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Abstract 
 
Active-network technology envisions deploying 

execution environments in network elements so that 
application-specific processing can be applied to 
network traffic. To provide safety and efficiency, 
individual nodes must include mechanisms to manage 
resource use. This implies nodes must understand 
resource demands associated with specific traffic. Well-
accepted metrics exist for expressing bandwidth (bits per 
second) and memory (bytes) in units independent of 
particular nodes. Unfortunately, no well-accepted, 
platform-independent metric exists to express processing 
demands. This paper describes and evaluates an 
approach to model processing demand for active packets 
in a form interpretable among heterogeneous nodes in an 
active network. The paper applies the model in two 
applications: (1) controlling CPU use and (2) predicting 
CPU demand. The model yields improved performance 
when compared against the approach currently used in 
many execution environments. The paper also discusses 
the limits of the proposed model, and outlines future 
research that might lead to improved outcomes. 

 
 

1. Introduction 
 
In classical packet-switched communication 

networks, when a packet transits through an intermediate 
node along the path from source to destination, the 
intermediate node examines the destination address, 
consults a routing table for the next hop, and then 
forwards the packet on an appropriate link. The data 
transported within the packet remain opaque to the node. 
Since each intermediate node has a measured rating for 
per-message and per-byte throughput, a linear 
extrapolation from packet size and arrival rate should 
provide the node a reasonable estimate for the processor 
(typically called central-processing unit, or CPU) 
demand associated with individual packets or with sets of 
packets. Unfortunately, this simple approach cannot 

work for active networks because individual packets can 
require substantially different processing. 

In active networks, when a packet arrives at an 
intermediate node, the data may include program code 
that can be accessed, interpreted, and executed by the 
node.  This code describes how to process the packet, 
and perhaps subsequent, related packets. For instance, 
the code may specify a compression algorithm to be 
applied on the data if congestion has been detected in the 
area of the node, or may specify which packets to drop 
first, or may modify the destination address to route 
around congestion. This implies that identical packets 
can require different CPU time on assorted nodes and 
under various conditions. Thus, in active networks, a 
more sophisticated technique is needed to estimate CPU 
demand associated with active packets.  

Inability to estimate the CPU demands of active 
packets can lead to some significant problems. First, a 
maliciously or erroneously programmed active packet 
might consume excessive CPU time at a node, causing 
the node to deny services to valid active packets. 
Alternatively, a node might terminate a valid active 
packet prematurely, wasting the CPU time used prior to 
termination, and ultimately denying service to a correctly 
programmed application. Second, an active node may be 
unable to schedule CPU resources to meet the 
performance requirements of packets. Third, an active 
packet may be unable to discover a path that can meet its 
performance requirements. This path selection problem 
occurs in part due to the node-scheduling problem, but 
also because the CPU time commitments of active nodes 
along a path cannot be determined. Devising a method 
for active packets to specify their CPU demands can help 
to resolve these problems, and can open up some new 
areas of research. Unfortunately, there exists no well-
accepted metric for expressing CPU demands in a 
platform-independent form. This is the problem that 
motivated our research. 

In Section 2, we discuss the problem in more detail, 
and we identify the outlines for a solution. In Section 3, 
we provide an overview and critique of some existing 
approaches to control CPU use in active applications. 
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Further, we examine some ideas from the literature that 
stimulated our thinking. In Section 4, we describe a 
statistical black-box model for specifying CPU demand 
associated with active packets, and we show how we can 
generate such models by tracing packet executions. In 
addition, we compare estimates from our models against 
real executions. In Section 5, we outline our strategy for 
calibrating active network nodes and for transforming 
CPU models for active packets among heterogeneous 
nodes in an active network.  We also compare 
predictions made by our transformed models against 
measured executions on a variety of nodes in an active 
network topology. In Section 6, we show how our CPU 
models can be applied in two sample applications. One 
application controls CPU usage by active packets, where 
our models achieve improved performance over one of 
the existing techniques implemented within active-
network nodes. The second application predicts CPU 
demand by active packets. Here, our models outperform 
estimators based on one of the simplest techniques used 
by a number of active-network execution environments. 
In Section 7, we discuss the limits of our current 
approach, and we suggest some future research that 
might yield improved outcomes. We close in Section 8 
with our conclusions. 

 
2. The Problem and Outlines of a Solution 

 
The growing ubiquity of the Internet is changing the 

nature of software design and deployment. Increasingly, 
Internet-based system architectures employ distributed 
components and use mobile code, such as applets, 
scripts, servlets, and dynamically linked libraries, to 
deliver new software to millions of users. Absent an 
understanding of the processor (CPU) time required by 
such dynamically injected software, computer operating 
systems cannot effectively manage system resources or 
control the execution of mobile code. Unfortunately, 
since mobile code can be injected and executed on a 
variety of computer platforms with a wide range of 
capabilities, software developers cannot precisely specify 
CPU requirements a priori. We set out to improve the 
ability of software developers to quantify CPU time 
requirements of mobile code in a form that can be 
understood readily on heterogeneous computing 
platforms. 

We conducted our research in the context of active 
networks, an emerging technology that exploits mobile 
code in an extreme form. Active-network technology 
augments traditional networking with the possibility that 
individual packets carry executable code, or references to 
executable code. Conventional (data-only) packets are 
forwarded on the so-called “fast path” of a router, while 
active packets, which invoke mobile code, are delivered 
to a higher-level execution environment that can identify 

and run a program specifically associated with the 
packet. Networking applications built with active packets 
are referred to as active applications. Figure 1 illustrates 
the architecture of an active-network node [1]. 

 

 
Underlying each active-network node is a node 

operating system, which transforms the node hardware 
into a software abstraction that provides execution 
environments with controlled access to resources such as 
CPU cycles, memory, input and output channels, and 
timers. In order to allow many possible operating systems 
to provide services to many possible execution 
environments, the active-network node architecture 
includes a standard specification of system calls (the 
Node OS Interface Layer in Figure 1) [2]. Execution 
environments, similar to virtual machines, can be loaded 
onto an active node using ANETD [3], a daemon that 
implements a load-and-go protocol for execution 
environments. Each execution environment accepts 
active packets that can initiate the execution of packet-
specific code. Each related code base and flow of active 
packets is known as an active application. During the 
course of the Active-Networks research program, funded 
by DARPA, researchers developed a number of node 
operating systems [4-7, 29-33], execution environments 
[8-12, 33, 34] and active applications [13-19]. 

While innovative and radical when considered for 
use inside networks, active-network execution 
environments share much in common with virtual 
machines used in Internet-based software architectures, 
and active applications appear quite similar to other 
forms of dynamically injected software, such as applets, 
mobile-agent scripts, and dynamically linked libraries. 
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Fig. 1. Schematic representation of the active-
network architecture, revealing five levels of 
abstraction, from bottom to top: (1) node 
hardware, (2) node operating system, (3) node 
operating system interface, (4) execution 
environment, and (5) active application. 
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These similarities encourage us to believe our ideas apply 
generally to the problem of specifying CPU demand in 
distributed applications that rely on the use of mobile 
code. 

 
2.1. Analysis of Variability in CPU Demand 
 

The amount of CPU time required by a computer 
program is a function of two factors: (1) the speed of the 
processor on which the program will execute and (2) the 
number of CPU cycles required for the program to 
complete its task. The first of these factors proves easy to 
measure on any computer platform because a computer 
operating system can readily determine the speed of the 
processor on which it executes. In general, processor 
speeds are specified in cycles per second, or Hertz, where 
the time taken to execute a single CPU cycle can be 
represented as the inverse of the processor speed. For 
example, a processor that operates at the rate of one 
billion Hertz (a Gigahertz, or GHz) will execute a single 
CPU cycle in one billionth of a second (a nanosecond, or 
ns).  Unfortunately, the second factor, the number of 
CPU cycles required for a program to complete a task, 
proves very difficult to determine in any platform-
independent manner. Below we consider some of the 
difficulties associated with providing an accurate 
measure of the count of CPU cycles required by a 
program. 

As shown in Figure 1, a mobile program, or active 
application, executes at the highest level in a five-level 
architecture of abstractions. At this highest level of 
abstraction, the number of instructions required to 
complete the program is a function of the paths taken 
through the code, which can depend on various 
conditions that exist on the node at the time the program 
executes.  The lowest level of abstraction consists of the 
node hardware, where program execution time is 
influenced directly by the raw speed of various 
components, such as the operating rate of the processor. 
Three additional levels of abstraction exist between the 
active application and the node hardware. Each of these 
levels of abstraction consists of its own set of computer 
code, and therefore CPU cycles, which may be traversed 
by specific executions of an active application. For 
example, consider the node operating system layer in 
Figure 1. 

When an active application calls for a system 
service, such as a read or write to a disk device, control 
passes to a device driver that executes some CPU cycles. 
The number of CPU cycles required depends upon the 
specific device driver underlying the system call, and the 
device driver typically depends upon the specific 
hardware. So, for example, if the disk is accessed 
through a SCSI (small-computer system interface) 
controller, a particular device driver will be used, while if 

the disk is accessed through an IDE (integrated drive 
electronics) controller, then a different device driver is 
required. Further, from time-to-time device manufactures 
update their device drivers. This implies that the number 
of CPU cycles required to access a device can also vary 
based on the specific version of the device driver loaded 
on the computer platform. A similar analysis applies to 
other devices, such as network interface cards, codecs 
(encoder-decoders), and encryption hardware. 

Similar reasoning applies at the other layers of 
abstraction. For example, the active-networks 
architecture (Figure 1) defines a standard node operating 
system interface, which permits any execution 
environment to run on any node operating system. This 
implies that some mapping may be required to enable 
various node operating systems to provide the standard 
interface. Each such mapping will introduce additional 
CPU cycles into the system calls made by an active 
application. The number of additional CPU cycles will 
depend upon the specific mapping code. Along similar 
lines, some code will be required to map an execution 
environment onto the standard interface provided by 
node operating systems. This mapping will introduce 
additional code, and therefore CPU cycles, that must be 
executed on behalf of the active application. The specific 
mapping will likely vary for each execution environment. 

 
2.2. Some Supporting Measures 

 
Above we argued that the processing demand of a 

mobile program, such as an active application, depends 
upon two factors: processor speed and number of CPU 
cycles that must be executed. Further, we suggested that 
the number of CPU cycles needed depends on a variety 
of factors that will vary as a program moves from node-
to-node.  In this section, we support our theoretical 
discussion with some concrete evidence obtained by 
measuring the operation of several computer platforms, 
described in Table 1. 

To investigate our hypothesis that the same program 
will require different numbers of CPU cycles to execute 
on various computer platforms, we ran a small Java™1 
benchmark program on the three computers outlined in 
Table 1. The benchmark program simply makes a series 
of 10,000 repetitive invocations of various system calls 
through the Java virtual machine to the operating system. 

In order to push our analysis to a limit, we installed 
the same versions of Linux (version 2.2.7) and the Java 
development kit (jdk 1.1.6) on three Pentium-based 
platforms. The three nodes differed only in the processor 

                                                           
1 Commercial products are identified in this report to describe our study 
adequately. Such identification does not imply recommendation or 
endorsement by the National Institute of Standards and Technology. 
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architecture and speed, the amount of installed memory, 
and the characteristics of interface hardware, such as disk 
controllers, audio devices, and network cards. Using 
these three platforms, we investigated only the 
differences in CPU cycles that result from variations in 
node hardware, the lowest level of abstraction shown in 
Figure 1. Table 2 depicts the outcome from running our 
benchmark program repeatedly and averaging the results. 

 
 

Table 1. Characteristics of three computer platforms 
selected for investigation by measurements. 
 
 

 
Table 2. Results from executing the same Java 
benchmark program on three different Pentium-
based platforms running Linux. 
 

The results shown in Table 2 support our analysis 
that different computer platforms can require 
significantly varying numbers of CPU cycles to execute 
the same program, even when using identical versions of 
an operating system and virtual machine. In fact, as 
Table 2 illustrates, variation in the number of CPU cycles 
required may even lead to cases where a program takes 
longer to execute on a faster machine (Blue) than on a 
slower machine (Black). Our earlier analysis suggested 
that such results might be attributed to differences in the 
device drivers underlying the operating-system calls 
invoked by our benchmark program. Results given in 
Table 3 support the earlier analysis. 

Table 3 shows that for four system calls (included in 
our benchmark) the slowest node (Green – 199 MHz) 
requires the fewest number of CPU cycles, while the 
fastest node (Blue – 450 MHz) requires the largest 
number of CPU cycles. The intermediate node (Black – 
333 MHz) requires fewer CPU cycles than Blue but more 
than Green. As a result, Black executes the benchmark 
faster than either Green or Blue, while Green executes 
the benchmark only slightly slower than Blue, but 
certainly not twice as slow. 

These results support our assertion that the CPU 
time required by a mobile program depends upon both 
the processor speed and the number of CPU cycles 
required to execute the program on a given computer 
platform. Since a platform operating system can easily 
determine processor speed, the main problem for 
modeling CPU demand in a mobile program, such as an 
active application, is to express the number of CPU 
cycles required to execute the program on a given 
platform. This is the problem that we attempted to solve. 
 

 
Table 3. Results for selected system calls from 
executing the same Java benchmark program on 
three different Pentium-based platforms running the 
same version of Linux and identical versions of the 
Java development kit. Results measure average CPU 
cycles (ACC) and average CPU time (ACT) used to 
execute selected system calls on each node. 
 
2.3. The Outlines of a Solution 

 
The outlines of a solution seem clear. The number of 

CPU cycles needed to execute an active application on a 
particular platform depend upon: (1) the path taken 
through the application code, (2) the path taken through 
the execution environment, (3) the path taken through the 
mapping between the execution environment and the 
node operating system interface, and (4) the path taken 
through the system calls (and related device drivers) in 
the node operating system.  Unfortunately, these factors 
can vary from platform-to-platform, based on the specific 
code implemented on each platform, and from node-to-
node, based on various node-dependent conditions that 
exist at the time an active packet arrives. Regarding 
node-dependent conditions, two aspects seem relevant: 
(1) conditions at the node that affect the processing logic 
in an active application and (2) conditions at the node 
that affect resource sharing among multiple active 
applications and execution environments.  

Any effective model of CPU demand by a mobile 
program, which we call an active-application model, 
seems likely to require delineating the processing paths 
through the program in terms of elements of a platform-
independent abstraction that the program will invoke on 
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every node. We refer to such platform-independent 
abstractions as node models. In the context of active 
networks, two types of node model seem feasible: (1) 
white-box models and (2) black-box models. White-box 
models represent the functions offered to active 
applications by a specific execution environment. Black-
box models hide execution-environment functions, and 
represent instead system calls offered to the execution 
environment by a standard node operating system 
interface. So, in a white-box model the execution 
environment is transparent, while in a black-box model 
the execution environment is opaque. While we are 
investigating both approaches, in this paper we focus 
mainly on a black-box model because, if successful, such 
models can work across the full range of execution 
environments being developed by active-network 
researchers. White-box models, on the other hand, must 
be developed for each execution environment that a node 
intends to support. 

Whether specifying the logic of an active application 
in terms of a black-box or white-box node model, a 
means is also needed to characterize the performance of 
specific nodes with respect to the model elements. We 
refer to this aspect of the solution as node calibration. 
The main idea behind node calibration is to determine a 
node’s performance in implementing the elements that 
compose the node model. 

Through calibration, a node operating system can 
determine how many CPU cycles are required to execute 
each model element on the node.  Then, given any active-
application model expressed in terms of the elements of a 
node model, an active-network platform should be able 
to estimate the number of CPU cycles that the active 
application will require on the node. 

Unfortunately, the processing logic in an active 
application does not consist solely of calls to elements in 
the node model. Instead, the active application also 
includes its own processing logic that is not carried out 
by functions in the execution environment or by system 
calls. This suggests that an active-application model must 
also express the number of CPU cycles used between 
calls to elements in the node model. As a result, some 
means is required to calibrate the performance of the 
active application on every node in the network. Such 
exhaustive calibration appears infeasible; however, the 
application-specific logic in an active application can 
certainly be measured on one node in the network. Such 
measurements provide an indication of the number of 
CPU cycles required by an active application on a 
specific node. Since an active application runs within an 
execution environment, we can imagine calibrating the 
ability of each execution environment to perform a 
representative workload on each node in the network. 
We call this process execution-environment calibration.  

Given an active-application model expressed as a 
combination of: (1) elements of a node model and (2) the 
number of CPU cycles used between elements of a node 
model, a network node receiving such a model can 
conceivably transform the model into terms that might be 
meaningful on the node. The techniques for performing 
such a transformation make up another part of the 
solution. 

To recap, the outlines of a solution to the problem of 
modeling CPU demand in mobile programs include at 
least the following components: (1) a node model 
expressed in terms of functions invoked by active 
applications, (2) an active-application model expressed in 
terms of paths through a node model and in terms of 
CPU cycles used between invocations of elements in the 
node model, (3) calibrations of a node with respect to the 
node model and the execution environments on the node, 
and (4) transformation techniques that can convert an 
active-application model sent between two nodes into 
terms meaningful on the destination. These are the 
portions of the solution that we investigated, and that we 
address in Sections 4 and 5 of this paper. 

Other issues must also be resolved for a complete 
solution. For example, we have not tackled the problem 
of node-dependent conditions in this paper. This means 
that in our work the CPU demands of an active 
application are modeled from measuring the application 
in numerous scenarios in the development laboratory 
before we release the application (and its model) into a 
network. Should the application encounter conditions not 
seen in the development laboratory, our models have no 
means of adjusting to such new conditions. We have also 
not tackled the problem of adjusting node and execution-
environment calibrations based on current conditions in a 
node or on new conditions that arise on a node over its 
lifetime. This implies our calibrations do not adapt to 
changes in a node or execution environment that arise 
after the calibration occurs. We discuss issues related to 
adaptation under future work.   

 
3. A Critique of Selected Approaches 

 
While the outlines of our solution appear complex, 

we believe that success along these lines will enable 
more effective control of CPU usage by mobile programs 
and will enable node operating systems to more 
efficiently manage CPU resources. Others also see a need 
to provide such capabilities. In this section we present 
and critique existing solutions to prevent excessive CPU 
resource consumption in active networks and in mobile-
agent systems. Next we examine research conducted 
outside of active networks that could help to provide 
effective resource management in active-network nodes. 
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3.1. Existing Solutions to Control CPU Use  
 
In order to prevent malicious or erroneous active 

packets from consuming excessive CPU time, most 
execution environments implement specific control 
mechanisms. In this section, we discuss the most 
common mechanisms (a-d below) and give our critique. 

(a) Use a limit fixed by the packet. Some execution 
environments, such as ANTS [8], assign a time-to-live 
(TTL) to each active packet. An active node decreases 
this TTL as a packet transits the node, or whenever the 
node creates a new packet. In this way, each active 
packet can only consume resources on a limited number 
of nodes, but individual nodes receive no protection. The 
current TTL recommendation for the Internet protocol 
(IP) is 64 hops [20], which is supposed to roughly 
correspond to the maximum diameter of the Internet. 
Current implementations of Windows NT and Windows 
2000 use 128 hops as the TTL in IP packets. This value 
might prove large enough for an active packet that 
propagates a configuration from node to node between 
two videoconferencing machines. But if the active packet 
creates numerous additional packets (to which it 
delegates a part of its own TTL), then the assigned TTL 
could prove insufficient. And it is usually difficult to 
predict how many new packets will be generated since 
these predictions might depend on network parameters, 
such as congestion and topology, which can rarely be 
known in advance. This TTL mechanism could 
contribute to protect individual nodes if the TTL is given 
in CPU time units instead of hop count. But the problem 
remains: how to choose the initial value for the TTL? 

In the related context of mobile agents, Huber and 
Toutain [21] propose to enable packets that did not 
complete their “mission” to request additional credits. 
The decision to grant more credit would be taken by the 
originating node for its packets, or by the generating 
packet for packets created while moving among nodes. 
The decision must be made after examining a mission 
report included with the request for more credits. The 
proposed solution remains unimplemented, perhaps 
because the reports proved difficult to generate and 
evaluate. Even if implemented, a malicious application 
can be conceived, where the originating node will always 
grant more credits to any of its packets. 

(b) Use a limit fixed by the node. In some execution 
environments (e.g., ANTS), a node limits the amount of 
CPU time any one packet can use. This solution protects 
the node but does not allow optimal management of 
resources. For instance, imagine that a node limits each 
packet to 10 CPU time units. Suppose that a packet 
requiring 11 CPU time units arrives when the node is not 
busy. In this case, the node will stop the execution of the 
packet just before it completes. 

(c) Use a restricted language. The SNAP language 
[22] is designed with limited expressiveness so that a 
SNAP program uses CPU in linear proportion to the 
packet’s length. While this approach supports effective 
management of resource usage, it could prove too 
restrictive for expressing arbitrary processing in active 
applications. For instance, only forward branches are 
allowed; as a result, if repetitive processing is required, 
the packet must be resent repeatedly in loop-back mode 
until the task is completed. 

(d) Use a market-based approach. Yamamoto and 
Leduc [23] describe a model for trading resources inside 
an active-network node, based on the interaction between 
a “reactive user agent” included in the packet, and 
resource manager agents that reside in the network 
nodes. The manager agents propose resources (such as 
link bandwidth, memory, or CPU cycles) to the user 
agents at a price that varies as a function of the demand 
for the resource (the higher the demand, the higher the 
price). Packets carry a budget that allows them to afford 
resources on active nodes. Based on the posted price of 
the resources and on its remaining credit, the user agent 
of a packet makes decisions about the processing to 
apply. For instance, if the CPU is in high demand and 
thus expensive to use, then a packet may decide to apply 
a simple compression algorithm to its data, instead of a 
more efficient but more costly algorithm, which the 
packet would have applied if the resource were more 
affordable. This approach, which might prove 
appropriate for mobile-agent platforms, could increase 
the packet complexity too much to be used efficiently in 
active networks. 

Our critique. The two most common approaches to 
resource control in active networks apply a fixed limit on 
the CPU time allocated to an active packet. In one 
approach, each node applies its own limit to each packet, 
while in the other approach each packet carries its own 
limit, a limit that might prove insufficient on some nodes 
a packet encounters and overly generous on other nodes. 
Neither approach provides a means to establish an 
appropriate limit for a variety of active packets, 
executing on a variety of nodes. Our research aims to 
solve this problem, while at the same time we intend to 
develop a solution that does not reduce the 
expressiveness of an active packet, nor make a packet too 
complex. 
 
3.2. Attempts to Quantity CPU Demand 

 
While we are unaware of any other projects aiming 

to quantify the CPU requirements of an active application 
in a heterogeneous network, we did survey several 
related research initiatives that could help us to devise an 
effective solution. The following sections (a-d below) 
outline and discuss some of the ideas we found. 
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(a) Use RISC cycles. The active-network architecture 
documents specify that a node is responsible to allocate 
and schedule its resources, and more particularly CPU 
time. Calvert [1] emphasizes the need to quantify the 
processing demands of an active application in a context 
where such demands can vary greatly from one node to 
another, and he suggests using RISC (Reduced 
Instruction Set Computer) cycles as a unit to express 
processing demands. He does not address two crucial 
questions. First, for a given active application, how can a 
programmer evaluate the number of RISC cycles 
required to execute a packet on a given node? Second, 
how can this number be converted into a meaningful unit 
for non-RISC machines? 

(b) Use extra information provided by the 
programmer. In the AppLeS (application-level 
scheduling) project [24], the programmer provides 
information about the application that she wishes to 
execute on a distributed system. She must indicate for 
instance whether the application is more communication-
oriented or computation-oriented or balanced, the type of 
communication (e.g., multicast or point-to-point), and the 
number of floating-point operations (in millions) 
performed on each data structure. Using this information, 
a scheduling program produces a schedule expected to 
lead to the best performance for the application. This 
method can yield acceptable predictions only if the 
programmer is both willing and able to provide the 
required characteristics of the program. Discussions with 
software performance experts led us to think this is rarely 
the case. 

(c) Use combined node-program characterization. 
Saavedra-Barrera and colleagues [25] attempted to 
predict the execution time of a given program on various 
computers. To describe a specific computer, they used a 
vector to indicate the CPU time needed to execute 102 
well-defined Fortran operations. In addition, they 
provided a means to analyze a Fortran program, reducing 
it to the set of well-defined operations. The program 
execution time can then be predicted by combining the 
computer model with the program model. The approach 
yielded good results for predicting the CPU time needed 
to execute one specific run of a program on different 
computer nodes. These results encouraged us to model 
platforms separately from applications; however, we 
need to capture multiple execution paths through each 
application, rather than a single path. We are pursuing a 
separate thread of research, discussed under future work, 
which aims to apply insights from Saavedra-Barrera to 
the active-network environment. 

(d) Use acyclic path models. To measure, explain, or 
improve program performance, a common technique is to 
collect profile information summarizing how many times 
each instruction was executed during a run. Compact and 
inexpensive to collect, this information can be used to 

identify frequently executed code portions. 
Unfortunately, such profiles provide no detail on the 
dynamic behavior of the program (for instance, these 
techniques do not capture and report iterations). To solve 
this problem a detailed execution trace must be produced, 
listing all instructions as they are executed. But as 
program runs become longer, the trace becomes larger 
and more difficult to manipulate. Ball and Larus [26] 
propose an intermediate solution: to list only loop-free 
paths, along with their number of occurrences. Among 
other things, the authors demonstrate how the use of 
these acyclic paths can improve the performance of 
branch predictors. We might be able to exploit such 
algorithms to efficiently capture looping behaviors; 
however, to collect acyclic path information we would 
need to instrument the program code for each application 
to be modeled. Given the variety of execution 
environments and active applications being devised by 
researchers, we decided to first evaluate some simpler 
approaches. 
 
4. A Black-Box Model of CPU Demand 

 
Recall from Figure 1 that an active application 

executes in user mode within an execution environment, 
but requests services periodically from the node 
operating system through specific system calls. An 
observer, situated at the boundary between an execution 
environment and a node operating system, would view 
the behavior of an active application as a series of 
transitions between specific system calls: from an idle 
state, the application executes in user mode for some 
number of CPU cycles within its execution environment 
and then executes in kernel mode for some number of 
CPU cycles within a system call, then again in the 
execution environment before transitioning to another 
system call, and so on until the active packet is processed 
and the active application has returned to the idle state. 
Because the point of observation provides no insight into 
the logic of the active application or the execution 
environment, we can consider them to be a black box. 
We denote each observed transition-sequence as a black-
box execution trace.  

From a collection of execution traces, we can cluster 
together those that exhibit an identical sequence of 
system calls. We call each cluster a scenario.  For 
example, Figure 2 depicts two scenarios discovered in an 
execution trace. The shorter scenario occurs 2/3 of the 
time, while the longer scenario occurs 1/3 of the time. 

A black-box model for an active application consists 
of two types of information: scenario specifications and 
workload specifications. In the model, each scenario is 
specified by its sequence of system calls. Further, each 
system call is characterized by the distribution of the 
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number of CPU cycles spent in the system call, and each 
transition between system calls is characterized by the 
distribution of CPU cycles spent in the execution 
environment during similar transitions. The CPU cycle 
estimates are derived from an analysis of the same 
execution traces used to identify scenarios. In an earlier 
version of our model, we hoped to represent these 
distributions using classical probability distributions. Our 
goal was to produce an analytically tractable model. 
Unfortunately, the observed distributions exhibit a degree 
of discreteness and truncation not well represented by 
typical continuous distributions. For this reason, we 
chose to represent the distributions of CPU cycle 
estimates with histograms (see Figure 3). Note that this 
approach can require exchanging a large volume of 
information when active-application models are 
transferred among nodes in a network. (However, our 
experiments show that reasonably accurate results could 
be obtained with as few as five bins per histogram.) 

 

 
The remaining part of our model, the workload 

specification for an active application, consists of a list of 
the discovered scenarios, where each scenario is assigned 
a probability of occurrence (based on the frequency with 
which the scenario appeared in the execution trace). 
Taken together, the scenarios, their probability of 
occurrence, and the distributions of CPU cycles in user 
and system modes constitute a black-box model of CPU 
demand for an active application. 

 
4.1. Generating Execution Traces 
 

We based our models on measurements taken from 
execution traces. For various reasons, mainly arising 
from the relationship between Linux threads and multi-
threading in the Java Virtual Machine, we could not use 
existing execution tracing programs available for typical 
operating systems, such as the Linux systems we used as 

our test platforms. (For more information on these issues, 
and on the tracing methods we considered, see a related 
technical report [35].) Instead, we designed our own 
kernel modifications to provide exactly the traces we 
needed, and at the granularity of individual CPU cycles. 
Table 4 provides an example trace from one execution 
cycle in one active application. 
 

 

 
Table 4. An example execution trace from idle-to-idle 
for a single path through an active application. Each 
row depicts a single instance of a transition between 
two system calls. The transition columns show the 
source and sink system calls for the transition. The 
first column of numbers counts the kernel-mode CPU 
cycles used in the source system call, while the second 
column of numbers counts the user-mode CPU cycles 
used in the execution environment between the return 
from the source system call and the beginning of the 
sink system call. 
 

To generate execution traces of this granularity and 
accuracy, we used RDTSC (Read Time Stamp Counter), 

Fig. 2. An example of two scenarios discovered by
clustering execution traces from a simple active
application. The shorter trace occurs more 
frequently (probability is 0.67), while the longer
trace occurs less frequently (probability is 0.33). 
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Probability = 0.67 Fig. 3. Two example specifications of CPU cycle 
usage: (a) distribution of CPU cycles used by an 
active application in the “write” system call and (b) 
distribution of CPU cycles used by an active 
application in transitions between the “write” and 
“socket call” system calls. Each bin of a histogram is 
labeled with the mid-point of its value. The 
probabilities are the relative frequencies of 
observations falling within specific bins. 
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a hardware instruction provided by Intel in their Pentium 
processors. This instruction records the number of CPU 
cycles used since the last reboot of the processor. The 
main difficulty we faced was attributing the use of CPU 
cycles to particular processes. To accomplish this, we 
designed and implemented modifications for insertion 
into the Linux scheduler.  

To account for the number of CPU cycles spent by a 
process in user and in kernel modes, we added two fields 
to the process structure: "ucc" (number of CPU cycles 
spent in user mode) and "kcc" (for kernel mode). We also 
added two working fields: "e" to record the entry time 
into a new "state" (user or kernel) and "kflag" to indicate 
whether or not the process was sleeping in kernel mode 
when last exiting the scheduler. Indeed, with Linux, a 
process cannot be preempted while executing in the 
kernel. But when a process needs to wait for an event, it 
relinquishes the CPU for another process to run. This 
causes the waiting process to exit the scheduler. But it 
will exit the kernel only later, after having been 
rescheduled again and completing the execution of the 
suspended system call. 

We used the following algorithm to update the “ucc” 
and “kcc” fields. On entering the scheduler: 
the “e” field of the entering process is set to RDTSC (the 
current value of the counter of CPU cycles since last 
reboot). On entering the kernel: the “kflag” is set and the 
value of “ucc” is updated: “ucc = ucc + RDTSC – e”, 
where “RDTSC – e” gives the number of clock cycles 
spent between the last time “e” was set (on entering the 
scheduler) and the current time. This represents time 
spent in user mode. Now the process is entering kernel 
mode, so “e” is set to RDTSC. On exiting the kernel the 
“kflag” is cleared and the value of “kcc” is updated: “kcc 
= kcc + RDTSC – e”. Then, “e” is set to RDTSC. On 
exiting the scheduler, if “kflag” is false, then “ucc = ucc 
+ RDTSC – e”; otherwise “kcc = kcc + RDTSC – e”. 
Each time “ucc” or “kcc” are updated, their new value 
indicates how many CPU cycles the process has spent in 
user or kernel mode.  

Our Linux kernel modifications enable us to trace a 
process in a very fine manner. Now we need to be able to 
retrieve the results. We found that the approaches 
typically used to capture trace information for Linux 
processes cause a traced process to run slowly, and also 
lead to inaccurate results at our required level of 
granularity. To avoid such problems, we implemented 
our own monitoring of the process to generate traces in a 
manner that was quite straightforward after the kernel 
modifications discussed previously. We simply print a 
message (using printk) at every entry and exit of the 
kernel. Of course, our tracing mechanism is not the only 
one using printk, so the resulting trace file must be pre-
processed before analysis in order to extract only the 
trace lines of interest to us. To facilitate such pre-

processing, we inserted tags into our trace lines to permit 
easy filtering. 
 
4.2. Generating Models from Execution Traces 
 

We wrote a model generator that can consume an 
execution trace and generate a black-box model for the 
program measured by the trace. First, the model 
generator clusters the traced executions into the scenarios 
contained, and assigns a probability of occurrence to 
each scenario. Then the model generator examines the 
CPU cycles used by each system call, and builds a 
corresponding histogram. Finally, the model generator 
examines the transitions between each pair of system 
calls and constructs a histogram describing the 
distribution of CPU cycles used. The model generator 
includes as an input parameter the number of bins to 
create in each histogram. 

To generate estimates from a black-box model 
created by the model generator, we use Monte-Carlo 
simulation. Each pass through the simulator represents 
the processing of an active packet. Using the probability 
of occurrence contained in the black-box model, the 
simulator selects a scenario. For each component of the 
scenario (system calls and transitions in user mode 
between two system calls), the simulator runs another 
Monte-Carlo test to choose a bin of the histogram 
describing the count of CPU cycles. The sum of the CPU 
cycles of each component in the scenario yields a 
simulated number of CPU cycles, which can be easily 
converted into an estimate for CPU time by multiplying 
by the cycle time of the processor. After repeated 
scenario executions, we obtain a distribution of estimates 
for the CPU demands of the active application 
represented by the model. The distribution can be 
characterized with statistics, such as the mean or 
percentiles2 (we used the 80th, 85th, 90th, 95th, and 99th) of 
the CPU time demanded by the application. Of course, 
generating a large number of simulated executions can 
refine the estimates. Alternatively, selecting a small 
number of simulated executions can provide quick 
estimates. 
 
4.3. Evaluating Models Against Measurements 
 

To assess how well a particular model estimates the 
CPU demands of an active application, model predictions 
can be compared against measures for the relevant 
application. We conducted such measurements for 
numerous applications under a range of model 
conditions, including various bin granularities (from five 

                                                           
2 Given a statistic, S, for a percentile, P, associated with a random 
variable, V, then P percent of the observed values for V will be less than 
S and 1-P percent will exceed S. 
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to 100) and simulation repetitions (from 100 to 20,000). 
Table 5 summarizes results comparing model predictions 
against measurements on various computing platforms 
for two execution environments, ANTS and Magician, 
and four active applications (two for each execution 
environment). The model histograms consist of five bins 
each. Each estimate is generated using 10,000 simulation 
iterations.  Two comparisons are computed for each 
application: (1) error in predicting the mean and (2) 
average error in predicting the high percentiles (80th 
through 95th). Estimates for high percentiles can be 
useful in CPU control applications, while predictions of 
CPU demand can also benefit from estimates for the 
mean. 

 
Table 5. Comparing the percentage error in CPU 
demand between estimates from a black-box model 
and measurements of real applications for selected 
computer platforms, execution environments, and 
active applications.  The black-box model was 
generated with five bins per histogram. Model 
estimates consist of 10,000 simulated executions. 
Percentage error computed as the absolute value of 
100 * (prediction – actual) / actual. The errors for the 
high percentiles are averaged over the 80th, 85th, 90th, 
95th, and 99th percentiles. 

 
Table 5 indicates very accurate predictions for mean 

CPU demand on most platforms, across execution 
environments and active applications. The prediction 
errors for mean CPU demand in ANTS Multicast are 
somewhat higher. Further, the predictions of high 
percentiles are less accurate than predictions for the 
mean, which can be expected because high percentiles 
represent extreme values that might not appear with great 
frequency. Still, for high percentiles, the predictions for 
the Magician execution environment appear significantly 
worse than the predictions for the ANTS execution 
environment. 

The predictions and measurements compared in 
Table 5 consider each node running a mix of scenarios in 
all roles that a node might take on for an application. For 
example, in each application a node may serve as a 
source, a router, or a sink for active packets associated 
with the application. When we make comparisons 
between predictions and measurements while limiting a 
Magician node to hold one role (either source, router, or 
sink) for an active application, the predictions compare 
much more favorably with the measurements. Table 6 
illustrates this point for three Magician applications: 
Smart Ping, Smart Route, and Active Audio. For the 
Active Audio application, where measurements were 
taken in the process of some sample applications (see 
section 6), each node assumed only one role. 
 

 
5. Transforming CPU Models  
 

While the predictions made by our black-box models 
appear reasonably accurate in many situations, the more 
difficult part of our problem must still be solved. 
Particularly, given a model for the CPU demand of an 
active application running on one node, e.g., Green, can 
the model provide accurate estimates for the CPU 
demand of the application running on a different node, 
e.g., Black? To achieve this goal, we must transform the 
model generated on Green into a form that will be 
meaningful on Black. In this section, we address our 
approach to model transformation. First, we describe our 
model transformation algorithm. Second, we discuss our 
technique to calibrate nodes and execution environments. 
Finally, we evaluate how well our transformation 
technique works in a variety of tests. 

 

Table 6. Comparing the percentage error in CPU 
demand between estimates from a black-box model 
and measurements of real active applications for the 
Magician execution environment. In this case, 
predictions and measurements were compared when 
the role of each participant was restricted to that of 
source, router, or destination. 
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5.1. Model Transformation Algorithm 
 

Recall that our black-box model of an active 
application consists of two parts: scenario specifications 
and a workload specification. The workload specification 
assigns a probability of occurrence to each scenario in 
the model. We consider this information to be fixed on 
each node that encounters the model (though see Section 
7 for a discussion of the need to adapt the workload 
specification). Each scenario specification delineates a 
sequence of transitions between system calls, where the 
number of CPU cycles consumed in each system call and 
in each transition is defined by histograms. The 
information in these histograms is based on 
measurements taken on a particular node; thus, this 
information will be meaningless on other nodes. The goal 
of our transformation algorithm is to convert the 
information in the histograms into a form meaningful on 
any node that receives the active-application model. 
Figure 4 shows the results of transforming the histogram 
discussed earlier in Figure 3. 

 

  
We assume that each node has been calibrated with 

respect to its performance executing each system call and 
each execution environment. The calibration results are 
represented as two vectors. One vector, the system-call 
(SC) vector contains the average number of kernel-mode 
CPU cycles for the node to execute each system call. For 
example, Figure 4 shows the calibration for the “Write” 
system call on two nodes. A second vector, the 

execution-environment (EE) vector, contains the average 
number of user-mode CPU cycles for the node to execute 
a calibration benchmark for each execution environment 
that runs on the node. Figure 4 reveals the calibration 
information for the ANTS execution environment on two 
nodes. 

For purposes of discussion, assume that a node  
(Dest) receiving an active-application model has access 
to its own calibration vectors as well as the calibration 
vectors of the source node (Source). Then, the 
destination can scale the contents of the histograms in the 
active-application model by multiplying each bin by 
TDest/TSource, where TDest represents the number of CPU 
cycles taken from the appropriate element in the 
appropriate calibration vector for the destination node 
and TSource represents the comparable value taken from a 
calibration vector for the source node.  In Figure 4, 
applying this ratio for the “Write” system call yields a 
scaling factor of 1.57, while applying this ratio to the 
ANTS execution environment gives a scaling factor of 
1.51. Applying these factors to each element of an active-
application model has the effect of dilating or contracting 
the number of CPU cycles in each bin of each histogram. 
For example, Figure 4 shows the application of the 
appropriate scaling factor to the “Write” system call and 
to the “Write-to-Socket Call” transition. 

Unfortunately, to enable our transformation 
algorithm, a destination node must have access to 
calibration vectors from the source node. This implies 
that the calibration vectors must be transmitted along 
with an already large model for the active-application. 
Instead, we can agree globally on an artificial node (Ref) 
as a reference, and deploy its calibration vectors at each 
node in the network. Then, before transmitting an active-
application model between two nodes, Source and Dest, 
the model is subjected to a “Node-to-Reference 
transform”: the values describing the number of CPU 
cycles required to execute each element in each 
histogram are dilated or contracted using the ratio 
TRef/TSource, where TRef is the average number of CPU 
cycles taken to execute the histogram element on the 
reference node and TSource is the average number of CPU 
cycles taken to execute the corresponding element on the 
source node. Upon arrival at the destination node, the 
model is subjected to an inverse (the ratio is TDest/TRef) 
“Reference-to-Node transform”. The combination of 
these two transforms scales the CPU cycle values within 
an active-application model from a form meaningful on a 
source node to a form understood on a destination node. 
 
5.2. Calibration Techniques 
 

Obtaining the calibration vectors for specific nodes 
requires the execution of two calibration benchmarks, 

Fig. 4.  This figure shows two histograms in an
active-application model, shown earlier in Figure 3,
after those histograms have been transformed from a
form understood by the source node (Black) into a
form meaningful on the destination node (Blue). The
relevant parts of the calibration vectors are given for
the source and destination nodes. Two scaling factors
are computed: (1) 1.57 for the “Write” system call
and (2) 1.51 for the “Write-to-Socket Call”
transition. 
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one for system calls and one for execution environments. 
For system-call calibration, we execute a program that 
repeatedly invokes each system call under a range of 
parameter settings and then computes the average 
number of CPU cycles required to execute each system 
call. We make our calibration measurements using the 
same techniques we developed for tracing executions. 
Comparing our measurements against similar 
measurements taken with strace, using the –c option, we 
discovered that our measurement technique introduces a 
constant overhead into the system calls. We factor out 
this measurement overhead when creating our calibration 
vector for system calls. 

Calibration of execution environments requires 
running a benchmark workload of active applications on 
each execution environment. By analogy with the 
classical process of computer-system benchmarking, we 
had two possible choices for a benchmark workload for 
calibrating execution environments. We could use a 
workload that includes a realistic mix of actual active-
applications implemented for each execution 
environment, or we could define a workload of artificial 
applications whose behavior mimics the major classes of 
active-applications. The first option proved infeasible 
because active-network technology remains 
experimental, and few real applications exist. For now, 
we use an artificial mix of active-applications, executed 
with each node taking on a variety of roles, such as 
source, router, and sink.  For example, for the Magician 
environment we use three applications (Smart Ping, 
Smart Route, and Active Audio) and for the ANTS 
execution environment we use two applications (Ping 
and Multicast). As the pool of applications grows, the 
calibration workload must be updated to reflect new 
functionality or roles. Even so, the ANTS Multicast 
application, while very basic, exercises all the major 
functions of active networking: to send and receive 
packets, and to store and modify information in nodes. 

Since calibration is likely to require substantial 
computation on a node, we must consider appropriate 
means to perform the calibration. Several approaches 
should be investigated. In our case, we performed the 
calibration off-line, and then stored the results as 
parameters within a node operating system. This 
approach has the merit of requiring no resources from a 
node during operational execution. Of course, whenever 
a system configuration changes, the previously computed 
off-line calibration may no longer prove accurate. 

As a second alternative, we could consider boot-time 
calibration. Here, the calibration programs would execute 
automatically as part of the startup process in the 
operating system. This approach has two advantages. 
First, since most operating systems must be re-booted 
after significant configuration changes, calibration at 
system boot is likely to account for the variability 

introduced by system alterations. Second, since 
calibration is completed prior to system execution, the 
calibration process will require no resources after the 
node becomes operational. One downside is that boot–
time calibration could considerably lengthen system 
startup time. Additionally, future operating systems seem 
destined to include dynamic configuration through 
components downloaded during execution. Boot-time 
calibration could not account for such dynamic run-time 
changes in an operating system. 

A third alternative is to execute an off-line 
calibration, and then to perform run-time calibration 
adjustments. Here boot-time would not be lengthened 
due to calibration requirements. In addition, 
configuration changes that affect the calibration can be 
accounted for during the run-time calibration 
adjustments. One might even consider altering 
automatically the frequency of run-time calibration 
adjustments depending on the variance computed 
between successive calibrations. As the variance 
diminishes between successive calibrations, the 
calibration adjustment interval could be lengthened. 
Conversely, increasing variance would stimulate more 
frequent calibration adjustments. The approach has two 
drawbacks. First, run-time calibration adjustments would 
subtract resources from operational uses of a node. 
Second, it might prove difficult to design and implement 
an effective run-time calibration adjustment mechanism. 

 
5.3 Evaluating Transformed Models 
 

In this section, we evaluate how well our 
transformed black-box models can predict the CPU 
demands for an active application measured on one node 
and then executed on another node. In effect, here we are 
evaluating how much additional error is introduced into a 
model by our transformation technique, and the 
associated calibration processes. We also compare our 
transformation technique against a more naïve approach 
that uses the ratio of processor speeds to scale models. 
To widen our base of platforms, we introduce two new 
nodes, Yellow and Red, to augment those described in 
Table 1. Both Yellow and Red use the same versions of 
Linux and Java as the nodes shown in Table 1; however, 
the platform hardware differs. Yellow embodies a 
Pentium 75 running at 100 MHz, and has 80 MB of 
memory, while Red includes a Pentium II running at 266 
MHz with 128 MB of memory. Figure 5 shows all five 
nodes configured in a small active network in our 
laboratory. 

We ran selected active applications repeatedly on 
each node, measuring the actual CPU time required for 
each execution. We then computed the mean CPU time 
and the high percentiles (80th, 85th, 90th, 95th, and 99th) of 
CPU time used by each application on each node. These 
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served as baseline measurements against which we 
compared estimates obtained using our black-box model 
and transformation techniques. We also generated 
estimates using a more naïve approach that multiplies the 
observed execution times on a source node by the ratio of 
the processor speed of the source node to the processor 
speed of a destination node. Using this ratio, we scale the 
CPU time requirements to match the relative speed of the 
processors on each node. Table 7 provides a subset of the 
percentage (absolute) error we achieved when using each 
method to predict the mean and high percentiles of CPU 
usage when moving active application models between 
nodes. In this table, we average the error across the five 
high percentiles. 

 

 
Table 8 shows comparative results for the percentage 

error in each statistic (mean and each of the high 
percentiles) when averaged over all runs. The table 
compares prediction error in three situations: (1) 
predicting performance on one node with our black-box 
models, (2) predicting performance on other nodes by 
scaling our black-box models, and (3) predicting 
performance on other nodes by scaling with processor 
speed ratios. Note that scaling the black-box models 
yielded a fourfold improvement in accuracy over scaling 
based solely on processor speed ratios. In addition, as 
Table 8 shows, scaling our black-box models did not 
introduce additional error beyond the error already 
present in the models.  
 

 

 
5.4 Anatomy of an Active-Packet Hop 

 
Here, in way of summary, we describe an approach 

for using our black-box model when processing an active 
packet as it transits between two nodes in an active 
network. We assume that the code exists for an active 
application, App, and that a corresponding black-box 
model has been generated off-line on a node, Source. 
Further, we assume that the code and the black-box 
model for App have been loaded onto a code server. 

Fig. 5.  The five-node active-network test bed we
set up in our laboratory at NIST in order to
conduct our experiments and to make
measurements. The nodes from left to right:
Yellow, Black, Red, Blue, and Green. 

Table 7. Reporting the percentage absolute error 
in estimating the mean and the average percentage 
absolute error in estimating the high percentiles 
(80th, 85th, 90th, 95th, and 99th) using naïve scaling 
based on processor speed ratios and using scaling 
based on transformation of black-box models. The 
table presents a representative subset of the results 
we obtained.
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Table 8. Comparing the absolute percent error for 
selected statistics, averaged across all runs, when 
predicting CPU demands in three situations: (1) 
using black-box models to predict CPU demands 
for the same node on which the model was 
generated, (2) scaling black-box models to predict 
CPU demands on different nodes from that on 
which the model was generated, and (3) scaling 
CPU demands based upon the ratio of processor 
speeds between pairs of nodes. 
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Before loading the App black-box model onto the code 
sever, Source subjects the model to a “Source-to-
Reference transform”, so that the model is available 
throughout the network in its reference form. 

When the first active packet related to App arrives at 
a node, Next, the execution environment extracts 
references (typically in the form of Uniform Resource 
Locators, or URLs) to the App code and its related black-
box model. Using the URLs, Next retrieves the App code 
and black-box model from the code server, and subjects 
the model to a “Reference-to-Next” transform. Then, Next 
executes a Monte-Carlo simulation of the transformed 
App model to estimate relevant statistics (such as mean 
and 99th percentile) for the CPU time required on Next to 
process active packets associated with App. Using the 
estimated statistics, Next can decide whether or not to 
admit active packets associated with App. Each admitted 
App packet is executed using the retrieved App code. 
During execution, Next can monitor the CPU time used 
by App packets, and can terminate those that exceed their 
estimated demand by some threshold.  
 
6. Sample Applications 

 
In this section, we illustrate how our CPU demand 

models can be used in two sample applications. In one 
application, we decide when to terminate an active 
packet based on its consumption of CPU time. In a 
second application, we predict the CPU demand for 
nodes in an active network. In both applications, we 
compare results obtained using our black-box models 
against results obtained using CPU control and 
estimation techniques typically available in execution 
environments.  

 
6.1. CPU Usage Control 

 
As active packets traverse a series of nodes along a 

path from source to destination, each active node will 
wish to enforce CPU usage limits on each packet. This 
permits a node to protect itself from malicious or 
erroneously programmed active packets. Some execution 
environments provide a fixed maximum limit for any 
active packet, while some also permit each active packet 
to specify its own limit. In this way, should the active 
node choose to allow the packet to execute, the node will 
also have an idea when the packet should be terminated. 
In a small sample application, we show how the use of a 
fixed time-to-live (TTL) in each packet can lead to stolen 
and wasted CPU time in active nodes. We also show how 
our black-box models can be used to adjust the TTL on 
each active node; thus, saving CPU time and improving 
the quality of service in applications. Our sample active-
audio application runs in the Magician [11] execution 
environment over the topology shown in Figure 6. 

In this topology the source node (Green – 199 MHz) 
sends a stream of 2278 40-byte audio packets to the 
destination node (Black – 450 MHz) across two routers. 
The first router (Blue – 333 MHz) is faster than the 
source, and the second router (Yellow – 100 MHz) is 
slower than the source. Measurements of the application 
running on the source reveal that 8.29 ms is the 99th 
percentile of CPU time used to process active-audio 
packets. In our sample application, the source selects this 
value as the TTL for each active packet. Unfortunately, 
in our case study, an intruder on the source node 
manages to inject 455 malicious packets into the stream 
of valid active-audio packets. Each malicious packet is 
programmed to consume as much CPU time as possible 
on each node. 

During the experiment, each malicious packet is 
allowed to use 8.29 ms on the first router before the 
packet is killed. However, all malicious packets are 
terminated on the first router. The CPU time allocated to 
the malicious packets is stolen from other users. Worse, 
as valid packets arrive at the second, slower, router, they 
are each given up to 8.29 ms of CPU time. 
Unfortunately, as Table 9 reveals, 23.99 ms is the actual 
99th percentile required by active-audio packets 
executing on the second router. As a result of the poor 
TTL value, the second router kills 96% of the valid 
packets. The time spent processing the killed packets 
amounts to CPU time wasted on the part of the second 
router, and the end user receives an unacceptable quality 
of service. 

 
Table 10 provides a summary of results from 

running the active-audio application with two different 
approaches to TTL assignment. The first approach 
assigned a fixed TTL of 8.29 seconds, based on the 
observed 99th percentile on the source node. The second 
approach assigned a variable TTL on each node. In this 
case, the TTL on each node was determined by scaling a 
black-box model of the application that was generated on 
the source node (using the techniques discussed in 
Sections 4 and 5). During each run, the application 

Fig. 6.  A four-node active-network topology 
used to run an active-audio application that 
relays audio packets between a source and 
destination node over two intervening routers.
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injected 2278 valid active-audio packets into the path, 
and also injected 455 malicious packets, about one for 
every five valid packets. 

 

 
Using a fixed TTL, the malicious packets stole 3,772 

ms (455 malicious packets X 8.29 ms TTL) from the first 
router. Using a variable TTL, the malicious packets stole 
only 2,166 ms (455 malicious packets X 4.76 ms) from 
the first router.  This amounts to saving 3.53 ms per 
malicious packet, which could provide breathing room 
needed to activate defensive mechanisms in the router. 

Our improved CPU-time estimation cannot combat 
malicious packets without also taking into account the 
topology of the deployed active application. For 
example, had the topology been inverted so that active 
packets traveled first to the slowest router and then to the 
fastest router, each malicious packet could consume 

23.99 ms before being killed, resulting in 10,916 ms of 
stolen CPU time. This outcome indicates the need to 
deploy an active application in an appropriate topology 
to effectively combat injection of malicious packets. 
Specifically, ensuring that the active-packet stream 
transits a fast, first-hop router can lead to an outcome 
where malicious packets are filtered with a minimum of 
stolen CPU time. Then, only valid packets will be 
forwarded to subsequent hops along the route. 

On the second router in our experiment, where only 
valid packets arrive, the use of a fixed TTL leads to an 
unfortunate outcome, where 96% (2,186 / 2,278) of the 
packets are terminated, each after consuming 8.29 ms of 
CPU time. This amounts to wastage of 18,122 CPU 
milliseconds, and presents an untenable audio channel to 
the end user. When a variable TTL is used, the situation 
improves greatly. First, the second router terminates less 
than 1% (19 / 2,278) of the valid packets. This improves 
the quality of service to an acceptable level, and limits 
the wasted CPU time to only 456 ms. These results 
confirm that improved models for CPU demand enable 
better control as mobile code traverses heterogeneous 
nodes in a network. 

 
6.2. CPU Demand Prediction 

 
In a second sample application, we demonstrate how 

improved models for CPU demand can lead to better 
predictions about the capacity available among nodes in 
an active-network topology. In this case, we concern 
ourselves with predictions for average CPU demand, 
rather than predictions for the 99th percentile. To conduct 
our case study, we use the Active Virtual Network 
Management Prediction (AVNMP) system [27] 
developed by researchers at the General Electric 
Corporate Research and Development Center. AVNMP 
applies active-network technology to inject simulation 
models into network nodes, and to run those models 
concurrently with corresponding applications. AVNMP 
then compares estimated performance against measured 
performance, and maintains predictions from the 
simulation within specified error bounds, when compared 
against measurements from the application. 

To predict traffic load in a network, AVNMP 
constructs a shadow topology that overlays the 
operational network and then runs a simulation in the 
shadow topology. Figure 7 illustrates the relationship 
between the operational network and the shadow, 
prediction-overlay network. Using Magician as an 
execution environment, AVNMP deploys driving 
processes (DP) at each source node and logical processes 
(LP) at each intermediate and destination node in the 
topology of the operational network. DPs and LPs are 
deployed as active applications within an active virtual-
overlay network (space dimension in Figure 7). Each DP 

Table 9. Comparing the measured 99th percentile for
the CPU time used by an active-audio application
running on nodes in an active-network topology. The
table shows the Time-To-Live (TTL) and the
equivalent number of CPU cycles on each node for 
three cases: (1) measurements taken on each node,
(2) a fixed TTL assigned based on measurements
taken on the source node, and (3) predictions
generated by scaling a black-box model generated
from measurements taken on the source node. 
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Table 10. Comparing CPU time stolen or wasted
on routers in an active-network topology when
running an active-audio application. The table
shows two situations: (1) fixed TTL and (2)
variable TTL. 
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contains a model that simulates message sources, 
generating virtual messages that flow along links in the 
virtual-overlay network, which share physical links 
between nodes but remain logically isolated from 
operational traffic. As virtual messages arrive, the LP 
updates variables in the node’s management information 
base (MIB) [28]. Each LP updates the future state of 
relevant MIB variables, providing the MIB with 
predicted state to complement the current and past state 
maintained for the operational network. After updating 
predicted MIB variables, the LP consults the node’s 
routing table and forwards incoming virtual messages on 
to other LPs, if required. 

 

The prediction-overlay network then generates and 
routes simulated network traffic that attempts to run 
ahead in virtual time of operational network traffic (time 
dimension in Figure 7). While the operational network 
advances in real time, the LP in the prediction-overlay 
network advances in virtual time, receiving virtual 
messages and estimating future load. Periodically, the LP 
compares the actual and predicted MIB values for 
corresponding intervals in real and virtual time. If the 
values agree within an error tolerance, then the 
simulation remains ahead of real time and continues to 
advance. If not, then the LP rolls virtual time back to the 
current real time, discarding predictions for future MIB 
state, and then simulation resumes. AVNMP contains 
some special processing to cancel virtual messages that 
might be in transit across the prediction-overlay network 
during a rollback, but we omit these details. 

As shown in Figure 8, we constructed a four-node, 
heterogeneous active network, consisting of the same 
topology and nodes used for the active-audio case study 
(see Section 6.1). The operational active network 
comprised these nodes connected to a switched 10-Mbps 
Ethernet, which included a few other nodes that were not 
part of the experiment. We configured the experiment 
nodes to run the active-audio application discussed 
earlier; however, in this case we omitted the malicious 
packets. The prediction overlay network included 

AVNMP deployed as an active application on each node, 
with a DP injected into the source node and an LP 
injected into the destination and each intermediate node. 
The DP included a message model to generate virtual 
message traffic and a CPU model to estimate the 
processor demand associated with each virtual message. 
Each LP also included a copy of the CPU model to 
estimate processor demand for each arriving virtual 
message. 

 

 
We conducted two experiment runs. In the first run 

the DP and LPs predict a fixed average CPU time for 
each virtual message on every node. In the second run, 
the average CPU time predicted for each virtual message 
differs on each node, based on predictions made by 
scaling our black-box model of the active-audio 
application. Table 11 shows the relevant experiment 
parameters at each router node. 

We assigned 7 ms per packet as the average CPU 
demand in the fixed prediction models. This figure was 
obtained by measuring the active-audio application 
executing on the source node. Note that 7 ms equates to a 
different number of CPU cycles on each node, depending 
on processor speed. By scaling our black-box model, we 
estimated 3 ms per packet as the average CPU demand 
on the first router and 16.5 ms on the second router. Our 
hypothesis: because our scaled black-box model more 
accurately represents CPU demand in the active-audio 
application, as compared against the fixed-time estimate, 
AVNMP should require fewer tolerance rollbacks; thus, 
the prediction-overlay network should provide better 
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look-ahead into virtual time. We ran two experiments to 
evaluate this hypothesis. 

 

For each experiment run we fixed the relative error 
tolerance at 10 %, which means that AVNMP initiates 
tolerance rollbacks whenever the measured CPU use 
(averaged over 20 messages) differs from the predicted 
CPU use by more than 10 %. This tolerance, computed 
relative to predicted CPU use, equates to a different 
number of CPU cycles for each node and run. Using a 
wider error tolerance would likely mask any 
improvements from improved CPU demand predictions. 

In conducting each run, the active-audio application 
emitted a stream of 91,105 bytes (2,277 40-byte packets 
followed by one 25-byte packet), and the intermediate 
nodes periodically measured the cumulative tolerance 
rollbacks and the virtual time. As shown in Table 11, the 
average measurement interval varied on each node due to 
the stochastic nature of thread scheduling in Java. Table 
12 compares the results we obtained from our experiment 
runs. 

 

Over the audio streaming period, we can compare 
AVNMP performance for the same nodes when using the 
fixed CPU-demand model vs. the adapted CPU-demand 
model. For both the fastest and slowest intermediate 
node, the adapted CPU-demand model induces fewer 
tolerance rollbacks. This permits AVNMP to reach a 
greater maximum look ahead into virtual time on each 
intermediate node. Figures 9 and 10 provide a view of 
cumulative rollbacks and virtual time, respectively, on an 
interval-by-interval basis for the first router. The graphs 
compare progress with the fixed CPU-demand model 
against progress with the adapted CPU-demand model. 
These results support our hypothesis, suggesting that use 
of an adaptive CPU-demand model can improve the 
ability of AVNMP to predict resource usage in 
heterogeneous active networks. 
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Fig. 9.  An interval-by-interval comparison of the 
change in cumulative rollbacks for the fixed CPU-
demand model versus the adapted CPU-demand 
model. 
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Fig. 10.  An interval-by-interval comparison of 
the change in look-ahead in virtual time for the 
fixed CPU-demand model versus the adapted 
CPU-demand model.

Table 12.  Reports the results measured at two 
routers during two different experiment runs. The
results include the cumulative number of rollbacks
and the maximum look-ahead observed over all
measurement intervals. 
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Table 11.  The average CPU estimates used by
AVNMP for each router in the prediction-overlay 
network, reported as milliseconds and as the
equivalent CPU cycles. The table also indicates the
number of CPU cycles that define the 10% error
tolerance on each node, and the average interval at
which measurements were sampled. 
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7. On-Going and Future Work 
 

While our black-box models of CPU demand, and 
the associated scaling techniques, appear promising, 
more research remains before the models can be 
practically applied. In this section, we outline some of 
the open issues in three main categories: (1) improving 
our existing black-box models, (2) investigating white-
box models as an alternative to black-box models, and 
(3) exploring continuous improvement strategies that 
would enable models and node calibrations to monitor 
their own performance and to adapt to new conditions. 
We begin by considering the state of our black-box 
models. 

 
7.1. Improving the Black-Box Model 

 
The performance of our black-box models can be 

considered along three dimensions. Along the dimension 
of accuracy, our existing models assume that all 
application behavior can be measured prior to injecting a 
model into network nodes. Unfortunately, application 
behaviors often reflect conditions that cannot be known 
before a program reaches a node. For this reason, our 
application model must be enhanced to account for such 
node-dependent conditions. Two particular issues occur 
in this regard. First, some behaviors may appear more or 
less often on a particular node than the model would 
predict, based on the scenarios observed in the laboratory 
where a model is created. Given the restriction of black-
box models, this becomes a statistical question 
surrounding whether or not the behavior measured in 
generating the model represents the behavior in actual 
use. Attacking this problem on a black-box basis requires 
some ability for continuous improvement (see Section 
7.3 below). Removing the black-box restriction opens up 
the model and permits strategies more suited for white-
box analysis (see Section 7.2 below). Second, selected 
scenarios in our black-box models might be repeated at a 
node, based on conditions at the time of execution. For 
example, in a multicast application a packet might be 
forwarded a number of times that depends on the current 
number of subscribers to a multicast group. We might be 
able to parameterize looping behavior in our black-box 
models (making them grey-box models, perhaps). If we 
can do this, then an arriving model might query the 
execution environment on a node for the current values 
of key behavioral parameters, and then could modify its 
CPU demand estimates accordingly. 

Along the dimension of cost, our models consist of 
histograms, which must be exercised with Monte-Carlo 
simulations in order to predict CPU demand. As a result, 
specific application models can be large and could 
require substantial computation to produce predictions. 

To some degree the space-time properties of our model 
can be modulated; however, the prediction error also 
varies accordingly. We discuss these points further. 

In our research, we found that the size of a model 
can vary depending in the first order on three parameters: 
the execution environment, the active application, and 
the granularity of the histograms. The execution 
environment, and its mapping to a node operating 
system, appears to affect the number of system calls 
made by an active application. Further, an active 
application may consist of a number of different roles 
(such as source, router, and sink), where a node may take 
on one or more of the available roles. The number and 
nature of roles in an active application affect (in the 
second order) the number of scenarios, and the number 
of scenarios can affect (in the third order) the number of 
transitions and the number of distinct system calls taken. 
To determine a model size, the number of bins in each 
histogram multiplies the number of transitions and 
system calls. Tables 13 and 14 provide, for ANTS and 
Magician, respectively, some statistics regarding the size 
of the models generated during our research. 

 

Tables 13 and 14 support the observation that the 
execution environment and the active application affect 
the size of the model. For example, notice that the 
various applications in each table require different 
numbers of bytes to describe a model. Further, note that 
two similar applications, “Ping” (Table 13) and “Smart 
Ping” (Table 14), required different sizes based on being 
written for different application environments. Tables 13 
and 14 also provide some indication of the size of the 

Table 13.  Some statistics about the size of black-box 
models generated for various possible roles that can 
be taken by two different active applications running 
in the ANTS execution environment. Note that both 
applications can adopt one or more of three roles. 
The role “All” denotes the application executing in 
all available roles. For the Multicast application, the 
table includes a row showing a combined role, 
“Router-Sink”. 

213,67965,28742,583120,325All
22,72212,0203,10917,966Sink

112,52842,41425,12863,487Router-Sink
17,1905,0903,5589,466Router

Multicast

80,16338,74414,45256,433Source
165,65616,91359,26680,162All
165,6564.,30040,84318,277Sink
17,3405,7063,12010,082Router

153,6227,44359,65167,103Source

Ping

MaximumMinimumStandard 
Deviation

Average
Role

Units are 
Bytes

213,67965,28742,583120,325All
22,72212,0203,10917,966Sink

112,52842,41425,12863,487Router-Sink
17,1905,0903,5589,466Router

Multicast

80,16338,74414,45256,433Source
165,65616,91359,26680,162All
165,6564.,30040,84318,277Sink
17,3405,7063,12010,082Router

153,6227,44359,65167,103Source

Ping

MaximumMinimumStandard 
Deviation

Average
Role

Units are 
Bytes
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models that would be shipped among nodes. But model 
size is only part of the story. 

 

 
Once a model arrives on a node, a Monte-Carlo 

simulation must execute to generate a sample population 
of CPU demands from which prediction statistics can be 
determined. In our experiments, we implemented the 
models in Java, which is not the most efficient choice. 
Table 15 shows the CPU seconds required to execute a 
number of our five-bin histogram models for varying 
repetition counts. Here, the models were executed on a 
Pentium Pro operating at 547 MHz. As shown in Table 
16, the larger the number of repetitions, the better the 
accuracy of the predictions. Of course, the larger the 
number of repetitions, the more CPU time is needed to 
generate the predictions. Table 16 shows the increasing 
accuracy of the predictions as the number of repetitions 
increases from 500 to 20,000. On the other hand, Table 
16 also shows that at 20,000 repetitions, increasing the 
number of bins from 50 to 100 does not appreciably 
improve the accuracy of the predictions.  

Along the dimension of operational effectiveness, 
our models would benefit from inclusion of an associated 
error bounds. Before taking decisions based on 
predictions from CPU-time models, an operating system 
must consider the possible range of prediction error. 
While we have yet to characterize the error properties of 
our models, Table 17 provides another look at how 
scaling our black-box models compares against scaling 
predictions based on the ratio of processor speeds. For 
sake of discussion, assume that these results hold across 
all models of each type. Then, upon receiving predictions 
from a scaled black-box model, an operating system 
could realize that the predictions for the mean might be 
incorrect by up to 5% and that predictions for the higher 

percentiles might prove inaccurate by as much as 15%. 
On the other hand, when working with a model scaled 
based on the ratio of processor speeds, the operating 
system would realize that all predictions could be around 
35% in error. 

 

Table 14.  Some statistics about the size of black-box 
models generated for various possible roles that can 
be taken by two different active applications running
in the Magician execution environment. Note that
both applications can adopt one or more of three
roles. The role “All” denotes the application
executing in all available roles.  

28,1435,3397,26917,465All
4,6838241,0312,610Sink

11,7001,0293,6446,861RouterSmart 
Route

14,0512,2973,4398,201Source
53,65112,30713,76527,641All
16,6583,5944,0438,283Sink
25,1803,0847,25713,001Router
25,5185,1826,18712,557Source

Smart 
Ping

MaximumMinimumStandard 
Deviation

Average
Role

Units are 
Bytes

28,1435,3397,26917,465All
4,6838241,0312,610Sink

11,7001,0293,6446,861RouterSmart 
Route

14,0512,2973,4398,201Source
53,65112,30713,76527,641All
16,6583,5944,0438,283Sink
25,1803,0847,25713,001Router
25,5185,1826,18712,557Source

Smart 
Ping

MaximumMinimumStandard 
Deviation

Average
Role

Units are 
Bytes

Table 15.  Shows the average number of CPU 
seconds (and the standard deviation) required to 
execute four different models through various 
repetitions. All models, implemented in Java and 
executed on a 547 MHz Pentium Pro, were composed 
of five-bin histograms. 

0.823.820.080.740.100.64Smart 
Route

0.484.390.090.710.070.62Smart Ping
Magician

1.175.480.140.910.110.75Multicast
1.554.510.140.860.120.69Ping

ANTS

Standard 
Deviation

MeanStandard 
Deviation

MeanStandard 
Deviation

MeanActive 
Application

Execution 
Environment

10,000 Repetitions1,000 Repetitions100 Repetitions
CPU Seconds Required to Execute ModelModels implemented in 

Java

0.823.820.080.740.100.64Smart 
Route

0.484.390.090.710.070.62Smart Ping
Magician

1.175.480.140.910.110.75Multicast
1.554.510.140.860.120.69Ping

ANTS

Standard 
Deviation

MeanStandard 
Deviation

MeanStandard 
Deviation

MeanActive 
Application

Execution 
Environment

10,000 Repetitions1,000 Repetitions100 Repetitions
CPU Seconds Required to Execute ModelModels implemented in 

Java

Table 16. This table reports the percent absolute 
error predicting the mean and high percentiles for 
two active-applications running in the ANTS 
execution environment. The results give the error 
measured for three combinations of histogram 
granularity and simulation repetition count. 

3
2

% Error 
Avg. High 
Percentile

0
1

% 
Error 
Mean

50 Bins and 
20,000 Repetitions

100 Bins and 
20,000 

Repetitions

50 Bins and 
500 RepetitionsModels of 

Active 
Applications 
Running in 
ANTS 

20165Multicast
11103Ping

% Error 
Avg. High 
Percentile

% 
Error 
Mean

% Error 
Avg. High 
Percentile

% 
Error 
Mean

3
2

% Error 
Avg. High 
Percentile

0
1

% 
Error 
Mean

50 Bins and 
20,000 Repetitions

100 Bins and 
20,000 

Repetitions

50 Bins and 
500 RepetitionsModels of 

Active 
Applications 
Running in 
ANTS 

20165Multicast
11103Ping

% Error 
Avg. High 
Percentile

% 
Error 
Mean

% Error 
Avg. High 
Percentile

% 
Error 
Mean

Table 17.  Comparison of error bounds associated 
with predictions made from scaling models based 
on the ratio of processor speeds against predictions 
made from scaling black-box models.  

53499th Percentile
53795th Percentile
73690th Percentile

123485th Percentile
113680th Percentile
336Mean

Scaling 
Black-box 

Model

Scaling with 
Processor

Speed Ratio

Standard Deviation in 
% Absolute Error for 
Selected Statistics

53499th Percentile
53795th Percentile
73690th Percentile

123485th Percentile
113680th Percentile
336Mean

Scaling 
Black-box 

Model

Scaling with 
Processor

Speed Ratio

Standard Deviation in 
% Absolute Error for 
Selected Statistics
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7.2. Investigating White-Box Models 
 
In addition to seeking techniques to improve black-

box models, we have begun to investigate white-box 
models as an alternative approach. In our conception, 
white-box models represent the processing logic within 
an active application as it invokes services offered by an 
execution environment. Figure 11 (a), for example, 
shows mobile, an active application written for the 
ANTS execution environment, while Figure 11 (b) shows 
a corresponding white-box model for mobile.  

 

As shown in Figure 11 (a), an active application 
consists of a combination of sequences, selections, and 
iterations that invoke specific primitives provided by an 
execution environment. In this example, such primitives 
include: getCache, getDst, intValue, getAddress, 
routeForNode, and deliverToApp. Given a specific active 
packet and a determinable state for relevant node-
dependent conditions, prior to executing the packet, an 
active-network node can evaluate the state of relevant 
Boolean conditions (see c1 and c2 in Figure 11 (b)) to 
determine, the precise sequence of primitives that an 
active application will call to process the packet. Further, 
if the node can determine the time taken by the execution 
environment to execute each primitive, then the node can 
compute an estimate for the CPU time required to 
process the packet. To determine the amount of time 
taken to execute each primitive, an execution 
environment must be calibrated on the node. Calibration 
involves the execution of a synthetic workload that will 
repeatedly call the various primitives implemented by the 
execution environment. The calibration process yields 

estimates for various statistics (e.g., mean and variance) 
associated with CPU use by each primitive. 

We imagine that an execution environment can 
generate a white-box model for an active application, 
once the source code arrives at a node. Figure 11 (b), for 
example, provides a possible white-box model derived 
from the source code for mobile. Then, assuming that 
each delay in the model (t1 through t4 in Figure 11 (b)) 
represents the CPU time required for an associated 
primitive, the model can be evaluated for each arriving 
active packet to estimate the CPU demand for that 
packet. In our preliminary work, the calibration process 
yields estimates for the first two moments (mean and 
variance) of CPU time used for each primitive in the 
execution environment. We estimate the mean execution 
time for a packet as the sum of the mean primitive times 
in the processing path for the packet. Similarly, we use 
an appropriate formula for summing the variance of 
random variables to derive an estimate for the variance in 
CPU demand by the active packet. Finally, assuming a 
normally distributed random variable, we use the mean 
plus an appropriate multiple of the standard deviation to 
estimate specific percentiles. While we already know 
through our experiments that CPU usage is not a 
normally distributed random variable, we used such an 
assumption in order to explore the effectiveness of a 
simple analytical approach to computing estimates for 
CPU demands. 

Table 18 illustrates some results from applying this 
technique to predict CPU demand for five active 
applications running under the ANTS execution 
environment. The table compares predictions against 
measurements for three statistics: mean, standard 
deviation, and 99th percentile. The prediction errors are 
neither as accurate nor as well bounded as those obtained 
with our black-box models. We believe that this poor 
performance results from our assumption that CPU 
demand is normally distributed (which our measures 
demonstrate is clearly not the case). Regardless of these 
preliminary results, our work with black-box models 
leads us to believe that white-box models could be 
combined with histograms and Monte-Carlo simulations 
to yield reasonably accurate estimates. In the case of 
white-box models, the histograms would represent the 
CPU usage observed during calibration for each 
primitive provided by the execution environment. We 
have plans to investigate these ideas in the context of 
resource-management for mobile code loaded into call-
processing servers. 

 
7.3. Continuous Improvement Strategies 

 
Regardless of the type of model chosen to provide 

estimates for CPU demand, strategies for continuous 
improvement will be required. We envision additional 

Integer f = (Integer)n.getCache().get(getDst());
if (f  != null) { next = f.intValue(); }
if (n.getAddress() != getDst())

{ return n.routeForNode(this, next); }
else { return n.deliverToApp(this, dpt); }

(a) ANTS active application mobile

delay (t1);
if (c1) delay (t2);
if (c2) { delay (t3); }
else { delay (t4); }

(b) White-box model for mobile

Integer f = (Integer)n.getCache().get(getDst());
if (f  != null) { next = f.intValue(); }
if (n.getAddress() != getDst())

{ return n.routeForNode(this, next); }
else { return n.deliverToApp(this, dpt); }

(a) ANTS active application mobile

delay (t1);
if (c1) delay (t2);
if (c2) { delay (t3); }
else { delay (t4); }

(b) White-box model for mobile

Fig. 11. (a) Example code for an active application,
ANTS mobile, and (b) a corresponding white-box 
model, where c1 and c2 represent distinct Boolean
conditions and t1 through t4 represent distinct time
delays. 
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work on techniques for continuous calibration of system 
calls and execution environments, for experiential 
improvements in active-application models, and, 
possibly, for real-time competition among various 
models. We discuss each of these topics below (a-c). 

 

 
(a) Continuous Calibration. Calibration of a node 

and execution environment, even when carefully 
conducted, yields accurate information only so long as no 
change occurs in relevant elements of the calibrated 
system. Once a configuration changes, e.g., through 
introduction of new hardware or an updated version of 
some software component, a previous calibration might 
no longer prove accurate. In addition, to the extent that a 
calibration depends upon usage patterns associated with 
the calibrated components, the accuracy of a calibration 
might drift. For these reasons, research is needed to 
develop and validate techniques to recalibrate a system 
over time. In particular, techniques might be needed to 
track changes in calibration values, and then to vary the 
rate of calibration adjustment based on the rate of change 
in calibration accuracy. 

(b) Learning Models. The accuracy of statistical 
models of program behavior depends upon successfully 
obtaining samples of representative behavior. Our black-
box modeling approach assumes that representative 
application behavior can be measured sufficiently, during 
a tracing phase, prior to injecting a model into network 
nodes. Unfortunately, application behaviors often reflect 
conditions that cannot be known before a program 
reaches a node. Such conditions can alter the probability 
of executing various paths in a program, and can change 

the number of times particular paths are executed. For 
this reason, additional research is needed to investigate 
techniques to continuously improve the representation of 
statistical behaviors in black-box models. Can methods 
be found to enable a model to evolve as it gains 
experience while traveling through the network? Can 
new scenarios be identified and added to a model? Can 
the probability of execution and the distribution of the 
CPU times be adjusted as the application experiences 
more executions? Can models be parameterized based on 
conditions at a node? For example, to solve the problem 
of a loop executed an unpredictable number of times, can 
we design a holes-model, complete except for some 
parameters that would be included on arrival at the node 
where local conditions are known? 

(c) Competitive Models. Our existing research 
assumes that we can develop one class of model that best 
predicts CPU demands for a mobile program. This 
assumption might prove wrong. We might be unable to 
find a single class of predictor that will yield the best 
estimates for all active applications.  For example, one 
model might produce estimates through analytical 
computation, while another provides predictions using 
simulation. Perhaps one estimation technique gives better 
results than another under certain conditions. If so, then it 
could prove useful to continuously evaluate which of the 
available co-existing models or prediction systems is the 
most accurate. In this way, good predictors can be 
reinforced, and bad predictors can be de-emphasized, and 
the value of predictors can be assessed independently in 
time and space. Active-network technology provides a 
suitable basis to experiment with such competitive 
modeling techniques. 
 
8. Conclusions 

 
In this paper, we argued that some means is needed 

to accurately specify CPU demand in order to safely and 
efficiently deploy mobile code among heterogeneous 
platforms in a network. We showed that commonly used 
approaches, which are based on a fixed time-to-live, do 
not work effectively. We argued that CPU demand in a 
mobile program is a function of the speed of the 
processor on which the program runs and of the number 
of CPU cycles that must be executed. Further, we 
showed that it is quite difficult to estimate the number of 
CPU cycles demanded by a mobile program. 

We proposed a class of statistical black-box models 
to estimate the number of CPU cycles required by a 
mobile program, and we evaluated how well the 
predictions from some instances of these models matched 
measured values. Further, we proposed mechanisms to 
transform instances of black-box models to provide 
estimates for CPU demand on a range of nodes. We 

Table 18.  Prediction error for three different
statistics (mean, standard deviation, and 99th

percentile) estimated for five active applications.
These predictions relied on white-box models,
combined with analytical approximations
appropriate for normally distributed random
variables. 

67520Multicast

673227Multicast 
Subscribe

62611Mobile
0605Ping

33537Mobile Update

99th

Percentile
Standard 
Deviation

MeanANTS Active 
Application

% Absolute Error in Prediction 
for Selected Statistics

Predictions from 
white-box models

67520Multicast

673227Multicast 
Subscribe

62611Mobile
0605Ping

33537Mobile Update

99th

Percentile
Standard 
Deviation

MeanANTS Active 
Application

% Absolute Error in Prediction 
for Selected Statistics

Predictions from 
white-box models
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evaluated how well predictions made by transformed 
models matched measured values. We also compared the 
accuracy of our transformed black-box models against 
transformation techniques that take into account only the 
differences in processor speed among nodes. In most 
cases, the black-box models proved accurate within 15%, 
while the more naïve models proved accurate within 
40%. 

In addition to evaluating our black-box models, we 
applied one of them in two sample applications: CPU 
control and CPU prediction. In the control application, 
we demonstrated that better models of CPU demand 
could reduce the amount of CPU time stolen or wasted 
when malicious or erroneous code is injected into a node. 
We also showed that more accurate models of CPU 
demand can lead to better quality of service provided to 
end users. In the prediction application, we demonstrated 
that better models of CPU demand allowed AVNMP, a 
resource-usage prediction system, to estimate resource 
demand farther into the future with lower overhead. 

Despite the successes reported in this paper, the 
problem of accurate prediction of CPU demand among 
heterogeneous nodes remains largely unsolved for mobile 
programs. We identified several open issues that require 
additional research. We hope that our analysis of the 
problem, our evaluation of results, and our demonstration 
of the benefits of an effective solution, will all encourage 
other researchers to tackle this important and difficult 
problem. 
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