
1

Modeling CPU Demand in Heterogeneous Active Networks

Virginie Galtier, Kevin Mills, and Yannick Carlinet
National Institute of Standards and Technology

Gaithersburg, MD USA 20899
kmills@nist.gov

Abstract

Active-network technology envisions deploying

execution environments in network elements so that
application-specific processing can be applied to
network traffic. To provide safety and efficiency,
individual nodes must include mechanisms to manage
resource use. This implies nodes must understand
resource demands associated with specific traffic. Well-
accepted metrics exist for expressing bandwidth (bits per
second) and memory (bytes) in units independent of
particular nodes. Unfortunately, no well-accepted,
platform-independent metric exists to express processing
demands. This paper describes and evaluates an
approach to model processing demand for active packets
in a form interpretable among heterogeneous nodes in an
active network. The paper applies the model in two
applications: (1) controlling CPU use and (2) predicting
CPU demand. The model yields improved performance
when compared against the approach currently used in
many execution environments. The paper also discusses
the limits of the proposed model, and outlines future
research that might lead to improved outcomes.

1. Introduction

In classical packet-switched communication

networks, when a packet transits through an intermediate
node along the path from source to destination, the
intermediate node examines the destination address,
consults a routing table for the next hop, and then
forwards the packet on an appropriate link. The data
transported within the packet remain opaque to the node.
Since each intermediate node has a measured rating for
per-message and per-byte throughput, a linear
extrapolation from packet size and arrival rate should
provide the node a reasonable estimate for the processor
(typically called central-processing unit, or CPU)
demand associated with individual packets or with sets of
packets. Unfortunately, this simple approach cannot

work for active networks because individual packets can
require substantially different processing.

In active networks, when a packet arrives at an
intermediate node, the data may include program code
that can be accessed, interpreted, and executed by the
node. This code describes how to process the packet,
and perhaps subsequent, related packets. For instance,
the code may specify a compression algorithm to be
applied on the data if congestion has been detected in the
area of the node, or may specify which packets to drop
first, or may modify the destination address to route
around congestion. This implies that identical packets
can require different CPU time on assorted nodes and
under various conditions. Thus, in active networks, a
more sophisticated technique is needed to estimate CPU
demand associated with active packets.

Inability to estimate the CPU demands of active
packets can lead to some significant problems. First, a
maliciously or erroneously programmed active packet
might consume excessive CPU time at a node, causing
the node to deny services to valid active packets.
Alternatively, a node might terminate a valid active
packet prematurely, wasting the CPU time used prior to
termination, and ultimately denying service to a correctly
programmed application. Second, an active node may be
unable to schedule CPU resources to meet the
performance requirements of packets. Third, an active
packet may be unable to discover a path that can meet its
performance requirements. This path selection problem
occurs in part due to the node-scheduling problem, but
also because the CPU time commitments of active nodes
along a path cannot be determined. Devising a method
for active packets to specify their CPU demands can help
to resolve these problems, and can open up some new
areas of research. Unfortunately, there exists no well-
accepted metric for expressing CPU demands in a
platform-independent form. This is the problem that
motivated our research.

In Section 2, we discuss the problem in more detail,
and we identify the outlines for a solution. In Section 3,
we provide an overview and critique of some existing
approaches to control CPU use in active applications.

2

Further, we examine some ideas from the literature that
stimulated our thinking. In Section 4, we describe a
statistical black-box model for specifying CPU demand
associated with active packets, and we show how we can
generate such models by tracing packet executions. In
addition, we compare estimates from our models against
real executions. In Section 5, we outline our strategy for
calibrating active network nodes and for transforming
CPU models for active packets among heterogeneous
nodes in an active network. We also compare
predictions made by our transformed models against
measured executions on a variety of nodes in an active
network topology. In Section 6, we show how our CPU
models can be applied in two sample applications. One
application controls CPU usage by active packets, where
our models achieve improved performance over one of
the existing techniques implemented within active-
network nodes. The second application predicts CPU
demand by active packets. Here, our models outperform
estimators based on one of the simplest techniques used
by a number of active-network execution environments.
In Section 7, we discuss the limits of our current
approach, and we suggest some future research that
might yield improved outcomes. We close in Section 8
with our conclusions.

2. The Problem and Outlines of a Solution

The growing ubiquity of the Internet is changing the

nature of software design and deployment. Increasingly,
Internet-based system architectures employ distributed
components and use mobile code, such as applets,
scripts, servlets, and dynamically linked libraries, to
deliver new software to millions of users. Absent an
understanding of the processor (CPU) time required by
such dynamically injected software, computer operating
systems cannot effectively manage system resources or
control the execution of mobile code. Unfortunately,
since mobile code can be injected and executed on a
variety of computer platforms with a wide range of
capabilities, software developers cannot precisely specify
CPU requirements a priori. We set out to improve the
ability of software developers to quantify CPU time
requirements of mobile code in a form that can be
understood readily on heterogeneous computing
platforms.

We conducted our research in the context of active
networks, an emerging technology that exploits mobile
code in an extreme form. Active-network technology
augments traditional networking with the possibility that
individual packets carry executable code, or references to
executable code. Conventional (data-only) packets are
forwarded on the so-called “fast path” of a router, while
active packets, which invoke mobile code, are delivered
to a higher-level execution environment that can identify

and run a program specifically associated with the
packet. Networking applications built with active packets
are referred to as active applications. Figure 1 illustrates
the architecture of an active-network node [1].

Underlying each active-network node is a node

operating system, which transforms the node hardware
into a software abstraction that provides execution
environments with controlled access to resources such as
CPU cycles, memory, input and output channels, and
timers. In order to allow many possible operating systems
to provide services to many possible execution
environments, the active-network node architecture
includes a standard specification of system calls (the
Node OS Interface Layer in Figure 1) [2]. Execution
environments, similar to virtual machines, can be loaded
onto an active node using ANETD [3], a daemon that
implements a load-and-go protocol for execution
environments. Each execution environment accepts
active packets that can initiate the execution of packet-
specific code. Each related code base and flow of active
packets is known as an active application. During the
course of the Active-Networks research program, funded
by DARPA, researchers developed a number of node
operating systems [4-7, 29-33], execution environments
[8-12, 33, 34] and active applications [13-19].

While innovative and radical when considered for
use inside networks, active-network execution
environments share much in common with virtual
machines used in Internet-based software architectures,
and active applications appear quite similar to other
forms of dynamically injected software, such as applets,
mobile-agent scripts, and dynamically linked libraries.

Node Hardware

Network Protocols
(Channels)

OS Scheduler &
Timer Services

(Threads)

OS Resource
Management

Services
(Flows, Thread Pools,

Memory Pools)

Network Device Drivers

• ••

EE1 EE2 EEn

Node Operating System Layer

Active
Application

Active
Application

Active
Application

Active
Application

Active
Application

Active
Application

Mapping of NodeOS API Layer to Real OS Services
S1 S2 S3 S4 SmNodeOS System Calls

• • •

Execution Environment Layer

NodeOS
Interface

Layer

Node Hardware

Network Protocols
(Channels)

OS Scheduler &
Timer Services

(Threads)

OS Resource
Management

Services
(Flows, Thread Pools,

Memory Pools)

Network Device Drivers

• ••• ••

EE1 EE2 EEn

Node Operating System Layer

Active
Application

Active
Application

Active
Application

Active
Application

Active
Application

Active
Application

Mapping of NodeOS API Layer to Real OS Services
S1 S2 S3 S4 SmNodeOS System Calls

• • •• • •

Execution Environment Layer

NodeOS
Interface

Layer

Fig. 1. Schematic representation of the active-
network architecture, revealing five levels of
abstraction, from bottom to top: (1) node
hardware, (2) node operating system, (3) node
operating system interface, (4) execution
environment, and (5) active application.

3

These similarities encourage us to believe our ideas apply
generally to the problem of specifying CPU demand in
distributed applications that rely on the use of mobile
code.

2.1. Analysis of Variability in CPU Demand

The amount of CPU time required by a computer
program is a function of two factors: (1) the speed of the
processor on which the program will execute and (2) the
number of CPU cycles required for the program to
complete its task. The first of these factors proves easy to
measure on any computer platform because a computer
operating system can readily determine the speed of the
processor on which it executes. In general, processor
speeds are specified in cycles per second, or Hertz, where
the time taken to execute a single CPU cycle can be
represented as the inverse of the processor speed. For
example, a processor that operates at the rate of one
billion Hertz (a Gigahertz, or GHz) will execute a single
CPU cycle in one billionth of a second (a nanosecond, or
ns). Unfortunately, the second factor, the number of
CPU cycles required for a program to complete a task,
proves very difficult to determine in any platform-
independent manner. Below we consider some of the
difficulties associated with providing an accurate
measure of the count of CPU cycles required by a
program.

As shown in Figure 1, a mobile program, or active
application, executes at the highest level in a five-level
architecture of abstractions. At this highest level of
abstraction, the number of instructions required to
complete the program is a function of the paths taken
through the code, which can depend on various
conditions that exist on the node at the time the program
executes. The lowest level of abstraction consists of the
node hardware, where program execution time is
influenced directly by the raw speed of various
components, such as the operating rate of the processor.
Three additional levels of abstraction exist between the
active application and the node hardware. Each of these
levels of abstraction consists of its own set of computer
code, and therefore CPU cycles, which may be traversed
by specific executions of an active application. For
example, consider the node operating system layer in
Figure 1.

When an active application calls for a system
service, such as a read or write to a disk device, control
passes to a device driver that executes some CPU cycles.
The number of CPU cycles required depends upon the
specific device driver underlying the system call, and the
device driver typically depends upon the specific
hardware. So, for example, if the disk is accessed
through a SCSI (small-computer system interface)
controller, a particular device driver will be used, while if

the disk is accessed through an IDE (integrated drive
electronics) controller, then a different device driver is
required. Further, from time-to-time device manufactures
update their device drivers. This implies that the number
of CPU cycles required to access a device can also vary
based on the specific version of the device driver loaded
on the computer platform. A similar analysis applies to
other devices, such as network interface cards, codecs
(encoder-decoders), and encryption hardware.

Similar reasoning applies at the other layers of
abstraction. For example, the active-networks
architecture (Figure 1) defines a standard node operating
system interface, which permits any execution
environment to run on any node operating system. This
implies that some mapping may be required to enable
various node operating systems to provide the standard
interface. Each such mapping will introduce additional
CPU cycles into the system calls made by an active
application. The number of additional CPU cycles will
depend upon the specific mapping code. Along similar
lines, some code will be required to map an execution
environment onto the standard interface provided by
node operating systems. This mapping will introduce
additional code, and therefore CPU cycles, that must be
executed on behalf of the active application. The specific
mapping will likely vary for each execution environment.

2.2. Some Supporting Measures

Above we argued that the processing demand of a

mobile program, such as an active application, depends
upon two factors: processor speed and number of CPU
cycles that must be executed. Further, we suggested that
the number of CPU cycles needed depends on a variety
of factors that will vary as a program moves from node-
to-node. In this section, we support our theoretical
discussion with some concrete evidence obtained by
measuring the operation of several computer platforms,
described in Table 1.

To investigate our hypothesis that the same program
will require different numbers of CPU cycles to execute
on various computer platforms, we ran a small Java™1
benchmark program on the three computers outlined in
Table 1. The benchmark program simply makes a series
of 10,000 repetitive invocations of various system calls
through the Java virtual machine to the operating system.

In order to push our analysis to a limit, we installed
the same versions of Linux (version 2.2.7) and the Java
development kit (jdk 1.1.6) on three Pentium-based
platforms. The three nodes differed only in the processor

1 Commercial products are identified in this report to describe our study
adequately. Such identification does not imply recommendation or
endorsement by the National Institute of Standards and Technology.

4

architecture and speed, the amount of installed memory,
and the characteristics of interface hardware, such as disk
controllers, audio devices, and network cards. Using
these three platforms, we investigated only the
differences in CPU cycles that result from variations in
node hardware, the lowest level of abstraction shown in
Figure 1. Table 2 depicts the outcome from running our
benchmark program repeatedly and averaging the results.

Table 1. Characteristics of three computer platforms
selected for investigation by measurements.

Table 2. Results from executing the same Java
benchmark program on three different Pentium-
based platforms running Linux.

The results shown in Table 2 support our analysis
that different computer platforms can require
significantly varying numbers of CPU cycles to execute
the same program, even when using identical versions of
an operating system and virtual machine. In fact, as
Table 2 illustrates, variation in the number of CPU cycles
required may even lead to cases where a program takes
longer to execute on a faster machine (Blue) than on a
slower machine (Black). Our earlier analysis suggested
that such results might be attributed to differences in the
device drivers underlying the operating-system calls
invoked by our benchmark program. Results given in
Table 3 support the earlier analysis.

Table 3 shows that for four system calls (included in
our benchmark) the slowest node (Green – 199 MHz)
requires the fewest number of CPU cycles, while the
fastest node (Blue – 450 MHz) requires the largest
number of CPU cycles. The intermediate node (Black –
333 MHz) requires fewer CPU cycles than Blue but more
than Green. As a result, Black executes the benchmark
faster than either Green or Blue, while Green executes
the benchmark only slightly slower than Blue, but
certainly not twice as slow.

These results support our assertion that the CPU
time required by a mobile program depends upon both
the processor speed and the number of CPU cycles
required to execute the program on a given computer
platform. Since a platform operating system can easily
determine processor speed, the main problem for
modeling CPU demand in a mobile program, such as an
active application, is to express the number of CPU
cycles required to execute the program on a given
platform. This is the problem that we attempted to solve.

Table 3. Results for selected system calls from
executing the same Java benchmark program on
three different Pentium-based platforms running the
same version of Linux and identical versions of the
Java development kit. Results measure average CPU
cycles (ACC) and average CPU time (ACT) used to
execute selected system calls on each node.

2.3. The Outlines of a Solution

The outlines of a solution seem clear. The number of

CPU cycles needed to execute an active application on a
particular platform depend upon: (1) the path taken
through the application code, (2) the path taken through
the execution environment, (3) the path taken through the
mapping between the execution environment and the
node operating system interface, and (4) the path taken
through the system calls (and related device drivers) in
the node operating system. Unfortunately, these factors
can vary from platform-to-platform, based on the specific
code implemented on each platform, and from node-to-
node, based on various node-dependent conditions that
exist at the time an active packet arrives. Regarding
node-dependent conditions, two aspects seem relevant:
(1) conditions at the node that affect the processing logic
in an active application and (2) conditions at the node
that affect resource sharing among multiple active
applications and execution environments.

Any effective model of CPU demand by a mobile
program, which we call an active-application model,
seems likely to require delineating the processing paths
through the program in terms of elements of a platform-
independent abstraction that the program will invoke on

jdk / 1.1.6jdk / 1.1.6jdk / 1.1.6Java Virtual Machine/Version
Linux / 2.2.7Linux / 2.2.7Linux / 2.2.7Operating System/Version

12812864Memory Size (Megabytes)
Pentium IIPentium IIPentium ProProcessor Architecture

450333199Processor Speed (MHz)
BlueBlackGreenNode Name

Platform Description

jdk / 1.1.6jdk / 1.1.6jdk / 1.1.6Java Virtual Machine/Version
Linux / 2.2.7Linux / 2.2.7Linux / 2.2.7Operating System/Version

12812864Memory Size (Megabytes)
Pentium IIPentium IIPentium ProProcessor Architecture

450333199Processor Speed (MHz)
BlueBlackGreenNode Name

Platform Description

534479843Average CPU Time (microseconds)
240,269159,412167,830Average Number of CPU Cycles

BlueBlackGreenJava Benchmark Results
Computer Node

534479843Average CPU Time (microseconds)
240,269159,412167,830Average Number of CPU Cycles

BlueBlackGreenJava Benchmark Results
Computer Node

5022,6094314,3946212,362Write

5122,8004414,7316112,042Stat

6027,0665317,5917314,560Socket Call

4319,3213712,3626312,606Read

ACTACCACTACCACTACCSystem Call

BlueBlackGreen

Computer Node

5022,6094314,3946212,362Write

5122,8004414,7316112,042Stat

6027,0665317,5917314,560Socket Call

4319,3213712,3626312,606Read

ACTACCACTACCACTACCSystem Call

BlueBlackGreen

Computer Node

5

every node. We refer to such platform-independent
abstractions as node models. In the context of active
networks, two types of node model seem feasible: (1)
white-box models and (2) black-box models. White-box
models represent the functions offered to active
applications by a specific execution environment. Black-
box models hide execution-environment functions, and
represent instead system calls offered to the execution
environment by a standard node operating system
interface. So, in a white-box model the execution
environment is transparent, while in a black-box model
the execution environment is opaque. While we are
investigating both approaches, in this paper we focus
mainly on a black-box model because, if successful, such
models can work across the full range of execution
environments being developed by active-network
researchers. White-box models, on the other hand, must
be developed for each execution environment that a node
intends to support.

Whether specifying the logic of an active application
in terms of a black-box or white-box node model, a
means is also needed to characterize the performance of
specific nodes with respect to the model elements. We
refer to this aspect of the solution as node calibration.
The main idea behind node calibration is to determine a
node’s performance in implementing the elements that
compose the node model.

Through calibration, a node operating system can
determine how many CPU cycles are required to execute
each model element on the node. Then, given any active-
application model expressed in terms of the elements of a
node model, an active-network platform should be able
to estimate the number of CPU cycles that the active
application will require on the node.

Unfortunately, the processing logic in an active
application does not consist solely of calls to elements in
the node model. Instead, the active application also
includes its own processing logic that is not carried out
by functions in the execution environment or by system
calls. This suggests that an active-application model must
also express the number of CPU cycles used between
calls to elements in the node model. As a result, some
means is required to calibrate the performance of the
active application on every node in the network. Such
exhaustive calibration appears infeasible; however, the
application-specific logic in an active application can
certainly be measured on one node in the network. Such
measurements provide an indication of the number of
CPU cycles required by an active application on a
specific node. Since an active application runs within an
execution environment, we can imagine calibrating the
ability of each execution environment to perform a
representative workload on each node in the network.
We call this process execution-environment calibration.

Given an active-application model expressed as a
combination of: (1) elements of a node model and (2) the
number of CPU cycles used between elements of a node
model, a network node receiving such a model can
conceivably transform the model into terms that might be
meaningful on the node. The techniques for performing
such a transformation make up another part of the
solution.

To recap, the outlines of a solution to the problem of
modeling CPU demand in mobile programs include at
least the following components: (1) a node model
expressed in terms of functions invoked by active
applications, (2) an active-application model expressed in
terms of paths through a node model and in terms of
CPU cycles used between invocations of elements in the
node model, (3) calibrations of a node with respect to the
node model and the execution environments on the node,
and (4) transformation techniques that can convert an
active-application model sent between two nodes into
terms meaningful on the destination. These are the
portions of the solution that we investigated, and that we
address in Sections 4 and 5 of this paper.

Other issues must also be resolved for a complete
solution. For example, we have not tackled the problem
of node-dependent conditions in this paper. This means
that in our work the CPU demands of an active
application are modeled from measuring the application
in numerous scenarios in the development laboratory
before we release the application (and its model) into a
network. Should the application encounter conditions not
seen in the development laboratory, our models have no
means of adjusting to such new conditions. We have also
not tackled the problem of adjusting node and execution-
environment calibrations based on current conditions in a
node or on new conditions that arise on a node over its
lifetime. This implies our calibrations do not adapt to
changes in a node or execution environment that arise
after the calibration occurs. We discuss issues related to
adaptation under future work.

3. A Critique of Selected Approaches

While the outlines of our solution appear complex,

we believe that success along these lines will enable
more effective control of CPU usage by mobile programs
and will enable node operating systems to more
efficiently manage CPU resources. Others also see a need
to provide such capabilities. In this section we present
and critique existing solutions to prevent excessive CPU
resource consumption in active networks and in mobile-
agent systems. Next we examine research conducted
outside of active networks that could help to provide
effective resource management in active-network nodes.

6

3.1. Existing Solutions to Control CPU Use

In order to prevent malicious or erroneous active

packets from consuming excessive CPU time, most
execution environments implement specific control
mechanisms. In this section, we discuss the most
common mechanisms (a-d below) and give our critique.

(a) Use a limit fixed by the packet. Some execution
environments, such as ANTS [8], assign a time-to-live
(TTL) to each active packet. An active node decreases
this TTL as a packet transits the node, or whenever the
node creates a new packet. In this way, each active
packet can only consume resources on a limited number
of nodes, but individual nodes receive no protection. The
current TTL recommendation for the Internet protocol
(IP) is 64 hops [20], which is supposed to roughly
correspond to the maximum diameter of the Internet.
Current implementations of Windows NT and Windows
2000 use 128 hops as the TTL in IP packets. This value
might prove large enough for an active packet that
propagates a configuration from node to node between
two videoconferencing machines. But if the active packet
creates numerous additional packets (to which it
delegates a part of its own TTL), then the assigned TTL
could prove insufficient. And it is usually difficult to
predict how many new packets will be generated since
these predictions might depend on network parameters,
such as congestion and topology, which can rarely be
known in advance. This TTL mechanism could
contribute to protect individual nodes if the TTL is given
in CPU time units instead of hop count. But the problem
remains: how to choose the initial value for the TTL?

In the related context of mobile agents, Huber and
Toutain [21] propose to enable packets that did not
complete their “mission” to request additional credits.
The decision to grant more credit would be taken by the
originating node for its packets, or by the generating
packet for packets created while moving among nodes.
The decision must be made after examining a mission
report included with the request for more credits. The
proposed solution remains unimplemented, perhaps
because the reports proved difficult to generate and
evaluate. Even if implemented, a malicious application
can be conceived, where the originating node will always
grant more credits to any of its packets.

(b) Use a limit fixed by the node. In some execution
environments (e.g., ANTS), a node limits the amount of
CPU time any one packet can use. This solution protects
the node but does not allow optimal management of
resources. For instance, imagine that a node limits each
packet to 10 CPU time units. Suppose that a packet
requiring 11 CPU time units arrives when the node is not
busy. In this case, the node will stop the execution of the
packet just before it completes.

(c) Use a restricted language. The SNAP language
[22] is designed with limited expressiveness so that a
SNAP program uses CPU in linear proportion to the
packet’s length. While this approach supports effective
management of resource usage, it could prove too
restrictive for expressing arbitrary processing in active
applications. For instance, only forward branches are
allowed; as a result, if repetitive processing is required,
the packet must be resent repeatedly in loop-back mode
until the task is completed.

(d) Use a market-based approach. Yamamoto and
Leduc [23] describe a model for trading resources inside
an active-network node, based on the interaction between
a “reactive user agent” included in the packet, and
resource manager agents that reside in the network
nodes. The manager agents propose resources (such as
link bandwidth, memory, or CPU cycles) to the user
agents at a price that varies as a function of the demand
for the resource (the higher the demand, the higher the
price). Packets carry a budget that allows them to afford
resources on active nodes. Based on the posted price of
the resources and on its remaining credit, the user agent
of a packet makes decisions about the processing to
apply. For instance, if the CPU is in high demand and
thus expensive to use, then a packet may decide to apply
a simple compression algorithm to its data, instead of a
more efficient but more costly algorithm, which the
packet would have applied if the resource were more
affordable. This approach, which might prove
appropriate for mobile-agent platforms, could increase
the packet complexity too much to be used efficiently in
active networks.

Our critique. The two most common approaches to
resource control in active networks apply a fixed limit on
the CPU time allocated to an active packet. In one
approach, each node applies its own limit to each packet,
while in the other approach each packet carries its own
limit, a limit that might prove insufficient on some nodes
a packet encounters and overly generous on other nodes.
Neither approach provides a means to establish an
appropriate limit for a variety of active packets,
executing on a variety of nodes. Our research aims to
solve this problem, while at the same time we intend to
develop a solution that does not reduce the
expressiveness of an active packet, nor make a packet too
complex.

3.2. Attempts to Quantity CPU Demand

While we are unaware of any other projects aiming

to quantify the CPU requirements of an active application
in a heterogeneous network, we did survey several
related research initiatives that could help us to devise an
effective solution. The following sections (a-d below)
outline and discuss some of the ideas we found.

7

(a) Use RISC cycles. The active-network architecture
documents specify that a node is responsible to allocate
and schedule its resources, and more particularly CPU
time. Calvert [1] emphasizes the need to quantify the
processing demands of an active application in a context
where such demands can vary greatly from one node to
another, and he suggests using RISC (Reduced
Instruction Set Computer) cycles as a unit to express
processing demands. He does not address two crucial
questions. First, for a given active application, how can a
programmer evaluate the number of RISC cycles
required to execute a packet on a given node? Second,
how can this number be converted into a meaningful unit
for non-RISC machines?

(b) Use extra information provided by the
programmer. In the AppLeS (application-level
scheduling) project [24], the programmer provides
information about the application that she wishes to
execute on a distributed system. She must indicate for
instance whether the application is more communication-
oriented or computation-oriented or balanced, the type of
communication (e.g., multicast or point-to-point), and the
number of floating-point operations (in millions)
performed on each data structure. Using this information,
a scheduling program produces a schedule expected to
lead to the best performance for the application. This
method can yield acceptable predictions only if the
programmer is both willing and able to provide the
required characteristics of the program. Discussions with
software performance experts led us to think this is rarely
the case.

(c) Use combined node-program characterization.
Saavedra-Barrera and colleagues [25] attempted to
predict the execution time of a given program on various
computers. To describe a specific computer, they used a
vector to indicate the CPU time needed to execute 102
well-defined Fortran operations. In addition, they
provided a means to analyze a Fortran program, reducing
it to the set of well-defined operations. The program
execution time can then be predicted by combining the
computer model with the program model. The approach
yielded good results for predicting the CPU time needed
to execute one specific run of a program on different
computer nodes. These results encouraged us to model
platforms separately from applications; however, we
need to capture multiple execution paths through each
application, rather than a single path. We are pursuing a
separate thread of research, discussed under future work,
which aims to apply insights from Saavedra-Barrera to
the active-network environment.

(d) Use acyclic path models. To measure, explain, or
improve program performance, a common technique is to
collect profile information summarizing how many times
each instruction was executed during a run. Compact and
inexpensive to collect, this information can be used to

identify frequently executed code portions.
Unfortunately, such profiles provide no detail on the
dynamic behavior of the program (for instance, these
techniques do not capture and report iterations). To solve
this problem a detailed execution trace must be produced,
listing all instructions as they are executed. But as
program runs become longer, the trace becomes larger
and more difficult to manipulate. Ball and Larus [26]
propose an intermediate solution: to list only loop-free
paths, along with their number of occurrences. Among
other things, the authors demonstrate how the use of
these acyclic paths can improve the performance of
branch predictors. We might be able to exploit such
algorithms to efficiently capture looping behaviors;
however, to collect acyclic path information we would
need to instrument the program code for each application
to be modeled. Given the variety of execution
environments and active applications being devised by
researchers, we decided to first evaluate some simpler
approaches.

4. A Black-Box Model of CPU Demand

Recall from Figure 1 that an active application

executes in user mode within an execution environment,
but requests services periodically from the node
operating system through specific system calls. An
observer, situated at the boundary between an execution
environment and a node operating system, would view
the behavior of an active application as a series of
transitions between specific system calls: from an idle
state, the application executes in user mode for some
number of CPU cycles within its execution environment
and then executes in kernel mode for some number of
CPU cycles within a system call, then again in the
execution environment before transitioning to another
system call, and so on until the active packet is processed
and the active application has returned to the idle state.
Because the point of observation provides no insight into
the logic of the active application or the execution
environment, we can consider them to be a black box.
We denote each observed transition-sequence as a black-
box execution trace.

From a collection of execution traces, we can cluster
together those that exhibit an identical sequence of
system calls. We call each cluster a scenario. For
example, Figure 2 depicts two scenarios discovered in an
execution trace. The shorter scenario occurs 2/3 of the
time, while the longer scenario occurs 1/3 of the time.

A black-box model for an active application consists
of two types of information: scenario specifications and
workload specifications. In the model, each scenario is
specified by its sequence of system calls. Further, each
system call is characterized by the distribution of the

8

number of CPU cycles spent in the system call, and each
transition between system calls is characterized by the
distribution of CPU cycles spent in the execution
environment during similar transitions. The CPU cycle
estimates are derived from an analysis of the same
execution traces used to identify scenarios. In an earlier
version of our model, we hoped to represent these
distributions using classical probability distributions. Our
goal was to produce an analytically tractable model.
Unfortunately, the observed distributions exhibit a degree
of discreteness and truncation not well represented by
typical continuous distributions. For this reason, we
chose to represent the distributions of CPU cycle
estimates with histograms (see Figure 3). Note that this
approach can require exchanging a large volume of
information when active-application models are
transferred among nodes in a network. (However, our
experiments show that reasonably accurate results could
be obtained with as few as five bins per histogram.)

The remaining part of our model, the workload

specification for an active application, consists of a list of
the discovered scenarios, where each scenario is assigned
a probability of occurrence (based on the frequency with
which the scenario appeared in the execution trace).
Taken together, the scenarios, their probability of
occurrence, and the distributions of CPU cycles in user
and system modes constitute a black-box model of CPU
demand for an active application.

4.1. Generating Execution Traces

We based our models on measurements taken from
execution traces. For various reasons, mainly arising
from the relationship between Linux threads and multi-
threading in the Java Virtual Machine, we could not use
existing execution tracing programs available for typical
operating systems, such as the Linux systems we used as

our test platforms. (For more information on these issues,
and on the tracing methods we considered, see a related
technical report [35].) Instead, we designed our own
kernel modifications to provide exactly the traces we
needed, and at the granularity of individual CPU cycles.
Table 4 provides an example trace from one execution
cycle in one active application.

Table 4. An example execution trace from idle-to-idle
for a single path through an active application. Each
row depicts a single instance of a transition between
two system calls. The transition columns show the
source and sink system calls for the transition. The
first column of numbers counts the kernel-mode CPU
cycles used in the source system call, while the second
column of numbers counts the user-mode CPU cycles
used in the execution environment between the return
from the source system call and the beginning of the
sink system call.

To generate execution traces of this granularity and
accuracy, we used RDTSC (Read Time Stamp Counter),

Fig. 2. An example of two scenarios discovered by
clustering execution traces from a simple active
application. The shorter trace occurs more
frequently (probability is 0.67), while the longer
trace occurs less frequently (probability is 0.33).

Idle Socket
Call

Write Write Socket
Call

Idle

Long
Stat Read Socket

Call
Socket

Call Write Write Socket
Call

Probability = 0.33

Probability = 0.67

Idle Socket
Call

Write Write Socket
Call

Idle

Long
Stat Read Socket

Call
Socket

Call Write Write Socket
Call

Probability = 0.33

Probability = 0.67 Fig. 3. Two example specifications of CPU cycle
usage: (a) distribution of CPU cycles used by an
active application in the “write” system call and (b)
distribution of CPU cycles used by an active
application in transitions between the “write” and
“socket call” system calls. Each bin of a histogram is
labeled with the mid-point of its value. The
probabilities are the relative frequencies of
observations falling within specific bins.

CPU cycles

probability

14
,1

50

1 4
,8

00
1 5

,3
5 0

0.17

0.50
0.33

(a) “Write” system call

CPU cycles

probability

20
0,

05
0

2 6
7,

95
0

0.30

0.70

(b) “Write-to-Socket Call” transition

CPU cycles

probability

14
,1

50

1 4
,8

00
1 5

,3
5 0

0.17

0.50
0.33

(a) “Write” system call

CPU cycles

probability

20
0,

05
0

2 6
7,

95
0

0.30

0.70

(b) “Write-to-Socket Call” transition

1,056,1279,569IdleSocket Call
1,057,16513,247Socket CallWrite
1,004,92313,515WriteWrite
171,9689,675WriteSocket Call
17,7030Socket CallIdle

During TransitionIn SourceSinkSource
CPU Cycles UsedTransition

1,056,1279,569IdleSocket Call
1,057,16513,247Socket CallWrite
1,004,92313,515WriteWrite
171,9689,675WriteSocket Call
17,7030Socket CallIdle

During TransitionIn SourceSinkSource
CPU Cycles UsedTransition

9

a hardware instruction provided by Intel in their Pentium
processors. This instruction records the number of CPU
cycles used since the last reboot of the processor. The
main difficulty we faced was attributing the use of CPU
cycles to particular processes. To accomplish this, we
designed and implemented modifications for insertion
into the Linux scheduler.

To account for the number of CPU cycles spent by a
process in user and in kernel modes, we added two fields
to the process structure: "ucc" (number of CPU cycles
spent in user mode) and "kcc" (for kernel mode). We also
added two working fields: "e" to record the entry time
into a new "state" (user or kernel) and "kflag" to indicate
whether or not the process was sleeping in kernel mode
when last exiting the scheduler. Indeed, with Linux, a
process cannot be preempted while executing in the
kernel. But when a process needs to wait for an event, it
relinquishes the CPU for another process to run. This
causes the waiting process to exit the scheduler. But it
will exit the kernel only later, after having been
rescheduled again and completing the execution of the
suspended system call.

We used the following algorithm to update the “ucc”
and “kcc” fields. On entering the scheduler:
the “e” field of the entering process is set to RDTSC (the
current value of the counter of CPU cycles since last
reboot). On entering the kernel: the “kflag” is set and the
value of “ucc” is updated: “ucc = ucc + RDTSC – e”,
where “RDTSC – e” gives the number of clock cycles
spent between the last time “e” was set (on entering the
scheduler) and the current time. This represents time
spent in user mode. Now the process is entering kernel
mode, so “e” is set to RDTSC. On exiting the kernel the
“kflag” is cleared and the value of “kcc” is updated: “kcc
= kcc + RDTSC – e”. Then, “e” is set to RDTSC. On
exiting the scheduler, if “kflag” is false, then “ucc = ucc
+ RDTSC – e”; otherwise “kcc = kcc + RDTSC – e”.
Each time “ucc” or “kcc” are updated, their new value
indicates how many CPU cycles the process has spent in
user or kernel mode.

Our Linux kernel modifications enable us to trace a
process in a very fine manner. Now we need to be able to
retrieve the results. We found that the approaches
typically used to capture trace information for Linux
processes cause a traced process to run slowly, and also
lead to inaccurate results at our required level of
granularity. To avoid such problems, we implemented
our own monitoring of the process to generate traces in a
manner that was quite straightforward after the kernel
modifications discussed previously. We simply print a
message (using printk) at every entry and exit of the
kernel. Of course, our tracing mechanism is not the only
one using printk, so the resulting trace file must be pre-
processed before analysis in order to extract only the
trace lines of interest to us. To facilitate such pre-

processing, we inserted tags into our trace lines to permit
easy filtering.

4.2. Generating Models from Execution Traces

We wrote a model generator that can consume an
execution trace and generate a black-box model for the
program measured by the trace. First, the model
generator clusters the traced executions into the scenarios
contained, and assigns a probability of occurrence to
each scenario. Then the model generator examines the
CPU cycles used by each system call, and builds a
corresponding histogram. Finally, the model generator
examines the transitions between each pair of system
calls and constructs a histogram describing the
distribution of CPU cycles used. The model generator
includes as an input parameter the number of bins to
create in each histogram.

To generate estimates from a black-box model
created by the model generator, we use Monte-Carlo
simulation. Each pass through the simulator represents
the processing of an active packet. Using the probability
of occurrence contained in the black-box model, the
simulator selects a scenario. For each component of the
scenario (system calls and transitions in user mode
between two system calls), the simulator runs another
Monte-Carlo test to choose a bin of the histogram
describing the count of CPU cycles. The sum of the CPU
cycles of each component in the scenario yields a
simulated number of CPU cycles, which can be easily
converted into an estimate for CPU time by multiplying
by the cycle time of the processor. After repeated
scenario executions, we obtain a distribution of estimates
for the CPU demands of the active application
represented by the model. The distribution can be
characterized with statistics, such as the mean or
percentiles2 (we used the 80th, 85th, 90th, 95th, and 99th) of
the CPU time demanded by the application. Of course,
generating a large number of simulated executions can
refine the estimates. Alternatively, selecting a small
number of simulated executions can provide quick
estimates.

4.3. Evaluating Models Against Measurements

To assess how well a particular model estimates the
CPU demands of an active application, model predictions
can be compared against measures for the relevant
application. We conducted such measurements for
numerous applications under a range of model
conditions, including various bin granularities (from five

2 Given a statistic, S, for a percentile, P, associated with a random
variable, V, then P percent of the observed values for V will be less than
S and 1-P percent will exceed S.

10

to 100) and simulation repetitions (from 100 to 20,000).
Table 5 summarizes results comparing model predictions
against measurements on various computing platforms
for two execution environments, ANTS and Magician,
and four active applications (two for each execution
environment). The model histograms consist of five bins
each. Each estimate is generated using 10,000 simulation
iterations. Two comparisons are computed for each
application: (1) error in predicting the mean and (2)
average error in predicting the high percentiles (80th
through 95th). Estimates for high percentiles can be
useful in CPU control applications, while predictions of
CPU demand can also benefit from estimates for the
mean.

Table 5. Comparing the percentage error in CPU
demand between estimates from a black-box model
and measurements of real applications for selected
computer platforms, execution environments, and
active applications. The black-box model was
generated with five bins per histogram. Model
estimates consist of 10,000 simulated executions.
Percentage error computed as the absolute value of
100 * (prediction – actual) / actual. The errors for the
high percentiles are averaged over the 80th, 85th, 90th,
95th, and 99th percentiles.

Table 5 indicates very accurate predictions for mean

CPU demand on most platforms, across execution
environments and active applications. The prediction
errors for mean CPU demand in ANTS Multicast are
somewhat higher. Further, the predictions of high
percentiles are less accurate than predictions for the
mean, which can be expected because high percentiles
represent extreme values that might not appear with great
frequency. Still, for high percentiles, the predictions for
the Magician execution environment appear significantly
worse than the predictions for the ANTS execution
environment.

The predictions and measurements compared in
Table 5 consider each node running a mix of scenarios in
all roles that a node might take on for an application. For
example, in each application a node may serve as a
source, a router, or a sink for active packets associated
with the application. When we make comparisons
between predictions and measurements while limiting a
Magician node to hold one role (either source, router, or
sink) for an active application, the predictions compare
much more favorably with the measurements. Table 6
illustrates this point for three Magician applications:
Smart Ping, Smart Route, and Active Audio. For the
Active Audio application, where measurements were
taken in the process of some sample applications (see
section 6), each node assumed only one role.

5. Transforming CPU Models

While the predictions made by our black-box models
appear reasonably accurate in many situations, the more
difficult part of our problem must still be solved.
Particularly, given a model for the CPU demand of an
active application running on one node, e.g., Green, can
the model provide accurate estimates for the CPU
demand of the application running on a different node,
e.g., Black? To achieve this goal, we must transform the
model generated on Green into a form that will be
meaningful on Black. In this section, we address our
approach to model transformation. First, we describe our
model transformation algorithm. Second, we discuss our
technique to calibrate nodes and execution environments.
Finally, we evaluate how well our transformation
technique works in a variety of tests.

Table 6. Comparing the percentage error in CPU
demand between estimates from a black-box model
and measurements of real active applications for the
Magician execution environment. In this case,
predictions and measurements were compared when
the role of each participant was restricted to that of
source, router, or destination.

301Blue
Smart
Route

71Black

461Green

351Green
221Blue

Smart Ping

Magician

88Black

80Black

911Green
1011Blue

Multicast

51Black
61Green
70Blue

Ping

ANTS

Average % Error
High Percentiles

% Error
Mean

NodeActive
Application

Execution
Environment

301Blue
Smart
Route

71Black

461Green

351Green
221Blue

Smart Ping

Magician

88Black

80Black

911Green
1011Blue

Multicast

51Black
61Green
70Blue

Ping

ANTS

Average % Error
High Percentiles

% Error
Mean

NodeActive
Application

Execution
Environment

N/AN/AN/AN/A62Green
40N/AN/AN/AN/ABlue

Active
Audio

Smart
Route

N/A

0
0
0
0
0
0

%
Error
Mean

Source

N/A

3
2
3
3
1
1

Avg.
% Error

High Perc.

3

3
0
0
3
0
1

%
Error
Mean

Router

7

4
1
3
4
3
3

Avg.
% Error

High Perc.

SinkApplication Role ->

11Black
10Green
10Blue

N/AN/ABlack

40Black
20Green
40Blue

Smart
Ping

Avg.
% Error

High Prec.

%
Error
Mean

NodeActive
Application

N/AN/AN/AN/A62Green
40N/AN/AN/AN/ABlue

Active
Audio

Smart
Route

N/A

0
0
0
0
0
0

%
Error
Mean

Source

N/A

3
2
3
3
1
1

Avg.
% Error

High Perc.

3

3
0
0
3
0
1

%
Error
Mean

Router

7

4
1
3
4
3
3

Avg.
% Error

High Perc.

SinkApplication Role ->

11Black
10Green
10Blue

N/AN/ABlack

40Black
20Green
40Blue

Smart
Ping

Avg.
% Error

High Prec.

%
Error
Mean

NodeActive
Application

11

5.1. Model Transformation Algorithm

Recall that our black-box model of an active
application consists of two parts: scenario specifications
and a workload specification. The workload specification
assigns a probability of occurrence to each scenario in
the model. We consider this information to be fixed on
each node that encounters the model (though see Section
7 for a discussion of the need to adapt the workload
specification). Each scenario specification delineates a
sequence of transitions between system calls, where the
number of CPU cycles consumed in each system call and
in each transition is defined by histograms. The
information in these histograms is based on
measurements taken on a particular node; thus, this
information will be meaningless on other nodes. The goal
of our transformation algorithm is to convert the
information in the histograms into a form meaningful on
any node that receives the active-application model.
Figure 4 shows the results of transforming the histogram
discussed earlier in Figure 3.

We assume that each node has been calibrated with

respect to its performance executing each system call and
each execution environment. The calibration results are
represented as two vectors. One vector, the system-call
(SC) vector contains the average number of kernel-mode
CPU cycles for the node to execute each system call. For
example, Figure 4 shows the calibration for the “Write”
system call on two nodes. A second vector, the

execution-environment (EE) vector, contains the average
number of user-mode CPU cycles for the node to execute
a calibration benchmark for each execution environment
that runs on the node. Figure 4 reveals the calibration
information for the ANTS execution environment on two
nodes.

For purposes of discussion, assume that a node
(Dest) receiving an active-application model has access
to its own calibration vectors as well as the calibration
vectors of the source node (Source). Then, the
destination can scale the contents of the histograms in the
active-application model by multiplying each bin by
TDest/TSource, where TDest represents the number of CPU
cycles taken from the appropriate element in the
appropriate calibration vector for the destination node
and TSource represents the comparable value taken from a
calibration vector for the source node. In Figure 4,
applying this ratio for the “Write” system call yields a
scaling factor of 1.57, while applying this ratio to the
ANTS execution environment gives a scaling factor of
1.51. Applying these factors to each element of an active-
application model has the effect of dilating or contracting
the number of CPU cycles in each bin of each histogram.
For example, Figure 4 shows the application of the
appropriate scaling factor to the “Write” system call and
to the “Write-to-Socket Call” transition.

Unfortunately, to enable our transformation
algorithm, a destination node must have access to
calibration vectors from the source node. This implies
that the calibration vectors must be transmitted along
with an already large model for the active-application.
Instead, we can agree globally on an artificial node (Ref)
as a reference, and deploy its calibration vectors at each
node in the network. Then, before transmitting an active-
application model between two nodes, Source and Dest,
the model is subjected to a “Node-to-Reference
transform”: the values describing the number of CPU
cycles required to execute each element in each
histogram are dilated or contracted using the ratio
TRef/TSource, where TRef is the average number of CPU
cycles taken to execute the histogram element on the
reference node and TSource is the average number of CPU
cycles taken to execute the corresponding element on the
source node. Upon arrival at the destination node, the
model is subjected to an inverse (the ratio is TDest/TRef)
“Reference-to-Node transform”. The combination of
these two transforms scales the CPU cycle values within
an active-application model from a form meaningful on a
source node to a form understood on a destination node.

5.2. Calibration Techniques

Obtaining the calibration vectors for specific nodes
requires the execution of two calibration benchmarks,

Fig. 4. This figure shows two histograms in an
active-application model, shown earlier in Figure 3,
after those histograms have been transformed from a
form understood by the source node (Black) into a
form meaningful on the destination node (Blue). The
relevant parts of the calibration vectors are given for
the source and destination nodes. Two scaling factors
are computed: (1) 1.57 for the “Write” system call
and (2) 1.51 for the “Write-to-Socket Call”
transition.

CPU cycles

probability

22
,2

16

2 3
, 2

3 6
2 4

, 1
0 0

0.17

0.50

0.33

(a) Transformed “Write” system call

CPU cycles

probability

30
2,

07
6

4 0
4 ,

6 0
5

0.30

0.70

(b) Transformed “Write-to-Socket Call” Transition

Source Node Calibration Vectors
System Calls: … Write 14,394 …
Execution Environments: …
ANTS 159,412 …

Destination Node Calibration Vectors
System Calls: … Write 22,609 …
Execution Environments: …
ANTS 240,269 …

TDestWrite/TSourceWrite = 1.57 TDestANTS/TSourceANTS = 1.51

CPU cycles

probability

22
,2

16

2 3
, 2

3 6
2 4

, 1
0 0

0.17

0.50

0.33

(a) Transformed “Write” system call

CPU cycles

probability

30
2,

07
6

4 0
4 ,

6 0
5

0.30

0.70

(b) Transformed “Write-to-Socket Call” Transition

Source Node Calibration Vectors
System Calls: … Write 14,394 …
Execution Environments: …
ANTS 159,412 …

Destination Node Calibration Vectors
System Calls: … Write 22,609 …
Execution Environments: …
ANTS 240,269 …

TDestWrite/TSourceWrite = 1.57 TDestANTS/TSourceANTS = 1.51

12

one for system calls and one for execution environments.
For system-call calibration, we execute a program that
repeatedly invokes each system call under a range of
parameter settings and then computes the average
number of CPU cycles required to execute each system
call. We make our calibration measurements using the
same techniques we developed for tracing executions.
Comparing our measurements against similar
measurements taken with strace, using the –c option, we
discovered that our measurement technique introduces a
constant overhead into the system calls. We factor out
this measurement overhead when creating our calibration
vector for system calls.

Calibration of execution environments requires
running a benchmark workload of active applications on
each execution environment. By analogy with the
classical process of computer-system benchmarking, we
had two possible choices for a benchmark workload for
calibrating execution environments. We could use a
workload that includes a realistic mix of actual active-
applications implemented for each execution
environment, or we could define a workload of artificial
applications whose behavior mimics the major classes of
active-applications. The first option proved infeasible
because active-network technology remains
experimental, and few real applications exist. For now,
we use an artificial mix of active-applications, executed
with each node taking on a variety of roles, such as
source, router, and sink. For example, for the Magician
environment we use three applications (Smart Ping,
Smart Route, and Active Audio) and for the ANTS
execution environment we use two applications (Ping
and Multicast). As the pool of applications grows, the
calibration workload must be updated to reflect new
functionality or roles. Even so, the ANTS Multicast
application, while very basic, exercises all the major
functions of active networking: to send and receive
packets, and to store and modify information in nodes.

Since calibration is likely to require substantial
computation on a node, we must consider appropriate
means to perform the calibration. Several approaches
should be investigated. In our case, we performed the
calibration off-line, and then stored the results as
parameters within a node operating system. This
approach has the merit of requiring no resources from a
node during operational execution. Of course, whenever
a system configuration changes, the previously computed
off-line calibration may no longer prove accurate.

As a second alternative, we could consider boot-time
calibration. Here, the calibration programs would execute
automatically as part of the startup process in the
operating system. This approach has two advantages.
First, since most operating systems must be re-booted
after significant configuration changes, calibration at
system boot is likely to account for the variability

introduced by system alterations. Second, since
calibration is completed prior to system execution, the
calibration process will require no resources after the
node becomes operational. One downside is that boot–
time calibration could considerably lengthen system
startup time. Additionally, future operating systems seem
destined to include dynamic configuration through
components downloaded during execution. Boot-time
calibration could not account for such dynamic run-time
changes in an operating system.

A third alternative is to execute an off-line
calibration, and then to perform run-time calibration
adjustments. Here boot-time would not be lengthened
due to calibration requirements. In addition,
configuration changes that affect the calibration can be
accounted for during the run-time calibration
adjustments. One might even consider altering
automatically the frequency of run-time calibration
adjustments depending on the variance computed
between successive calibrations. As the variance
diminishes between successive calibrations, the
calibration adjustment interval could be lengthened.
Conversely, increasing variance would stimulate more
frequent calibration adjustments. The approach has two
drawbacks. First, run-time calibration adjustments would
subtract resources from operational uses of a node.
Second, it might prove difficult to design and implement
an effective run-time calibration adjustment mechanism.

5.3 Evaluating Transformed Models

In this section, we evaluate how well our
transformed black-box models can predict the CPU
demands for an active application measured on one node
and then executed on another node. In effect, here we are
evaluating how much additional error is introduced into a
model by our transformation technique, and the
associated calibration processes. We also compare our
transformation technique against a more naïve approach
that uses the ratio of processor speeds to scale models.
To widen our base of platforms, we introduce two new
nodes, Yellow and Red, to augment those described in
Table 1. Both Yellow and Red use the same versions of
Linux and Java as the nodes shown in Table 1; however,
the platform hardware differs. Yellow embodies a
Pentium 75 running at 100 MHz, and has 80 MB of
memory, while Red includes a Pentium II running at 266
MHz with 128 MB of memory. Figure 5 shows all five
nodes configured in a small active network in our
laboratory.

We ran selected active applications repeatedly on
each node, measuring the actual CPU time required for
each execution. We then computed the mean CPU time
and the high percentiles (80th, 85th, 90th, 95th, and 99th) of
CPU time used by each application on each node. These

13

served as baseline measurements against which we
compared estimates obtained using our black-box model
and transformation techniques. We also generated
estimates using a more naïve approach that multiplies the
observed execution times on a source node by the ratio of
the processor speed of the source node to the processor
speed of a destination node. Using this ratio, we scale the
CPU time requirements to match the relative speed of the
processors on each node. Table 7 provides a subset of the
percentage (absolute) error we achieved when using each
method to predict the mean and high percentiles of CPU
usage when moving active application models between
nodes. In this table, we average the error across the five
high percentiles.

Table 8 shows comparative results for the percentage

error in each statistic (mean and each of the high
percentiles) when averaged over all runs. The table
compares prediction error in three situations: (1)
predicting performance on one node with our black-box
models, (2) predicting performance on other nodes by
scaling our black-box models, and (3) predicting
performance on other nodes by scaling with processor
speed ratios. Note that scaling the black-box models
yielded a fourfold improvement in accuracy over scaling
based solely on processor speed ratios. In addition, as
Table 8 shows, scaling our black-box models did not
introduce additional error beyond the error already
present in the models.

5.4 Anatomy of an Active-Packet Hop

Here, in way of summary, we describe an approach

for using our black-box model when processing an active
packet as it transits between two nodes in an active
network. We assume that the code exists for an active
application, App, and that a corresponding black-box
model has been generated off-line on a node, Source.
Further, we assume that the code and the black-box
model for App have been loaded onto a code server.

Fig. 5. The five-node active-network test bed we
set up in our laboratory at NIST in order to
conduct our experiments and to make
measurements. The nodes from left to right:
Yellow, Black, Red, Blue, and Green.

Table 7. Reporting the percentage absolute error
in estimating the mean and the average percentage
absolute error in estimating the high percentiles
(80th, 85th, 90th, 95th, and 99th) using naïve scaling
based on processor speed ratios and using scaling
based on transformation of black-box models. The
table presents a representative subset of the results
we obtained.

1039494YellowBlack

9548BlackRed

2428692RedBlue
Smart
Route

1094345RedYellow

1462132BlackGreen

957481BlackBlue
Smart
Ping

Magician

10582BlackYellow

1022511RedBlack

1224746BlueGreen

Multicast

776665BlackBlue

8255BlackRed

8062GreenYellow

Ping

ANTS

% Error
Avg. High
Percentile

%
Error
Mean

% Error
Avg. High
Percentile

%
Error
Mean

Dest.
Node

Source
NodeAAEE

Scaled with
Black-Box

Model

Scaled with
Processor

Speed Ratio
EE is Execution Environment
AA is Active Application

1039494YellowBlack

9548BlackRed

2428692RedBlue
Smart
Route

1094345RedYellow

1462132BlackGreen

957481BlackBlue
Smart
Ping

Magician

10582BlackYellow

1022511RedBlack

1224746BlueGreen

Multicast

776665BlackBlue

8255BlackRed

8062GreenYellow

Ping

ANTS

% Error
Avg. High
Percentile

%
Error
Mean

% Error
Avg. High
Percentile

%
Error
Mean

Dest.
Node

Source
NodeAAEE

Scaled with
Black-Box

Model

Scaled with
Processor

Speed Ratio
EE is Execution Environment
AA is Active Application

Table 8. Comparing the absolute percent error for
selected statistics, averaged across all runs, when
predicting CPU demands in three situations: (1)
using black-box models to predict CPU demands
for the same node on which the model was
generated, (2) scaling black-box models to predict
CPU demands on different nodes from that on
which the model was generated, and (3) scaling
CPU demands based upon the ratio of processor
speeds between pairs of nodes.

384039394340Different NodeScaling with Speed Ratio
1010812144Different NodeScaling Black-box Model
17101422173Same NodeBlack-box Model

99th95th90th85th80thPrediction
Target

Prediction
Method

PercentileMean

Average Percent Error Across All Runs
for Selected Statistics

384039394340Different NodeScaling with Speed Ratio
1010812144Different NodeScaling Black-box Model
17101422173Same NodeBlack-box Model

99th95th90th85th80thPrediction
Target

Prediction
Method

PercentileMean

Average Percent Error Across All Runs
for Selected Statistics

14

Before loading the App black-box model onto the code
sever, Source subjects the model to a “Source-to-
Reference transform”, so that the model is available
throughout the network in its reference form.

When the first active packet related to App arrives at
a node, Next, the execution environment extracts
references (typically in the form of Uniform Resource
Locators, or URLs) to the App code and its related black-
box model. Using the URLs, Next retrieves the App code
and black-box model from the code server, and subjects
the model to a “Reference-to-Next” transform. Then, Next
executes a Monte-Carlo simulation of the transformed
App model to estimate relevant statistics (such as mean
and 99th percentile) for the CPU time required on Next to
process active packets associated with App. Using the
estimated statistics, Next can decide whether or not to
admit active packets associated with App. Each admitted
App packet is executed using the retrieved App code.
During execution, Next can monitor the CPU time used
by App packets, and can terminate those that exceed their
estimated demand by some threshold.

6. Sample Applications

In this section, we illustrate how our CPU demand

models can be used in two sample applications. In one
application, we decide when to terminate an active
packet based on its consumption of CPU time. In a
second application, we predict the CPU demand for
nodes in an active network. In both applications, we
compare results obtained using our black-box models
against results obtained using CPU control and
estimation techniques typically available in execution
environments.

6.1. CPU Usage Control

As active packets traverse a series of nodes along a

path from source to destination, each active node will
wish to enforce CPU usage limits on each packet. This
permits a node to protect itself from malicious or
erroneously programmed active packets. Some execution
environments provide a fixed maximum limit for any
active packet, while some also permit each active packet
to specify its own limit. In this way, should the active
node choose to allow the packet to execute, the node will
also have an idea when the packet should be terminated.
In a small sample application, we show how the use of a
fixed time-to-live (TTL) in each packet can lead to stolen
and wasted CPU time in active nodes. We also show how
our black-box models can be used to adjust the TTL on
each active node; thus, saving CPU time and improving
the quality of service in applications. Our sample active-
audio application runs in the Magician [11] execution
environment over the topology shown in Figure 6.

In this topology the source node (Green – 199 MHz)
sends a stream of 2278 40-byte audio packets to the
destination node (Black – 450 MHz) across two routers.
The first router (Blue – 333 MHz) is faster than the
source, and the second router (Yellow – 100 MHz) is
slower than the source. Measurements of the application
running on the source reveal that 8.29 ms is the 99th
percentile of CPU time used to process active-audio
packets. In our sample application, the source selects this
value as the TTL for each active packet. Unfortunately,
in our case study, an intruder on the source node
manages to inject 455 malicious packets into the stream
of valid active-audio packets. Each malicious packet is
programmed to consume as much CPU time as possible
on each node.

During the experiment, each malicious packet is
allowed to use 8.29 ms on the first router before the
packet is killed. However, all malicious packets are
terminated on the first router. The CPU time allocated to
the malicious packets is stolen from other users. Worse,
as valid packets arrive at the second, slower, router, they
are each given up to 8.29 ms of CPU time.
Unfortunately, as Table 9 reveals, 23.99 ms is the actual
99th percentile required by active-audio packets
executing on the second router. As a result of the poor
TTL value, the second router kills 96% of the valid
packets. The time spent processing the killed packets
amounts to CPU time wasted on the part of the second
router, and the end user receives an unacceptable quality
of service.

Table 10 provides a summary of results from

running the active-audio application with two different
approaches to TTL assignment. The first approach
assigned a fixed TTL of 8.29 seconds, based on the
observed 99th percentile on the source node. The second
approach assigned a variable TTL on each node. In this
case, the TTL on each node was determined by scaling a
black-box model of the application that was generated on
the source node (using the techniques discussed in
Sections 4 and 5). During each run, the application

Fig. 6. A four-node active-network topology
used to run an active-audio application that
relays audio packets between a source and
destination node over two intervening routers.

First
Router

(Fastest)

Second
Router

(Slowest)

Destination
Node

Source
Node

Malicious
packets

Good
packets

Good
packets

Malicious Packet dropped too late
(CPU use reached TTL + tolerance)

Needed
execution time

CPU time “stolen”

TTL

Good packet dropped early
(CPU use reached TTL + tolerance)

TTL

CPU time
possibly “wasted” Additional CPU

time needed

First
Router

(Fastest)

Second
Router

(Slowest)

Destination
Node

Source
Node

Source
Node

Malicious
packets

Good
packets

Good
packets

Malicious Packet dropped too late
(CPU use reached TTL + tolerance)

Needed
execution time

CPU time “stolen”

TTL

Good packet dropped early
(CPU use reached TTL + tolerance)

TTL

CPU time
possibly “wasted” Additional CPU

time needed

15

injected 2278 valid active-audio packets into the path,
and also injected 455 malicious packets, about one for
every five valid packets.

Using a fixed TTL, the malicious packets stole 3,772

ms (455 malicious packets X 8.29 ms TTL) from the first
router. Using a variable TTL, the malicious packets stole
only 2,166 ms (455 malicious packets X 4.76 ms) from
the first router. This amounts to saving 3.53 ms per
malicious packet, which could provide breathing room
needed to activate defensive mechanisms in the router.

Our improved CPU-time estimation cannot combat
malicious packets without also taking into account the
topology of the deployed active application. For
example, had the topology been inverted so that active
packets traveled first to the slowest router and then to the
fastest router, each malicious packet could consume

23.99 ms before being killed, resulting in 10,916 ms of
stolen CPU time. This outcome indicates the need to
deploy an active application in an appropriate topology
to effectively combat injection of malicious packets.
Specifically, ensuring that the active-packet stream
transits a fast, first-hop router can lead to an outcome
where malicious packets are filtered with a minimum of
stolen CPU time. Then, only valid packets will be
forwarded to subsequent hops along the route.

On the second router in our experiment, where only
valid packets arrive, the use of a fixed TTL leads to an
unfortunate outcome, where 96% (2,186 / 2,278) of the
packets are terminated, each after consuming 8.29 ms of
CPU time. This amounts to wastage of 18,122 CPU
milliseconds, and presents an untenable audio channel to
the end user. When a variable TTL is used, the situation
improves greatly. First, the second router terminates less
than 1% (19 / 2,278) of the valid packets. This improves
the quality of service to an acceptable level, and limits
the wasted CPU time to only 456 ms. These results
confirm that improved models for CPU demand enable
better control as mobile code traverses heterogeneous
nodes in a network.

6.2. CPU Demand Prediction

In a second sample application, we demonstrate how

improved models for CPU demand can lead to better
predictions about the capacity available among nodes in
an active-network topology. In this case, we concern
ourselves with predictions for average CPU demand,
rather than predictions for the 99th percentile. To conduct
our case study, we use the Active Virtual Network
Management Prediction (AVNMP) system [27]
developed by researchers at the General Electric
Corporate Research and Development Center. AVNMP
applies active-network technology to inject simulation
models into network nodes, and to run those models
concurrently with corresponding applications. AVNMP
then compares estimated performance against measured
performance, and maintains predictions from the
simulation within specified error bounds, when compared
against measurements from the application.

To predict traffic load in a network, AVNMP
constructs a shadow topology that overlays the
operational network and then runs a simulation in the
shadow topology. Figure 7 illustrates the relationship
between the operational network and the shadow,
prediction-overlay network. Using Magician as an
execution environment, AVNMP deploys driving
processes (DP) at each source node and logical processes
(LP) at each intermediate and destination node in the
topology of the operational network. DPs and LPs are
deployed as active applications within an active virtual-
overlay network (space dimension in Figure 7). Each DP

Table 9. Comparing the measured 99th percentile for
the CPU time used by an active-audio application
running on nodes in an active-network topology. The
table shows the Time-To-Live (TTL) and the
equivalent number of CPU cycles on each node for
three cases: (1) measurements taken on each node,
(2) a fixed TTL assigned based on measurements
taken on the source node, and (3) predictions
generated by scaling a black-box model generated
from measurements taken on the source node.

8.29
(1,650,084)

8.29
(1,650,084)

8.29
(1,650,084)

Source
Node

8.29
(829,187)

8.29
(2,769,487)Fixed TTL

23.99
(2,398,702)

4.76
(1,589,382)

TTL Derived from Scaled
Black-box Model

23.99
(2,398,702)

4.76
(1,589,382)

Measured Value

99th Percentile CPU Usage
Second
Router

First
Router

All values given in:
milliseconds

(CPU cycles)

8.29
(1,650,084)

8.29
(1,650,084)

8.29
(1,650,084)

Source
Node

8.29
(829,187)

8.29
(2,769,487)Fixed TTL

23.99
(2,398,702)

4.76
(1,589,382)

TTL Derived from Scaled
Black-box Model

23.99
(2,398,702)

4.76
(1,589,382)

Measured Value

99th Percentile CPU Usage
Second
Router

First
Router

All values given in:
milliseconds

(CPU cycles)

Table 10. Comparing CPU time stolen or wasted
on routers in an active-network topology when
running an active-audio application. The table
shows two situations: (1) fixed TTL and (2)
variable TTL.

2,166 ms
[455 * 4.76 ms]

3,772 ms
[455 * 8.29ms]

CPU Time
Stolen

on First Router

18,122 ms
[2,186 * 8.29 ms]

Fixed TTL

456 ms
[19 * 23.99 ms]

TTL Derived from Scaled
Black-box Model

CPU Time
Wasted

on Second
Router

2278 Valid Packets
455 Malicious Packets

2,166 ms
[455 * 4.76 ms]

3,772 ms
[455 * 8.29ms]

CPU Time
Stolen

on First Router

18,122 ms
[2,186 * 8.29 ms]

Fixed TTL

456 ms
[19 * 23.99 ms]

TTL Derived from Scaled
Black-box Model

CPU Time
Wasted

on Second
Router

2278 Valid Packets
455 Malicious Packets

16

contains a model that simulates message sources,
generating virtual messages that flow along links in the
virtual-overlay network, which share physical links
between nodes but remain logically isolated from
operational traffic. As virtual messages arrive, the LP
updates variables in the node’s management information
base (MIB) [28]. Each LP updates the future state of
relevant MIB variables, providing the MIB with
predicted state to complement the current and past state
maintained for the operational network. After updating
predicted MIB variables, the LP consults the node’s
routing table and forwards incoming virtual messages on
to other LPs, if required.

The prediction-overlay network then generates and
routes simulated network traffic that attempts to run
ahead in virtual time of operational network traffic (time
dimension in Figure 7). While the operational network
advances in real time, the LP in the prediction-overlay
network advances in virtual time, receiving virtual
messages and estimating future load. Periodically, the LP
compares the actual and predicted MIB values for
corresponding intervals in real and virtual time. If the
values agree within an error tolerance, then the
simulation remains ahead of real time and continues to
advance. If not, then the LP rolls virtual time back to the
current real time, discarding predictions for future MIB
state, and then simulation resumes. AVNMP contains
some special processing to cancel virtual messages that
might be in transit across the prediction-overlay network
during a rollback, but we omit these details.

As shown in Figure 8, we constructed a four-node,
heterogeneous active network, consisting of the same
topology and nodes used for the active-audio case study
(see Section 6.1). The operational active network
comprised these nodes connected to a switched 10-Mbps
Ethernet, which included a few other nodes that were not
part of the experiment. We configured the experiment
nodes to run the active-audio application discussed
earlier; however, in this case we omitted the malicious
packets. The prediction overlay network included

AVNMP deployed as an active application on each node,
with a DP injected into the source node and an LP
injected into the destination and each intermediate node.
The DP included a message model to generate virtual
message traffic and a CPU model to estimate the
processor demand associated with each virtual message.
Each LP also included a copy of the CPU model to
estimate processor demand for each arriving virtual
message.

We conducted two experiment runs. In the first run

the DP and LPs predict a fixed average CPU time for
each virtual message on every node. In the second run,
the average CPU time predicted for each virtual message
differs on each node, based on predictions made by
scaling our black-box model of the active-audio
application. Table 11 shows the relevant experiment
parameters at each router node.

We assigned 7 ms per packet as the average CPU
demand in the fixed prediction models. This figure was
obtained by measuring the active-audio application
executing on the source node. Note that 7 ms equates to a
different number of CPU cycles on each node, depending
on processor speed. By scaling our black-box model, we
estimated 3 ms per packet as the average CPU demand
on the first router and 16.5 ms on the second router. Our
hypothesis: because our scaled black-box model more
accurately represents CPU demand in the active-audio
application, as compared against the fixed-time estimate,
AVNMP should require fewer tolerance rollbacks; thus,
the prediction-overlay network should provide better

Time

L-3

L-2

L-4

AN-5

AN-4 Operational
Network

Prediction Overlay Network

L-1 L-3

L-2

L-4

AN-5AN-1

AN-4
DP

LP
LP

LP

L-1

AN-1

Space

Time

L-3

L-2

L-4

AN-5

AN-4 Operational
Network

Prediction Overlay Network

L-1 L-3

L-2

L-4

AN-5AN-1

AN-4
DP

LP
LP

LP

L-1

AN-1

Space

Fig. 7. An illustration of the time-space
relationship between an operational network and a
prediction-overlay network constructed by the
Active Virtual Network Management Prediction
(AVNMP) system.

AVNMP AA

Source
Node

First
Router

(Fastest)

Destination
Node

Second
Router

(Slowest)

Active Audio
CPU Model Magician AAs

500000 1 106 1.5 106 2 106 2.5 106 3 106
Wallclock mS

50

100

150

200

Prediction Error Accuracy

Logical

Process
Active
Audio

AA

Magician EE
MIB

AVNMP LPs predict
number of messages
and CPU use and
update predicted
MIB values on nodes

Magician EEs
update actual
MIB values for
CPU use and
number of
messages

Active Audio CPU usage
model injected into AVNMP
LP on each node

Logical

Process

CPU
Model

Driver

Process

Message
Model

CPU
Model

Active
Audio

AA

AVNMP LPs determine
prediction error, compare
against tolerance, initiate
rollbacks, and display graphs

Virtual
Messages

Real Messages

AVNMP AA

Source
Node

First
Router

(Fastest)

Destination
Node

Second
Router

(Slowest)

Active Audio
CPU Model Magician AAs

500000 1 106 1.5 106 2 106 2.5 106 3 106
Wallclock mS

50

100

150

200

Prediction Error Accuracy

500000 1 106 1.5 106 2 106 2.5 106 3 106
Wallclock mS

50

100

150

200

Prediction Error Accuracy

Logical

Process
Active
Audio

AA

Active
Audio

AA

Magician EE
MIB

AVNMP LPs predict
number of messages
and CPU use and
update predicted
MIB values on nodes

Magician EEs
update actual
MIB values for
CPU use and
number of
messages

Active Audio CPU usage
model injected into AVNMP
LP on each node

Logical

Process

CPU
Model

Logical

Process

CPU
Model

Driver

Process

Message
Model

Driver

Process

Message
Model

CPU
Model

Active
Audio

AA

Active
Audio

AA

AVNMP LPs determine
prediction error, compare
against tolerance, initiate
rollbacks, and display graphs

Virtual
Messages

Real Messages

Fig. 8. A four-node topology supporting both an
operational active network and a prediction-overlay
network. The figure indicates how the various
components of the AVNMP prediction-overlay
network were deployed to estimate resource demand
for an active-audio application.

17

look-ahead into virtual time. We ran two experiments to
evaluate this hypothesis.

For each experiment run we fixed the relative error
tolerance at 10 %, which means that AVNMP initiates
tolerance rollbacks whenever the measured CPU use
(averaged over 20 messages) differs from the predicted
CPU use by more than 10 %. This tolerance, computed
relative to predicted CPU use, equates to a different
number of CPU cycles for each node and run. Using a
wider error tolerance would likely mask any
improvements from improved CPU demand predictions.

In conducting each run, the active-audio application
emitted a stream of 91,105 bytes (2,277 40-byte packets
followed by one 25-byte packet), and the intermediate
nodes periodically measured the cumulative tolerance
rollbacks and the virtual time. As shown in Table 11, the
average measurement interval varied on each node due to
the stochastic nature of thread scheduling in Java. Table
12 compares the results we obtained from our experiment
runs.

Over the audio streaming period, we can compare
AVNMP performance for the same nodes when using the
fixed CPU-demand model vs. the adapted CPU-demand
model. For both the fastest and slowest intermediate
node, the adapted CPU-demand model induces fewer
tolerance rollbacks. This permits AVNMP to reach a
greater maximum look ahead into virtual time on each
intermediate node. Figures 9 and 10 provide a view of
cumulative rollbacks and virtual time, respectively, on an
interval-by-interval basis for the first router. The graphs
compare progress with the fixed CPU-demand model
against progress with the adapted CPU-demand model.
These results support our hypothesis, suggesting that use
of an adaptive CPU-demand model can improve the
ability of AVNMP to predict resource usage in
heterogeneous active networks.

0

20

40

60

80

100

1 11 21 31 41
Sample Interval - Advancing in Time

C
um

ul
at

iv
e

R
ol

lb
ac

ks

Fixed CPU-demand Model

Adapted CPU-demand Model

0

20

40

60

80

100

1 11 21 31 41
Sample Interval - Advancing in Time

C
um

ul
at

iv
e

R
ol

lb
ac

ks

Fixed CPU-demand Model

Adapted CPU-demand Model

Fig. 9. An interval-by-interval comparison of the
change in cumulative rollbacks for the fixed CPU-
demand model versus the adapted CPU-demand
model.

-1000

-800

-600

-400

-200

0

200

400

600

1 11 21 31 41

Sample Interval - Advancing in Time

Lo
ok

 A
he

ad
 (s

)

Fixed CPU-demand Model

Adapted CPU-demand Model

-1000

-800

-600

-400

-200

0

200

400

600

1 11 21 31 41

Sample Interval - Advancing in Time

Lo
ok

 A
he

ad
 (s

)

Fixed CPU-demand Model

Adapted CPU-demand Model

Fig. 10. An interval-by-interval comparison of
the change in look-ahead in virtual time for the
fixed CPU-demand model versus the adapted
CPU-demand model.

Table 12. Reports the results measured at two
routers during two different experiment runs. The
results include the cumulative number of rollbacks
and the maximum look-ahead observed over all
measurement intervals.

0028124292Cumulative Rollbacks

31310243254-20-101Maximum Look Ahead (s)

Dest.
Node

Second
Router

First
Router

Dest.
Node

Second
Router

First
Router

Avg. CPU Time from
Scaled Black-box ModelFixed Avg. CPU Time

Source Node is Green.
First Router is Black.
Second Router is Yellow.
Destination Node is Blue.

0028124292Cumulative Rollbacks

31310243254-20-101Maximum Look Ahead (s)

Dest.
Node

Second
Router

First
Router

Dest.
Node

Second
Router

First
Router

Avg. CPU Time from
Scaled Black-box ModelFixed Avg. CPU Time

Source Node is Green.
First Router is Black.
Second Router is Yellow.
Destination Node is Blue.

Table 11. The average CPU estimates used by
AVNMP for each router in the prediction-overlay
network, reported as milliseconds and as the
equivalent CPU cycles. The table also indicates the
number of CPU cycles that define the 10% error
tolerance on each node, and the average interval at
which measurements were sampled.

163,34790,00069,300234,075Error Tolerance (+-
10%) (CPU cycles)

710.112.18.8Avg. Measurement
Interval (s)

16.5
(1,633,478)

3
(900,000)

7
(693,000)

7
(2,340,750)

Avg. CPU Time
ms (and CPU cycles)

Average CPU Time
Scaled with Black-box

Model

Fixed Average CPU
Time Scaled with Speed

Ratio
Second
Router

First
Router

Second
Router

First
Router

Experiment
Parameter

163,34790,00069,300234,075Error Tolerance (+-
10%) (CPU cycles)

710.112.18.8Avg. Measurement
Interval (s)

16.5
(1,633,478)

3
(900,000)

7
(693,000)

7
(2,340,750)

Avg. CPU Time
ms (and CPU cycles)

Average CPU Time
Scaled with Black-box

Model

Fixed Average CPU
Time Scaled with Speed

Ratio
Second
Router

First
Router

Second
Router

First
Router

Experiment
Parameter

18

7. On-Going and Future Work

While our black-box models of CPU demand, and
the associated scaling techniques, appear promising,
more research remains before the models can be
practically applied. In this section, we outline some of
the open issues in three main categories: (1) improving
our existing black-box models, (2) investigating white-
box models as an alternative to black-box models, and
(3) exploring continuous improvement strategies that
would enable models and node calibrations to monitor
their own performance and to adapt to new conditions.
We begin by considering the state of our black-box
models.

7.1. Improving the Black-Box Model

The performance of our black-box models can be

considered along three dimensions. Along the dimension
of accuracy, our existing models assume that all
application behavior can be measured prior to injecting a
model into network nodes. Unfortunately, application
behaviors often reflect conditions that cannot be known
before a program reaches a node. For this reason, our
application model must be enhanced to account for such
node-dependent conditions. Two particular issues occur
in this regard. First, some behaviors may appear more or
less often on a particular node than the model would
predict, based on the scenarios observed in the laboratory
where a model is created. Given the restriction of black-
box models, this becomes a statistical question
surrounding whether or not the behavior measured in
generating the model represents the behavior in actual
use. Attacking this problem on a black-box basis requires
some ability for continuous improvement (see Section
7.3 below). Removing the black-box restriction opens up
the model and permits strategies more suited for white-
box analysis (see Section 7.2 below). Second, selected
scenarios in our black-box models might be repeated at a
node, based on conditions at the time of execution. For
example, in a multicast application a packet might be
forwarded a number of times that depends on the current
number of subscribers to a multicast group. We might be
able to parameterize looping behavior in our black-box
models (making them grey-box models, perhaps). If we
can do this, then an arriving model might query the
execution environment on a node for the current values
of key behavioral parameters, and then could modify its
CPU demand estimates accordingly.

Along the dimension of cost, our models consist of
histograms, which must be exercised with Monte-Carlo
simulations in order to predict CPU demand. As a result,
specific application models can be large and could
require substantial computation to produce predictions.

To some degree the space-time properties of our model
can be modulated; however, the prediction error also
varies accordingly. We discuss these points further.

In our research, we found that the size of a model
can vary depending in the first order on three parameters:
the execution environment, the active application, and
the granularity of the histograms. The execution
environment, and its mapping to a node operating
system, appears to affect the number of system calls
made by an active application. Further, an active
application may consist of a number of different roles
(such as source, router, and sink), where a node may take
on one or more of the available roles. The number and
nature of roles in an active application affect (in the
second order) the number of scenarios, and the number
of scenarios can affect (in the third order) the number of
transitions and the number of distinct system calls taken.
To determine a model size, the number of bins in each
histogram multiplies the number of transitions and
system calls. Tables 13 and 14 provide, for ANTS and
Magician, respectively, some statistics regarding the size
of the models generated during our research.

Tables 13 and 14 support the observation that the
execution environment and the active application affect
the size of the model. For example, notice that the
various applications in each table require different
numbers of bytes to describe a model. Further, note that
two similar applications, “Ping” (Table 13) and “Smart
Ping” (Table 14), required different sizes based on being
written for different application environments. Tables 13
and 14 also provide some indication of the size of the

Table 13. Some statistics about the size of black-box
models generated for various possible roles that can
be taken by two different active applications running
in the ANTS execution environment. Note that both
applications can adopt one or more of three roles.
The role “All” denotes the application executing in
all available roles. For the Multicast application, the
table includes a row showing a combined role,
“Router-Sink”.

213,67965,28742,583120,325All
22,72212,0203,10917,966Sink

112,52842,41425,12863,487Router-Sink
17,1905,0903,5589,466Router

Multicast

80,16338,74414,45256,433Source
165,65616,91359,26680,162All
165,6564.,30040,84318,277Sink
17,3405,7063,12010,082Router

153,6227,44359,65167,103Source

Ping

MaximumMinimumStandard
Deviation

Average
Role

Units are
Bytes

213,67965,28742,583120,325All
22,72212,0203,10917,966Sink

112,52842,41425,12863,487Router-Sink
17,1905,0903,5589,466Router

Multicast

80,16338,74414,45256,433Source
165,65616,91359,26680,162All
165,6564.,30040,84318,277Sink
17,3405,7063,12010,082Router

153,6227,44359,65167,103Source

Ping

MaximumMinimumStandard
Deviation

Average
Role

Units are
Bytes

19

models that would be shipped among nodes. But model
size is only part of the story.

Once a model arrives on a node, a Monte-Carlo

simulation must execute to generate a sample population
of CPU demands from which prediction statistics can be
determined. In our experiments, we implemented the
models in Java, which is not the most efficient choice.
Table 15 shows the CPU seconds required to execute a
number of our five-bin histogram models for varying
repetition counts. Here, the models were executed on a
Pentium Pro operating at 547 MHz. As shown in Table
16, the larger the number of repetitions, the better the
accuracy of the predictions. Of course, the larger the
number of repetitions, the more CPU time is needed to
generate the predictions. Table 16 shows the increasing
accuracy of the predictions as the number of repetitions
increases from 500 to 20,000. On the other hand, Table
16 also shows that at 20,000 repetitions, increasing the
number of bins from 50 to 100 does not appreciably
improve the accuracy of the predictions.

Along the dimension of operational effectiveness,
our models would benefit from inclusion of an associated
error bounds. Before taking decisions based on
predictions from CPU-time models, an operating system
must consider the possible range of prediction error.
While we have yet to characterize the error properties of
our models, Table 17 provides another look at how
scaling our black-box models compares against scaling
predictions based on the ratio of processor speeds. For
sake of discussion, assume that these results hold across
all models of each type. Then, upon receiving predictions
from a scaled black-box model, an operating system
could realize that the predictions for the mean might be
incorrect by up to 5% and that predictions for the higher

percentiles might prove inaccurate by as much as 15%.
On the other hand, when working with a model scaled
based on the ratio of processor speeds, the operating
system would realize that all predictions could be around
35% in error.

Table 14. Some statistics about the size of black-box
models generated for various possible roles that can
be taken by two different active applications running
in the Magician execution environment. Note that
both applications can adopt one or more of three
roles. The role “All” denotes the application
executing in all available roles.

28,1435,3397,26917,465All
4,6838241,0312,610Sink

11,7001,0293,6446,861RouterSmart
Route

14,0512,2973,4398,201Source
53,65112,30713,76527,641All
16,6583,5944,0438,283Sink
25,1803,0847,25713,001Router
25,5185,1826,18712,557Source

Smart
Ping

MaximumMinimumStandard
Deviation

Average
Role

Units are
Bytes

28,1435,3397,26917,465All
4,6838241,0312,610Sink

11,7001,0293,6446,861RouterSmart
Route

14,0512,2973,4398,201Source
53,65112,30713,76527,641All
16,6583,5944,0438,283Sink
25,1803,0847,25713,001Router
25,5185,1826,18712,557Source

Smart
Ping

MaximumMinimumStandard
Deviation

Average
Role

Units are
Bytes

Table 15. Shows the average number of CPU
seconds (and the standard deviation) required to
execute four different models through various
repetitions. All models, implemented in Java and
executed on a 547 MHz Pentium Pro, were composed
of five-bin histograms.

0.823.820.080.740.100.64Smart
Route

0.484.390.090.710.070.62Smart Ping
Magician

1.175.480.140.910.110.75Multicast
1.554.510.140.860.120.69Ping

ANTS

Standard
Deviation

MeanStandard
Deviation

MeanStandard
Deviation

MeanActive
Application

Execution
Environment

10,000 Repetitions1,000 Repetitions100 Repetitions
CPU Seconds Required to Execute ModelModels implemented in

Java

0.823.820.080.740.100.64Smart
Route

0.484.390.090.710.070.62Smart Ping
Magician

1.175.480.140.910.110.75Multicast
1.554.510.140.860.120.69Ping

ANTS

Standard
Deviation

MeanStandard
Deviation

MeanStandard
Deviation

MeanActive
Application

Execution
Environment

10,000 Repetitions1,000 Repetitions100 Repetitions
CPU Seconds Required to Execute ModelModels implemented in

Java

Table 16. This table reports the percent absolute
error predicting the mean and high percentiles for
two active-applications running in the ANTS
execution environment. The results give the error
measured for three combinations of histogram
granularity and simulation repetition count.

3
2

% Error
Avg. High
Percentile

0
1

%
Error
Mean

50 Bins and
20,000 Repetitions

100 Bins and
20,000

Repetitions

50 Bins and
500 RepetitionsModels of

Active
Applications
Running in
ANTS

20165Multicast
11103Ping

% Error
Avg. High
Percentile

%
Error
Mean

% Error
Avg. High
Percentile

%
Error
Mean

3
2

% Error
Avg. High
Percentile

0
1

%
Error
Mean

50 Bins and
20,000 Repetitions

100 Bins and
20,000

Repetitions

50 Bins and
500 RepetitionsModels of

Active
Applications
Running in
ANTS

20165Multicast
11103Ping

% Error
Avg. High
Percentile

%
Error
Mean

% Error
Avg. High
Percentile

%
Error
Mean

Table 17. Comparison of error bounds associated
with predictions made from scaling models based
on the ratio of processor speeds against predictions
made from scaling black-box models.

53499th Percentile
53795th Percentile
73690th Percentile

123485th Percentile
113680th Percentile
336Mean

Scaling
Black-box

Model

Scaling with
Processor

Speed Ratio

Standard Deviation in
% Absolute Error for
Selected Statistics

53499th Percentile
53795th Percentile
73690th Percentile

123485th Percentile
113680th Percentile
336Mean

Scaling
Black-box

Model

Scaling with
Processor

Speed Ratio

Standard Deviation in
% Absolute Error for
Selected Statistics

20

7.2. Investigating White-Box Models

In addition to seeking techniques to improve black-

box models, we have begun to investigate white-box
models as an alternative approach. In our conception,
white-box models represent the processing logic within
an active application as it invokes services offered by an
execution environment. Figure 11 (a), for example,
shows mobile, an active application written for the
ANTS execution environment, while Figure 11 (b) shows
a corresponding white-box model for mobile.

As shown in Figure 11 (a), an active application
consists of a combination of sequences, selections, and
iterations that invoke specific primitives provided by an
execution environment. In this example, such primitives
include: getCache, getDst, intValue, getAddress,
routeForNode, and deliverToApp. Given a specific active
packet and a determinable state for relevant node-
dependent conditions, prior to executing the packet, an
active-network node can evaluate the state of relevant
Boolean conditions (see c1 and c2 in Figure 11 (b)) to
determine, the precise sequence of primitives that an
active application will call to process the packet. Further,
if the node can determine the time taken by the execution
environment to execute each primitive, then the node can
compute an estimate for the CPU time required to
process the packet. To determine the amount of time
taken to execute each primitive, an execution
environment must be calibrated on the node. Calibration
involves the execution of a synthetic workload that will
repeatedly call the various primitives implemented by the
execution environment. The calibration process yields

estimates for various statistics (e.g., mean and variance)
associated with CPU use by each primitive.

We imagine that an execution environment can
generate a white-box model for an active application,
once the source code arrives at a node. Figure 11 (b), for
example, provides a possible white-box model derived
from the source code for mobile. Then, assuming that
each delay in the model (t1 through t4 in Figure 11 (b))
represents the CPU time required for an associated
primitive, the model can be evaluated for each arriving
active packet to estimate the CPU demand for that
packet. In our preliminary work, the calibration process
yields estimates for the first two moments (mean and
variance) of CPU time used for each primitive in the
execution environment. We estimate the mean execution
time for a packet as the sum of the mean primitive times
in the processing path for the packet. Similarly, we use
an appropriate formula for summing the variance of
random variables to derive an estimate for the variance in
CPU demand by the active packet. Finally, assuming a
normally distributed random variable, we use the mean
plus an appropriate multiple of the standard deviation to
estimate specific percentiles. While we already know
through our experiments that CPU usage is not a
normally distributed random variable, we used such an
assumption in order to explore the effectiveness of a
simple analytical approach to computing estimates for
CPU demands.

Table 18 illustrates some results from applying this
technique to predict CPU demand for five active
applications running under the ANTS execution
environment. The table compares predictions against
measurements for three statistics: mean, standard
deviation, and 99th percentile. The prediction errors are
neither as accurate nor as well bounded as those obtained
with our black-box models. We believe that this poor
performance results from our assumption that CPU
demand is normally distributed (which our measures
demonstrate is clearly not the case). Regardless of these
preliminary results, our work with black-box models
leads us to believe that white-box models could be
combined with histograms and Monte-Carlo simulations
to yield reasonably accurate estimates. In the case of
white-box models, the histograms would represent the
CPU usage observed during calibration for each
primitive provided by the execution environment. We
have plans to investigate these ideas in the context of
resource-management for mobile code loaded into call-
processing servers.

7.3. Continuous Improvement Strategies

Regardless of the type of model chosen to provide

estimates for CPU demand, strategies for continuous
improvement will be required. We envision additional

Integer f = (Integer)n.getCache().get(getDst());
if (f != null) { next = f.intValue(); }
if (n.getAddress() != getDst())

{ return n.routeForNode(this, next); }
else { return n.deliverToApp(this, dpt); }

(a) ANTS active application mobile

delay (t1);
if (c1) delay (t2);
if (c2) { delay (t3); }
else { delay (t4); }

(b) White-box model for mobile

Integer f = (Integer)n.getCache().get(getDst());
if (f != null) { next = f.intValue(); }
if (n.getAddress() != getDst())

{ return n.routeForNode(this, next); }
else { return n.deliverToApp(this, dpt); }

(a) ANTS active application mobile

delay (t1);
if (c1) delay (t2);
if (c2) { delay (t3); }
else { delay (t4); }

(b) White-box model for mobile

Fig. 11. (a) Example code for an active application,
ANTS mobile, and (b) a corresponding white-box
model, where c1 and c2 represent distinct Boolean
conditions and t1 through t4 represent distinct time
delays.

21

work on techniques for continuous calibration of system
calls and execution environments, for experiential
improvements in active-application models, and,
possibly, for real-time competition among various
models. We discuss each of these topics below (a-c).

(a) Continuous Calibration. Calibration of a node

and execution environment, even when carefully
conducted, yields accurate information only so long as no
change occurs in relevant elements of the calibrated
system. Once a configuration changes, e.g., through
introduction of new hardware or an updated version of
some software component, a previous calibration might
no longer prove accurate. In addition, to the extent that a
calibration depends upon usage patterns associated with
the calibrated components, the accuracy of a calibration
might drift. For these reasons, research is needed to
develop and validate techniques to recalibrate a system
over time. In particular, techniques might be needed to
track changes in calibration values, and then to vary the
rate of calibration adjustment based on the rate of change
in calibration accuracy.

(b) Learning Models. The accuracy of statistical
models of program behavior depends upon successfully
obtaining samples of representative behavior. Our black-
box modeling approach assumes that representative
application behavior can be measured sufficiently, during
a tracing phase, prior to injecting a model into network
nodes. Unfortunately, application behaviors often reflect
conditions that cannot be known before a program
reaches a node. Such conditions can alter the probability
of executing various paths in a program, and can change

the number of times particular paths are executed. For
this reason, additional research is needed to investigate
techniques to continuously improve the representation of
statistical behaviors in black-box models. Can methods
be found to enable a model to evolve as it gains
experience while traveling through the network? Can
new scenarios be identified and added to a model? Can
the probability of execution and the distribution of the
CPU times be adjusted as the application experiences
more executions? Can models be parameterized based on
conditions at a node? For example, to solve the problem
of a loop executed an unpredictable number of times, can
we design a holes-model, complete except for some
parameters that would be included on arrival at the node
where local conditions are known?

(c) Competitive Models. Our existing research
assumes that we can develop one class of model that best
predicts CPU demands for a mobile program. This
assumption might prove wrong. We might be unable to
find a single class of predictor that will yield the best
estimates for all active applications. For example, one
model might produce estimates through analytical
computation, while another provides predictions using
simulation. Perhaps one estimation technique gives better
results than another under certain conditions. If so, then it
could prove useful to continuously evaluate which of the
available co-existing models or prediction systems is the
most accurate. In this way, good predictors can be
reinforced, and bad predictors can be de-emphasized, and
the value of predictors can be assessed independently in
time and space. Active-network technology provides a
suitable basis to experiment with such competitive
modeling techniques.

8. Conclusions

In this paper, we argued that some means is needed

to accurately specify CPU demand in order to safely and
efficiently deploy mobile code among heterogeneous
platforms in a network. We showed that commonly used
approaches, which are based on a fixed time-to-live, do
not work effectively. We argued that CPU demand in a
mobile program is a function of the speed of the
processor on which the program runs and of the number
of CPU cycles that must be executed. Further, we
showed that it is quite difficult to estimate the number of
CPU cycles demanded by a mobile program.

We proposed a class of statistical black-box models
to estimate the number of CPU cycles required by a
mobile program, and we evaluated how well the
predictions from some instances of these models matched
measured values. Further, we proposed mechanisms to
transform instances of black-box models to provide
estimates for CPU demand on a range of nodes. We

Table 18. Prediction error for three different
statistics (mean, standard deviation, and 99th

percentile) estimated for five active applications.
These predictions relied on white-box models,
combined with analytical approximations
appropriate for normally distributed random
variables.

67520Multicast

673227Multicast
Subscribe

62611Mobile
0605Ping

33537Mobile Update

99th

Percentile
Standard
Deviation

MeanANTS Active
Application

% Absolute Error in Prediction
for Selected Statistics

Predictions from
white-box models

67520Multicast

673227Multicast
Subscribe

62611Mobile
0605Ping

33537Mobile Update

99th

Percentile
Standard
Deviation

MeanANTS Active
Application

% Absolute Error in Prediction
for Selected Statistics

Predictions from
white-box models

22

evaluated how well predictions made by transformed
models matched measured values. We also compared the
accuracy of our transformed black-box models against
transformation techniques that take into account only the
differences in processor speed among nodes. In most
cases, the black-box models proved accurate within 15%,
while the more naïve models proved accurate within
40%.

In addition to evaluating our black-box models, we
applied one of them in two sample applications: CPU
control and CPU prediction. In the control application,
we demonstrated that better models of CPU demand
could reduce the amount of CPU time stolen or wasted
when malicious or erroneous code is injected into a node.
We also showed that more accurate models of CPU
demand can lead to better quality of service provided to
end users. In the prediction application, we demonstrated
that better models of CPU demand allowed AVNMP, a
resource-usage prediction system, to estimate resource
demand farther into the future with lower overhead.

Despite the successes reported in this paper, the
problem of accurate prediction of CPU demand among
heterogeneous nodes remains largely unsolved for mobile
programs. We identified several open issues that require
additional research. We hope that our analysis of the
problem, our evaluation of results, and our demonstration
of the benefits of an effective solution, will all encourage
other researchers to tackle this important and difficult
problem.

Acknowledgments

We thank Hilarie Orman for recognizing the

potential impact of our wild ideas. We particularly
appreciate the support and encouragement of Doug
Maughan, DARPA’s program manager for Active
Networks, and Scott Shyne, from the Air Force Research
Laboratory (AFRL). Our work benefited greatly from
collaboration with colleagues, Stephen Bush and Amit
Kulkarni, from the General Electric Corporate R&D
Center. Working with Steve and Amit enabled us to
demonstrate that better estimates for CPU demand can
yield practical benefits. We also value the contributions
of Stefan Leigh and Andrew Rukhin, colleagues who
helped us early in the project to explore the potential
accuracy of a wide range of statistical models. The work
reported in this paper would not have been possible
without funding from the National Institute of Standards
and Technology (NIST) and from the Defense Advanced
Research Projects Agency (DARPA).

9. References

[1] K. L. Calvert (ed), Architectural Framework for Active
Networks, Version 1.0, Draft, July 27, 1999.

[2] L. Peterson (ed.), NodeOS Interface Specification, January
10, 2001.

[3] S. Dawson, M. Molteni, L. Ricculli, and S. Tsui, User

Guide to ANETD 1.6.3, Sept. 28, 2000.

 [4] S. Bhattacharjee, K. L. Calvert and E. W. Zegura. "An

Architecture for Active Networking", Proceedings High
Performance Networking (HPN'97), White Plains, NY,
April 1997.

[5] D. Mosberger and L. L. Perterson, "Making Paths Explicit

in the Scout OS", Proceedings of the Second Symposium on
Operating System Design and Implementation, ACM Press,
New York, 1997, pp. 153-168.

[6] F. Kaashoek at al., "Application Performance and
Flexibility on Exokernel Systems", 16th Symposium on
Operating System Principles, ACM Press, New York, 1997,
pp. 52-65.

[7] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin and O.

Shivers, "The Flux OSKit: A Substrate for OS and
Language Research", Proceedings of the 16th ACM
Symposium on Operating Systems Principles, ACM Press,
October 1997.

[8] D. Wetherall, J. Guttag and D. Tennenhouse, "ANTS:

Network Services Without the Red Tape", IEEE Computer,
April 1999, pp. 42-48.

[9] Y. Yemini and S. da Silva, “Towards Programmable

Networks”, IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management, October
1996.

[10] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter and S.

Nettles, “PLAN: A Packet Language for Active
Networks”, International Conference on Functional
Programming (ICFP), 1998.

[11] A. B. Kulkarni, G. J. Minden, R. Hill, Y. Wijata, A.

Gopinath, S. Sheth, F. Wahhab, H. Pindi and A.
Nagarajan, “Implementation of a Prototype Active
Network”, Proceedings of OpenArch 98, 1998.

[12] B. Schwartz, A. W. Jackson, W. T. Strayer, W. Zhou, D.

Rockwell and C. Partridge, "Smart Packets for Active
Networks", Proceedings of OpenArch 99, March 1999.

[13] D.C.Feldmeier, A.J. McAuley, J.M. Smith, D. Bakin, W.S.

Marcus, T. Raleigh, "Protocol Boosters", IEEE JSAC,
Special Issue on Protocol Architectures for 21st Century,
vol. 16, no. 3, pp. 437-444, April 1998.

23

[14] S. Kasera, S. Bhattacharyya, M. Keaton, D. Kiwior, J.
Kurose, D. Towsley, and S. Zabele, “Scalable Fair
Reliable Multicast Using Active Services”. IEEE
Network Magazine (Special Issue on Multicast),
January/February 2000.

[15] S. Zabele, T. Stanzione, J. Kurose, and D. Towsley,

“Improving Distributed Simulation Performance Using
Active Networks”, Invited Paper, Proceedings of World
Multi Conference 2000, January 23-27, 2000, San Diego,
CA.

[16] S. Gribble, E. Brewer, J. Hellterstein, and D. Culler,

“Scalable, Distributed Data Structures for Internet
Service Construction”, Proceedings Fourth Symposium
on Operating Systems Design and Implementation (OSDI
2000), 2000.

[17] S. Bhattacharjee, K. Calvert, and E. Zegura, “Self-

Organizing Wide-Area Network Caches”, Infocom 98.

[18] K. L. Calvert, J. Griffioen, B. Mullins, A. Sehgal and S.

Wen. “Concast: Design and Implementation of an Active
Network Service”. IEEE Journal on Selected Area in
Communications (JSAC). Volume 19, No. 3. March,
2001.

[19] T. Faber, "ACC: Active Congestion Control," IEEE

Network, IEEE, May/June 1998, pp. 61-65.

[20] J. Reynolds and J. Postel. RFC 1700 Assigned Numbers,

October 1994.
[21] O. J. Huber and L. Toutain, "Mobile Agents in Active

Networks", ECOOP'97 Workshop Mobile Object Systems,
June 1997.

[22] J. T. Moore, M. Hicks, and S. Nettles. “Practical

programmable packets”. Proceedings of IEEE InfoCom
2001, April 2001.

[23] L. Yamamoto and G. Leduc. “An agent-inspired active

network resource-trading model applied to congestion
control”. In MATA 2000, pages 151–169, September
2000.

[24] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.

“Application-level scheduling on distributed
heterogeneous networks”. In Supercomputing ’96,
September, 1996.

[25] R. H. Saavedra-Barrera, A. J. Smith, and E. Miya.

“Machine characterization based on an abstract high-level
language machine”. IEEE Transactions on Computers,
December 1989.

[26] T. Ball and J. R. Larus. “Using paths to measure, explain,
and enhance program behavior”. IEEE Computer, July
2000.

[27] S. F. Bush and A. B. Kulkarni, Active Networks and

Active Virtual Network Management Prediction: A
Proactive Management Framework. ISBN 0-306-46560-
4. Kluwer Academic / Plenum Publishers, 2001.

[28] M. T. Rose, The Simple Book: An Introduction to the

Management of TCP/IP Based Internets, Prentice-Hall,
1991.

[29] S. Merugu, S. Bhattacharjee, E. Zegura, and K. Calvert,

“Bowman: A Node OS for Active Networks”.
Proceedings of Infocom 2000, IEEE, March 2000.

 [30] P. Tullmann, M. Hibler, and J. Lepreau, “Janos” A Java-

oriented OS for Active Networks”. IEEE Journal on
Selected Areas in Communications, Vol. 19, No. 3,
March 2001.

[31] J. Hartman, L. Peterson, A. Bavier, P. Bigot, P. Bridges, B.

Montz, R. Piltz, T. Proebsting, and O. Spatscheck, “Joust:
A Platform for Liquid Software”, IEEE Computer, 1999.

[32] S. Schwab, “AMP – Enabling Active Networks via Secure

Exokernel Implementations”. NAI Labs Advanced
Research Project Profile, January 2001. This is a two-
page NAI Labs glossy brochure. See:
http://download.nai.com/products/media/pgp/pdf/NAI-
Labs-AMP-1-5-01.pdf

[33] P. Menage, “RCANE: A Resource Controlled Framework

for Active Network Services”. Proceedings of the First
International Working Conference on Active Networks
(IWAN ’99), July 1999.

[34] B. Braden, A. Cerpa, T. Faber, B. Lindell, G. Phillips, J.

Kann, and V. Shenoy, “Introduction to the ASP
Execution Environment (Release 1.5)”. November 30,
2001. Apparently, this is a USC/ISI Technical Report that
has no number assigned. See: http://www.isi.edu/active-
signal/ARP/DOCUMENTS/ASP_EE.ps

[35] V. Galtier, C. Hunt, S. Leigh, K. Mills, D. Montgomery,

M. Ranganathan, A. Rukhin, and D. Tang, "How Much
CPU Time?", Draft NIST Technical Report. TR-ANTD-
ANETS-111999, November 1999.

See:http://w3.antd.nist.gov/~mills/whitepapers
/NISTanetsTR.pdf

