subjects such as atmospheric predictability will be discussed only

in relevance to the assimilation problem, and applications of ensemble filters to

problems like adaptive observations will not be included.

In subsequent discussion, the atmosphere state, which is of course a continuum,

is assumed to be adequately described in discretised fashion, such as by the values

of winds, temperature, humidity, and pressure at a set of grid points.

6.2 Bayesian data assimilation

Conceptually, the atmospheric data assimilation problem is a relatively simple one.

The task at hand is to estimate accurately the probability density function (pdf)

for the current atmospheric state given all current and past observations. Much of

the material in this section follows Anderson and Anderson (1999). If the reader is

interested in further background material on the subject, Lorenc (1986) provides a

formulation of data assimilation in a Bayesian context, and Cohn (1997) provides a

more rigorous statistical formulation of the problem.

When considering Bayesian assimilation, there are two general steps to the assim-

ilation. Assume that a pdf of the state of the atmosphere is available (in the lack of

any knowledge, this may be the climatological pdf). The first step is to assimilate

recent observations, thereby sharpening the pdf. The second step is to propagate the

pdf forward in time until new observations are available. If the pdf is initially sharp

(i.e. the distribution is relatively narrow), then chaotic dynamics and model uncer-

tainty will usually broaden the probability distribution. The update and forecast steps

are then repeated. We will describe each of these steps separately, starting with the

assimilation of new observations.

6.2.1 Bayesian updating

Assume that an estimate of the pdf has been propagated forward to a time when obser-

vations are available. The state can be estimated more specifically by incorporating

information from the new observations. This will be termed the ‘update’.

The following notational convention is used. Boldface characters will denote vec-

tors or matrices, while use of the italicised font denotes a scalar. xt
t−1 will denote

the n-dimensional true model state at time t − 1 : xt
t−1 = [x t

t−1(1)
, . . . , x t

t−1(n)
]. Also,

assume a collection of observations ψ t. This vector includes observations yt at the

most recent time as well as observations at all previous times ψ t = [yt, ψt−1], where
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ψ t−1 = [yt−1, . . . , y0]. There are Mt observations at time t, i.e. yt =
[yt(1) , . . . , yt(Mt)]. Let P(xt

t) be a multivariate probability density function, defined

such that Pr (a ≤ xt
t ≤ b) = ∫b

a P(xt
t)dxt

t, and probability density integrates to 1.0

over the entire phase space.

Formally, the update problem is to accurately estimate P(xt
t | ψ t), the probability

density estimate of the current atmospheric state, given the current and past obser-

vations. Bayes’ rule tells us that this quantity can be re-expressed as

P
(
xt

t | ψ t

) ∝ P
(
ψ t | xt

t

)
P
(
xt

t

)
. (6.1)

Bayes’ rule is usually expressed with a normalisation constant in the denominator

on the right-hand side of Eq. (6.1); for simplicity, the term in the denominator will

be dropped here, and it is assumed that when coded, the developer will ensure that

probability density integrates to 1.0.

One hopefully minor assumption is made: observation errors are independent from

one time to the next. Hence, P(ψ t | xt
t) = P(yt | xt

t)P(ψt−1 | xt
t). This may not be true

for observations from satellites, where instrumentation biases may be difficult to

remove. Also, errors of observation representativeness (Daley, 1993) may be flow

dependent and correlated in time. But under this assumption, (6.1) is equivalent to

P
(
xt

t | ψ t

) ∝ P
(
yt | xt

t

)
P

(
ψt−1 | xt

t

)
P

(
xt

t

)
. (6.2)

By Bayes’ rule again, P(ψt−1 |xt
t)P(xt

t) ∝ P(xt
t |ψt−1). Hence, (6.2) simplifies to

P
(
xt

t | ψ t

) ∝ P
(
yt | xt

t

)
P

(
xt

t | ψt−1

)
. (6.3)

In principle, Eq. (6.3) is elegantly simple. It expresses a recursive relationship:

the ‘posterior’, the pdf for the current model state, given all the observations, is a

product of the probability distribution for the current observations P(yt | xt
t) and the

‘prior’, P(xt
t |ψt−1), also known as the ‘background’. The prior is the pdf of the model

state at time t given all the past observations up to time t − 1. Typically, the prior

will have been estimated in some fashion from a cycle of previous data assimilations

and short-term forecasts up to the current time; approximations of how this may be

computed will be discussed in Section 6.2.2.

Let’s now demonstrate the update step of Bayesian assimilation with a simple

example. P(xt
t | ψt−1) is an estimate of the prior for a two-dimensional model state.

This was produced by assimilating all prior observations up to and including time

t − 1 and estimating in some manner how that pdf has evolved in the time interval

between t − 1 and t. Consider how to update the pdf given a new scalar observation

y, which in this example is observing the same quantity as the first component of

the state vector measures. The pdf for the observation P(yt | xt
t) is assumed to be

distributed normally about the actual observation, ∼ N (yt, σ
2). Here, let yt = 58 and

σ 2 = 100.

Selected contours of the prior are plotted in Figure 6.1(a); as shown, the

prior is bimodal. The shape of the marginal prior distributions P(xt(1) | ψt−1) and
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Figure 6.1 Example of Bayesian data assimilation update. Here the model state is
two dimensional and a single observation is assimilated. This observation measures
the same variable as the first component of the model state. (a) Probability density
for joint and marginal prior distributions (solid) and observation distribution
(dashed). The three contours enclose 75%, 50%, and 25% of the probability density,
respectively. (b) Probability density for posterior distributions. Contours levels set as
in (a).

P(xt(2) | ψt−1) are plotted along each axis in solid lines. The dashed line denotes

the observation probability distribution P(yt | xt
t). This probability varies with the

value x t(1), but given x t(1) is the same for any value of x t(2). The updated posterior

distribution is computed using Eq. (6.3) and is shown in Figure 6.1(b). Note that

the assimilation of the observation enhanced the probability in the lobe overlapping

the observation distribution and decreased it in the other lobe. Overall, the posterior

distribution is more sharp (specific) than the prior, as is expected.

6.2.2 Forecasting of probability density

With an updated model pdf, a method for forecasting the evolution of this pdf forward

in time is needed. Assume that we have an (imperfect) non-linear forecast model

operator M so that the time evolution of the state can be written as a stochastic

differential equation:

dxt
t = M

(
xt

t

)
dt + G

(
xt

t

)
dq (6.4)

where dq is a Brownian-motion process with covariance Qtdt and G is the model-

error forcing. Conceptually, the time evolution of the pdf can be modelled with the

Fokker–Planck equation (e.g. Gardiner, 1985, section 5.3):

∂ P
(
xt

t

)
∂t

= −�.
[
M

(
xt

t

)
P

(
xt

t

)] +
∑
i, j

∂2

∂x t
t(i)∂x t

t( j)

(GQtGT

2

)
i j

P
(
xt

t

)
(6.5)
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If GQtGT is zero, then only the first term remains, and the Fokker–Planck equation

reduces to the Liouville equation (Ehrendorfer, 1994a, 1994b), a continuity equation

for the conservation of probability. Probability thus diffuses with time according to

the chaotic dynamics of the forecast model. The second term includes the effects of

model error, including the increased diffusion of probability due to model uncertainty

as well as noise-induced drift (Sardeshmukh et al., 2001).

6.2.3 Limitations of Bayesian data assimilation

Unfortunately, neither the update nor the forecast steps in Bayesian data assimilation

can be applied directly to real-world numerical weather prediction (NWP) applica-

tions. For the update step, one problem with modelling a complicated pdf in higher

dimensions is the ‘curse of dimensionality’ (e.g. Hastie et al., 2001, pp. 22–7). Were

one to try to estimate the probability density in a higher-dimensional space using a

small ensemble, one would find that the model of probability was very poor unless

simplifying assumptions about the form of the distribution were made. Even were

this problem surmountable, the computational cost would be extravagant. In the

prior example the probability density was evaluated on a 100×100 grid. Suppose a

similarly complicated structure for the prior existed in 100 dimensions. Then if the

joint probabilities were monitored on a similar grid for each dimension, this would

involve evaluating and modifying 100100 density estimates. Such computations are

already prohibitive for a 100-dimensional model state; the problem becomes incom-

prehensible for model states of O(107). Similarly, the Fokker–Planck equation can-

not be integrated in high-dimensional systems using Eq. (6.5) due to computational

constraints.

Consequently, Monte Carlo techniques are typically applied. Suppose we cannot

explicitly compute the sharpening of the pdf from updating to new observations,

nor the subsequent diffusion of probability in the forecast due to chaos and model

error. As an approximation, let’s randomly sample the initial probability distribution

P(xt
t | ψ t). Thereafter, let’s simulate the effects of chaos, model error and observa-

tions. Ensemble forecast techniques will be used to model the growth of errors due

to the initial condition uncertainty, and some additional random noise will be added

to each member to correct for the uncertainty contributed by model error. Monte

Carlo data assimilation methods will be used that draw the ensemble of model states

toward the observations in a process that recognises the uncertainty inherent in the

observations. Hopefully, with a large enough random sample, probabilities estimated

from the ensemble relative frequency will converge to the probabilities that would

be calculated explicitly, were that computationally feasible.

6.3 Kalman filters

The methods underlying ensemble-based data assimilation come in part from Monte

Carlo techniques, but the underlying concepts also are derived from a method known
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as the Kalman filter (Kalman, 1960; Kalman and Bucy, 1961; Jazwinski, 1970 section

7.3; Gelb, 1974 section 4.2; Maybeck, 1979 section 5.3; Ghil, 1989; Daley, 1991

section 13.3; Cohn, 1997; Talagrand, 1997; Daley, 1997). We review the Kalman

filter first. The Kalman filter is an approximation to Bayesian state estimation which

assumes linearity of error growth and normality of error distributions. There are two

components of the Kalman filter, an update step where the state estimate and an

estimate of the forecast uncertainty are adjusted to new observations, and a forecast

step, where the updated state and the uncertainty estimate are propagated forward to

the time when the next set of observations becomes available.

6.3.1 The extended Kalman filter

We now consider an implementation of the Kalman filter called the extended Kalman

filter, or ‘EKF’ (Jazwinski, 1970; Gelb, 1974; Ghil and Malanotte-Rizzoli, 1991; Gau-

thier et al., 1993; Bouttier, 1994). The EKF assumes that background and observation

error distributions are Gaussian: xb
t = xt

t + e, where e ∼ N (0, Pb
t ). That is, the prob-

ability density of the prior is distributed as a multivariate normal distribution with

known n×1 mean background xb
t and n×n background-error covariance matrix Pb

t .

Similarly, y = H(xt
t) + ε, where ε ∼ N (0, R) andH is the Mt ×n ‘forward’ operator

that maps the state to the observations. Let H represent the m×n Jacobian matrix

of H: H = ∂H
∂x (see Gelb, 1974, section 6.1). Also, let M represent the non-linear

model forecast operator. M is the n×n Jacobian matrix of M, M = ∂M
∂x . M is often

called the transition matrix between times t and t + 1. MT is its adjoint (see Le Dimet

and Talagrand, 1986, and Lacarra and Talagrand, 1988). Q will represent the n×n
covariance of model errors accumulated between update cycles.

The EKF equations are

xa
t = xb

t + K
(
yt − H

(
xb

t

))
(6.6a)

K = Pb
t HT

(
HPb

t HT + R
)−1

(6.6b)

Pa
t = (I − KH)Pb

t (6.6c)

xb
t+1 = M

(
xa

t

)
(6.6d)

Pb
t+1 = MPa

t MT + Q = M
(
MPa

t

)
T + Q. (6.6e)

Equations (6.6a–6.6c) describe the update step. The optimal analysis state xa
t

is estimated by correcting the background xb
t toward the ‘observation increment’

yt − H(xb
t ), weighted by the Kalman-gain matrix K. The effect of K is to apply

observation increments to correct the background at relevant surrounding grid points.

Equation (6.6c) indicates how to update the background-error covariance to reflect

the reduction in uncertainty from assimilating the observations. Equations (6.6d–

6.6e) propagate the resulting analysis and error covariance forward in time to when

observations are next available. The expected analysis state is propagated forward
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with the full non-linear forecast model. Model errors are assumed to be uncorrelated

with the growth of analysis errors through the tangent-linear forecast dynamics.

The conceptual appeal of the Kalman filter relative to an analysis scheme

like three-dimensional variational assimilation (3D-Var; Lorenc, 1986; Parrish and

Derber, 1992) is that the error covariances of the forecast and subsequent analysis are

explicitly prognosed. The analysis reduces error variances in locations where accu-

rate observations are plentiful, and the error covariances are also forecast forward in

time, growing at a rate proportional to the local error growth. Consequently, the struc-

ture of the background-error covariances and hence the adjustment to observations

xa
t − xb

t can be quite complicated and flow and time dependent (e.g. Bouttier, 1994).

6.3.2 Considerations in the use of Kalman filters

What approximations may limit the accuracy of the EKF? First, Kalman filters assume

linear growth and normality of errors, for the assimilation problem becomes some-

what more tractable when these assumptions are made. Non-normality of the prior

such as the bimodality in Figure 6.1(a) is typically assumed to be uncommon in atmo-

spheric data assimilation. These linear and normal assumptions may be inappropriate

for atmospheric data assimilations of moisture, cloud cover, and other aspects of the

model state that may be very sensitive to motions at small scales, where the timescale

of predictability is small and errors grow and saturate rapidly. Similarly, if obser-

vations are not regularly available, error covariances estimated with tangent linear

dynamics may grow rapidly without bound (Evensen, 1992; Gauthier et al., 1993;

Bouttier, 1994).

Second, error statistics must be carefully estimated and monitored; in particular, it

is important that the background-error covariance matrix be estimated accurately. For

example, if background error variances are underestimated, the EKF will assume the

error statistics are indicating that the background is relatively more accurate than the

nearby observations and thus will not correct the background to the observations to

the extent it should (Daley, 1991, p. 382). Estimating Q may be particularly difficult.

In practice, accurately determining even the time-averaged statistics of Q may be

quite complicated (Cohn and Parrish, 1991; Daley, 1992; Dee, 1995; Blanchet et al.,
1997). For both the Kalman filter and ensemble-based methods, the accuracy of the

assimilation is likely to depend strongly on this assumed model for Q. Methods for

estimating Q will be discussed for ensemble-based methods in Section 6.4.4.

Another disadvantage of the Kalman filters for atmospheric data assimilation is

their computational expense. Though Kalman filters provide a dramatic reduction in

the computational cost relative to full Bayesian data assimilation, for a highly dimen-

sional state vector, the computational costs in weather prediction models may still

be impossibly large. Consider the last line in Eq. (6.6). For an n-dimensional model

state vector, it will require 2n applications of M to forecast the error covariances.
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Some reductions of computational expense may be possible. For example, there have

been suggestions that this computation may be more practical if the tangent linear

calculations are performed in a subspace of the leading singular vectors (Fisher, 1998;

Farrell and Ioannou, 2001).

Much more can be said about the Kalman filter, such as its equivalence to

4D-Var under certain assumptions (Li and Navon, 2001), the manner of comput-

ing M, iterated extensions of the basic extended Kalman filter (Jazwinski, 1970;

Gelb, 1974; Cohn, 1997), and the properties of its estimators (which, in the case of

the discrete filter, if assumptions hold, provide the Best Linear Unbiased Estimate,

or BLUE; see Talagrand, 1997).

6.4 Ensemble-based data assimilation

Ensemble-based assimilation algorithms use Monte Carlo techniques and may be able

to provide more accurate analyses than the EKF in situations where non-linearity is

pronounced and pdfs exhibit some non-normality. If these assimilation algorithms

can work accurately with many fewer ensemble members than elements in the state

vector, then they will be computationally much less expensive as well.

Many researchers have proposed a variety of ensemble-based assimilation meth-

ods. Despite the many differences between the various ensemble-based algorithms,

all comprise a finite number (perhaps ten to a few hundred) of parallel data assim-

ilation and short-range forecast cycles. Background-error covariances are modelled

using the ensemble of forecasts, and an ensemble of analyses are produced, followed

by an ensemble of short-term forecasts to the next time observations are available.

Ensemble-based assimilation algorithms also have the desirable property that if error

dynamics are indeed linear and the error statistics Gaussian, then as the ensemble

size increases, the state and covariance estimate from ensemble algorithms converge

to those obtained from the extended Kalman filter (Burgers et al., 1998).

The concepts behind ensemble assimilation methods have been used in engineer-

ing and aerospace applications as far back as the 1960s (Potter, 1964; Andrews,

1968; Kaminski et al., 1971; Maybeck, 1979, ch. 7). Leith (1983) sketched the basic

idea for atmospheric data assimilation. The idea was more completely described and

tested in an oceanographic application by Evensen (1994) and in atmospheric data

assimilation by Houtekamer and Mitchell (1998).

For notational simplicity, the t time subscript used in previous sections is dropped;

it is assumed unless noted otherwise that we are interested in estimating the state

pdf at time t. We start off by assuming that we have an ensemble of forecasts that

randomly sample the model background errors at time t. Let’s denote this ensemble

as Xb, a matrix whose columns comprise ensemble members’ state vectors:

Xb = (
xb

1, . . . , xb
m

)
, (6.7)



P1: FYX/FGC P2: FXS

0521848822c06.xml CUUK341B-Palmer February 14, 2006 9:24

6 Ensemble-based atmospheric data assimilation 133

Figure 6.2 Background-error covariances (grey shading) of sea-level pressure in
the vicinity of five selected observation locations, denoted by dots. Covariance
magnitudes are normalised by the largest covariance magnitude on the plot. Solid
lines denote ensemble mean background sea-level pressure contoured every 8 hPa.

The subscript now denotes the ensemble member. The ensemble mean xb is defined

as

xb = 1

m

m∑
i=1

xb
i . (6.8)

The perturbation from the mean for the ith member is x′b
i = xb

i − xb. Define X′b

as a matrix formed from an ensemble of perturbations

X′b = (
x′b

1 , . . . , x′b
m

)
(6.9)

and let P̂b represent an estimate of Pb from a finite ensemble

P̂b = 1

m − 1
X′bX′bT

. (6.10)

Unlike the Kalman filter or 3D-Var, the background-error covariance estimate is

generated from a specially constructed ensemble of non-linear forecasts. The finite

sample will introduce errors (see, for example, Casella and Berger, 1990, section

5.4, and Hamill et al., 2001, section 2) relative to the EKF. However, estimating the

covariances using an ensemble of non-linear model forecasts may provide a powerful

advantage over the EKF. Envision a situation where errors grow rapidly but saturate

at low amplitude; the linear assumption of error growth in the EKF will result in

an overestimate of background error variance, but the differences among ensemble

members will not grow without bound and thus should provide a more accurate model

of the actual background-error statistics. Unlike data assimilation algorithms such

as 3D-Var (in most operational implementations), the background-error covariances

can vary in time and space. If this error covariance model is relatively accurate, it

will thus provide a better adjustment to the observations.

Figure 6.2 illustrates the potential benefit from estimating background-error

covariances using an ensemble-based data assimilation system. Here we see a
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snapshot of sea-level pressure background-error covariances with five locations

around the northern hemisphere, estimated from a 100-member ensemble. The data

were taken from the ensemble data assimilation experiment of Whitaker et al. (2004),

which tested the efficacy of assimilating only a sparse network of surface pressure

observations concentrated over the USA, Europe, and east Asia. A covariance local-

isation with a correlation length of approximately 2700 km was applied (see Section

6.4.5). Notice that the magnitude and the spatial structure of the background-error

covariances change from one location to the next, with larger covariances for the

point south of Alaska and northern Russia and smaller covariances at other loca-

tions. The horizontal extent of the positive covariance also changed markedly from

one location to the next. The background-error covariances control the magnitude

of the adjustment to the observation, drawing more to observations when back-

ground errors are large. Hence, observations will affect the analysis very differ-

ently around each of the five locations, which is the essence of why ensemble-

based algorithms may outperform methods assuming fixed background-error

covariances.

We will first consider the update step in two general classes of ensemble filters,

stochastic (fully Monte Carlo) and deterministic. Both classes propagate the ensemble

of analyses with non-linear forecast models; the primary difference is whether or not

random noise is applied during the update step to simulate observation uncertainty. A

brief pictorial example of the update step is then provided, followed by a discussion

of the ensemble forecast process and how model error may be treated. A description

of an important algorithmic modification, covariance localisation, is then provided.

Finally, some pseudocode for a simple deterministic filter is provided.

6.4.1 Stochastic update algorithms

The most well-known stochastic ensemble-based data assimilation algorithm is the

ensemble Kalman filter, or ‘EnKF’ (Houtekamer and Mitchell, 1998, 1999, 2001;

Burgers et al., 1998; Keppenne, 2000; Mitchell and Houtekamer, 2000; Hamill and

Snyder, 2000; Hamill et al., 2001; Heemink et al., 2001; Keppenne and Rienecker,

2002; Mitchell et al., 2002; Hamill and Snyder, 2002; Houtekamer et al., 2005).

This algorithm updates each member to a different set of observations perturbed

with random noise. Because randomness is introduced every assimilation cycle, the

update is considered stochastic.

The EnKF performs an ensemble of parallel data assimilation cycles, i =
1, . . . , m, with each member updated to a somewhat different realisation of the

observations:

xa
i = xb

i + K̂
(
yi − H

(
xb

i

))
. (6.11)
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In (6.11), the yi = y + y′
i are ‘perturbed observations’, defined such that y′

i ∼
N (0, R), and

1

m

m∑
i=1

y′
i = 0. (6.12)

The m sets of perturbed observations are thus created to update the m different

background fields. Here, in (6.11),

K̂ = P̂bHT(HP̂bHT + R)−1, (6.13)

similar to the Kalman gain of the EKF gain in (6.6b), but using the ensemble to

estimate the background-error covariance matrix as in (6.10).

Notice that the EnKF assimilates perturbed observations in Eq. (6.11) rather than

the observations themselves. To understand this, let X′a be a matrix of analysis ensem-

ble member deviations from the analysis mean state, as (6.9) defined background

deviations. Let P̂a be formed from the ensemble of analyses assimilating perturbed

observations using (6.11). Then as the ensemble size approaches infinity and if the

dynamics are linear, P̂a = 1
m−1

X′aX′aT → Pa, where Pa is the extended Kalman filter

analysis-error covariance from (6.6c) (Burgers et al., 1998). If unperturbed obser-

vations are assimilated in (6.11) without other modifications to the algorithm, the

analysis-error covariance will be underestimated, and observations will not be prop-

erly weighted in subsequent assimilation cycles.

Adding noise to the observations in the EnKF can introduce spurious observation-

background error correlations that can bias the analysis-error covariances, especially

when the ensemble size is small (Whitaker and Hamill, 2002). Pham (2001) proposed

an alternative to perturbing the observations, adding noise to background forecasts in

a manner that also ensures analysis-error covariances are equal to those produced by

the EKF. Anderson (2003) proposed a sequential observation processing method that

minimises this effect. Houtekamer and Mitchell (1998) proposed the use of a ‘double’

EnKF with two parallel sets of ensembles, each set used to estimate background-

error covariances to update the other set. See van Leeuwen (1999), Houtekamer and

Mitchell (1999), and Whitaker and Hamill (2002) for a discussion of covariance

biases in the single and double EnKFs.

Several algorithms have been proposed for simplifying and parallelising the coding

of the EnKF. One technique that is uniformly used is to form the Kalman gain (6.13)

from the ensemble without ever forming the actual background-error covariance

matrix. For a complex numerical weather prediction model with a high-dimensional

state vector, explicitly forming P̂b as in (6.10) would be computationally prohibitive;

for example, in a model with 107 elements in its state, storing and readily accessing

the 1014 elements of P̂b is not possible. However, in ensemble-based methods, K̂ can

be formed without ever explicitly computing the full P̂b (Evensen, 1994; Houtekamer
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and Mitchell, 1998). Instead, the components of P̂bHT and HP̂
b
HT of K̂ are computed

separately. Define

H(xb) = 1

m

n∑
i=1

H
(
xb

i

)
,

which represents the mean of the estimate of the observation interpolated from the

background forecasts. Then

P̂bHT = 1

m − 1

m∑
i=1

(
xb

i − xb
)(
H

(
xb

i
) − H(xb)

)T
, (6.14)

and

HP̂bHT = 1

m − 1

m∑
i=1

(
H

(
xb

i
) − H(xb)

)(
H

(
xb

i
) − H(xb)

)T
. (6.15)

Of course, if the number of observations is as large as the elements in the model

state, P̂bHT and HP̂bHT will be as large as P̂b, negating this advantage. However,

another possible coding simplification is serial processing. If observations have inde-

pendent errors uncorrelated with the background, they can be assimilated simulta-

neously or serially (sequentially), producing the same result (Kaminski et al., 1971;

Gelb, 1974 p. 304; Bishop et al., 2001). The analysis ensemble after the assimilation

of the first observation is used as the background ensemble for the assimilation of the

second, and so on. When observations are assimilated serially, for each observation

that is assimilated, HP̂bHT and R become scalars. Thus, the inverse (HP̂bHT + R)−1

in the gain matrix is trivial to compute. Also, the application of the covariance

localisation, discussed later, is much more straightforward to apply. Serial stochastic

ensemble filters have been demonstrated in Houtekamer and Mitchell (2001), Hamill

et al. (2001), Hamill and Snyder (2002), and Anderson (2003).

The equivalence of serial and simultaneous processing is only true if observations

have independent errors (Kaminski et al., 1971). Practically, however, many observa-

tions may have vertically or horizontally correlated errors. Consider two alternatives

to deal with this. First, if the size of a batch of observations with correlated errors

is relatively small, these correlated batches can be processed simultanteously with-

out much more computational expense (Houtekamer and Mitchell, 2001; Mitchell

et al., 2002; Houtekamer et al., 2005); the matrix inverse of (HP̂bHT + R)−1 should

not be prohibitively expensive. Another option is to transform the observations and

the forward operator so that the observations are effectively independent (Kaminski

et al., 1971).

Several investigators have proposed speeding up the performance of the stochastic

EnKF by separately updating different grid points independently on different proces-

sors. Keppenne and Rienecker (2002) designed an algorithm whereby all observations

in the region of a particular set of grid points are simultaneously assimilated to update

those grid points, while other distinct sets of grid points are updated independently.
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Houtekamer and Mitchell (2001) propose a method that uses both serial processing

of observations and processing different regions separately from one another. They

also discuss other ways of minimising the amount of information that needs to be

swapped between processors on a parallel computer. Reichle et al. (2002, 2003) and

Reichle and Koster (2004) demonstrate a parallelised EnKF algorithm applied to

soil-moisture state estimation.

6.4.2 Deterministic update algorithms

Several methods have been proposed to correct the background ensemble to new

observations so that P̂a → Pa without adding random noise. Algorithms that do not

add stochastic noise are called deterministic algorithms, so named because if the

background ensemble and the associated error statistics are known, the ensemble of

analysis states will be completely known as well. These algorithms (e.g. Lermusiaux

and Robinson, 1999; Bishop et al., 2001; Anderson, 2001; Whitaker and Hamill,

2002; Lermusiaux, 2002; Hunt et al., 2004) update in a way that generates the same

analysis-error covariance update that would be obtained from the Kalman filter,

assuming that the Kalman filter’s background-error covariance is modelled from the

background ensemble. Tippett et al. (2003) describe the similarities and differences

between several of these algorithms. In each, the background-error covariances are

never explicitly formed, with manipulations being performed using the matrix square

root (i.e. Eq. (6.9), the matrix of ensemble member deviations from the mean). As

pointed out in Tippett et al., since P̂b = 1
m−1

X′bX′bT
, given a matrix U representing

any n×n orthogonal transformation such that UUT = UTU = I, then P̂b can also

be represented as P̂b = 1
m−1

(X′bU)(X′bU)T. Hence, many square-root filters can be

formulated that produce the same analysis-error covariance.

Since Tippett et al. (2003) review many of these methods, we will explicitly

describe only one of these, a particularly simple implementation, the ‘ensemble

square-root filter’, or ‘EnSRF’, described by Whitaker and Hamill (2002), which is

mathematically equivalent to the filter described in Anderson (2001). The EnSRF

algorithm has been used for the assimilation at the scale of thunderstorms by Snyder

and Zhang (2003), Zhang et al. (2004) and Dowell et al. (2004). Whitaker et al. (2004)

used the algorithm for the global data assimilation of surface pressure observations.

Like the EnKF, the EnSRF conducts a set of parallel data assimilation cycles. It is

convenient in the EnSRF to update the equations for the ensemble mean (denoted by

an overbar) and the deviation of the ith member from the mean separately:

xa = xb + K̂
(
y − H

(
xb

))
, (6.16)

x′a
i = x′b

i − K̃H
(
x′b

i
)
. (6.17)

Here, K̂ is the traditional Kalman gain as in Eq. (6.13), and K̃ is the ‘reduced’ gain

used to update deviations from the ensemble mean.
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When sequentially processing independent observations, K̂, K̃, HP̂
b

and P̂bHT

are all n-dimensional vectors, and HP̂
b
HT and R are scalars. Thus, as first noted by

Potter (1964), when observations are processed one at a time,

K̃ =
(

1 +
√

R

HP̂
b
HT + R

)−1

K̂. (6.18)

The quantity multiplying K̂ in Eq. (6.18) thus becomes a scalar between 0 and

1. This means that, in order to obtain the correct analysis-error covariance with

unperturbed observations, a modified Kalman gain that is reduced in magnitude

relative to the traditional Kalman gain is used to update deviations from the ensemble

mean. Consequently, deviations from the mean are reduced less in the analysis using

K̃ than they would be using K̂. In the stochastic EnKF, the excess variance reduction

caused by using K̂ to update deviations from the mean is compensated for by the

introduction of noise to the observations.

In the EnSRF, the mean and departures from the mean are updated indepen-

dently according to Eqs. (6.16) and (6.17). If observations are processed one at a

time, the EnSRF requires about the same computation as the traditional EnKF with

perturbed observations, but for moderately sized ensembles and processes that are

generally linear and Gaussian, the EnSRF produces analyses with significantly less

error (Whitaker and Hamill, 2002). Conversely, Lawson and Hansen (2003) suggest

that if multimodality is typical and ensemble size is large, the EnKF will perform

better.

Another deterministic update algorithm is the ensemble transform Kalman filter

(ETKF) of Bishop et al. (2001). The ETKF finds the transformation matrix T such that

P̂a = 1
m−1

(X′bT)(X′bT)T → Pa (see Bishop et al. for details on the computation of

T). Compared with the EnSRF, an advantage of the ETKF is its computational speed;

a disadvantage is that the ETKF cannot apply covariance localisations (Section 6.5),

which may make the analyses very inaccurate unless large ensembles are used. The

ETKF has been successfully demonstrated for generating perturbed initial conditions

for ensemble forecasts about a mean state updated using 3D-Var (Wang and Bishop,

2003), and computationally efficient hybrid ETKF-variational schemes are being

explored (Etherton and Bishop, 2004), which may have an advantage in situations

with significant model errors.

6.4.3 A simple demonstration of stochastic and
deterministic update steps

Consider again the Bayesian data assimilation problem illustrated in Figure 6.1.

There, a bimodal two-dimensional probability distribution was updated to an obser-

vation of one component. Let’s explore the characteristics of the EnKF and EnSRF

update applied to this problem.
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A 100-member random sample was first generated from the bimodal pdf in Figure

6.1(a). These samples are denoted by the black dots in Figure 6.3(a). Let’s keep track

of the assimilation for one particular member, denoted by the larger black dot.

The EnKF and EnSRF adjust the background to the observations with weighting

factors that assume the distributions are normal. Estimated from this random sample,

the background-error covariance is

P̂b =
(

σ 2
(
xb

(1)

)
Cov

(
xb

(1), xb
(2)

)
Cov

(
xb

(1), xb
(2)

)
σ 2

(
xb

(2)

)
)

	
(

150.73 109.70

109.70 203.64

)
.

The shape of this distribution is illustrated by the black contours in Figure

6.3(a). Here, the observation measures the same aspect as the first compo-

nent of our state variable: H = [1, 0]. As in Figure 6.1, assume R = 100, so

HP̂bHT + R 	 150.73 + 100.00 = 250.73. P̂bHT 	 [150.73, 109.70]T, and hence

K̂ = PbHT(HPbHT + R)−1 	 [0.60, 0.44]T.

For the EnKF, perturbed observations were then generated, denoted by the short

vertical lines along the abscissa in Figure 6.3(a). Equation (6.11) was then applied,

updating background samples to their associated perturbed observations, generating

analysis samples. For example, the enlarged black dot in Figure 6.3(a) was updated

to the perturbed observation marked with the ‘*’. The resulting analysis sample is the

enlarged black dot in Figure 6.3(b). For the noted sample, the first component of the

background state was much less than the mean, and the perturbed observation was

greater than the mean background state. The resulting analysis nudged the posterior

state toward the mean in both components. Other dots in Figure 6.3(b) denote other

updated EnKF member states.

In the EnSRF, the ensemble background mean state ∼ [47.93, 50.07]T was

updated to the mean observed value 58.0 using K̂ computed above and Eq. (6.16),

resulting in a mean analysed state of ∼ [53.55, 54.16]. As with the EnKF, given the

positive observation increment and the positive correlation of the background-error

covariances between the two components, both components of the mean state were

adjusted upward. EnSRF perturbations from the mean were updated using Eq. (6.17)

and the reduced gain, here K̃ 	 0.613 K̂.

Compare the EnKF and EnSRF random samples of the posterior from Figures

6.3(b–c) and their fitted distribution (thin lines) with the correct Bayesian posterior

(bold lines). The samples from both distributions do not appear to sample randomly

the correct posterior. The EnKF and EnSRF posterior distributions are shifted slightly

toward lower values in both components. The EnSRF posterior samples preserve the

original shape from the prior, though their values are shifted in mean and compressed

together. In comparison, the EnKF samples are randomised somewhat through the

assimilation of the perturbed observations, and in this case, its distribution is rather

more diffuse than that of the EnSRF. The EnKF samples appear to overlap more with

the correct distribution than the samples from the EnSRF.
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Figure 6.3 Illustration of the EnKF and EnSRF with a two-dimensional state
variable and observations of the first component of the model state. (a) Random
samples (black dots) from the probability distribution in Figure 6.1(a), and the
original prior pdf, contoured in bold lines. Implied bivariate normal probability
background distribution estimated from the sample ensemble contoured in thin lines,
and the observation sampling distribution (dashed). Solid vertical lines along
abscissa denote individual perturbed observations sampled from this distribution.
The one large black dot and the perturbed observation marked with a star denote the
sample discussed in the text. (b) Analysed samples from the EnKF assimilation
scheme (dots), the implied analysis-error bivariate normal distribution from this
sample (thin contours), and the true posterior pdf from Figure 6.1 (bold contours).
(c) Analysed samples from EnSRF (dots), implied bivariate normal pdf (thin
contours) and the true posterior pdf (bold contours). In each panel, the three contours
enclose 75%, 50%, and 25% of the probability density, respectively.
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Why can’t ensemble-based methods correctly adjust the prior ensemble to the new

observations so that the samples reflect a random draw from the Bayesian posterior?

The reason is that ensemble-based methods implicitly assume a second-moment

closure; that is, the distributions are assumed to be fully described by means and

covariances. The example shown above demonstrates that some inaccuracies can

be expected in these analyses if indeed there are higher-moment details in these

distributions (Lawson and Hansen, 2004). Hopefully, highly non-normal distributions

are not frequently encountered, as radically more expensive and unproven techniques

than those discussed here may then be required (e.g. Gordon et al., 1993).

6.4.4 Ensemble propagation of the pdf and model-error
parametrisation

In real-world applications, background-error covariances cannot simply be estimated

at the next assimilation cycle by conducting an ensemble of deterministic forecasts

forward from the current cycle’s analyses. Because of model deficiencies, even if the

true state of the atmosphere is perfectly known, the resulting forecast will be imper-

fect: xt
(t+1) = M

(
xt

(t)

) + η, where here we denote the time index in parentheses and

M is again the non-linear forecast operator. Let’s first assume that our forecast model

is unbiased 〈η〉 = 0, again with model-error covariance 〈ηηT〉 = Q (here the angle

brackets denote a statistical expected value). In practice, the assumption of no bias

is probably not justified, and if the bias can be determined, the forecasts ought to

be corrected for this bias (Dee and Todling, 2000; Evensen, 2003), or more ideally,

the forecast model ought to be improved. In any case, consider the error covari-

ance at the next assimilation time. Assume again that forecast error due to initial-

condition uncertainty and model error are uncorrelated 〈(M(xa
(t)) − M(xt

(t)))η
T〉 = 0,

and assume linearity of the error growth M(xa
(t)) − M(xt

(t)) 	 M(xa
(t) − xt

(t)). Then

the true background-error covariance at the next assimilation time is〈(
xb

(t+1) − xt
(t+1)

)(
xb

(t+1) − xt
(t+1)

)T
〉

=
〈(
M

(
xa

(t)

) − M
(
xt

(t)

) − η
)(
M

(
xa

(t)

) − M
(
xt

(t)

) − η
)T

〉
	

〈
M

(
xa

(t) − xt
(t)

)(
xa

(t) − xt
(t)

)T
MT

〉
+ 〈

ηηT
〉

= MPa
(t)M

T + Q (6.19)

where M is again the Jacobian of the non-linear operator. Consider what happens

when covariances are estimated directly from an ensemble of forecasts propagated

forward from an ensemble of i = 1, . . . , m analyses using the fully non-linear forecast

model

xb
i(t+1) = M

(
xa

i(t)

)
. (6.20)
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Calculating the expected covariance, we get〈(
xb

i (t+1) − xb
(t+1)

)(
xb

i (t+1) − xb
(t+1)

)T
〉

=
〈(
M

(
xa

i(t)

)
− M

(
xa

(t)

))(
M

(
xa

i(t)

)
− M

(
xa

(t)

))T
〉

	
〈
M

(
xa

i(t) − xa
(t)

)(
xa

i(t) − xa
(t)

)T

MT

〉
	 MP̂

a

(t)M
T. (6.21)

Comparing (6.19) and (6.21), it is apparent that an ensemble of analyses that are

simply propagated forward with the non-linear forecast model will have too small

an expected amount of spread, missing the extra model-error covariance Q. Let us

define some hypothetical set of background forecasts at time t + 1 that do have the

correct covariance, i.e. define x̆b
i(t+1) such that 〈(x̆b

i(t+1) − x̆b
(t+1))(x̆b

i(t+1) − x̆b
(t+1))

T〉 =
MP̂

a

(t)M
T + Q. Such an ensemble is possible if we add noise to our existing ensemble:

x̆b
i(t+1) = xb

i (t+1) + ξi, (6.22)

where 〈ξiξ
T
i 〉 = Q, 〈ξi〉 = 0, and 〈xb

i(t+1) ξ
T
i 〉 = 0.

Several methods have been proposed for incorporating noise into the ensemble

of forecasts so that they account for model error. First, the forecast model could be

stochastic-dynamic instead of deterministic, with additional terms in the prognostic

equations to represent interactions with unresolved scales and/or misparameterised

effects; in essence, M is changed so that the ensemble of forecasts integrates random

noise in addition to the deterministic forecast dynamics, as in Eq. (6.4). Over an

assimilation cycle, this additional variance added to the ensemble as a result of

integrating noise should be designed to increase the covariance by the missing Q. A

second possibility is that one may choose to run a forecast model without integrating

noise but to add noise to each member at the data assimilation time so as to increase

the ensemble variance appropriate to the missing Q. Third, it may be possible to use

a multimodel ensemble to estimate covariances, or to achieve satisfactory results by

inflating the deviations of ensemble members about their mean.

Little work has yet been done on the first of these three approaches. Buizza et al.
(1999) demonstrated a simple technique for integrating noise to account for deter-

ministic subgrid-scale parametrisations. Under their methodology, the parametrised

terms in the prognostic equations were multiplied by a random number. Shutts (2004)

describes an updated stochastic backscatter approach. Penland (2003) outlines a more

general approach for integrating system noise in numerical models. To date, how-

ever, a comprehensive noise integration scheme has not yet been demonstrated in an

operational weather prediction model. Palmer (2001) discusses the potential appeal

of such an approach.
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The second general approach is to augment the ensemble-estimated model of

covariances during the update step with noise representing the missing model error

covariances. Mitchell and Houtekamer (2000) describe one such approach whereby

innovation statistics were used to develop a simple model-error covariance model.

More recently, Houtekamer et al. (2005) have tested an additive-error filter with oper-

ational data. Hamill and Whitaker (2005) have recently attempted to use differences

between high- and low-resolution model forecasts to parametrise the additive errors.

A third approach, use of multiple forecast models for generating the ensemble of

background forecasts (e.g. Houtekamer et al., 1996b; Harrison et al., 1999; Evans

et al., 2000; Ziehmann, 2000; Richardson, 2000; Hou et al., 2001), is appealing for its

simplicity. A wider range of forecasts is typically generated when different weather

forecast models are used to forecast the evolution of different ensemble members.

Unfortunately, it is not clear whether or not the differences between members are

actually representative of model errors; initial experimentation has shown that the

multimodel ensembles tend to produce unrealistic estimates of error covariances.

Forecast errors at larger scales ought to be mostly in balance, but when estimated

from multimodel ensembles, preliminary results suggest that the errors can be greatly

out of balance, with detrimental effects on the subsequent assimilation (M. Buehner,

personal communication). See also Hansen (2002) for a discussion of the use of

multimodel ensembles in data assimilation in a simple model.

A last approach is to modify the observation- or background-error covariances in

some manner so they draw more to the observations. Pham (2001) proposes reducing

R with a ‘forgetting factor’ to achieve this. Another approach is ‘covariance inflation’,

discussed in Anderson and Anderson (1999). Ensemble members’ deviations about

their mean are inflated by an amount r (slightly greater than 1.0) before the first

observation is assimilated:

xb
i ← r

(
xb

i − xb
) + xb. (6.23)

Here, the operation ← denotes a replacement of the previous value of xb
i . Application

of a moderate inflation factor has been found to improve the accuracy of assimilations

(Hamill et al., 2001; Whitaker and Hamill, 2002; Whitaker et al., 2004). Note that

inflation increases the spread of the ensemble, but it does not change the subspace

spanned by the ensemble. Hence, if model error projects into a substantially different

subspace, this parametrisation may not be effective.

6.4.5 Covariance localisation

In ensemble assimilation methods, the accuracy of error covariance models is espe-

cially important. Unlike 3D-Var, the effects of a misspecification of error statistics

can affect the analysis-error covariance, which is then propagated forward in time.

Hence, if the analysis errors are underestimated in one cycle, the forecast errors
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may be underestimated in the following cycle, underweighting the new observations.

The process can feed back on itself, the ensemble assimilation method progressively

ignoring observational data more and more in successive cycles, leading eventually

to a useless ensemble. This is known as filter divergence (e.g. Maybeck, 1979, p. 337;

Houtekamer and Mitchell, 1998).

One of the most crucial preventatives is to model background-error covariances

realistically (Hamill et al., 2001). Of course, an adequate parametrisation of model

error will be necessary in all but perfect model simulations (see previous section).

However, filter divergence can occur even in simulations where the forecast model

is perfect, for background-error covariances will incur large sampling errors when

estimated from small ensembles. While more ensemble members would be desirable

to reduce these sampling errors, more members requires more computational expense.

One common algorithmic modification to improve background-error covariance

estimates from small ensembles is covariance localisation. The covariance estimate

from the ensemble is multiplied point by point with a correlation function that is 1.0

at the observation location and zero beyond some prespecified distance. Houtekamer

and Mitchell (1998) and Evensen (2003) simply use a cut-off radius so that obser-

vations are not assimilated beyond a certain distance from the grid point. This may

be problematic in situations where observations are sparse, for then there will be

grid points affected by the observation adjacent to grid points unaffected by the

observation, potentially introducing spurious discontinuities.

A preferable approach is to use a correlation function that decreases monotonically

with increasing distance (Houtekamer and Mitchell, 2001). Mathematically, to apply

covariance localisation, the Kalman gain K̂ = P̂bHT(HP̂bHT + R)−1 is replaced by

a modified gain

K̂ = (ρS ◦ P̂b)HT (H(ρS ◦ P̂b)HT + R)−1, (6.24)

where the operation ρS◦ in (6.24) denotes a Schur product (an element-by-element

multiplication) of a correlation matrix S with local support with the covariance model

generated by the ensemble. For horizontal localisation, one such correlation matrix

can be constructed using an approximately Gaussian-shaped function that is actu-

ally a compactly supported, fourth-order piece-wise polynomial, described in Gas-

pari and Cohn (1999). The Schur product of matrices A and B is a matrix C of

the same dimension, where ci j = ai j bi j . When covariance localisation is applied

to smaller ensembles, it can actually result in more accurate analyses than would

be obtained from larger ensembles without localisation (Houtekamer and Mitchell,

2001). Mathematically, localisation increases the effective rank of the background-

error covariances (Hamill et al., 2001). In the extreme, if the correlation matrix S
were the identity matrix, the covariance model would consist of grid points with vari-

ances and zero covariance and the rank of the covariance matrix after localisation

would increase from m − 1 to n, the dimension of the state vector. In practice, such an

extreme localisation would harm the quality of the analysis, destroying the mass-wind
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balance (Mitchell and Houtekamer, 2002; Lorenc, 2003) and prohibiting the observa-

tion from changing the analysis at nearby grid points. Hence, broader localisations are

typically used. Generally, the larger the ensemble, the broader the optimum correla-

tion length scale of the localisation function (Houtekamer and Mitchell, 2001; Hamill

et al., 2001). See Whitaker et al. (2004) and Houtekamer et al. (2005) for examples

of ensemble assimilations that also include a vertical covariance localisation.

As a concrete example of horizontal covariance localisation, consider Figure 6.4.

This used the same data set as in Figure 6.2, a global ensemble-data assimilation

scheme utilising only sea-level pressure observations (Whitaker et al., 2004). Part

(a) of Figure 6.4 (colour plate) provides a map of sea-level pressure correlations at grid

points around the northern hemisphere with a grid point in the western Pacific Ocean

on 0000 UTC 14 December 2001. When directly estimated using the 25-member

ensemble subsampled from the 200-member ensemble (Figure 6.4b), correlations

for grid points in the region around the observation are positive. The shape of the

correlation function was anisotropic, with positive correlations generally limited to

a region east of the axis of the cyclone. Background errors for regions in the east-

ern Pacific and near the Greenwich meridian also appeared to be highly correlated

with background errors at the observation location. However, when the correlations

are estimated from a 200-member ensemble, it is apparent that these distant corre-

lations in the 25-member ensemble were artefacts of the limited sample size. The

errors in the eastern Pacific and along the Greenwich meridian were not dynam-

ically interconnected with the errors in the western Pacific. When the covariance

localisation function (Figure 6.4c) was applied to the 25-member ensemble, the

resulting correlation model (Figure 6.4d) more closely resembles that from the larger

ensemble.

In applying the covariance localisation, distant grid points are forced to be statisti-

cally independent. Should they be? As a thought experiment, consider a two-member

ensemble. Dynamically, there is no a-priori reason to expect that, say, the growth of

spread over Japan is dynamically interconnected to the growth of spread over Africa,

and neither interconnected with the growth of differences over South America. This

two-member ensemble may identify many distinct regions where rapid growth of

differences is occurring, but with a covariance model estimated from only two mem-

bers, the ensemble assumes they are all intimately coupled. Covariance localisation

is thus an heuristic attempt to modify the model of background-error covariances so

that a limited-size ensemble will not represent distant, distinct features as dynami-

cally interrelated when in fact they only appear to be so due to limited sample size.

If indeed distant regions are dynamically coupled, the localisation will cause the loss

of this information. The effect on the data assimilation will be that observations will

not be able to change the analysis and reduce the analysis-error variance in distant

regions; local observations will have to be relied upon instead. This is judged to be

less detrimental than the opposite, to let observations affect distant regions when this

is inappropriate.
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Figure 6.4 Illustration of covariance localisation. (a) Correlations of sea-level
pressure directly estimated from 25-member ensemble with pressure at a point in the
western Pacific (colours). Solid lines denote ensemble mean background sea-level
pressure contoured every 8 hPa. (b) As in (a), but using 200-member ensemble.
(c) Covariance localisation correlation function. (d) Correlation estimate from
25-member ensemble after application of covariance localisation.
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6.4.6 Pseudocode for an ensemble Kalman filter

The previous detail on ensemble-based assimilation algorithms may make them

appear more complex than they are. In many circumstances, the basic algorithm

is extremely easy to code. Here some pseudocode is provided for the EnSRF filter

discussed in Section 6.4.2. Assume that model error is treated through the introduc-

tion of additive error noise, and assume that observations have independent errors,

so that they can be serially processed. The steps are:

1. Construct an ensemble of arbitrary initial conditions with a large amount of

spread, perhaps by taking random samples from the model’s climatology.

2. Perform the forecast step; integrate an ensemble of short-range forecasts

forward to the time when the next set of observations are available (Eq. 6.20).

3. Perform the EnSRF update step:

(a) Add samples of model error to all members (6.22).

(b) Loop through all the available observations.

(i) Determine the ensemble-mean background (6.8) and the matrix of

ensemble perturbations (6.9).

(ii) Determine the subcomponents of the estimated Kalman gain (6.14

and 6.15), applying covariance localisation (6.24) if desired.

(iii) Form the Kalman gain (6.13) and reduced Kalman gain (6.18).

(iv) Update the ensemble mean (6.16) and the individual perturbations

(6.17).

(v) Set the background mean and perturbations for the assimilation of

the next observation to the newly updated analysis mean and

perturbations.

4. Add the updated mean and the perturbations together to reform the ensemble

of analysed states.

5. Go back to step 2.

6.5 Discussion

6.5.1 Major research questions

Researchers are just beginning to test ensemble-based atmospheric data assimilation

methods in full numerical weather prediction modelling systems using real obser-

vations. From these and other studies, we can make an educated guess at some of

the major issues that will need to be resolved before operational implementation is

practical.

As discussed previously, in order to ensure a high-quality analysis, great care must

be taken to ensure that the error-covariance models are realistic in ensemble methods.

These methods cycle the covariance estimates. Thus, for example, if observations
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errors are assumed to be unbiased and independent but in fact are biased or corre-

lated (Liu and Rabier, 2003), these errors will cause the analysis-error covariance

to be misestimated, later affecting the subsequent background-error estimates and

subsequent fit to the observations. Accurate estimation of model error in particular

is likely to be crucial, as was discussed in Section 6.4.4.

Practically, an ensemble-based assimilation method ought to be self-correcting,

able to detect when the system is not appropriately fitting the observations. Theoret-

ically, this can be done by monitoring the innovation statistics (y − H(xb)), which

ought to be white noise with zero mean and covariance (HP̂bHT + R) (Maybeck,

section 5.4; Dee, 1995). Perhaps the influence of model error can then be increased

or decreased so the innovation statistics have the correct properties (Mitchell and

Houtekamer, 2000).

Other problems may be more subtle. For instance, initial tests with real observa-

tions (Houtekamer et al., 2005) suggest that when many observations are frequently

assimilated, the errors due to chaotic effects may not grow rapidly after the analysis,

as expected. The reasons for this are not yet fully apparent. It is known that the more

observations that are assimilated, the spectrally whiter and more random are the

analysis errors (Hamill et al., 2002); consequently, it may take longer than the time

between updates for the dynamics to organise the perturbations into growing struc-

tures. The slow growth of analysis errors may also be exacerbated by the addition of

random model error to the background forecasts, because of imbalances introduced

by covariance localisation, and/or because the computational costs require the use of

reduced- resolution models with unrealistically slow error growth characteristics.

A final major concern is the computational expense. The cost of most ensemble

methods scales as the number of observations times the dimension of the model

state times the number of ensemble members. In the coming years, observations

will increase in number faster than computer processing speed. It may be possible to

mitigate this problem in one of several ways. Perhaps computations can be speeded up

through parallelisation (Houtekamer and Mitchell, 2001; Keppenne and Rienecker,

2002), perhaps the method can be cast in a variational framework where the costs

do not scale with the number of observations (Hamill and Snyder, 2000; Etherton

and Bishop, 2004), or perhaps many high-density observations can be combined into

fewer ‘superobservations’ (Lorenc, 1981).

6.5.2 Comparisons with 4D-Var

An important question is whether, for a given amount of computer time, a better

analysis could be produced by an ensemble-based assimilation or by the current state-

of-the art, four-dimensional variational analysis (4D-Var; Le Dimet and Talagrand,

1986; Courtier et al., 1994; Rabier et al., 1998, 2000). Such direct comparisons

of ensemble assimilation methods and 4D-Var in realistic scenarios have yet to be

performed and ideally should wait until ensemble methods have been given a chance

to mature.
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Some intelligent guesses can be made regarding their relative advantages and

disadvantages (for another view, see Lorenc, 2003). Ensemble-based methods are

much easier to code and maintain, for neither a tangent linear nor an adjoint of

the forecast model is required, as they are with 4D-Var. Ensemble-based meth-

ods produce an ensemble of possible analysis states, providing information on

both the mean analysis and its uncertainty. Consequently, the ensemble of analy-

sis states can be used directly to initialise ensemble forecasts without any additional

computations.

Another advantage is that if the analysis uncertainty is very spatially inhomo-

geneous and time dependent, in ensemble-based methods this information will be

fed through the ensemble from one assimilation cycle to the next. In comparison, in

4D-Var, the assimilation typically starts at each update cycle with the same stationary

model of error statistics. Hence, the influence of observations may be more prop-

erly weighted in ensemble-based methods than in 4D-Var. Ensemble-based methods

also provide a direct way to incorporate the effects of model imperfections directly

into the data assimilation. In comparison, in current operational implementations of

4D-Var, the forecast model dynamics are a strong constraint (Courtier et al., 1994;

but see Bennett et al., 1996 and Zupanski, 1997 for possible alternatives). If the

forecast model used in 4D-Var does not adequately represent the true dynamics of

the atmosphere, model error may be large, and 4D-Var may fit a model trajectory

that was significantly different from the trajectory of the real atmosphere during that

time window.

Ensemble-based techniques may have disadvantages relative to 4D-Var, including

some that will only be discovered through further experimentation. Most ensemble-

based techniques are likely to be at least as computationally expensive as 4D-Var,

and perhaps significantly more expensive when there are an overwhelmingly large

number of observations (though see Hamill and Snyder, 2000 and Etherton and

Bishop, 2004 for more computationally efficient alternatives). Ensemble approaches

may be difficult to apply in limited-area models because of difficulty of specifying an

appropriate ensemble of lateral boundary conditions, and the method is very sensitive

to misestimation of the error covariances.

6.5.3 Applications of ensemble-based assimilation methods

Ensemble data assimilation techniques offer the potential of generating calibrated

analyses that may be useful for a variety of applications. Anderson (2001) showed that

the ensemble techniques can be used for parameter estimation. Hamill and Snyder

(2002) showed that ensemble assimilation techniques facilitate the calculation of

regions where adaptive observations are necessary. Snyder and Zhang (2003), Zhang

et al. (2004), and Dowell et al. (2004) demonstrate the feasibility of ensemble filters

for mesoscale data assimilation of radar observations. Reichle et al. (2002, 2003)

apply ensemble filters to estimation of soil moisture. Hamill et al. (2003) demonstrate
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how analysis-error covariance singular vectors, the most rapidly growing forecast

structures consistent with analysis errors, can be diagnosed using ensemble filters.

6.6 Conclusions

This chapter presented a brief tutorial of ensemble-based atmospheric data assimi-

lation. The technique is being explored by a rapidly growing number of researchers

as a possible alternative to other atmospheric data assimilation techniques such as

three- and four-dimensional atmospheric data assimilation. The technique is appeal-

ing for its comparative algorithmic simplicity and its ability to deal explicitly with

model error. Testing of ensemble filters has progressed rapidly over the past few

years from perfect-model experiments in toy dynamical systems to the assimilation

of real observations into global NWP models. Recent results are both suggestive of

the potential, though substantial continued development may be necessary for these

methods to become competitive with or superior to the existing four-dimensional

variational techniques.
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