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Abstract 
An experimental investigation of blunt trailing edge or flatback airfoils was conducted in the 
University of California, Davis Aeronautical Wind Tunnel.  The flatback airfoil was created by 
symmetrically adding thickness to both sides of the camber line of a baseline airfoil, while 
maintaining the maximum thickness-to-chord ratio of 35%.  Three airfoils, with geometries 
based on the baseline airfoil, of various trailing edge thicknesses (0.5%, 8.75%, and 17.5% 
chord) are discussed in this report.  In the present study, each airfoil was tested under free and 
fixed boundary layer transition flow conditions at Reynolds numbers of 333,000 and 666,000.  
The fixed transition conditions, used to simulate surface soiling effects, were achieved by 
placing artificial tripping devices at 2% chord on the suction surface and 5% chord on the 
pressure surface of each airfoil.  The results of this investigation show the blunt trailing edge 
airfoils reduced the well-documented sensitivity to leading edge transition for thick airfoils.  The 
nominally sharp trailing edge airfoil, with trailing edge thickness of 0.5% chord, performed well 
under free transition conditions, but the lift characteristics deteriorated significantly when the 
flow was tripped at the leading edge.  As the trailing edge thickness was increased, the effect of 
leading edge transition diminished, that is, the airfoil lift performance became increasingly 
similar for free and fixed transition.  The flatback airfoils yield increased drag coefficients over 
the sharp trailing edge airfoil due to an increase in base drag.  To address the base drag 
increment, six different trailing edge devices were investigated for the airfoil with 17.5% chord 
trailing edge thickness at a Reynolds number of 333,000 under tripped flow conditions.  Several 
of the trailing edge devices caused significant reductions in base drag. 
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Introduction 
 
Blunt trailing edge or flatback airfoils have been proposed for the inboard region of large wind 
turbine blades [1,2,3].  Flatback airfoils provide several structural and aerodynamic performance 
advantages.  Structurally, the flatback increases the sectional area and sectional moment of 
inertia for a given airfoil maximum thickness [1].  Aerodynamically, the flatback increases the 
sectional maximum lift coefficient and lift curve slope and reduces the well-documented 
sensitivity of the lift characteristics of thick airfoils to surface soiling [3]. 
 
In the past, many investigations have been conducted on blunt trailing edge airfoils with some of 
the earliest work by Hoerner [4,5] indicating that the maximum lift-to-drag ratio of thick airfoils 
can be increased by incorporating a blunt trailing edge, and suggesting application of such 
airfoils in the blade root region of rotors, such as propellers.  Most of these studies simply 
truncated the trailing edge to achieve the required blunt trailing edge shape, resulting in a 
reduction in camber and potential loss in lift. 
 
In contrast, the shape of these blunt airfoils seems to be optimal when the trailing edge is 
thickened, as demonstrated by Standish and van Dam [3].  This results in a reduced adverse 
pressure gradient on the suction side, thereby creating more lift and mitigating flow separation 
due to premature boundary-layer transition.  Unfortunately, the blunt trailing edge shape also 
creates a steady or periodic low-pressure flow in the near-wake of the airfoil that gives rise to a 
drag penalty; perhaps this drag penalty is the reason blunt trailing edges have been largely 
avoided in the design of subsonic airfoils [6].  Methods to minimize the base drag penalty, 
including trailing edge splitter plates, trailing edge serrations, base cavities, and trailing edge 
fairings or wedges, have been investigated for many years.  The literature on these trailing edge 
modifications has been studied and the main findings are presented in a previous report by van 
Dam and Kahn [7].  
 
Limited experimental data are available that validate the aerodynamic performance benefits of 
the blunt trailing edge concept for thick airfoils.  This lack of experimental data in the open 
literature prompted a wind tunnel study of a thick blade section with a blunt trailing edge.   In the 
present study, three airfoils with trailing edge thicknesses ranging from 0.5% to 17.5% chord 
were experimentally analyzed under free and fixed transition conditions.  To address the base 
drag increment, six different trailing edge devices were affixed to the airfoil with 17.5% chord 
trailing edge thickness.  In the following sections, the three airfoils, six trailing edge devices, and 
the corresponding wind tunnel results are presented. 

 

Airfoils and Trailing Edge Devices 
Airfoils 
The FB airfoil series, presented in the final report of Phase I of the Blade System Design Study 
(BSDS) [2], was selected for experimental investigation.  This series of airfoil shapes was 
generated by combining a low-pressure side shape drawn from the thick, high lift inboard NREL 
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airfoils, and a structurally efficient high-pressure side drawn from the LS–1 series airfoils.  
Figure 1 depicts the FB3500-0050 airfoil, the baseline airfoil with a nominally sharp trailing 
edge.  The actual trailing edge thickness-to-chord ratio of this airfoil is not zero but 0.5%.  The 
reasons for the finite trailing edge thickness are twofold: 1) physically, any blade section or wind 
tunnel model will have a finite trailing edge thickness and it is good practice to incorporate this 
attribute in the design and analysis from the onset; 2) computationally, different grid topologies 
are required for zero and finite trailing edge thickness airfoils.  Using a small, finite trailing edge 
thickness allows for the sharp trailing edge airfoil to be analyzed using the same grid type as the 
blunt trailing edge airfoils, thus facilitating comparison of computational results. 

 

Figure 1. Blade section geometries for the baseline FB3500-0050 airfoil and 
its derivative flatback airfoil sections: FB3500-0875 and FB3500-
1750. 

The FB3500-0875 airfoil has the identical maximum thickness as the FB3500-0050 airfoil but 
has a trailing-edge thickness of 8.75%, as shown in Figure 1.  Note that the FB3500-0875 airfoil 
with its maximum thickness-to-chord ratio (t/c) of 35% and trailing edge thickness-to-chord ratio 
(tte/c) of 8.75% closely resembles the FB3423-0596 (t/c = 34.23% and tte/c = 5.96%) section 
shape investigated in BSDS Phase I [2].  The blunt trailing edge was created by symmetrically 
adding thickness to either side of the camber line of the FB3500-0050 airfoil using an 
exponential blending function to smoothly distribute the increased thickness along the chord. 
 
The FB3500-1750 airfoil has the identical maximum thickness as the FB3500-0050 and the 
FB3500-0875 airfoils but has a trailing-edge thickness of 17.5% as shown in Figure 1.  The 
results of this paper will show, by using the flatback concept, a sharp trailing edge airfoil of this 
thickness (35%) can be modified to have lift characteristics that are largely insensitive to surface 
soiling.  A simple design guideline for blunt trailing edge or flatback airfoils is to limit the 
difference between maximum thickness-to-chord ratio and trailing edge thickness-to-chord ratio 
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to approximately 20% to make surface insensitive lift characteristics achievable.  Based on this 
rule-of-thumb one would expect to see significant sensitivity to surface soiling for the FB3500-
0050 and FB3500-0875 airfoils, but little or no sensitivity for the FB3500-1750 airfoil. 

Trailing Edge Devices 
The addition of trailing edge modifications is proposed to alleviate the base drag of the FB3500-
1750 airfoil (see Figure 1).  The trailing edge modifications used in the present study consist of 
metal plates which were attached to the trailing edge of the FB3500-1750 airfoil model.  The 
plates were manufactured in an L-shape such that they could be mounted perpendicular to the 
flat part of the trailing edge.  The splitter plates were designed to extend 17.5% chord (identical 
to the trailing edge thickness) from the trailing edge.  Three splitter plate edge treatments were 
investigated, including a non-serrated edge and splitter plates with 60º and 90º edge serrations as 
shown in Figure 2.  The manufacturing specifications for the splitter plates are provided in the 
appendix.   
 
The splitter plates were arranged on the trailing edge in two configurations.  The first 
configuration involved mounting a single plate at the centerline of the trailing edge of the airfoil.  
The second configuration consisted of two plates mounted at the limits of the trailing edge, 
forming a base cavity.  The first and second configurations will be referred to as single splitter 
plate and double splitter plate, respectively.  Six splitter plates were manufactured to allow for 
the investigation of the two configurations (single plate and double plates) with three different 
edge treatments. 

 

Figure 2. (a) Non-serrated, (b) 60º-serrated, and (c) 90º-serrated splitter plate 
edge treatments.  The trailing edge of the splitter plate is noted. 

Experimental Methods 
 
The aeronautical wind tunnel (AWT) at UC Davis is an open circuit, low turbulence wind tunnel 
manufactured by Aerolab [8].  A schematic diagram of the wind tunnel is offered in Figure 3.  
The wind tunnel has test section cross-sectional dimensions of 0.86 m × 1.22 m (2.8 ft × 4.0 ft) 
and length of 3.66 m (12.0 ft).  The test section is constructed with parallel sides, utilizing four 
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tapered fillets to compensate for boundary layer growth and to preserve constant pressure 
throughout the section.  The wind tunnel has low turbulence levels, less than 0.1% full scale 
(FS), for the initial 80% of the test section.  These low turbulence levels are ensured by the 
tunnel inlet, which houses an aluminum honeycomb screen and four anti-turbulence screens to 
reduce vorticity as the flow enters the tunnel.  The wind tunnel is driven by a Reliance Electric, 
Premium Efficient 125 hp motor and a Joy size 84-26-FB-1000 Arrangement 4 direct drive 
Axivane vaneaxial fan.  The velocity setting of the fan can be controlled to within ±0.2% FS by 
an electronic speed controller (Mitsubishi Meltrac A-100 variable frequency drive). 

 

Figure 3. Schematic of the UCD Aeronautical Wind Tunnel. 

The wind tunnel test section contains two 0.91 m (36.0 in.) diameter turntables for the mounting 
of test apparatus.  For a two-dimensional (2D) airfoil experiment, an airfoil model is placed over 
the first turntable and fixed to a six-component pyramidal balance such that the model bisects the 
test section vertically and extends from the floor to the ceiling (see Figure 4).  In the present 
study, the balance was used to measure lift and pitching moment about the quarter chord.  Drag 
was measured using a wake traverse method [9]. 

 

Figure 4. A two-dimensional airfoil model, mounted in the UCD AWT test 
section. 

The experimental analysis was conducted for the FB3500-0005, FB3500-0875, and FB3500-
1750 airfoils shown in Figure 1.  Each airfoil model was constructed to have a 0.203 m (8.0 in.) 
chord and a 0.8382 m (33 in.) span.  The experiments were conducted for Reynolds numbers of 
333,000 and 666,000 for free and fixed transition.  Fixed transition was attained using 0.25 mm 
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(0.01 in.) thick zigzag trip-tape placed at 2% and 5% chord, measured from the leading edge of 
the airfoil to the leading edge of the trip-tape, on the suction and pressure surfaces, respectively. 
 
The FB3500-1750 airfoil was modified by affixing splitter plates to the trailing edge using the 
two configurations and three edge treatments described above.  Each splitter plate was mounted 
perpendicular to the trailing edge of the airfoil using four bolts fastened to threaded inserts in the 
model (see Figure 5).  Tape was applied to the splitter plate to seal the junction of the splitter 
plate and the trailing edge. 

 

Figure 5. The FB3500-1750 airfoil model, with single 90º-serrated plate, 
mounted in the UCD AWT test section. 

A maximum thickness-to-chord ratio (t/c) of 35% was selected for this experiment because it is 
at the high end of section shape thickness considered for the root region of wind turbine blades.  
One of the problems with wind tunnel testing thick airfoils is that these types of models tend to 
create a significant amount of solid blockage (ratio of frontal area of the model to the test section 
cross-sectional area) and wake blockage (size of model wake relative to that of test section), 
thereby affecting the flow development in the wind tunnel test section.  Good engineering 
practice keeps solid blockage at 5% or less, but this value limits the model chord length, which 
in turn limits attainable chord Reynolds numbers [10].   
 
The model selection for this study led to a solid blockage ratio of 6% (model maximum thickness 
of 0.071 m and test section width of 1.22 m).  A series of computational fluid dynamics 
simulations were conducted by van Dam, Mayda, and Chao [11] to emulate the application of 
standard wind tunnel wall corrections [10] to the test results for flatback airfoil models similar to 
those investigated here.  These simulations indicate that standard corrections are nominally valid 
for flatback airfoils up to 40% maximum thickness-to-chord ratio, with solid blockage ratios of 
up to 10%.  Thus, all data presented in this report are corrected for wind tunnel wall effects using 
methods presented in Barlow et al. [10]. 
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Results and Discussion 
Flatback Airfoil Analysis 
The aerodynamic characteristics of the FB3500-0050 airfoil are presented in Figs. 6–8.  The 
FB3500-0050 airfoil has t/c = 35% and tte/c = 0.5%.  Due to the large maximum thickness and 
small trailing edge thickness, leading edge surface roughness sensitivity was expected and this 
sensitivity is clearly shown in Figure 6.  Under free transition conditions, the FB3500-0050 
airfoil behaved like a typical airfoil in that it has a nominally linear lift curve slope prior to stall, 
which occurred at approximately 19º.  With transition fixed near the leading edge, however, the 
airfoil behaved in a completely different manner.  In this case, the airfoil generated positive lift 
for all incidence angles, but with stall behavior occurring near -2º.  Beyond 2º, the angle of 
minimum post-stall lift, lift increased with increasing angle of attack at a much reduced lift curve 
slope, compared to free transition conditions, indicative of separated flow with flat plate lift 
effects.  These characteristics were found for both Reynolds numbers investigated. 

 

Figure 6. Measured lift curves for FB3500-0050 airfoil with transition free and 
fixed at Reynolds numbers of 333,000 and 666,000. 

The pitching moment characteristics of the FB3500-0050 airfoil are shown in Figure 7.  The free 
transition pitching moment was stable and nose down for all incidence angles.  For the fixed 
transition cases, the boundary layer transition sensitivity is clearly demonstrated by the pitching 
moment instability for angles of incidence between -5º and 1º.  In fact, between 1º and 5º 
incidence, the airfoil had a slight nose-up pitching moment at Re = 666,000. 
 
The drag characteristics for the FB3500-0050 airfoil are shown in Figure 8.  Comparison of free 
and fixed transition at the same Reynolds number shows fixed transition dramatically increased 
the drag.  For example, under free transition at Re = 666,000, the drag coefficient increased from 
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0.0151 at 0º to 0.0673 at 16º.  Under fixed transition at the same Reynolds number, the drag 
coefficient increased from 0.0290 at 0º to 0.1756 at 16º. 
 

 

Figure 7. Measured pitching moment curves for FB3500-0050 airfoil with 
transition free and fixed at Reynolds numbers of 333,000 and 
666,000. 

 

Figure 8. Measured drag curves for FB3500-0050 airfoil with transition free 
and fixed at Reynolds numbers of 333,000 and 666,000. 
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The results for the FB3500-0875 airfoil are shown in Figs. 9–11.  The FB3500-0875 airfoil has 
t/c = 35% and tte/c = 8.75%.  The lift characteristics of this airfoil are shown in Figure 9.  The 
FB3500-0875 airfoil was clearly influenced by leading edge transition conditions.  However, the 
sensitivity of this airfoil's lift characteristics to surface roughness in the leading edge region was 
dramatically diminished when compared to the FB3500-0050 airfoil, as shown in Figure 6.  In 
fact, the free and fixed transition cases for the FB3500-0875 airfoil had nearly identical lift curve 
slopes until the fixed transition cases stalled at around 6º.  In contrast, free transition stall 
occured at approximately 13º and 15º for Reynolds numbers of 666,000 and 333,000, 
respectively.  The fixed transition FB3500-0875 airfoil also behaved differently from the free 
transition case at angles of incidence less than 2º.  At these angles of incidence, the fixed 
transition lift curve slopes were less than the free transition counterparts.   

 

Figure 9. Measured lift curves for FB3500-0875 airfoil with transition free and 
fixed at Reynolds numbers of 333,000 and 666,000. 

As shown in Figure 10, the pitching moment characteristics do not appear to be significantly 
affected by changes in the transition location.  For all four cases analyzed, the FB3500-0875 
airfoil had stable nose-down pitching moment for all angles of incidence. 
 
The drag results for the FB3500-0875 airfoil are presented in Figure 11.  The fixed transition 
cases exhibited an increase in drag over the free transition counterparts.  For instance, at 16º and 
Re = 666,000, the fixed transition case produced 625 more drag counts than the corresponding 
free transition case. 
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Figure 10. Measured pitching moment curves for FB3500-0875 airfoil with 
transition free and fixed at Reynolds numbers of 333,000 and 
666,000. 

 

Figure 11. Measured drag curves for FB3500-0875 airfoil with transition free 
and fixed at Reynolds numbers of 333,000 and 666,000. 
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The experimental results for the FB3500-1750 airfoil are shown in Figs. 12–14.  The FB3500-
1750 airfoil has t/c = 35% and tte/c = 17.5%.  The lift characteristics of this airfoil are shown in 
Figure 12.  The lift characteristics of the free and fixed transition cases were nearly identical 
except for an earlier onset of stall for the fixed transition.  When transition was fixed near the 
leading edge, the airfoil stalled precipitously at around 12º.  The free transition case stall was less 
dramatic and was delayed until 19º and 20º for Reynolds numbers of 666,000 and 333,000, 
respectively. 

 

Figure 12. Measured lift curves for FB3500-1750 airfoil with transition free and 
fixed at Reynolds numbers of 333,000 and 666,000. 

The FB3500-1750 airfoil had similar pitching moment characteristics as the FB3500-0875 
airfoil, as shown in Figure 13.  Each of the four cases tested was positively stable and the 
pitching moment varied nearly linearly for angles of incidence below stall.  The pitching moment 
did increase slightly for free and fixed transition post-stall, but remained nose-down. 
 
The drag characteristics of the FB3500-1750 airfoil are shown in Figure 14.  For the fixed 
transition cases, the drag increased significantly for angles of incidence at or above stall.  For 
example, for Reynolds numbers of 666,000 at 16º, the drag coefficient was 0.1043 and 0.3833 
for free and fixed transition, respectively. 
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Figure 13. Measured pitching moment curves for FB3500-1750 airfoil with 
transition free and fixed at Reynolds numbers of 333,000 and 
666,000. 

 

Figure 14. Measured drag curves for FB3500-1750 airfoil with transition free 
and fixed at Reynolds numbers of 333,000 and 666,000. 
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The sensitivity of the lift characteristics of the FB3500-0050 airfoil to surface soiling is believed 
to be due to the steep adverse pressure gradient in the pressure recovery region of the airfoil.  
Under fixed transition conditions, the flow over the suction surface of the airfoil was separated 
over most of the angle–of–attack range.  This is in contrast to the free transition conditions, when 
the flow over the suction surface was mostly attached, as demonstrated by the much steeper lift 
curve slope seen in Figure 6.  The leading-edge surface roughness sensitivity can be reduced by 
“opening up” the trailing edge of the airfoil, by adding symmetrical thickness to the pressure and 
suction surfaces of the airfoil about the camber line, to create a flatback airfoil.  The sensitivity 
reduction is achieved by reducing the adverse pressure gradient on the suction surface of the 
airfoil and allowing some of the pressure recovery to occur off-body, i.e. in the wake of the 
airfoil.  This reduction in surface soiling sensitivity was found for the FB3500-0875 airfoil and to 
a greater extent for the FB3500-1750 airfoil, which have trailing edge thicknesses of 8.75% and 
17.5%, respectively.  To demonstrate this more clearly, a comparison of the aerodynamic 
characteristics of the flatback airfoils and the nominally sharp trailing edge airfoil is presented 
below. 
 
Figures 15 and 16 show a comparison of the lift and drag characteristics for the FB3500-0050 
and FB3500-0875 airfoils, under free and fixed transition conditions at Re = 666,000.  Under 
free transition conditions, the lift benefits (Figure 15) of the FB3500-0875 airfoil compared to 
the FB3500-0050 are counterbalanced by the drag penalty the blunt trailing edge created (Figure 
16).  Specifically, Figure 15 shows a notable difference in the lift characteristics of the airfoils; 
the FB3500-0875 airfoil achieved a maximum lift coefficient of 1.61 at approximately 13º, while 
the FB3500-0050 airfoil was able to produce a maximum lift coefficient of 1.39 before stalling at 
around 19º.  Figure 16 shows the free transition drag of the FB3500-0875 airfoil was greater than 
the FB3500-0050 by up to approximately 110% prior to stall. 
 
Under fixed transition, the advantages of the flatback airfoils become evident.  Figure 15 shows 
the fixed transition FB3500-0875 airfoil was able to maintain attached flow until around 6º, 
while the fixed transition FB3500-0050 airfoil stalled at around -2º.  In addition, the lift slope of 
the fixed transition FB3500-0875 airfoil closely resembled its free transition counterpart prior to 
stall.  This is in contrast to the fixed transition FB3500-0050 airfoil lift curve, which did not 
resemble the free transition FB3500-0050 airfoil lift curve at all.  The fixed transition drag 
curves for these airfoils were similar, as shown in Figure 16.  At this condition, however, the 
FB3500-0875 airfoil yielded lower drag for incidence angles less than 16º. 
 
Figures 17 and 18 show a comparison of the FB3500-0050 and FB3500-1750 airfoils, under free 
and fixed transition conditions at Re = 666,000.  By increasing the trailing edge thickness from 
8.75% to 17.5% chord, the leading edge roughness sensitivity was further reduced.  The 
FB3500-1750 airfoil at fixed transition conditions not only stalled much later than the 
FB3500-0050 and FB3500-0875 airfoils, but also its behavior was nearly identical to the free 
transition case, up to incidence angles of 11º for lift and 8º for drag, as shown in Figs. 17 and 18, 
respectively.  While the stall for this airfoil (both free and fixed transition) was the most abrupt, 
the lift curve slope of the FB3500-1750 airfoil was nearly unaffected by transition condition.  
Also, notice the high maximum lift coefficients of the FB3500-1750 airfoil, which were around 
2.09 and 1.58 for free and fixed transition, respectively.  In contrast, the free transition FB3500-
0050 airfoil maximum lift coefficient was only 1.39.  Figure 18 shows the FB3500-1750 airfoil 
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consistently produced more drag than the sharp trailing edge airfoil, probably due in large part to 
an increase in base drag. 
 

 

Figure 15. Comparison of lift characteristics of the FB3500-0050 and FB3500-
0875 airfoils, transition free and fixed at Re = 666,000. 
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Figure 16. Comparison of drag characteristics of the FB3500-0050 and FB3500-
0875 airfoils, transition free and fixed at Re = 666,000. 

 

Figure 17. Comparison of lift characteristics of the FB3500-0050 and FB3500-
1750 airfoils, transition free and fixed at Re = 666,000. 
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Figure 18. Comparison of drag characteristics of the FB3500-0050 and FB3500-
1750 airfoils, transition free and fixed at Re = 666,000. 

Effect of Trailing Edge Modifications 
The effects of the trailing edge modifications for the FB3500-1750 at a chord Reynolds number 
of 333,000 under fixed and free conditions are presented in Figs. 19 and 20.  The resulting lift 
curves are presented in Figures 19a and 19b for the single and double splitter plate 
configurations, respectively.  Figure 19a shows that the single splitter plate configuration did not 
significantly affect the airfoil lift characteristics in the linear regime, though there was some loss 
in maximum lift and a reduction of the stalling incidence angle.  The single non-serrated splitter 
plate resulted in the largest loss in maximum lift coefficient and reduction in stall angle.  The two 
serrated, single splitter plates caused nearly identical maximum lift and stalling angle of 
incidence. 
 
Figure 19b presents the lift results for the double splitter plate configurations.  When compared 
to baseline, the double splitter plate configurations resulted in an increased lift curve slope and 
an increase in zero lift angle of incidence (α0).  The increased α0 is likely the result of an 
effective change in airfoil camber due to the addition of the splitter plates as extensions from the 
suction and pressure surfaces, perpendicular to the trailing edge.  Since the trailing edge was set 
perpendicular to the chord line, and not the mean (camber) line, the splitter plates in this 
configuration act to reduce the camber, similar to a flap deflected upward.  The increase in the 
lift curve slope is likely due to the additional chord length afforded by the splitter plates.  As 
mentioned previously, the splitter plates were designed to be the same length as the trailing edge 
thickness, or 17.5% chord.  Thus, the addition of the double splitter plates effectively increased 
the chord of the airfoil by 17.5%.  The reduced camber and increased chord effects were not 
found for the single splitter plate configuration (Figure 19a), likely due to the location of the 
single splitter plate immersed in the separated wake of the airfoil.   
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Figure 19. Measured lift curves for the FB3500-1750 airfoil with fixed transition 

at a Reynolds number of 333,000: (a) single splitter plate 
configuration, (b) double splitter plate configuration. 

The splitter plates demonstrate significant drag reduction capabilities as shown in Figure 20.  
Figure 20a indicates the single splitter plate reduced the drag by nearly 50% for low angles of 
attack.  As the angle of attack increased, this reduction in drag diminished slightly until the 
airfoil stalled.   
 
Compared to the single splitter plate configuration, the double splitter plate was not as effective 
at mitigating drag, as shown in Figure 20b.  The maximum drag reduction for all of the double 
splitter plate cases was approximately 25% for the double splitter plate with 60º-serrated edge 
treatment at 8º.   In general, drag reduction improved for the double splitter plate configuration 
with increasing incidence angles.  While splitter plate edge treatments did not seem to have 
significant effect for the single splitter plate configuration, the same cannot be said for the double 
splitter configuration.  With double splitter plates, the 60º-serrated edge performed most 
effectively, followed by the 90º-serrated edge and the non-serrated edge, respectively. 

 (a) (b) 
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Figure 20. Measured drag curves for the FB3500-1750 airfoil with fixed 

transition at a Reynolds number of 333,000: (a) single splitter plate 
configuration, (b) double splitter plate configuration. 

During testing, a low amplitude, high frequency noise was observed to occur between incidence 
angles of 5º and 9º when splitter plates were attached to the FB3500-1750 airfoil trailing edge.  
The frequency of the noise was nearly constant for all of the splitter plate configurations.  The 
noise amplitude was most affected by splitter plate configuration and somewhat less affected by 
edge treatment.  The noise amplitude was largest for the double splitter plate configuration, with 
the 60º-serrated plates producing the largest amplitude, the 90º-serrated plates producing slightly 
less amplitude, and the non-serrated plates producing the lowest amplitude noise.  Thus, the 
double splitter plate with 60º-serrated edge had the largest amplitude and the single splitter plate 
with non-serrated edge had the smallest amplitude. 

 (a) (b) 
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Conclusions 
 
The aerodynamic characteristics of a flatback airfoil series have been analyzed in the University 
of California, Davis Aeronautical Wind Tunnel.  The flatback airfoil is created by adding 
thickness symmetrically about the camber line of a sharp trailing edge airfoil.  The baseline 
FB3500-0050 airfoil is a nominally sharp trailing edge thickness airfoil with an actual trailing 
edge thickness of 0.5% chord.  The FB3500-0875 and FB3500-1750 airfoils are flatback airfoils 
with 8.75% and 17.5% chord trailing edge thicknesses, respectively.  The sensitivity of the 
FB3500-0050 airfoil to surface roughness was demonstrated in the early onset of flow separation 
when the boundary layer was tripped near the leading edge.  The sensitivity is due to the steep 
adverse pressure gradient present on the upper surface in the pressure recovery region of thick 
airfoils such as the FB3500.  The flatback airfoils deferred some of the pressure recovery to the 
wake of the airfoil, thereby reducing the on-surface adverse pressure gradient and reducing the 
leading edge roughness sensitivity.  The flatback airfoils tended to incur greater drag penalties, 
due in large part to the addition of base drag. 
 
In order to mitigate base drag, single and double splitter plates were applied to the FB3500-1750 
airfoil.  For both configurations, three edge treatments, including non-serrated, 90º-serrated, and 
60º-serrated edges, were investigated.  Drag reductions of as much as 50% were achieved using 
the single splitter plate configuration; these reductions diminished slightly with increasing angle 
of incidence.  The single splitter plate minimally affected lift performance, causing only a slight 
reduction of the lift curve slope and stall angle of attack.  Serrations to the plate edge in the 
single splitter plate configuration had little effect on lift and drag.   
 
The double splitter plate configuration caused drag reductions of up to 25% compared to 
baseline; these reductions increased slightly with increasing angle of incidence.  The double 
splitter plate configuration caused increases in the lift curve slope and zero lift angle of attack of 
the FB3500-1750 airfoil.  The increased lift curve slope is likely due to the increased chord 
length of the airfoil created by the addition of the double splitter plates. The increased zero lift 
angle of attack is likely due to an effective reduction in camber caused by mounting the double 
splitter plates perpendicular to the trailing edge (parallel to the chord line) of the airfoil. These 
phenomena were not observed for the single splitter plate configuration due to separated flow 
surrounding the entire plate.  In the double splitter plate configuration, however, the flow 
surrounding the plate is not necessarily detached on all surfaces.  In future investigations, 
perhaps this decrease in camber can be mitigated by aligning double splitter plates with the 
camber line of the airfoil, or by matching the slope of the suction and pressure surfaces.  For the 
double splitter plate configuration, serrations on the downstream edge of the splitter plates 
caused improved performance compared to a non-serrated edge.  
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Appendix 

 

Figure A-1  Non-serrated splitter plate machine drawings. 
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Figure A-2  90º-serrated splitter plate machine drawings. 
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Figure A-3  60º-serrated splitter plate machine drawings. 
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