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On a Multilevel Preconditioning Module for Unstructured Mesh Krylov Solvers: Two -level Schwarz1

R. S. Tuminaro2, C. H. Tong3, J.N. Shadid2, K.D. Devine2, D.M. Day2

ABSTRACT: Multilevel methods offer the best promise to attain both fast convergence and parallel
efficiency in the numerical solution of parabolic and elliptic partial differential equations.
Unfortunately, they have not been widely used in part because of implementation difficulties for
unstructured mesh solvers. To facilitate use, a multilevel preconditioner software module, ML, has
been constructed. Several methods are provided requiring relatively modest programming effort on
the part of the application developer. This report discusses the implementation of one method in the
module: a two-level Krylov-Schwarz preconditioner. To illustrate the use of these methods in
computational fluid dynamics (CFD) engineering applications, we present results for 2D and 3D
CFD benchmark problems.

1.  INTRODUCTION 

The numerical solution of partial differential equations (PDEs) often requires the solution of linear
systems that arise from discrete approximations to PDE operators. Among iterative methods to
solve these linear systems, preconditioned Krylov schemes are the methods of choice. Unlike the
currently popular incomplete factorization preconditioners, multigrid methods are relatively
suitable for parallel implementation [1] and their convergence rates do not deteriorate as grids are
refined [2]. The idea of multigrid is to capture errors at different frequencies by using a hierarchy of
grids with different amounts of resolution. By traversing different grids, optimal convergence rates
are frequently observed with overall solution times that are much faster than methods using
incomplete factorizations. Unfortunately, multigrid methods are difficult to implement and
incorporate into applications, and are consequently rarely found in large complex application codes.
While algebraic multigrid strategies address some of these difficulties, additional research is
required to make the techniques general enough for widespread use. 

To address the complexities of multigrid research, our goal has been to design a multilevel code
module (ML) incorporating a wide variety of multilevel methods. A preliminary discussion of the
ML interface can be found in [3]. In this communication, we briefly discuss the status of the two-
level Schwarz domain decomposition capability. 

2.  MULTILEVEL METHODS

Multilevel methods (e.g., multigrid) are used to solve systems of equations. In general, multigrid
methods approximate the original PDE problem of interest on a hierarchy of grids and use
‘solutions’ from coarse grids to accelerate the convergence on the finest grid. In Figure 1, we
illustrate a simple multilevel iteration. The Sk()’s are approximate solvers (or more popularly called
smoothers). These usually correspond to basic iterative methods such as Gauss-Seidel. Within
domain decomposition (DD) methods, the subdomain direct solve or incomplete factorization can
be viewed as an approximate solver. The Pk’s and Rk’s are grid transfer operators that interpolate
and restrict solutions between grids (denoted Gk) in a hierarchy. Finally, the Ak’s are discrete
approximations to the PDEs on each grid within the hierarchy. Often the same discretization
scheme can be used for each grid although this is not always appropriate. A more robust choice is
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the Galerkin approximation Ak-1 = RkAkPk. The precise definition of these operators depends on the
application and the multigrid method. Our ML software module supports several ways of creating
these operators including a number of algebraic multigrid methods, a way of importing user-defined
operators, and a two-level domain decomposition scheme that uses the application’s finite element
basis functions to transfer between grids in the hierarchy.

2.1.  A Two-level Preconditioner

In this brief discussion, we present a two-level preconditioner based on the popular one-level
Schwarz (overlapping domain decomposition) preconditioner[4]. In the one-level Schwarz method,
each processor is assigned a subdomain of the entire grid which can overlap with subdomains of
other processors. The preconditioner essentially consists of each processor approximately solving
its local subdomain problem and combining its results with those of the neighboring processors in
the overlapped regions (e.g. averaging values). The subdomain solve might be a direct solve, an
incomplete solve, or an iterative solve. The Schwarz preconditioner is fairly popular because it is
easy to implement (e.g. it does not require grid information) and gives good results on a variety of
problems. A number of publicly available parallel iterative software packages contain Schwarz
preconditioners [5,6]. Unfortunately, the convergence rate of the Schwarz preconditioner
deteriorates as the number of subdomains (processors) increases. The is due primarily to global
decoupling in the preconditioner; i.e., coupling between distant subdomains is ignored. A coarse
grid solution step (very coarse compared to the fine grid) can be added to the basic Schwarz method
to approximate the global coupling in the PDE operator. A proper two-level Schwarz method can
significantly reduce solution time. Furthermore, the convergence degradation of the resulting
preconditioner is provably quite modest and depends only weakly on the size of subdomains.
Unfortunately, library software to do this coarse solution step is generally not publicly available. To
address this problem, we have implemented a coarse grid solution step within the multilevel
module. This coarse solve is based on both the serial and parallel versions of SuperLU[7] which is a
direct sparse linear system solver. Since the local subdomain ‘solvers’ or smoothers can be obtained
from many iterative libraries, these are not implemented. Instead, the multilevel module is designed
to be used with an iterative solver package that supplies the outer iterative scheme as well as the
subdomain ‘solves.’ To fully specify the two-level Schwarz preconditioner, we refer to the
multilevel algorithm given in Figure 1. Specifically, take  and let S1() correspond to the one-
level Schwarz preconditioner. We require that G0 and G1 be supplied by application developers.
While this is inconvenient, it is important to note that G1 is generally available and the one
additional grid can often be created with the same grid generator used to generate G1. ML can

proc multilevel(Ak,b,u,k)
/* Solve  (where k is the current grid level). */

{
if (k == 0) then 
else {Sk(Ak ,b,u);

 residual = b - Aku ; v = 0; 
/* solve on coarser grid. */
multilevel(Ak-1, Rk * residual,v,k-1)
u = u + Pk v

}
}

Aku b·=

u A0
1–
b;=

Figure 1.  Pseudo-code for a generic multi-level solver
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generate A0 via the Galerkin formula or it can be supplied by the application. All results in this
paper were generated with A0 obtained by explicit discretization on G0. P1 is defined implicitly by
the application’s elemental basis functions. That is, users supply simple routines indicating how
information is interpolated within a specific finite element. The multilevel module then uses these
routines to perform the tedious task (especially in a parallel environment) of constructing P1. In this
construction ML allows for the coarse grid and fine grid to be partioned differently for parallel
execution. This flexibility is required to produce a general interface for FE application codes that do
not use mesh adaptivity to produce the fine grid from an initial coarse grid. In practice the cost of
this possible imbalance and non-optimal communication structure is small since the coarse grid is
usually significantly smaller than the corresponding fine grid. Finally, R1 is taken as the transpose
of P1.1 The interaction between the application and the multilevel module is summarized in Figure
2.

3.  THE GOVERNING EQUATIONS AND THE NUMERICAL FORMULATION

To illustrate the usefulness of the multilevel approach we briefly present a comparison of the one-
and two-level DD preconditioners applied to the solution of two thermal convection problems and a
Stokes flow problem. The governing elliptic PDEs (Navier-Stokes with the thermal energy
equations) are shown in Table 1. These equations are discretized by a Galerkin least squares (GLS)

finite element formulation which allows for equal order of interpolation of velocity and pressure[8].
The resulting nonlinear system of equations is solved using a fully-coupled inexact Newton method
along with Krylov solvers as implemented in our Aztec Krylov solver library [5]. The details of the
parallel finite element implementation, convergence of the fully-coupled inexact Newton methods,
and the parallel performance and convergence of various standard preconditioning strategies can be
found in [9,10,11]. 

4.  PRELIMINARY RESULTS

To illustrate the use of the two-level DD preconditioners as implemented in the ML library we 
present characteristic results for a standard 2D benchmark thermal convection flow problem along 
with a generalization to a 3D problem. In this standard 2D benchmark problem [11], a thermal con-
vection (or buoyancy-driven) flow in a differentially heated square box in the presence of gravity is 
modeled. The momentum transport, energy transport and total mass conservation equations defined 
in Table 1 are solved on a unit square. No-slip boundary conditions are applied on all walls. The 
temperature on the heated wall and other parameters are chosen so that the Rayleigh number, , 

1.  Other techniques exist to construct grid transfer operators. However, these are not discussed here.
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can be varied. The 3D problem adds two no-slip insulated walls in the third dimension to form a 
1x1x1 cube; a solution for this problem with  is shown in Figure 3. These simple geome-
tries facilitate algorithmic/parallel studies as different mesh sizes can be easily generated. The 
results were obtained on the ASCI-Red Tflop computer at Sandia National Laboratories. 
In Table 2 and Table 3 results are presented for the algorithmic scaling of the one- and two-level 

schemes. Clearly as the number of unknowns, N, is increased the number of iterations to conver-

gence for the one-level schemes increases significantly. This increase is roughly proportional to N2/

3 in 2D and N1/2 in 3D. The two-level schemes are shown to be optimally convergent for the given 
fine-to-coarse grid ratio of 64 in both cases. The CPU time comparison indicates that while the two-
level scheme can be faster, careful attention needs to be directed to the coarse grid solve times. In 
the 2D cases the serial version of SuperLU is replicated to solve exactly the coarse grid problem and 
on the 3D case a parallel version of SuperLU was invoked. Since using all processors to factor this 

small system is not efficient, groups of approximately P1/2 are utilized to solve a partially replicated 
linear system. Since the fine grid smoother is highly parallel [10] and the fine grid work per proces-
sor is fixed, it is the SuperLU performance on the increasingly larger coarse grid that causes unfa-
vorable performance on the larger problems. In the 3D case, the larger bandwidth or fill-in of the 
direct factorization is apparent even at moderate sized coarse grid problems. However, by using 
even coarser coarse grids or approximate solves instead of direct solves, it is possible to overcome 
the computational bottleneck associated with this direct solve. One option is to apply an iterative 
method such as a 1-level DD ILU factorization on the coarse grid. These results shown in the lower 
entries of Table 3 indicate that even this inexact coarse grid solve provides a suitable correction to 
the fine grid problem to accelerate convergence. However for this case the optimal convergence 
property is not obtained and a modest increase in the number of iterations is evident.

Ra 1000=

Figure 2.  Schematic representation of interaction between 
application and multilevel module for 2 - level Schwarz method

Figure 3.  Constant x-velocity iso-
surfaces with streamlines and 

temperature contours on slice plane. Ra = 
1,000. Pr = 1



Our last example of Stokes flow in a channel with an obstruction demonstrates the two-level
Schwarz capability on an unstructured mesh problem for which the fine mesh is not a refinement of
the coarse mesh. In this study the meshes were independently generated and therefore totally
unrelated in structure (see Figure 4). As well since each mesh is partitioned separately by an
automatic tool, Chaco [12], the resulting mesh partitions are not aligned in any way. In this example
the one level solver uses a domain decomposition ILUT preconditioner with roughly 2 times as
many nonzeros (fill-in=2.0) as the original matrix and two levels of subdomain overlap [5]. The two
level solver uses the standard DD-ILU solver as a smoother with one level of overlap. As is evident
from the convergence results presented in Table 4, optimal convergence rates are obtained along
with faster solution times. 

5.  CONCLUSIONS

Multigrid technology has received considerable attention in recent years due to its fast convergence
rates compared to classical preconditioning methods. The implementation complexities and the
knowledge required to make it efficient for a given application, however, hinder its widespread use.
In an effort to increase the usefulness of these methods for various applications, we have begun
multilevel preconditioning research and development in two areas: (1) design of an objected-
oriented user interface for finite element applications, and (2) research, development, and
implementation of new multilevel techniques. A framework encompassing the two-level technique

One-Level Method Two-Level Method

No. of 
Processors

Fine Grid 
Size

Total 
Unknowns

Avg Its per 
Newton Step

Total Time
(sec.)

Coarse Grid 
Size

Avg Its per 
Newton Step

Total Time
(sec.)

1 32x32 4,096 47 28 4x4 38 36

4 64x64 16,384 110 64 8x8 42 49

16 128x128 65,536 258 237 16x16 44 93

64 256x256 262,144 622 1483 32x32 41 181

256 512x512 1,048,576 1591 9198 64x64 40 920

Table 2.  Comparison of one- and two-level Schemes for 2D Thermal Convection Problem, Ra=1000, Pr=1., non-
restarted GMRES, one-level - DD ILU, two-level Gauss-Siedel Smoother, SuperLU Coarse Grid Solver

One-Level Method Two-Level Method

No. of 
Processors

Fine Grid 
Size

Total 
Unknowns

Avg Its per 
Newton Step

Total Time
(sec.)

Coarse Grid 
Size

Avg Its per 
Newton Step

Total Time
(sec.)

1 8x8x8 2560 18 44 2x2x2 14 35

8 16x16x16  20,480 47 70 4x4x4 19 56

64 32x32x32 163,840 102 145 8x8x8 19 143

512 64x64x64 1,310,720 308 532 16x16x16 19 807

1 8x8x8 2560 18 44 2x2x2 15* 30*

8 16x16x16  20,480 47 70 4x4x4 25* 60*

64 32x32x32 163,840 102 145 8x8x8 39* 179*

512 64x64x64 1,310,720 308 532 16x16x16 67* 315*

Table 3.  Comparison of One and Two Level Schemes for 3D Thermal Convection Problem, Ra=1000, Pr=1., non-
restarted GMRES, one level - DD ILU, two- level Gauss-Siedel Smoother, Superlu Coarse Grid Solver. 

*. Coarse grid solve corresponds to a DD ILU factorization/backsolve in parallel with two levels of overlap.



with a user-supplied coarse grid and coarse grid operator was developed and tested on two thermal
convection problems and a Stokes flow example. These results demonstrated optimal convergence
for the required number of iterations-to-solution and very encouraging decreases in CPU times over
the one-level domain decomposition methods for these test problems.
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One-Level Two-Level

Procs Unknowns Iterations Time (sec.) Iterations Time (sec.)

16 4704 32 5.9 25 6.0

64 13,008 73 9.9 33 6.6

256 55,008 316 48.3 34 14.1

Table 4.  Stokes flow problem shown in Figure 6, GMRES solver. one-level - DD ILUT(2.,.2), two-level DD ILU 
smoother, coarse solver SuperLU, fine/coarse mesh ratio is approximately 64.

c) 

b) a) 

Figure 4. Stokes flow unstructured mesh example. a) Example of
coarse FE mesh; b) Subregion of corresponding fine mesh about
obstruction; c) Fine mesh solution, x-velocity contour;
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