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EFFECTS OF TRANSDUCER INSTALLATION ON UNSTEADY 
PRESSURE MEASUREMENTS  ON OSCILLATING BLADES 

 

ABSTRACT 
 

Unsteady pressures were measured above the suction side of
a blade that was oscillated to simulate blade stall flutter.
Measurements were made at blade oscillation frequencies up to
500 Hz.  Two types of miniature pressure transducers were
used: surface-mounted flat custom-made, and conventional
miniature, body-mounted transducers.  The signals of the
surface-mounted transducers are significantly affected by blade
acceleration, whereas the signals of body-mounted transducers
are practically free of this distortion.  A procedure was 
introduced to correct the signals of surface-mounted 
transducers to rectify the signal distortion due to blade
acceleration.  The signals from body-mounted transducers, and
corrected signals from surface-mounted transducers represent
true unsteady pressure signals on the surface of a blade
subjected to forced oscillations.  However, the use of body-
mounted conventional transducers is preferred for the
following reasons: no signal corrections are needed for blade
acceleration, the conventional transducers are noticeably less
expensive than custom-made flat transducers, the survival rate
of body-mounted transducers is much higher, and finally
installation of body-mounted transducers does not disturb the
blade surface of interest. 

INTRODUCTION 
 

Blade flutter and the associated high cycle fatigue problems 
are very detrimental to the structural health of airfoil cascades.
The origins of stall flutter are still not fully understood. 
Among the basic information needed for flutter prediction is 
the unsteady pressure loading on the oscillating blades.  Yet
measuring oscillating pressure on fan or compressor blades
within a modern engine is nearly an impossible task.
Consequently, flutter conditions are simulated in linear 
cascades with blades undergoing forced oscillations.  However,
measuring unsteady pressures on the oscillating blades is not
easy even under these simplified conditions.  Conventional
static taps on oscillating blades average the fluctuating
pressures, and thus do not furnish enough information to
facilitate effective unsteady analysis of flow and blade
structure interaction.  The blades must be instrumented with
miniature pressure transducers to acquire the needed data on 
flutter effects.   NOMENCLATURE 

 
Only symbols not sufficiently described in the text are

presented here. 
 

a  [m.s-1]  speed of sound, 
ab  [g]    blade local acceleration, 
cp  [1]    pressure coefficient, 
d  [mm]   diameter of connecting tube, 
fB  [Hz]   frequency of forced blade oscillations, 
fC   [kHz]   frequency, 
fN  [kHz]   natural frequency of connecting tube, 
L  [mm]   length of connecting tube, 

Ma [1]    Mach number, 
pA  [kPa]   pressure signal amplitude, 
x, X [mm]   chordwise distance, 
φ  [dg]   nondimensional period. 

NASA  TRANSONIC  FLUTTER  CASCADE 
 

The NASA Transonic Flutter Cascade (TFC) facility has 
been used to investigate the behavior of a cascade of modern,
low-aspect ratio fan blades operating near the stall flutter 
boundary that occurs at high incidence angles and high
subsonic and transonic relative Mach numbers (Refs. 1 through
4).  The facility combines a linear cascade wind tunnel with a 
high-speed drive system that imparts pitching oscillations to 
the cascade blades.     The test cascade consists  of nine  blades.

J. Lepicovsky 
QSS  Group,  Inc. 

Cleveland,  Ohio  44135 
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Fig. 2   EDM electrode. Fig. 3   Grooved blade KS2.

DATA  ACQUISITION 
 

Signals from the miniature pressure transducers were 
amplified using DC amplifiers, and recorded in a digital form 
using a dedicated data acquisition system.  The A/D board 
employed had sufficiently high resolution to give a pressure 
resolution   of  24 Pa   for  transducers  with  100 kPa  full 
scale range.  All records were of the same length, 4.2 s
(precisely 80000 points acquired at a scanning frequency of 
19.2 kHz). 

 
All active pressure transducers were frequently calibrated 

under static conditions.  The instrumented blades were 
regularly used to measure unsteady pressures on blades that 
were not oscillated.  Example of the measurement accuracy 
achieved under steady state flow conditions are shown in Fig. 5 
for two cascade inlet Mach numbers of 0.5 and 0.8.  Three 
blades (S1, KS1, and KS2) were instrumented during the course 
of this test program.  Blade S1 was instrumented with
conventional  static  taps   (double cyan line),  and  blades  KS1

All nine blades or any single blade can be
oscillated at frequencies up to 500 Hz with 
amplitudes up to 2.4 dg.  A view of the
cascade test section is shown in Fig. 1. 
 

Originally, two blades were
instrumented with special flat, surface-
mounted transducers flush with the blade
contour (blades labeled KS1 and KS2).  The 
blades must be grooved before the
transducers can be flush mounted.  This
machining   was   done   with   the   Electro 
Discharge Machining (EDM) method.  The EDM electrode and
the grooved blade are shown in Figs. 2 and 3 (Ref. 5).  Fully
instrumented blade KS2 is shown in Fig. 4.  Coordinates of
transducer positions are given in Tab. 1.  
 
 The main reason for selecting flush-mounted transducers
was to maximize the frequency response of this pressure
measurement system.  On the other hand, there are several
disadvantages to this approach.  Although flat transducers are
very thin, they have a relatively large diameter; consequently,
they average unsteady pressures over a circle of at least 2 mm
in diameter.  The sensing elements are exposed, have minimal
protection, and are vulnerable to mishandling.  Our experience
is that the ‘fatality’ rate due to mishandling is very high.  To
protect the sensing element on the blade surface, the
transducers are overlaid with a layer of silicone rubber.  This
layer, however, also acts as a damper and decreases the
transducer frequency response.  Also, the blade surface where
the unsteady pressures are measured is disturbed to some
extent because of all the ‘digging’ on this side of the blade.
However, the biggest disadvantage of surface-mounted 
pressure transducers is that they are subject to acceleration
effects which severely contaminate - and can even overwhelm -
the measure pressure signal.  The problem of acceleration
effects will be discussed later. 
 

Fig. 1   Test section of the NASA Transonic Flutter Cascade. Fig. 4   Instrumented blade KS2.

+x-x 

+X
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Fig. 5      Comparison of static tap and miniature transducer 
time average data. 

MaIN =  0.50 MaIN =  0.80 

Blade  S1  Static taps 

Blade  KS1  Transducers

Blade  KS2  Transducers

X  (mm) -46.2 -39.3 -36.2 -35.2 -33.1 -29.9 -28 -26.8 -22.6 -17.9 -15.4 -9.1 0.1 4.5 8.8 13.3 17.7 26.6 30 35.5 40 42.6 
                                              

Blade KS2   A B   C D   E   F   G H I J K L M   N O   
Port   A B   C D   E   F   G H I J K L M   N O   

Transducer                                             
                                              

Blade KS3                                             
Port A B   C     D, E                             F 

Transducer           A D B C   E               F       

         Tab. 1   Coordinates of pressure ports and transducer locations on blades KS2 and KS3.

(red delta symbols) and KS2 (green gradient symbols) were
instrumented with surface-mounted flat transducers. The plots 
in Fig. 5 show pressure coefficient distributions over the
suction surface of a blade.  The data collapse is very good.  The
maximum difference between the static tap and time-averaged 
miniature transducer data is less than 2% of the local dynamic 
pressure value at a Mach number of 0.5, and about 5% at a
Mach number of 0.8  (Ref. 5). 
 

For the tests where instrumented blades were oscillated,
signals from the blade transducers were recorded
simultaneously with a once-per-period (OPP) signal from the 
driving shaft of the blade oscillation mechanism.  The OPP
signal was used as a base for ensemble averaging of pressure
transducer signals during the post processing phase.  Due to the
constant number of samples in every data record, the number
of periods for averaging increases with the blade oscillation
frequency, whereas the number of samples in the resulting
ensemble average (period resolution) is inversely proportional
to the blade oscillation frequency.  Specifically, for a frequency
of 50 Hz the ensemble consists of 200 periods, while for 500 
Hz blade frequency the ensemble consists of 2000 periods. The
resolution of the nondimensional ensemble average period is
0.0025 for 50 Hz frequency, and 0.025 for the blade oscillation
frequency of 500 Hz.  
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transducer generates lower voltage.  Positive acceleration
mimics a negative pressure difference.  If a transducer is
located in a vibrating environment, and the acceleration signal
is not known, there is no way to distinguish between the
transducer signal components caused by pressure and 
acceleration variations. 

ACCELERATION  EFFECTS 
 

As stated above, the surface-mounted flat transducers 
are subject to acceleration effects that severely contaminate 
the pressure signal.  A detailed diagram of a surface-
mounted transducer is shown in Fig. 6.  As seen here, the 
transducer sensing element (a silicone diaphragm) lies in a 
plane that is perpendicular to the acceleration vector as the 
blade oscillates.  The forces acting on the diaphragm are 
shown schematically in Fig. 7.  With no pressure difference 
and no acceleration acting on the transducer, the diaphragm 
is in its neutral position, and the voltage signal generated by 
the transducer is constant.  If a positive pressure difference 
is applied to a transducer, the diaphragm deflects upwards, 
and the transducer generates increased voltage that is a 
measure of the increased pressure.  If however, the 
transducer is subjected to a positive acceleration, the 
diaphragm deflects downwards  due  to  its inertia,  and the 

CEMENT  &  FILLER DIAPHRAGM 

   BLADE 
 TRANSDUCER 

ACCELERATION

Fig. 6     Surface-mounted pressure transducer. 

POSITIVE 
PRESSURE 
DIFFERENCE

INCREASING 
PRESSURE 

DECREASING
PRESSURE 

POSITIVE 
ACCELERATION 

NO  ACTION NO  PRESSURE
CHANGE 

DIAPHRAGM 
RESPONSE

SIGNAL 
INTERPRETATION ACTION

Fig. 7    Pressure difference and acceleration loading. 

NASA/CR—2006-213797 3



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SURFACE-MOUNTED PRESSURE TRANSDUCERS
(BLADE KS2) 
 

Diagrams in Fig. 8 show the response of pressure
transducers to acceleration in the absence of airflow.  The 
blade was oscillated with angular amplitude of 1.2 dg about its 
stagger angle position of 30 dg.  Further, the results are shown
for three oscillation frequencies of 100 Hz, 300 Hz, and 500 
Hz.  The columns correspond to three pressure transducers
located on blade KS2 at ports F, I, and O.  The left column
corresponds to the transducer which is upstream (left) of the
blade pitching axis.  As the blade leading edge moves up from
its neutral position the transducers left of the pitching axes
experience negative acceleration (deceleration), while the
transducers right of the pitching axis experience positive
acceleration with respect to the blade surface, and also to the
plane of transducer diaphragm.  Therefore the transducers left
of the pitching axis initially show pressure decreases while the
transducers right of the pitching axis show pressure increases.
The apparent pressure data were fitted with a sine wave that
represents the first harmonic of the unsteady pressure data.  For
simplicity, the amplitude and phase of this fitted first harmonic
sine wave will be used in further analysis. 

 
The acceleration load increases both with increasing

frequency of blade oscillations, and with increasing distance
between the transducer position and the pitching axis. 
Summary plots of blade local acceleration, amplitude, and
phase  of the pressure signal’s first harmonic are  shown  in 
Fig. 9.  The amplitude of apparent pressure oscillation
increases parabolically with increasing local acceleration in
both directions away from the pitching axis.  The phase
changes 180 dg at the zero acceleration position, which is at the

pitching axis.  It appears that the oscillation amplitude of
apparent pressure due to acceleration effects for local blade 
accelerations below the level of 100 g is less than 1 kPa, which 
is almost equal to the expected error of the transducer reading
for the given pressure range (100 kPa absolute pressure). 
Consequently, the acceleration effects for local blade
accelerations below the level of 100 g can be ignored. 
 

Once the flow in the cascade is turned on, the pressure 
transducer response is more complicated.  The transducer
diaphragm is now loaded by flow induced pressure fluctuations
as well as by inertia forces, which result in a complex signal
pattern.  The series of diagrams in Fig. 10 depicts the response
of pressure transducers along the blade KS2 while oscillating at 
300 Hz at a cascade inlet Mach number of 0.5.  A similar set of 
data, however at a cascade inlet Mach number of 0.8 is shown 
in Fig. 11.  Summary plots for both flow conditions and all
oscillation frequencies tested are presented in Figs. 12 and 13.
The most noticeable change in the plots of oscillation
amplitude is that the flow exhibit strong induced oscillations at 
the midchord location, which is at the pitching axis where
blade local acceleration is zero.  The highest oscillation
amplitude is for the transducer at the port F (upstream of the 
pitching axis), and this amplitude increases with increasing 
inlet Mach number as well as with increasing frequency of
blade oscillations, particularly for the higher inlet Mach
number (Fig. 13).   As seen in Fig. 9, for the flow-off case the 
oscillation amplitude increases with increasing acceleration.
For the cascade flow on (Figs. 12 and 13), however, the 
oscillation amplitude downstream of the pitching axis initially
decreases with the increasing acceleration, and then starts to
increase.   This change in trend occurs for local acceleration  of

Fig. 8      Apparent unsteady pressure due to acceleration effects on
Surface-mounted transducers  (blade KS2).
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Fig. 9      Acceleration effects on surface-mounted
transducers for no cascade flow. 
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about 40 g to 50 g for inlet Mach number of 0.5 (Fig. 12), and
for acceleration of 100 g for inlet Mach number of 0.8 (Fig. 
13).  The phase of the detected oscillation signal exhibits more
complex behavior in the flow-on condition than in the flow-off 
condition.  This behavior occurs because the pressure 
fluctuations are convected with the flow over the blade surface,
which varies the phase angle with respect to the transducer
location.  For an inlet Mach number of 0.5, a sudden change in
the oscillation phase can still be detected at the blade pitching
axis, but for the higher Mach number this change becomes less
pronounced. Obviously,  both the amplitude  and  phase  of  the
transducer pressure signals are strongly influenced by the
acceleration effects. 

CORRECTION  FOR  ACCELERATION   EFFECTS 
 

The problem of data contamination due to acceleration 
effects was addressed in  previous work in this facility (Ref. 6). 
It appears, based on the short description given in Ref. 6, that 
the correction for acceleration effects was based on the
measured amplitude of the apparent pressure fluctuations only, 

Fig. 10  
 Pressure signals for  inlet 
 flow at Mach number 0.5 
 and  blade oscillations  of 
 300 Hz. 
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Fig. 11  
 Pressure signals for  inlet 
 flow at Mach number 0.8 
 and  blade oscillations  of 
 300 Hz. 

Fig. 13 Acceleration effects on surface-mounted
transducers for Mach number of 0.8. 
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and the phase of the pressure signal was not corrected.  The
blades were oscillated at no flow conditions in a low pressure
chamber (1.2 kPa) outside of the TFC facility, and the
measured ‘pressure’ signal was fully attributed to the
acceleration effects.  It is stated in Ref. 6 that “at 370 Hz, the 
correction for the upper surface leading edge transducer was
2.6 kPa”.  This data point is plotted in Fig. 9.  As seen here,
this data point is perfectly in line with data acquired for no
flow conditions in the TFC facility at ambient pressure. 
 

In order to retrieve the amplitude and phase behavior of the
true flow pressure fluctuations, the acquired signal from the
surface-mounted pressure transducers must be corrected to
remove the acceleration effects for both, the amplitude of
apparent pressure fluctuations   as  well  as  for    phase  of   the
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Fig. 14 Uncorrected and corrected pressure signals for blade oscillation
frequency of 500 Hz and local acceleration of 375 g. 

PORT KS2-O1PORT KS2-K1
PORT KS2-N1PORT KS2-I1
PORT KS2-L1PORT KS2-F1

O
S

C
IL

LA
TI

O
N

A
M

PL
IT

U
D

E
,

p
[k

P
a

]
A

10.0

4.0

6.0

2.0

8.0

O
S

C
IL

LA
TI

O
N

P
H

A
S

E
,

[d
g

]
φ

270

0

90

180

360

0 800-400 400
BLADE LOCAL ACCELERATION, a [ g ]b

Fig. 15 Pressure signals from surface-mounted 
transducers  corrected  for acceleration
effects for inlet Mach number of 0.5. 
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Fig. 16 Pressure signals from surface-mounted 
transducers  corrected for  acceleration
effects for inlet Mach number of 0.8. 

condition from the signal ensemble average generated for the
flow-on condition. 
 

The result of this correction is shown in Fig. 14 for the 
transducer at port F at an inlet Mach number of 0.8, and blade 
oscillating frequency of 500 Hz.  Summary plots of corrected
pressure fluctuations for the cascade inlet Mach numbers of 0.5
and 0.8 are presented in Figs. 15 and 16.   These plots are 
qualitatively different from plots of uncorrected data shown in 
Figs. 12 and 13.  First, the amplitude plots show high level of 
pressure fluctuations upstream of the pitching axis and a
significant drop in the amplitude of pressure fluctuations
downstream of the pitching axis.  This effect is particularly 
obvious at the cascade inlet Mach number of 0.8 (Fig. 16).  The 
phase  plots  show  significantly  smaller  phase  change  at  the

phase of the apparent pressure fluctuations.  The 
proposed signal correction is based on an 
assumption of superposition of true pressure 
fluctuations and acceleration effects (Ref. 7).  For 
each test conditions two sets of data were 
recorded: one with flow-off in the cascade, the 
other with flow at a selected cascade inlet Mach 
number.  Both records were of the same length of 
4.2 s. The frequency of blade oscillations was 
maintained for both conditions with accuracy 
better than 1% of the frequency value.  The OPP 
signal was used to build ensemble averages of 
flow-off and flow-on pressure signals.  Based on 
the assumption of linear superposition, the 
acceleration effects can be removed by simply 
subtracting the ensemble average for the flow-off 
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pitching axis than was the case for the uncorrected data.  In
summary, the corrected data indicate strong induced pressure
fluctuations over the upstream half of the oscillating blade with
a rapid decrease of the oscillation amplitude as the flow
passing by the blade pitching axis.  The pressure oscillations
over the downstream half of the blade are very weak with
amplitude that is of the same order as the expected transducer
error band.  The phase of the pressure fluctuations does not 
exhibit a sudden change at the pitching axis as it does for the
flow-off condition. 

BODY-MOUNTED   PRESSURE   TRANSDUCERS  
(BLADE KS3) 
 

Due to the high ‘fatality’ rate of handling the fragile
surface-mounted pressure transducers, not enough active
transducers were available to acquire the desired data.
Instrumenting a new blade replacing all transducers would be
very costly, and a decision was made to install transducers on a
new blade only in the locations of malfunctioned ones. Further,
it was decided to replace flat surface-mounted custom-installed 
transducers with less expensive standard, miniature pressure
transducers. Due to the blade size restrictions, the conventional
miniature pressure transducer must be installed body-mounted 
as indicated in Fig. 17.  In this approach, the pressure
transducer is mounted just below the blade surface.  All the
‘digging’ in the blade is done from the opposite side of the
blade, thus leaving the surface of interest untouched.  A
photograph of the blade during EDM on the pressure side is 
shown in Fig. 18.  The transducer is connected to the surface
by a 2-mm long tube 0.5 mm in diameter. Such a short
connecting tube does not practically affect the transducer
frequency response.  The frequency response of body-mounted 
transducers will be discussed later, and it will show that for the
frequency range up to 500 Hz used in the NASA TFC facility
the connecting tube can be up to 15 mm in length before any
noticeable change on the overall frequency response is noted.
Five out of six transducers on blade KS3 were equipped with
connecting tubes as can be seen on the drawing in Fig. 19.  The
reason for this layout is that the measuring ports could be
placed much closer to the leading and trailing edges – a place 
where the blade is too thin to accommodate a transducer.  To
keep the same frequency response for all the transducers, the
connecting tubes were used even in place where the blade had
sufficient thickness.   Only one transducer was equipped with a

Fig. 17 Body-mounted pressure transducer. 

ACCELERATION 
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Fig. 18 Blade KS3 in the EDM machine.
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Fig. 19 Layout of body-mounted miniature pressure
transducers on suction side of blade KS3. 

short tube of 2 mm in length (port D) to assess the effects of the 
connecting tube on the overall frequency response. Body-
mounted transducers are better protected against damage due to
mishandling than the transducers mounted on the blade surface. 
 

The major benefit of the body-mounted transducers is that 
the transducer diaphragm is oriented perpendicular to the blade 

surface; this orientation minimizes the 
transducer’s sensitivity to acceleration effects, 
and eliminates the need to correct the signal for 
acceleration effects.  The result is a significant 
improvement in the accuracy of pressure 
measurement on oscillating blades.  The 
graphs in Fig. 20 show the significantly 
reduced effect of blade acceleration on signals 
for selected ports and frequencies.  A summary 
plot of the signal first harmonic for all flow-off 
tests  is  shown  in  Fig. 21.   As  seen here,  the
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maximum amplitude of the apparent pressure fluctuation for
flow-off conditions is less than 0.3 kPa, which is more than
twenty times less than surface-mounted transducers (see Fig.
9).   The acceleration effects are nearly negligible, and the
signal  does  not  require  any  acceleration  related corrections. 
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Fig. 21 Acceleration effects on body-mounted 
transducers for no cascade flow. 

The phase diagram is shown here only for
completeness.   For most of the ports, with the 
exception of port A, the phase follows the blade
motion.   The signal for port  A is very flat, as seen 
in the left column of Fig. 20, which does not allow
determination of the signal phase with sufficient 
accuracy. 
 

Summary plots for inlet Mach numbers of 0.5 and 
0.8 are shown in Figs. 22 and 23.  The first 
observation is that the pressure oscillations close to 
both the blade leading and trailing edges are of very 
low amplitudes, and practically independent of the 
frequency of blade oscillations (change in frequency 
is at a given port reflected as a change in 
acceleration).  Second, the amplitude of pressure 
fluctuations over most of the leading half of the
blade increases with an increasing frequency of 
blade oscillations.  The phase of the pressure 
fluctuations seems not to be affected by frequency of 
blade  oscillations,  and  depends only  on  the port 
position on the blade surface.  The only exception is
the case of Mach number 0.5 for location close to 
the trailing edge; the phase jumps over 90 dg for a 
blade frequency of 400 Hz as seen in Fig. 22. 
Reasons for this sudden change are not readily 
obvious.   

TWO-DIAPHRAGM  PRESSURE  SENSOR  
 

An alternative solution to eliminate acceleration effects on 
measured pressures is presented in Ref. 8.  In this approach a
flat surface-mounted pressure transducer consists of two
diaphragms placed next to each other.  One diaphragm is
exposed to the ambient pressure, while the other is in a sealed
enclosure.  The first diaphragm senses pressure and
acceleration changes, whereas the second one registers the 
acceleration effects only.  A pressure signal free of acceleration
effects can be retrieved by simply subtracting the signal of the
sealed transducer from the signal of the exposed sensor.  This
custom made transducer was tested for steady centrifugal
acceleration and worked very well.  There is no report yet
about the performance of this transducer under fluctuating 
acceleration loading. This innovative approach, however, also
has several drawbacks.  First, both diaphragms must have
identical sensitivity of diaphragm deflections to acceleration. 
It is our experience that diaphragm sensitivity to deflections
varies even for commercial transducers from the same batch.
Second, the transducer will require two channels of data
recording system to acquire one signal of unsteady pressure.
Third, the transducer is bulkier than the existing single
diaphragm transducers, and therefore the transducer cannot be
placed close to the blade leading or trailing edges.  Finally, the
transducer is not commercially available and is expected to be 
more costly. 

Fig. 20 Apparent unsteady pressure due to acceleration effects on
body-mounted pressure transducers (blade KS3). 
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Fig. 22 Pressure signals from body-mounted 
   transducers for  inlet  Mach  number 

of 0.5. 
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Fig. 23 Pressure signals from body-mounted  
   transducers for  inlet  Mach  number 

of 0.8. 

FREQUENCY RESPONSE OF CONNECTING TUBES  
 
    As stated above the flat surface-mounted pressure
transducers could not be placed closer to the blade leading or
trailing edges than  5%  of  the  blade chord.   A body-mounted
pressure transducer equipped with a connecting tube can have
the sensing port located up to the very edge of the blade.  The
penalty for this is a decreased natural frequency of the setup.
A connecting tube essentially acts as a low-pass filter 
attenuating the high frequency content of the unsteady pressure
signal. A connecting tube essentially acts as a low-pass filter 
attenuating the high frequency content of the unsteady pressure
signal.  A system consisting of a tube connected to a miniature
pressure transducer has a natural frequency that was
determined using the following formula based on speed of
sound (a), tube length (L), and tube diameter (d).  This formula
has been verified by experiments described in Ref.  9: 

fN  = 
4 (L + 0.3d) 

a 

As a rule, the maximum frequency of interest should not 
exceed 80% of the natural frequency.  The length of connecting
tubes on blade KS3 (with the exception of port D) is 14.0 mm. 
Consequently, the pressure signal should be free of significant
distortion up to a frequency of 4.6 kHz, which is sufficiently 
high even for the maximum frequency of blade oscillation of
500 Hz.  To verify this assumption, one of the transducer (port
D) was inserted with a connecting tube with the minimum
possible  length  of  2 mm.   Comparing  data  from  transducers 

connected to ports D and E, the effects of tube lengths can be
evaluated.  These transducers have connecting tubes of 
different length but they are reading unsteady pressures from
practically same location on the blade (see Fig. 19). 
 

The  unsteady  pressures  measured  by  transducers D  and 
E are shown in Fig. 24 for three blade oscillation frequencies of 
100 Hz, 300 Hz, and 500 Hz, and a cascade inlet Mach number
of 0.8.  As seen here, there is no visible difference between 
signals of these two transducers for a blade oscillation
frequency of 100 Hz.  For the blade oscillations frequency of 
300 Hz and higher, the signal for the transducer with a longer 
connecting tube is smoother and missing some of the high
frequency oscillations; however, the essential character of the
unsteady pressure signal is not altered.  This qualitative
observation is substantiated by Fig. 25 that presents frequency 
spectra for both transducers.  As seen here, the longer tube
filters out only high  frequency  noise  (between 1.5 kHz and 
4.0 kHz) with amplitudes below 0.1 kPa that do not 
significantly contribute to the overall signal frequency content. 
The basic harmonics of the signal, up to the seventh harmonic
(for fB = 500 Hz) are not altered at all.  The multiple lines at 
frequencies about 100 Hz are due to resonance effects in the 
cascade facility (Ref. 10), and are not caused by blade
oscillations.  Therefore, it can be concluded that data acquired
by transducers with connecting tubes of length 14 mm in length 
is fully representative of the actual frequency content of the
real pressure signal. 
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PRESSURE FLUCTUATIONS ON THE BLADE 
 

The analysis above reinforces the conviction that the true 
unsteady pressure signal along the oscillating blade can be
reliably determined directly using body-mounted miniature
pressure transducers or using surface-mounted transducers and
applying corrections for acceleration effects.  Data presented in
Fig. 26 further support this statement.  Beyond any doubt the
amplitude of forced unsteady pressure fluctuations rapidly
increases pat the oscillating blade leading edge, reaches its
maximum at about the mid-point of the blade upstream half
(left of the pitching axis), and then decays to a relatively low
level just past the blade midchord.  The fluctuation level stays
low over the entire downstream half (right of the pitching axis)
of the oscillating blade. Although these results can be obtained
from transducers mounted in either way, the advantages of the
body-mounted transducers are obvious.  The body-mounted 
transducers do not require correction for accelerations effects,
they are less expensive, their survival rate is much higher, and
the surface of interest is not disturbed by transducer
installation. 

CONCLUSIONS  
 

Miniature pressure transducers were installed in an 
oscillating blade to measure unsteady pressures above the 
oscillating blade suction surface.  The transducers were
mounted in the blade in two ways: surface-mounted flat 
custom-made transducers, and conventional body-mounted 
transducers.  The following conclusions were reached: 

• transducers mounted in both ways can produce a true
unsteady pressure signal provided the signal of the 
surface-mounted transducer is corrected for acceleration 
effects; 

• body-mounted transducers are practically insensitive to 
acceleration effects, and their signal does not require any 
additional corrections; 

• body-mounted transducers are much more resilient to 
mishandling damage, and their survival rate is much 
higher compared with surface-mounted transducers; 

• conventional transducers utilized for body-mounted 
installation are substantially less expensive than the 
custom surface-mounted transducers; 
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 Fig. 24.    Comparison of pressure signals from 
transducers  with   long   and    short 
connecting   tubes    for   inlet   Mach 
number of 0.8. 

   Fig. 25.   Frequency spectra for unsteady pressure signals from 
     transducers with short and long connecting tubes for 
    cascade inlet Mach number of 0.8. 
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• the length of the connecting tubes for body-mounted 
transducers must be adjusted to the maximum expected
frequency of the unsteady pressure signal; 

• in summary, the utilization of body-mounted 
conventional miniature pressure transducers is preferable
to using the surface-mounted custom-made flat 
transducers.  

   Fig. 26.   Unsteady pressure distributions on the suction side of 
    an oscillating blade. 
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