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Abstract

The existing literature on equity index option valuation largely focuses on affine models because

they lead to closed-form solutions for option prices. This paper investigates the empirical biases

associated with affine models, using data on S&P500 call options. We find that the root mean

squared dollar error for a simple non-affine continuous-time stochastic volatility model is 25-27%

lower than that of the benchmark continuous-time affine stochastic volatility model in and out

of sample. The analytical convenience of affine option valuation models therefore comes at a

price, and non-affine models ought to be investigated more extensively. We also compare the

empirical performance of affine and non-affine discrete-time models. While the performance of

the discrete-time non-affine model is similar to that of the continuous-time non-affine model,

the discrete-time affine model outperforms the continuous-time affine model. We provide some

intuition for these findings. At the methodological level, our analysis uses a novel technique

based on the Auxiliary Particle Filter. This technique allows for an analysis of option valuation

models using options data that imposes consistency with underlying equity returns. It is

straightforward to implement and it can be used in a variety of applications and on various loss

functions.
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1 Introduction

Following the finding that Black-Scholes (1973) model prices systematically differ from market

prices, the literature on option valuation has formulated a number of theoretical models designed

to capture these empirical biases. One particularly popular modeling approach has attempted to

correct the Black-Scholes biases by modifying the assumption that volatility is constant across

maturity and moneyness. Estimates from returns data and options data indicate that return

volatility is time-varying, and modeling volatility clustering leads to significant improvements in

the performance of option pricing models. It has also been demonstrated that it is necessary to

model a leverage effect. The leverage effect captures the negative correlation between returns and

volatility, and thus generates negative skewness in the distribution of the underlying asset return.1

The existing literature has almost exclusively modeled volatility clustering and the leverage

effect within an affine structure. Affine models of option valuation are convenient because they

lead to closed-form solutions for prices of European equity options. In particular, the affine Heston

(1993) model, which accounts for time-varying volatility and a leverage effect, has been implemented

in a large number of empirical studies. In order to address the limitations of the affine structure,

the Heston (1993) model is often combined with models of jumps in returns and/or volatility.2

However, relatively little is known about the empirical biases that result from imposing the affine

structure.3

The existing literature has also almost exclusively modeled volatility clustering and the leverage

effect using continuous-time stochastic volatility models. There exists a small discrete-time liter-

ature on option valuation using GARCH processes, and in this literature the distinction between

affine and non-affine models is also relevant. The affine GARCH dynamic in Heston and Nandi

(2000) yields a closed-form solution for option prices, but the extensive empirical literature on

GARCH processes that concerns itself with fitting and predicting return volatility almost exclu-

sively uses non-affine processes.4 A small number of studies investigate option valuation assuming

non-affine GARCH processes for the underlying securities.5

1The leverage effect was first characterized in Black (1976). For empirical studies that emphasize the importance

of volatility clustering and the leverage effect for option valuation see among others Benzoni (2002), Chernov and

Ghysels (2000), Eraker (2004), Heston and Nandi (2000), Nandi (1998) and Pan (2002).
2For empirical studies that implement the Heston (1993) model by itself or in combination with different types

of jump processes, see for example Andersen, Benzoni and Lund (2002), Bakshi, Cao and Chen (1997), Bates (1996,

2000), Benzoni (2002), Chernov and Ghysels (2000), Huang and Wu (2004), Pan (2002), Eraker (2004) and Eraker,

Johannes and Polson (2003).
3Jones (2003) and Benzoni (2002) are notable exceptions that investigate non-affine option valuation models. The

non-affine model in Benzoni (2002) does not improve on the performance of the Heston (1993) model, while a number

of specification tests in Jones (2003) favor the non-affine constant elasticity of substitution model over the Heston

(1993) model.
4The literature on GARCH processes is too voluminous to cite in full here. The classical references are Engle

(1982) and Bollerslev (1986). See Bollerslev, Chou and Kroner (1992) and Diebold and Lopez (1995) for reviews.
5See Amin and Ng (1993), Bollen and Rasiel (2003), Bollerslev and Mikkelsen (1996), Christoffersen and Jacobs

2



This paper investigates the empirical implications of adopting an affine framework for option

valuation. We compare the empirical performance of the affine Heston (1993) stochastic volatility

model (AF-SV) with that of a simple non-affine stochastic volatility model (NA-SV). We estimate

model parameters using a long time series of cross sections of options data in a framework that

imposes consistency with the underlying equity returns. We conduct this empirical analysis using

a novel setup that uses the Auxiliary Particle Filter algorithm. This methodology provides a

convenient filtering algorithm for latent factor models such as stochastic volatility models. Our

new methodology is relatively easy to implement compared with existing likelihood-based methods,

and it can be adapted to provide the best possible fit to the objective function of interest.6 We also

compare the empirical performance of the affine Heston and Nandi (2000) model (AF-GARCH)

with that of the non-affine GARCH model (NA-GARCH) of Engle and Ng (1993).

We find that the affine framework is very restrictive. We conduct three in-sample exercises and

three out-of-sample exercises, and despite the fact that both the AF-SV and the NA-SV models

show signs of misspecification, the NA-SV model outperforms the Heston (1993) AF-SV model in

all of these exercises. The NA-SV model also outperforms the AF-SV model for all moneyness and

maturity categories. On average, the dollar root mean-squared error (RMSE) of the NA-SV we

investigate is approximately 25.5% lower than that of the AF-SV model in-sample, and the out-

of-sample dollar RMSE is 27.5% lower. We therefore conclude that while the closed-form solution

provided by affine models is convenient, this analytical convenience comes at a price, and non-affine

models need to be studied more extensively.

Interestingly, the differences in RMSE between the non-affine discrete-time model (NA-GARCH)

and the affine discrete-time model (AF-GARCH) are smaller than in the continuous-time case,

approximately 7.5% in-sample and 10% out-of-sample.7 This finding naturally raises important

questions about the relationship between the empirical performance of discrete-time and continuous-

time models. Our findings on this issue are perhaps less straightforward to interpret than those on

the implications of the affine structure, but we are able to draw a number of important conclusions.

The literature contains a number of limit results relating certain classes of discrete-time and

continuous-time models.8 Some researchers have interpreted these limit results as evidence that

the performance of discrete-time and continuous-time models ought to be very similar when the

continuous-time dynamic is the limit of the discrete-time dynamic. This interpretation is somewhat

contentious, because a given discrete-time model can have several continuous-time limits, and

a given continuous-time model can be the limit for more than one discrete-time model (see for

instance Corradi (2000)). While limit results are therefore theoretically intriguing, in some cases

(2004a), Duan, Ritchken and Sun (2002), Engle and Mustafa (1992), and Heston and Nandi (2000),
6Likelihood-based approaches fully exploit the available information, but do so at the cost of greater complexity.

See Eraker (2004) and Jones (2003) for Bayesian approaches. See Bates (2004) for an approximate maximum

likelihood approach that is relatively easier to implement.
7See Hsieh and Ritchken (2000) for a related comparison.
8See for example Duan (1997), Heston and Nandi (2000), Nelson (1990), and Ritchken and Trevor (1999).
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their practical relevance may be limited.

We find some very interesting differences in the empirical performance of models that are often

thought of as equivalent. Most importantly, the AF-SV Heston (1993) model, which is the bench-

mark model in the continuous-time stochastic volatility literature, significantly underperforms the

AF-GARCH Heston-Nandi (2000) model. This result is perhaps surprising, because Heston and

Nandi (2000) demonstrate that a restricted Heston (1993) model can be seen as the limit of the

AF-GARCH model, but the key is of course that this particular limit is just one of the many

available. Which limit obtains depends on the particular mathematical construction used.

This finding does not mean that discrete-time GARCH models outperform continuous-time

stochastic volatility models. Indeed, the performance of the non-affine NA-GARCH discrete time

model of Engle and Ng (1993) is very similar to but slightly worse than the performance of the

NA-SV model we investigate. These findings demonstrate that it is difficult to make general

statements about discrete-time and continuous-time models. Certain stylized facts may be more

conveniently captured by specific continuous-time models, while others are more easily modeled

using a particular discrete-time model. This paper merely provides a start to that discussion by

documenting the empirical performance of some important benchmark models. After documenting

that the benchmark AF-SV Heston (1993) model somewhat surprisingly underperforms relative to

a related discrete-time model, we proceed by suggesting an aspect of the model that may cause the

underperformance.

One final remark is in order. Traditionally, the existence of multiple limits has not been the only

issue that complicated a comparison of discrete-time and continuous-time models. The two classes

of models are typically implemented using very different econometric methods, which renders fair

comparisons difficult. Our use of the Auxiliary Particle Filter algorithm9 allows for straightforward

comparisons of latent factor volatility continuous time models with discrete time GARCH models,

because each model is implemented using the same objective function and the same information

set. The novel estimation setup in this paper therefore facilitates comparisons between different

classes of models.

The paper proceeds as follows. In Section 2 we introduce the discrete- and continuous-time

volatility models, and we discuss their implementation. In Section 3 we present and discuss the

empirical results. Section 4 concludes.

2 Volatility Model Specification

We now turn to a description of the four volatility models we investigate empirically below. We

first discuss the Heston (1993) model, then we discuss the specification of a non-affine stochastic

volatility model, and finally we discuss the two discrete-time GARCHmodels, where we consider the

GARCH(1,1) representation because it is most closely related to the Heston (1993) continuous-time

9See Pitt and Shephard (1999).
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model.

The Heston (1993) model is arguably the most popular model in the index option valuation

literature. Its closed-form solution is due to the model’s affine structure.10 Because the existing

literature does not contain strong evidence on modifications of the stochastic volatility dynamic

that outperform the Heston (1993) model out-of-sample for index options, it constitutes a good

benchmark for our study.11 The underlying reason for its success is that the Heston (1993) model

captures two important stylized facts that are needed to model option prices: volatility clustering

and the leverage effect. After accounting for these two stylized facts, additional modifications of

the return and volatility dynamic do not seem to result in significant out-of-sample improvements

in the fit. We refer to the affine Heston (1993) model as AF-SV below.

The second model we investigate has not been extensively analyzed in the literature. It is

a continuous time non-affine stochastic volatility model and we refer to it as NA-SV below. It

contains a latent factor volatility which is correlated with returns, but it does not allow for closed-

form option valuation. Consequently, it is more complex to implement than the Heston (1993)

model.

The discrete-time GARCH option valuation literature has resulted in relatively few empirical

studies,12 while discrete-time volatility modeling using only returns data has spawned a large num-

ber of competing models following the work of Engle (1982) and Bollerslev (1986). Our benchmark

discrete-time specification is the model of Heston and Nandi (2000), which was designed with option

valuation in mind. Like the Heston (1993) model, it contains a leverage effect, it allows for volatil-

ity clustering, and it leads to a closed-form solution due to its affine structure. Heston and Nandi

(2000) have demonstrated that this model performs satisfactorily vis-a-vis ad-hoc benchmarks for

the purpose of option valuation. We refer to this model as AF-GARCH.

The other discrete-time model we investigate is the non-affine NGARCH model of Engle and

Ng (1993), henceforth referred to as NA-GARCH. This is the simplest model in the GARCH

literature that contains both volatility clustering and a leverage effect, and was first considered

for option valuation by Duan (1995). Christoffersen and Jacobs (2004a) demonstrate that several

richer GARCH parameterizations do not improve on the option valuation performance of the NA-

GARCH model. This model does not lead to a closed-form solution for option prices, which instead

10Affine models are also very popular in the term structure literature for exactly the same reason. See for instance

Duffie and Kan (1996) and Dai and Singleton (2000).
11There is an extensive and growing literature on the use of jumps in returns and volatility to improve the per-

formance of the Heston model. See Andersen, Benzoni and Lund (2002), Bakshi, Cao and Chen (1997), Bates

(1996, 2000), Chernov, Gallant, Ghysels and Tauchen (2003), Eraker, Johannes and Polson (2003), Eraker (2004),

Pan (2002), Broadie, Chernov and Johannes (2004), Carr and Wu (2004) and Huang and Wu (2004). Extending our

comparison to models of this type is interesting, but beyond the scope of this paper.
12Duan (1995) and Amin and Ng (1993) provide theoretical foundations for this literature. Bollerslev and Mikkelsen

(1996), Engle and Mustafa (1992), and Duan, Ritchken and Sun (2002) estimate model parameters using the under-

lying asset returns and subsequently value options. Heston and Nandi (2000) and Christoffersen and Jacobs (2004a)

estimate model parameters using equity option prices, and impose consistency with the underlying returns.
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have to be computed using Monte Carlo methods. Because the NA-GARCH dynamic has proven

extremely valuable in modeling equity returns as well as other financial time series, it is of interest

to verify whether the focus on closed-from valuation results in the options literature comes at the

cost of a deterioration in the model’s empirical performance.

We now give the specifications of each of the four models and contrast them with recent model-

free empirical findings in the realized volatility literature.13

2.1 The Affine Stochastic Volatility Model (AF-SV)

The Heston (1993) continuous-time stochastic volatility model (AF-SV) is defined by the following

two equations for the stock price, S, and the variance, V ,

dS = µSdt+
√
V SdwS (1)

dV = κ(θ − V )dt+ σ
√
V dwV (2)

with corr(dwS, dwV ) = ρ. This model allows for volatility clustering through the autoregressive

component of volatility, and for a leverage effect through a negative correlation coefficient ρ, which

translates into negative skewness of the return distribution.14 Note also that the AF-SV model

implies that the instantaneous change in variance is heteroskedastic via the
√
V term in the volatility

diffusion.

In order to explore the AF-SV model further consider the instantaneous volatility dynamic

implied by the model. Using Ito’s lemma, we can write

d
√
V = µ(V )dt+

1

2
σdwV (3)

Note that the the AF-SV model implies that the instantaneous change in volatility should be

Gaussian and homoskedastic: V does not show up in any way in the diffusion term for d
√
V . This

implication is strong and can be assessed empirically quite easily.

Using daily realized volatilities from 1990 to 2002 the top panel of Figure 1 shows a quantile-

quantile (QQ) plot of the daily realized volatility changes compared with the Gaussian distrib-

ution.15 The deviations of the data points from the straight line indicates that the Gaussian

distribution is not a good assumption for daily changes in volatility. The observed tails (both left

and right) are considerably fatter than the normal distribution would suggest. The middle panel in

Figure 1 scatter plots the daily volatility changes against the daily volatility level. According to the

AF-SV model this scatter plot should reveal no systematic patterns. However, as the volatility level

increases on the horizontal axis a cone-shaped pattern in the daily volatility changes on the vertical

13See for example Andersen, Bollerslev, Diebold and Labys (2003), and Ait-Sahalia, Mykland and Zhang (2005).
14Note that following Chernov and Ghysels (2000), Eraker, Johannes and Polson (2003) and Eraker (2004) we use

a simple constant specification for the stock return drift.
15The realized volatility data was graciously provided to us by and is documented in Andersen, Bollerslev and

Diebold (2005).
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axis is apparent. Confirming this pattern the bottom panel of Figure 1 scatter plots the absolute

daily volatility changes against the daily volatility level. A simple OLS regression line is shown for

reference. Notice a clearly positive relationship between the volatility level and the magnitude of

volatility changes. This pattern is in conflict with the homoskedastic volatility implication of the

AF-SV model.

In the implementation below we will rely on the dynamics for log variance which using Ito’s

lemma can be written as

d ln(V ) = µ(V )dt+ σ
1√
V
dwV (4)

Notice that the log variance dynamics also imply heteroskedastic instantaneous changes and this

time with a factor of 1√
V
.

2.2 The Non-Affine Stochastic Volatility Model (NA-SV)

When departing from the affine model framework many directions can be taken. We focus on a

process which has the same number of parameters as the affine SV model above and which has

appealing empirical implications as we shall see shortly. We will assume the following NA-SV

dynamic

dS = µSdt+
√
V SdwS (5)

dV = κ(θ − V )dt+ σV dwV (6)

with corr(dwS , dwV ) = ρ. In this model the innovations are scaled by the conditional variance

rather than by the square root of the conditional variance as is the case in the AF-SV model.

To explore this model further, consider now the implications of this model for instantaneous

volatility dynamics. We can write

d
√
V = µ(V )dt+

1

2
σ
√
V dwV (7)

so that volatility changes are heteroskedastic as Figure 1 suggests they should be.

Note next that the NA-SV model implies that the instantaneous changes in log variance are

homoskedastic. Using Ito’s lemma we can write

d ln(V ) = µ(V )dt+ σdwV

Figure 2 summarizes the empirics of realized log variances. The top panel shows that daily

changes in the realized log variances follow the Gaussian distribution quite closely. This feature is

implied by the NA-SV model and it clearly differs from the finding for the daily volatility changes in

Figure 1. Furthermore, the middle panel of Figure 2 shows the scatter of daily log variance changes

against the log variance level. Note that no cone-shaped pattern is apparent. The bottom panel

in Figure 2 confirms this first impression and shows a virtually flat line when regressing absolute

changes in log variance on log variance levels. Note that the absence of a clear relationship between
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changes in the log variances and the log variance level in Figure 2 lends credence to the NA-SV

specification but it also casts further doubt on the AF-SV specification where the instantaneous

changes in log variance are heteroskedastic as shown in (4) above.

2.3 The Affine GARCH Model (AF-GARCH)

Heston and Nandi (2000) propose a class of affine GARCH models (AF-GARCH) that allow for

a closed-form solution for the price of a European call option. We investigate the GARCH(1,1)

version of this model, which is given by

ln(St+1) = ln(St) + r + pVt +
p
Vtzt+1 (8)

Vt = w + bVt−1 + a
³
zt − c

p
Vt−1

´2
(9)

where St+1 denotes the underlying asset price, r the risk free rate, p the price of risk and Vt the

daily variance for day t + 1 which is known at the end of day t.16 The zt+1 shock is assumed to

be i.i.d. N(0, 1). The Heston-Nandi model captures time variation in the conditional variance in

ways similar to Engle (1982) and Bollerslev (1986). The parameter c represents the leverage effect,

which captures the negative relationship between returns and volatility (Black (1976)) and results

in a negatively skewed conditional distribution of multi-day returns.

In order to explore the model further, notice that variance persistence can be computed via

b+ ac2 ≡ 1− κ

and the unconditional variance can be computed via

(w + a)/
¡
1− b− ac2

¢
= (w + a)/κ ≡ θ

Now we can rewrite the variance process as

Vt − Vt−1 = κ(θ − Vt−1) + avt (10)

where vt =
¡¡
z2t − 1

¢
− 2czt

√
Vt−1

¢
, and where we have

StdDevt−1(vt) =
p
2 + 4c2Vt−1

The fact that the variance appears in a square-root form here suggests the AF-GARCH model’s

relationship with the AF-SV model considered above.

16The timing convention we use here is slightly non-standard in the GARCH literature but it facilitates comparisons

with the SV models.
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2.4 The Non-Affine GARCH Model (NA-GARCH)

We compare the AF-GARCH model with the non-affine NGARCH model of Engle and Ng (1993).

We choose the NGARCH model because it is relatively easy to analyze, and because it has been

shown to provide a good description of underlying equity returns.17 We will refer to this model as

NA-GARCH. The model is given by

ln(St+1) = ln(St) + r + p
p
Vt − 0.5Vt +

p
Vtzt+1 (11)

Vt = w + bVt−1 + aVt−1(zt − c)2 (12)

As in the AF-GARCH model, we can define the variance persistence via

b+ a
¡
1 + c2

¢
≡ 1− κ

and the unconditional variance can be computed via

w/
¡
1− b− a

¡
1 + c2

¢¢
= w/κ ≡ θ

Now we can rewrite the variance process as

Vt − Vt−1 = κ(θ − Vt−1) + aVt−1
¡¡
z2t − 1

¢
− 2czt

¢
(13)

Notice that the variance of the shock term is 2 + 4c2 so that we have

Vt − Vt−1 = κ(θ − Vt−1) + σVt−1vt

where σ = a
√
2 + 4c2 and vt =

¡¡
z2t − 1

¢
− 2czt

¢
/
√
2 + 4c2. Notice also that we have

Corr (zt, vt) =
−2c√
2 + 4c2

≡ ρ

all of which suggests the NA-GARCH model’s close relationship with the NA-SV model.

Note that this model differs in some subtle ways from the Heston-Nandi model in (8)-(9). The

Heston-Nandi model was engineered with the specific purpose of yielding closed-from option prices.

The specification in (11)-(12) does not yield closed form option prices, but was designed to provide

a good fit to the underlying equity returns. The question of interest is if the restrictions built into

affine models such as (8)-(9) reduce the ability of the model to fit the options data.

3 Volatility Model Implementation

The Heston AF-SV model has been investigated empirically in a large number of studies. Often

it is used as a building block together with models of jumps in return and volatility. For our

17See for example Duan (1997).
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purpose, it is important to note that the model can be estimated and investigated empirically using

a number of different techniques. First, the model’s parameters can be estimated using a single

cross-section of option prices (for example see Bakshi, Cao and Chen (1997)). A second type of

implementation of the Heston model uses multiple cross sections of option prices but does not use

the information in the underlying asset returns. Instead, for every cross section a different initial

volatility is estimated, leading to a highly parameterized problem (see for instance Bates (2000)

and Huang and Wu (2004)). A third group of papers provide a likelihood-based analysis of the

stochastic volatility model. For instance, Eraker (2004) provides a Markov Chain Monte Carlo

analysis. Finally, Chernov and Ghysels (2000) use the efficient method of moments and Pan (2002)

uses a method of moments technique as well. These methods can also combine information in the

options data as well as the underlying returns.

In this paper we implement the SV models in a novel way. This is mainly motivated by our

desire to compare the performance of discrete-time and continuous-time methods in a meaningful

way. For all the four models our implementation uses the nonlinear least squares (NLS) estimation

techniques to minimize

$MSE =
1

NT

X
t,i

(Ci,t − Ci(Vt))
2 (14)

with respect to the structural parameters. NT =
TP
t=1

Nt, T denotes the total number of days

included in the options sample, Nt is the number of options with various strikes prices and maturities

included in the sample at date t, Ci,t is the market price of option i quoted on day t and Ci (Vt)

is the model price. In our opinion, this type of objective function guarantees the best possible

performance for the model in- and out-of-sample. This is motivated by the insights of Granger

(1969), and Weiss and Andersen (1984) who demonstrate that the choice of objective function (also

labeled loss function) is an integral part of model specification. It follows that estimating a model

using one objective function and evaluating it using another one amounts to suboptimal choice of

objective function. Christoffersen and Jacobs (2004b) demonstrate that this issue is empirically

relevant for the estimation of the deterministic volatility functions in Dumas, Fleming and Whaley

(1998). We implement the SV models in a way that is consistent with these insights.

3.1 The AF-SV Model

The problem with (14) is that Vt is a latent factor in the two SV models, and that it has to be

filtered from observed return data. Filtering the latent volatility factor on observed index returns as

we do below avoids overfitting and ensures that the option valuation model is consistent with both

options and returns data. Our implementation uses the Auxiliary Particle Filter (APF) algorithm

for the two SV models.18 As shown by Pitt and Shephard (1999) the APF offers a convenient

18We have also implemented the Sampling-Importance-Resampling (SIR) particle filter as a robustness check, and

this yields similar results.
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filtering algorithm for non-linear models such as the stochastic volatility model we consider here.

Because the APF procedure is relatively new in finance, we now discuss the implementation of this

method in more detail.19

3.1.1 Volatility Transformation and Discretization

To prevent V from becoming negative, we work with f(V ) = ln(V ). We also work with the log

stock returns. Using Ito’s lemma, the dynamic of interest is therefore

d ln(S) =

µ
µ− 1

2
V

¶
dt+

√
V dwS (15)

d ln(V ) =
1

V

µ
κ(θ − V )− 1

2
σ2
¶
dt+ σ

1√
V
dwV

Note that equations (1) and (2) specify how the unobserved state is linked to observed stock

prices. This relationship allows us to infer the volatility path using the returns data. We first

need to discretize (15). There are different discretization methods and every scheme has certain

advantages and drawbacks. We use the Euler scheme which is easy to implement and has been

found to work well for this type of applications.20 Discretizing (15) gives

ln(St+1) = ln(St) +

µ
µ− 1

2
Vt

¶
+
p
Vtε

S
t+1 (16)

ln(Vt+1) = ln(Vt) +
1

Vt

µ
κ (θ − Vt)−

1

2
σ2
¶
+ σ

1√
Vt
εVt+1 (17)

We implement the discretized model in (16) and (17) using daily returns, and all parameters will

be expressed in daily units below. The model is characterized by six structural parameters: µ, κ,

θ, σ, λ and ρ for which we have to choose a set of starting values. Subsequently, we have to choose

an initial variance V0 (the starting value for the variance path). We set the initial variance equal

to the model-implied unconditional variance, V0 = θ.

Our optimization algorithm minimizes (14) using an iterative procedure on the structural pa-

rameters. At each iteration, the volatility is filtered using the information embedded in observed

returns and the structural parameters. Using the filtered volatility and the structural parame-

ters option prices are computed according to Heston’s formula and the MSE is calculated. This

procedure searches in the structural parameter space until the optimum is reached.

We now describe the volatility filtering step in more detail.

19Johannes, Polson and Stroud (2002) discuss the use of the particle filter to estimate parameters for continuous-

time jump-diffusion models on returns data.
20See for example Eraker (2001).
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3.1.2 Filtering the volatility path using the APF algorithm

The idea underlying the APF technique is to infer the volatility path from the observed returns

data. Vt is propagated one day ahead using equation (17) into N possible particles.21 Subsequently,

we use an auxiliary variable ι and the available data to decide which particles to keep in order to

simulate the one day ahead volatility.

Assume that we are at date t and we have an initial set of particles
n
V j
t ,W

j
t

oN
j=1

with V j
t the

volatility at day t for particle j,W j
t the weight associated with particle j at date t and j = 1, .., N .

22

We want to propagate V j
t one day ahead into

n
V j
t+1,W

j
t+1

oN
j=1

using the APF . This task requires

the following steps:

Step 1: Selecting the particles

Because of the Euler discretization in (16) and (17) the weight W j
t will reflect information

available at time t+1. Furthermore, even if particle j is very likely according to the realization of

the stock price at date t + 1, the conditional density of St+2 may suggest a certain re-adjustment

of the probability that state j has occurred. By combining the information available at t + 1 and

the conditional density of St+2, we can eliminate many particles with a low probability before the

propagation step. This is achieved by:

I) Computing a summary location statistic for the unobserved Vt+1 that reflects the information

at time t. We use the mean µjt+1 given by

µjt+1 = E
³
ln(Vt+1)|V j

t

´
II) Simulating the auxiliary variable ιj

ιj ∝W j
t p
³
ln(St+2)|µjt+1

´
where p

³
ln(St+2)|µjt+1

´
is the conditional density of ln(St+2) which can be easily inferred from

(16). This auxiliary variable tells us in which proportion to resample the various particles in the

original set.23

After this resampling step we obtain N new particles which are implicitly functions of the

auxiliary variable ι,

{V (ι)t,W (ι)t}Nj=1

In order to keep the notation simple we will omit ι below, and j will refer to the resampled particles

from now on.

Step 2: Simulating the state forward (Sampling)
21We set N = 500 in the initial search. Once a candidate optimum is identified we confirm it by increasing N to

5, 000. The results change very little when N is increased.
22At time 0, the initial set is constructed by setting each particle equal to the unconditional variance θ and giving

all particles equal weight, 1/N.
23See Bolic (2004) for details on the resampling step.
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This is done by computing V j
t+1 for the resampled particles using equation (17) and taking the

correlation into account. We have

ln

µ
St+1
St

¶
=

µ
µ− 1

2
V j
t

¶
+

q
V j
t ε

S,j
t+1

which gives

εS,jt+1 =
ln
³
St+1
St

´
−
³
µ− 1

2V
j
t

´
q
V j
t

Since

εV,jt+1 = ρεS,jt+1 +
p
1− ρ2εjt+1

where corr(εS,jt+1, ε
j
t+1) = 0, we get

ln(V j
t+1) =

ln(V j
t ) +

1

V j
t

µ
κ
³
θ − V j

t

´
− 1
2
σ2
¶
+ σ

1q
V j
t

⎛⎝ρ
ln
³
St+1
St

´
−
³
µ− 1

2V
j
t

´
q
V j
t

+
p
1− ρ2εjt+1

⎞⎠
We simulate N particles which describe the set of possible values of Vt+1.

Step 3: Computing and normalizing the weights (Importance Sampling)

At this point, we have a vector of N possible values of Vt+1 and we know according to equation

(16) that given the other available information, Vt+1 is sufficient to generate ln(St+2). Therefore,

equation (16) offers a simple way to evaluate the likelihood that the observation St+2 has been

generated by Vt+1. Hence, we have to compute the vector W whose elements represent the weight

given to each particle (or the likelihood or probability that the particle has generated St+2). The

likelihood is computed as follows:

W j
t+1 =

1q
V j
t+1

exp

⎛⎜⎝−1
2

³
ln
³
St+2
St+1

´
−
³
µ− 1

2V
j
t+1

´´2
V j
t+1

⎞⎟⎠ 1

p(St+2|µjt+1)

This is to be repeated for j = 1, .., N. Finally, because nothing guarantees that
PN

j=1W
j
t+1 = 1,

we have to normalize and set W
j
t+1 =

W j
t+1

N
j=1W

j
t+1

. In summary therefore, at the end of Step 2, we

obtain a set of N particles describing the density of Vt+1. This procedure (Steps 1, 2 and 3) is

repeated for t = 1, ...T . To obtain the filtered volatility path, we then compute

V̄t+1 =
NX
j=1

W
j
t+1V

j
t+1 (18)

for each t.
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3.1.3 Computing option prices and evaluating the loss function

In order to price options with the AF-SV model we need the risk neutral dynamics. Under the

assumption that the volatility risk premium λ(S, V, t) is equal to λV , the risk neutral dynamic

expressed in terms of the physical parameters and λ is

dS = rSdt+
√
V Sdw∗S (19)

dV = (κ(θ − V )− λV ) dt+ σ
√
V dw∗V (20)

= (κ+ λ)(κθ/(κ+ λ)− V )dt+ σ
√
V dw∗V (21)

with corr(dw∗S , dw∗V ) = ρ. Heston (1993) demonstrates that this model admits a closed form

solution for option prices, which can be written as

C(Vt) = SP1 −Ke−r(T−t)P2 (22)

where the equations for P1 and P2 are given in the appendix.

We are now in a position to evaluate option prices Ci

¡
V̄t
¢
based on the filtered volatility path

using Heston’s closed form solution according to equation (22). We subsequently evaluate the loss

function (14), using Ci

¡
V̄t
¢
for the model price Ci(Vt). We use a standard numerical optimization

routine to update the model parameters and iterate until convergence is achieved.24

Notice that the methodology we have suggested here for estimating the continuous time sto-

chastic volatility model relies on the same information set and uses the same objective function as

the two discrete time models, which will be discussed in detail below. This will allow for a fair

empirical comparison between models.

3.2 The NA-SV Model

In order to compute option prices under the NA-SV dynamics we assume that the volatility risk

premium λ(S, V, t) is equal to λV , so that the risk neutral dynamic expressed in terms of the

physical parameters and λ is

dS = rSdt+
√
V Sdw∗S (23)

dV = (κ(θ − V )− λV ) dt+ σV dw∗V (24)

= (κ+ λ)(κθ/(κ+ λ)− V )dt+ σV dw∗V (25)

with corr(dw∗S , dw∗V ) = ρ.

Note that the assumption on the volatility risk premium is the same as in the AF-SV model. In

both cases the risk-neutralization can be obtained using a no-arbitrage argument, but in the AF-SV

case the risk-neutral dynamic can also be obtained using a utility-based argument. In order to

24 In order to mitigate the impact of the choice of the initial variance V0 we start iterating on the volatility dynamic

on January 2, 1989 in all the estimation samples and for all the models.
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isolate the importance of the volatility dynamic, we keep the volatility risk premium specifications

constant across the affine and non-affine SV models.25 While clearly empirically appealing the

NA-SV model presented here has no known closed form option valuation formula and so we will be

computing option prices below using Monte Carlo simulation.

The NA-SV model has an unobserved variance factor and no closed form option valuation for-

mula. Thus we need to implement it using the auxiliary particle filter to construct the variance

path (as in AF-SV) and Monte Carlo simulation to calculate the option prices. We use 1000 sim-

ulated paths and a number of numerical techniques to increase numerical efficiency: the empirical

martingale method of Duan and Simonato (1998), stratified random numbers, antithetic variates

and a control variate technique. The model is estimated by minimizing (14) with respect to the

structural parameters µ, κ, θ, ρ, σ, and λ.

3.3 The AF-GARCH Model

The risk-neutral dynamics for the GARCH(1,1) model (8)-(9) are given by26

ln(St+1) = ln(St) + r − 1
2Vt +

p
Vtz

∗
t+1 (26)

Vt = w + bVt−1 + a(z∗t − (c+ p+ 0.5)
p
Vt−1)

2

with z∗t ∼ N(0, 1) under the risk neutral measure. At time t, a European call option with strike

price K that expires at time T can be calculated from

C (Vt) = StP1 −Ke−r(T−t)P2

where the formulas for P1 and P2 are provided in the appendix.

We provide an analysis of this model using data on equity option prices as well as the time

series of underlying equity returns. In order to value options at each date t, we need an estimate of

the conditional volatility Vt on that particular date. One of the appealing aspects of discrete-time

GARCH models is that this filtering problem is extremely simple. Indeed, the filtering problem is

solved by noting that from (8) we have

zt+1 = (Rt+1 − r − pVt) /
p
Vt (27)

where Rt = ln(St/St−1). Substituting (27) in (9), it can be seen that the updating from Vt−1 to Vt
is done exclusively using observables

Vt = w + bVt−1 + a((Rt − r) /
p
Vt−1 − (c+ p)

p
Vt−1)

2 (28)

Model parameters are again obtained by using the nonlinear least squares (NLS) estimation tech-

niques to minimize (14).

25See Lewis (2000) for a thorough discussion of these issues.
26For the underlying theory on risk neutral distributions in discrete time option valuation see Rubinstein (1976),

Brennan (1979), Amin and Ng (1993), Duan (1995), Camara (2003), Heston and Nandi (2000) and Schroder (2004).
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The implementation is therefore relatively simple: the NLS routine is called with a set of

parameter starting values. The variance dynamic in (28) is then used to update the variance from

day to day and the GARCH(1,1) option valuation formula from Heston and Nandi (2000) is used

to compute the model prices.

3.4 The NA-GARCH Model

The risk-neutral dynamics required for option valuation with the NA-GARCH model (11)-(12) can

be obtained as

ln(St+1) = ln(St) + r − 0.5Vt +
p
Vtz

∗
t+1 (29)

Vt = w + bVt−1 + aVt−1(z
∗
t − (c+ p))2

with z∗t ∼ N(0, 1). As in the case of the NA-SV model, no closed-form solution exists for option

valuation in the NA-GARCH model instead Monte Carlo simulation is required.

We can then estimate the model by minimizing (14), using the updating rule

Vt = w + bVt−1 + aVt−1
³h
(Rt − r + 0.5Vt−1) /

p
Vt−1

i
− (c+ p)

´2
(30)

Option prices are computed numerically according to

C (Vt) = e−r(T−t)E∗t [Max(ST −K, 0)]

where the expectation is calculated by Monte Carlo simulation of the daily returns from (29). We

use the same Monte-Carlo setup as in the NA-SV case, with 1000 simulated paths and a number of

numerical techniques to increase numerical efficiency: the empirical martingale method of Duan and

Simonato (1998), stratified random numbers, antithetic variates and a control variate technique.

4 Empirical Results

This section presents the empirical results. We first discuss the data, followed by an empirical

evaluation of the four models under investigation and a detailed discussion of the differences in

performance of these models in- and out-of-sample.

4.1 Data

We conduct our empirical analysis using three years of data on S&P 500 call options, for the period

1993-1995. We apply standard filters to the data following Bakshi, Cao and Chen (1997). We only

use Wednesday and Thursday options data. For the in-sample analysis, we use the Wednesday data.

Wednesday is the day of the week least likely to be a holiday. It is also less likely than other days

such as Monday and Friday to be affected by day-of-the-week effects. The decision to pick one day

every week is to some extent motivated by computational constraints. The optimization problems
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are fairly time-intensive, and limiting the number of options reduces the computational burden.

Using only Wednesday data allows us to study a fairly long time-series, which is useful considering

the highly persistent volatility processes. An additional motivation for only using Wednesday data

is that following the work of Dumas, Fleming and Whaley (1998), several studies have used this

setup.27

We obtain three sets of parameter estimates in the in-sample analysis. We simply split the three

years of data in three datasets, one for each calendar year, and perform annual estimation exercises.

For each estimation sample, we apply a volatility updating rule using returns and starting from the

model implied unconditional variance on January 1, 1989.

Table 1 presents descriptive statistics for the options data for the 1993-1995 Wednesday in-

sample data by moneyness and maturity. Panels A and B indicate that the data are standard.

Panel C displays the volatility smirk in the data. The slope of the smirk clearly differs across

maturities. We summarize the data for all three estimation samples in one set of tables to save

space. Descriptive statistics for the yearly samples (not reported here) reveal similar stylized facts.

The slope of the smirk changes over time, but the smirk is present throughout the sample. The

top panel of Figure 3 gives some indication of the pattern of implied volatility over time. For

the 156 Wednesdays of options data used in the empirical analysis, we present the average implied

volatility of the options on each Wednesday. It is evident from Figure 3 that there is substantial

clustering in implied volatilities. The bottom panel of Figure 3 presents a time series for the 30-day

at-the-money volatility (VIX) index from the CBOE for our sample period. A comparison with

the top panel clearly indicates that the options data in our sample are representative of market

conditions, although the time series based on our sample is of course a bit more noisy due to the

presence of options with different moneyness and maturities.

After conducting three in-sample estimations, we proceed to conducting separate out-of-sample

analyses for each of the three sample years using the trading day following each in-sample Wednes-

day. We refer to these datasets as the Thursday data. Table 2 presents descriptive statistics for

the out-of-sample Thursday data. The patterns in the data are clearly similar to those in the

in-sample data in Table 1.

Note that we are deliberately working with a relatively tranquil time-period for option prices.

We are estimating four models that are simple in terms of their volatility memory properties

(single factor models) and simple in terms of shock innovations (Gaussian), but which vary in

their specifications of how shocks to volatility change the level of volatility. Increasing the sample

period length to including more interesting episodes such as the 1990-91 recession / first Gulf

War or the 1998 LTCM / Russian default / liquidity crisis would be useful but would require

more sophisticated models potentially including multiple volatility components and non-Gaussian

innovations. We leave such analysis for future work.

27See for instance Heston and Nandi (2000).

17



4.2 Parameter Estimates and Option Mean-Squared-Errors

Table 3 presents the parameter estimates for each of the four models and for each of the three annual

estimation samples. The parameters for the SV models are directly interpretable individually; for

example, κ denotes the daily variance mean reversion and θ denotes the unconditional variance

which we report in annual standard deviation terms. The most striking aspect of the estimates is

that the correlation parameter ρ hits the prespecified boundary of -0.999 for the NA-SV model in

1993 and 1994 and gets very close to it in 1995. The correlation in the AF-SV model is also large

in magnitude in all the years.

These estimates, which are driven by the objective to minimize the option price squared errors,

indicate that the options want correlations which are much larger in magnitude than the estimates

typically found in papers estimating the models on returns only. Below we will estimate the

four models on returns only which yields correlation estimates that are indeed very close to those

reported in the literature. We readily acknowledge that the parameter estimates indicate potential

misspecification of the model and that further work on the models are needed. The objective of this

paper is not to find the best possible affine or non-affine model. We merely want to demonstrate

that a simple (and possibly misspecified) non-affine model improves significantly on the benchmark

affine model.

For the AF-GARCH and NA-GARCH models, we report the parameters from the specifications

in (10) and (13) in order to facilitate comparison with the SV models. For the non-affine models

the parameters are quite comparable across models. For the affine models, a comparison is less

straightforward, partly because the conditional correlation is time-varying in the AF-GARCHmodel

as we will discuss further below.

To further facilitate the comparison between the different models, the last two columns in Table

3 report the risk neutral variance mean-reversion and unconditional volatility. The variance mean-

reversion is close to zero for all models, which is consistent with other findings in the literature. Due

to the negative price of volatility risk in the SV models and the positive price of equity risk in the

GARCH models, the risk neutral mean-reversion is lower than the physical mean-reversion in all

models. For the same reason, the unconditional volatility is larger under the risk-neutral measures.

Mean-reversion is always smallest in the AF-SV specification. The physical unconditional volatility

displays some variation over time, but the risk-neutral unconditional volatility is actually quite

stable.

Figure 4 provides further perspective on the similarities and differences between the four models

by reporting volatility sample paths for the models. The figure plots volatility paths for 1993-1995

from the four models using the three sets of parameters estimates from 1993, 1994, and 1995

respectively. It can be seen that the sample paths are quite similar both across models and across

estimates. However, it does appear that volatility itself is less volatile in the AF-SV model than in

the other three models. We will investigate this issue further below.

The in- and out-of-sample RMSEs from the four models are reported in Table 4 for each of
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the three samples. First note that the NA-SV model is best overall and the AF-SV model is

worst overall both in- and out-of-sample. The overall difference between these models is 25.5%

in-sample and 27.5% out of sample. The performance of the NA-GARCH and NA-SV models is

similar in- and out-of-sample with the NA-SV model performing somewhat better overall. This

correspondence between the fit of the non-affine continuous-time and discrete-time models does not

hold for the affine models. The fit of the AF-GARCH model falls in between the AF-SV and the

non-affine models. The AF-GARCH is approximately 10.2% better than the AF-SV in sample and

approximately 7.6% better out of sample. Looking across the three samples, a robust conclusion

obtains: the non-affine models substantially outperform the affine models in every year, both in-

and out-of-sample.

Table 5 tests the significance of the difference in weekly RMSE. In order to circumvent having to

specify the variance matrix of the options errors which are likely to have strong maturity, moneyness

and dynamic dependencies we simply test the difference in the average weekly RMSE across models.

When doing so we use the Diebold and Mariano (1995) test allowing for autocorrelation in the

weekly RMSEs. The Diebold-Mariano test has an asymptotic normal distribution and the results

in Table 5 show that when the AF-SV model is taken as a benchmark, the two non-affine models

are significantly better in and out of sample, and the AF-GARCH model is significantly better in

sample. When the NA-SV model is used as a benchmark the two affine models are significantly

worse, but the NA-GARCH model is not significantly different from the NA-SV. We thus conclude

that the differences between affine and non-affine models are significant but the difference between

the NA-GARCH and NA-SV models is not significant.

We now analyze the dynamic performance of the four models in more detail. Figures 5 and 6

address the performance of the models over time. The four panels in Figure 5 present the RMSE

on a week-by-week basis for each of the four models. It can clearly be seen that the four models

display important similarities in terms of the dynamic pricing errors, however, the AF-SV model

appears to be somewhat different from the other three models. Notice in particular the larger weekly

RMSE in the first half of 1994 which corresponds to the period when the VIX in Figure 3 was high.

This observation is confirmed by inspecting the week-by-week bias in Figure 6 where the AF-SV

model underprices options around the peak of the VIX. Notice also how in 1995 the AF-SV model

consistently overprices the options in almost every week of the year. This is less true in the other

three models.

4.3 Pricing Errors Across Moneyness and Maturity

Tables 6 and 7 present an analysis of the in- and out-of-sample RMSE by moneyness and maturity.

The most important conclusion from Tables 6 and 7 is that the two non-affine models outperform

the corresponding affine models for almost every cell in the moneyness-maturity matrix, in-sample

as well as out-of-sample. Consider in particular the All moneyness rows and the All maturities

columns in each panel of Tables 6 and 7. It is striking that the NA-SV model performs the best in
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virtually every single case and the NA-GARCH model performs second best also in virtually every

single case.

These tables also allow for some other important conclusions. For example, consider the differ-

ence between the AF-SV and AF-GARCH models. While the overall RMSE difference between the

two models in Table 5 is approximately 8-10% in- and out-of-sample, there are important variations

in the relative performance of the models across maturity. The overall RMSE of the AF-SV model

is larger than that of the AF-GARCH model, but for short-maturity options the AF-SV model

actually performs better. While perhaps somewhat surprising, this finding could be due to the

fact that our MSE objective function puts relatively little weight on the inexpensive short-term

options.

Tables 8 and 9 report the in- and out-of-sample bias across moneyness and maturity. In these

tables we are looking for systematic over or underpricing of options with particular moneyness and

maturity characteristics. Consider for example the AF-SV model in Panel A of Table 8. It has an

overall bias of 24 cents but more importantly it systematically overprices out-of-the-money calls

and underprices in-the-money calls. Such systematic biases are much less apparent for the other

three models in Table 8. Table 9 shows the same pattern as Table 8 for the AF-SV model and now

also for the NA-GARCH model.

Figures 7.A-C provide additional intuition for the differences in the cross-sectional performance

between the four models. Using each of the three sets of estimates these figures depict the simulated

state price densities for a one-month, three-month and one-year horizon. Each row of panels reports

the risk neutral distribution of the standardized index return according to the AF-SV, NA-SV,

AF-GARCH and NA-GARCH models respectively. The normal distribution corresponding to the

Black-Scholes model is shown in dots for reference. The left column reports the 1-month horizon, the

center column the 3-month horizon distribution and the right column shows the 1-year distribution.

The distributions are constructed by simulating daily returns from each model setting the initial

spot variance equal to the unconditional variance. Kernel density estimates are then constructed

from the standardized simulated returns.

It can clearly be seen that deviations from normality are large, and that the estimated para-

meters for the four models imply different deviations from normality. It is interesting to note that

especially for the affine models, the leverage effects generate a substantial amount of skewness in

the risk-neutral return distributions, even at the 1-year horizon. This finding is consistent with the

nonparametric evidence in Ait-Sahalia and Lo (1998) that skewness persists at long horizons. It

is also consistent with the biases found in Table 8 and 9: Only the NA-SV and the AF-GARCH

models provide enough skewness in the state-price density to avoid systematically overpricing the

out-of-the-money calls and underpricing the in-the-money calls.

20



4.4 Conditional Moment Dynamics

While the state price densities shown in Figures 7.A-C illustrate the option pricing models when

fixing the conditional volatility at its unconditional level, ultimately, the option prices from the

different models are determined by the dynamics of the conditional density. Therefore, we now

discuss model differences by focusing on various conditional moments of the density.

In order to asses the different models’ ability to generate time-variation in the asymmetry of

the return distribution, Figure 8 plots the conditional covariance between returns and variances for

each model. We refer to this conditional covariance as the conditional leverage path, which for the

four models is given by

AF-SV : covt (Rt+1, Vt+1) = σρVt

NA-SV : covt (Rt+1, Vt+1) = σρV
3/2
t

AF-GARCH : covt (Rt+1, Vt+1) = −2acVt
NA-GARCH : covt (Rt+1, Vt+1) = σρV

3/2
t (31)

Notice that critical differences between the affine and non-affine models show up very promi-

nently in these conditional moments where the power on the variance differs between the affine and

the non-affine models.

For each model we plot in Figure 8 the daily conditional leverage path during 1993-1995, an-

nualized by multiplying by 252. The left column uses the 1993 estimates from Table 3, the middle

column uses 1994 estimates, and the right column uses the 1995 estimates. The four rows of panels

correspond to the AF-SV, NA-SV, AF-GARCH and NA-GARCH models respectively.

The main conclusion is that for all three sets of estimates the non-affine models imply more

variation over time in the leverage effect. Notice that particularly the AF-SV model is very different

from the other three models. Given the importance of the leverage effect for option valuation, this

may be a very important factor in explaining the differences in the fit between affine and non-affine

models documented in Tables 4 and 5.

Option prices are a function of the conditional variance, and therefore the variation in option

prices over time is related to the conditional variance of variance. The conditional variance of

variance of returns for the four models is given by

AF-SV : V art(Vt+1) = σ2Vt

NA-SV : V art(Vt+1) = σ2V 2t

AF-GARCH : V art(Vt+1) = 2a
2 + 4a2c2Vt

NA-GARCH : V art(Vt+1) = σ2V 2t (32)

Notice again that the power on Vt in these conditional moments indicate important differences

between affine and non-affine models. The conditional variance shows up in levels in the affine
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models and in squared form in the non-affine models.28 Figure 9 reports the empirical results for

the volatility of variance. For each model, we plot the daily conditional volatility of variance path

during 1993-1995 annualized by multiplying by 252. The left column uses the 1993 estimates from

Table 3, the middle column uses 1994 estimates, and the right column uses the 1995 estimates.

The four rows of panels correspond to the AF-SV, NA-SV, AF-GARCH and NA-GARCH models

respectively. Figure 9 indicates that for all sets of estimates the non-affine models display much

more time-variation in the volatility of variance. This is particularly true versus the AF-SV model

and it is particularly true during the first half of 1994 when the level of volatility peaks (see

Figure 3). These differences between the models further help us understand the superior fit of the

non-affine models.

4.5 Comparing the SV and GARCH Results

The main objective of the empirical comparison between the four option valuation models is to

investigate the implications of assuming an affine model structure. While this is a simple and

important question, the available literature does not contain a conclusive answer, although specifi-

cation tests in Jones (2003) indicate that generalizations of the affine framework might be useful.

Our use of the Auxiliary Particle Filter, which is new in the option valuation literature, allows

us to compare the benchmark AF-SV Heston (1993) model with a simple NA-SV model along a

dimension such as the dollar RMSE. Our results are very clear: while the affine SV model is

analytically convenient, it substantially underperforms the non-affine SV model. Interestingly, the

discrete-time NA-GARCH model also outperforms the AF-GARCH model, but the differences in

fit are much smaller.

These empirical results also allow us to comment on the relationship between the empirical

performance of discrete-time and continuous-time models. Existing theoretical limit results have

sometimes been interpreted as suggesting that the performance of these models ought to be similar,

and indeed as suggesting that a study of the empirical differences is not worthwhile. However, this

interpretation is contradicted at a theoretical level by the fact that a single discrete-time model can

be linked with several continuous-time limits and vice versa. Our empirical results clearly confirm

that the relationship between discrete-time and continuous-time models is far from obvious.

Our most important result in this respect is that the AF-SV Heston (1993) model, which is

one of the most popular option valuation models, performs rather poorly when compared to the

AF-GARCH Heston-Nandi (2000) model. This may seem surprising, because Heston and Nandi

(2000) demonstrate that a restricted version of the Heston (1993) model can be obtained as a limit

of their model. However, close inspection of the proof in Heston and Nandi (2000) reveals that this

limit result is a special case, and the restricted Heston (1993) limit may not be the limit that is

most relevant from an empirical perspective.

28Notice also that in the affine GARCH model the variance of variance will be constant when c = 0 whereas this

is not the case in the non-affine models nor in the AF-SV model.
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In order to explore this issue further, consider the conditional correlation between returns and

volatility for the four models, which can be computed from (31) and (32)

AF-SV : Corrt (Rt+1, Vt+1) =
σρVt√
Vtσ2Vt

= ρ

NA-SV : Corrt (Rt+1, Vt+1) =
σρV

3/2
tp

Vtσ2V 2t
= ρ

AF-GARCH : Corrt (Rt+1, Vt+1) =
−2cVtp

(2 + 4c2Vt)Vt

NA-GARCH : Corrt (Rt+1, Vt+1) =
σρV

3/2
tp

Vtσ2V 2t
= ρ (33)

Clearly an important difference is that for the AF-GARCH model the conditional correlation is

time-varying whereas it is constant for the other three models. Thus, while the AF-GARCH and

AF-SV models are similar in many ways, they differ along this important dimension. Figure 10

plot the time-varying correlation in the AF-GARCH during the period 1993-1995 for the three sets

of estimates obtained in Table 3. The horizontal line in each panel shows the estimated constant

correlation in the AF-SV model for the relevant year. Notice that the time-varying correlation

in the AF-GARCH model typically varies substantially from the constant correlation in the AF-

SV model. This added flexibility in the AF-GARCH model can potentially explain some of the

improvement in option RMSE over the AF-SV model.

4.6 Estimation on Returns Only

The estimates in Table 3 where intentionally obtained by minimizing the object of interest which in

this paper was taken to be the option price mean squared error. The advantage of the estimation

methodology we have suggested is that it can be tailored to any objection function of interest.

Instead of option pricing MSE the objective of interest could relative price MSE or implied volatility

MSE. More economically based objectives such as hedging error variance or trading profits could

be entertained as well. Consider the special case where the researcher is interested not in option

price fitting but instead in a return—based likelihood objective. In the two discrete time GARCH

models the optimization problem is straightforward as the log-likelihood is simply given by

ln(L) = −1
2

TX
t=2

¡
ln(2π) + ln (Vt) + z2t /Vt

¢
where zt is obtained from the relevant return equation and Vt from the variance dynamics. The

initial observation can be used as a starting condition setting V1 to θ.

Using the discretization in equations (16) and (17) and using the auxiliary particle filter we

can similarly estimate the two SV models on returns by maximizing the function analog to the

log-likelihood

ln(L) = −1
2

TX
t=1

¡
ln(2π) + ln

¡
V̄t
¢
+ z2t /V̄t

¢
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where V̄t is now computed from the particle filter as in equation (18).

Table 10 shows the results from this estimation exercise when using daily returns on the S&P500

from 1980 to 1999. Note that the objective function is much larger for the NA-SV than the AF-SV

and similarly the NA-GARCH objective is much larger than the AF-GARCH objective. Thus,

returns themselves favor the non-affine specifications in both the SV and the GARCH case. Notice

also that the ρ and c parameters which capture the shock correlations in the four models are much

smaller in magnitude in Table 10 than those reported in Table 3. The estimates in Table 10 are

very close to the return-driven estimates found for example in Eraker, Johannes and Polson (2003)

who also use the 1980-1999 sample period.

5 Conclusions and Directions for Future Work

This paper has provided an empirical comparison of affine and non-affine option valuation models.

The in-sample RMSE of a non-affine stochastic volatility model (NA-SV) is approximately 25.5%

lower than that of the affine Heston (1993) model (AF-SV), and the out-of-sample RMSE is ap-

proximately 27.5% lower. The non-affine model outperforms the affine model in all three in-sample

exercises as well as in all three out-of-sample exercises. The non-affine model also outperforms the

affine model for virtually all moneyness and maturity categories.

We also study the differences between the affine discrete-time GARCH option model of Heston

and Nandi (2000) (AF-GARCH) and a non-affine GARCH model (NA-GARCH). Interestingly,

the differences in RMSE between these two models are smaller, approximately 10% in-sample and

15% out-of-sample. While the performance of the NA-GARCH model is very similar to that of

the NA-SV model, the AF-GARCH model performs significantly better than the AF-SV model,

in-sample as well as out-of-sample. The AF-GARCH does not lead to a uniformly better fit than

the AF-SV model: The AF-SV model outperforms the AF-GARCH model for short maturities.

These empirical results allow us to draw two conclusions. First, regarding the distinction be-

tween affine and non-affine models: while the focus of the option valuation literature on affine

models is well motivated, because the resulting closed-form solutions are extremely convenient, our

results suggest that this analytical convenience comes at a price, and non-affine models need to be

studied more extensively. Second, our results are relevant for the relationship between continuous-

time and discrete-time option valuation models. Our empirical results on this issue have to be

interpreted cautiously and do not allow for general conclusions. In our opinion, the most impor-

tant aspect of our empirical comparison between the empirical performance of discrete-time and

continuous-time models is what it says about the performance of some important benchmarks in

the literature.

Our most interesting conclusion in this respect is that the most important model in the literature

on option valuation under stochastic volatility, the AF-SV Heston (1993) model, performs rather

poorly when compared to the AF-GARCH model in Heston and Nandi (2000). This may seem
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surprising, because Heston and Nandi (2000) demonstrate that a restricted version of the Heston

(1993) model can be obtained as a limit of their model. However, close inspection of the proof

in Heston and Nandi (2000) reveals that this limit result is a very special case, and the restricted

Heston (1993) limit may not be the limit that is most relevant from an empirical perspective.

Note also that the AF-SV Heston (1993) model is effectively a model with two stochastic shocks,

while the AF-GARCH Heston and Nandi (2000) model, like other GARCH models, only contains

one stochastic shock. It is safe to say that the relationship between discrete-time models and

continuous-time models is complex, and our paper certainly does not provide the final answer to

the empirical relationship between discrete-time and continuous-time models. For instance, it is

somewhat surprising that AF-SV model outperforms the AF-GARCH model for short maturities,

even though it underperforms on average. One possible explanation is that the objection function

we use (dollar RMSE) puts more weight on the longer term and more expensive options.

Finally, at the methodological level, this paper presents a new method to estimate continuous-

time option valuation models. While this method may seem complex, it is rather flexible and it is

straightforward to implement. Its is easily used to investigate options data and underlying equity

returns jointly. We plan to study the performance of this method in more detail in future work.

Another interesting avenue for future work is the search for non-affine models that better fit the

data, perhaps following Jones (2003). Moreover, it will also be interesting to investigate whether

jump processes that are successful in the affine literature can be used to further improve the fit of

non-affine models.
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6 Appendix: Option Pricing Formulae

6.1 AF-SV

Heston (1993) demonstrates that the AF-SV model admits a closed form solution for option prices,

which is presented here in terms of the physical parameters κ, θ, ρ, σ as well as λ. We have

C(V ) = SP1 −Ke−r(T−t)P2

where

Pj =
1

2
+
1

π

Z ∞

0
Re

∙
exp(−iφ ln(K))fj(ln(S), V, T ;φ))

iφ

¸
dφ, j = 1, 2

and

fj(ln(S), V, T ;φ) = exp(C(T − t;φ) +D(T − t;φ)V + iφ ln(S))

C(τ ;φ) = rφiτ +
κθ

σ2

µ
(bj − ρσφi+ d)τ − 2 ln

∙
1− g exp(dτ)

1− g

¸¶
D(τ ;φ) =

bj − ρσφi+ d

σ2

µ
1− exp(dτ)
1− g exp(dτ)

¶

d =
q
(ρσφi− bj)

2 − σ2(2µjφi− φ2) g =
bj − ρσφi+ d

bj − ρσφi− d

µ1 =
1

2
, µ2 = −

1

2
, b1 = κ− λ− ρσ, b2 = κ− λ

6.2 AF-GARCH

Heston and Nandi (2000) show that the AF-GARCH option price is given by

C = SP1 −Ke−r(T−t)P2

where again using Fourier inversion we have

P1 =
1

2
+
1

π

Z ∞

0
Re

∙
exp(−iφ ln(K))f(t, T ; iφ+ 1)

iφSer(T−t)

¸
dφ

P2 =
1

2
+
1

π

Z ∞

0
Re

∙
exp(−iφ ln(K))f(t, T ; iφ)

iφ

¸
dφ

with the characteristic function given by

f(φ) = Sφ exp (A (t, T, φ) +B (t, T, φ)V )

A (t, T, φ) = A (t+ 1, T, φ) + φr +B (t, T, φ)w − 1
2
log (1− 2aB (t+ 1, T, φ))

B (t, T, φ) = (p+ c)− 1
2
c2 + bB (t+ 1, T, φ) +

1
2(φ−c)2

1− 2aB (t+ 1, T, φ)
The coefficients A and B are calculated by recursion from the following terminal conditions

A (T, T, φ) = 0 B (T, T, φ) = 0
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Figure 1: QQ Plot of Daily Volatility Changes and

Scatter Plots of Daily Volatility Changes and Absolute Changes Versus Volatility Level
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Notes to figure: Using realized volatilities from 1990 to 2002 we compute the daily changes and

compare their empirical quantiles with quantiles from the normal distribution (top panel). We

then scatter plot the daily volatility changes against the daily volatility level (middle panel). In

the bottom panel we scatter plot the absolute daily volatility changes against the daily volatility

level and show an OLS regression line for reference.
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Figure 2: QQ Plot of Daily Log Variance Changes

and Scatter Plots of Daily Log Variance Changes and Absolute Changes Versus Log Variance
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Notes to figure: Using realized variances from 1990 to 2002 we compute the daily log changes and

compare their empirical quantiles with quantiles from the normal distribution (top panel). We

then scatter plot the daily log variance changes against the daily log variance level (middle panel).

In the bottom panel we scatter plot the absolute daily log variance changes against the daily log

variance level and show an OLS regression line for reference.
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Figure 3: Average Implied Volatility in S&P500 Option Data and the CBOE VIX
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Notes to figure: The top panel plots the average implied Black-Scholes volatility each Wednesday

during 1993-1995. The average is taken across maturities and strike prices using the call options in

our data set. For comparison, the bottom panel shows the one-month, at-the-money VIX volatility

index retrieved from www.cboe.com.
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Figure 4: Spot Volatility Paths from Each Model. 1993-1995.
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Notes to figure: For each model we plot the daily spot volatility path (annualized) during 1993-1995.

The three columns use the estimates from 1993, 1994 and 1995 respectively as reported in Table 3.

The top row shows the volatility paths from the affine SV model (AF-SV), the second row shows

the non-affine SV model (NA-SV), the third row shows the affine GARCH model (AF-GARCH),

and the bottom row shows the non-affine GARCH model (NA-GARCH).
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Figure 5: Weekly In Sample Root Mean Squared Error (RMSE) for each Model. 1993-1995.
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Notes to figure: The four panels show the weekly root mean squared option valuation error (RMSE)

for the AF-SV, NA-SV, AF-GARCH, and NA-GARCH models respectively.
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Figure 6: Weekly In Sample Bias for each Model. 1993-1995.
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Notes to figure: The four panels show the weekly option valuation bias for the AF-SV, NA-SV,

AF-GARCH, and NA-GARCH models respectively. The bias is calculated as average data price

less average model price.
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Figure 7.A: Model Implied State Price Densities. 1993 Estimates
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Notes to figure: Each row of panels reports the risk neutral distribution of the index return according

to the AF-SV, NA-SV, AF-GARCH and NA-GARCH model respectively. The normal distribution

corresponding to the Black-Scholes model is shown in dots. The left column reports the 1-month

horizon, the center column the 3-month horizon, and the right column shows the 1-year horizon

distribution. The distributions are constructed by simulating returns from each model setting

the initial spot variance equal to the unconditional variance. Kernel density estimates are then

constructed from the standardized simulated returns. The 1993 parameter estimates from Table 3

converted to the risk neutral measure are used to simulate the risk neutral returns.
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Figure 7.B: Model Implied State Price Densities. 1994 Estimates
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Notes to figure: Each row of panels reports the risk neutral distribution of the index return according

to the AF-SV, NA-SV, AF-GARCH and NA-GARCH model respectively. The normal distribution

corresponding to the Black-Scholes model is shown in dots. The left column reports the 1-month

horizon, the center column the 3-month horizon, and the right column shows the 1-year horizon

distribution. The distributions are constructed by simulating returns from each model setting

the initial spot variance equal to the unconditional variance. Kernel density estimates are then

constructed from the standardized simulated returns. The 1994 parameter estimates from Table 3

converted to the risk neutral measure are used to simulate the risk neutral returns.
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Figure 7.C: Model Implied State Price Densities. 1995 Estimates

1-Month, 3-Month and 1-Year Horizon
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Notes to figure: Each row of panels reports the risk neutral distribution of the index return according

to the AF-SV, NA-SV, AF-GARCH and NA-GARCH model respectively. The normal distribution

corresponding to the Black-Scholes model is shown in dots. The left column reports the 1-month

horizon, the center column the 3-month horizon, and the right column shows the 1-year horizon

distribution. The distributions are constructed by simulating returns from each model setting

the initial spot variance equal to the unconditional variance. Kernel density estimates are then

constructed from the standardized simulated returns. The 1995 parameter estimates from Table 3

converted to the risk neutral measure are used to simulate the risk neutral returns.
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Figure 8: Conditional Leverage Paths from Each Model. 1993-1995.
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Notes to figure: For each model we plot the daily conditional leverage path defined as the condi-

tional covariance between shocks to returns and shocks to variance. The paths are annualized by

multiplying by 252 and plotted during 1993-1995. The three columns use estimates from 1993, 1994,

and 1995 respectively all of which are reported in Table 3. The top row shows the leverage paths

from the affine SV model (AF-SV), the second row shows the non-affine SV model (NA-SV), the

third row shows the affine GARCH model (AF-GARCH), and the bottom row shows the non-affine

GARCH model (NA-GARCH).
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Figure 9: Conditional Volatility of Variance Paths from Each Model. 1993-1995.
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Notes to figure: For each model we plot the daily conditional volatility of variance path defined as

the square root of the conditional variance of the variance of returns. The paths are annualized

by multiplying by 252 and plotted during 1993-1995. The three columns use estimates from 1993,

1994, and 1995 respectively all of which are reported in Table 3. The top row shows the volatility of

variance paths from the affine SV model (AF-SV), the second row shows the non-affine SV model

(NA-SV), the third row shows the affine GARCH model (AF-GARCH), and the bottom row shows

the non-affine GARCH model (NA-GARCH).
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Figure 10: Time-Varying Shock Correlation in AF-GARCH Model. 1993-1995

and Constant AF-SV Shock Correlation
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Notes to figure: Each panel plots the time-varying shock correlation implied by the affine GARCH

(AF-GARCH) model during 1993-1995. The top panel uses the 1993 estimates, the middle panel

uses the 1994 estimates, and the bottom panel uses the 1995 estimates from Table 3. The horizontal

line in each plot corresponds to the correlation estimation for the affine SV (AF-SV) model for the

relevant year. These estimates are reported in Table 3 as well.
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DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 16 902 874 907 2,699

0.975<S/X<1 151 762 374 276 1,563
1<S/X<1.025 168 722 399 310 1,599

1.025<S/X<1.05 147 699 359 274 1,479
1.05<S/X<1.075 136 637 330 249 1,352

S/X>1.075 345 1620 1076 830 3,871
All 963 5,342 3,412 2,846 12,563

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 0.56 1.91 5.07 10.87 5.94

0.975<S/X<1 1.92 6.48 14.57 28.69 11.90
1<S/X<1.025 8.62 14.03 22.81 36.14 19.94

1.025<S/X<1.05 19.22 23.40 31.51 44.69 28.90
1.05<S/X<1.075 30.28 33.17 40.62 51.46 38.07

S/X>1.075 56.29 57.05 63.55 71.87 61.97
All 29.19 27.46 32.85 39.95 31.89

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 0.1134 0.1005 0.1075 0.1171 0.1086

0.975<S/X<1 0.1088 0.1112 0.1235 0.1377 0.1190
1<S/X<1.025 0.1342 0.1282 0.1354 0.1440 0.1338

1.025<S/X<1.05 0.1817 0.1477 0.1465 0.1521 0.1519
1.05<S/X<1.075 0.2329 0.1671 0.1580 0.1595 0.1714

S/X>1.075 0.3879 0.2276 0.1818 0.1740 0.2253
All 0.2568 0.1575 0.1408 0.1410 0.1596

Notes: The sample contains European call options on the S&P500 index. We use quotes within 30 minutes 
from closing on every Wednesday during the January 1, 1993 to December 31, 1995 period. We apply the 
moneyness and maturity filters used by Bakshi, Cao and Chen (1997). Implied volatilities are computed 
using the Black-Scholes formula.

Table 1: S&P500 Index Call Option Data. 1993-1995. In Sample

Panel B. Average Call Price

Panel C. Average Implied Volatility from Call Options

Panel A. Number of Call Option Contracts



DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 19 858 826 855 2,558

0.975<S/X<1 142 731 390 256 1,519
1<S/X<1.025 154 702 374 274 1,504

1.025<S/X<1.05 137 662 332 219 1,350
1.05<S/X<1.075 102 533 268 124 1,027

S/X>1.075 132 602 304 172 1,210
All 686 4,088 2,494 1,900 9,168

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 0.59 1.86 4.98 10.91 5.88

0.975<S/X<1 1.95 6.29 14.28 28.63 11.70
1<S/X<1.025 8.49 13.72 22.72 35.74 19.44

1.025<S/X<1.05 18.55 23.15 31.08 44.68 28.13
1.05<S/X<1.075 29.65 32.92 40.14 51.41 36.71

S/X>1.075 52.09 51.73 57.07 73.10 56.15
All 20.46 19.53 22.70 29.04 22.43

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 0.1137 0.0991 0.1066 0.1169 0.1078

0.975<S/X<1 0.1058 0.1086 0.1221 0.1366 0.1170
1<S/X<1.025 0.1306 0.1247 0.1344 0.1427 0.1312

1.025<S/X<1.05 0.1728 0.1433 0.1435 0.1485 0.1474
1.05<S/X<1.075 0.2203 0.1615 0.1536 0.1523 0.1653

S/X>1.075 0.3348 0.1975 0.1686 0.1645 0.2065
All 0.2031 0.1390 0.1325 0.1346 0.1422

Notes: The sample contains European call options on the S&P500 index. We use quotes within 30 minutes 
from closing on every Thursday during the January 1, 1993 to December 31, 1995 period. We apply the 
moneyness and maturity filters used by Bakshi, Cao and Chen (1997). Implied volatilities are computed 
using the Black-Scholes formula.

Table 2: S&P500 Index Call Option Data. 1993-1995. Out of Sample

Panel A. Number of Call Option Contracts

Panel B. Average Call Price

Panel C. Average Implied Volatility from Call Options



μ κ θ σ ρ λ κ∗ θ∗

1993 6.54E-04 0.0122 0.1066 1.01E-03 -0.8301 -0.0042 0.0081 0.1313
1994 6.57E-04 0.0150 0.0958 1.05E-03 -0.9359 -0.0068 0.0081 0.1301
1995 6.16E-04 0.0132 0.1044 7.46E-04 -0.8616 -0.0039 0.0093 0.1244

μ κ θ σ ρ λ κ∗ θ∗

1993 2.49E-06 0.0223 0.1378 3.10E-01 -0.9990 -0.0003 0.0219 0.1388
1994 5.96E-04 0.0412 0.0771 2.03E-01 -0.9990 -0.0315 0.0097 0.1592
1995 1.27E-03 0.0142 0.1140 2.04E-01 -0.9730 -0.0055 0.0087 0.1457

p κ θ a c κ∗ θ∗

1993 1.16E+00 0.0399 0.1128 1.65E-06 652.1 0.0363 0.1183
1994 9.64E-01 0.0359 0.1155 1.43E-06 761.7 0.0327 0.1211
1995 4.66E+00 0.0363 0.1027 9.43E-07 822.0 0.0283 0.1164

p κ θ σ ρ κ∗ θ∗

1993 4.67E-02 0.0356 0.1093 3.23E-01 -0.9433 0.0212 0.1416
1994 1.40E-01 0.0341 0.0801 1.84E-01 -0.9176 0.0095 0.1516
1995 8.96E-02 0.0505 0.0912 3.12E-01 -0.9788 0.0227 0.1359

Table 3: Parameter Estimates

AF-SV
Risk Neutral Properties

NA-SV

AF-GARCH

NA-GARCH

Notes: For each model, we estimate the parameters using Nonlinear Least Squares (NLS) on the option valuation errors. 
We use Wednesday option prices in each of the years 1993, 1994 and 1995 to estimate the models. The spot volatility is 
computed within the NLS routine using the auxiliary particle filter on daily returns. The unconditional variance, θ, is 
reported in annual standard deviations.



AF-SV NA-SV AF-GARCH NA-GARCH
1993 0.9395 0.7087 0.8118 0.7015
1994 1.0339 0.7993 0.9591 0.8761
1995 0.9371 0.6933 0.8728 0.7654

Overall 0.9875 0.7354 0.8865 0.7881
Normalized 1.0000 0.7447 0.8977 0.7981

AF-SV NA-SV AF-GARCH NA-GARCH
1993 0.8275 0.5818 0.6925 0.5728
1994 1.0451 0.6805 0.9577 0.7686
1995 0.8971 0.7735 0.9449 0.8214

Overall 0.9540 0.6920 0.8811 0.7383
Normalized 1.0000 0.7254 0.9235 0.7739

AF-SV NA-SV AF-GARCH NA-GARCH
Average Weekly RMSE 0.9442 0.7057 0.8476 0.7429

DM Test versus AF-SV -- 5.7555 3.2676 5.7719
DM Test versus NA-SV -5.7555 -- -5.0359 -1.8319

AF-SV NA-SV AF-GARCH NA-GARCH
Average Weekly RMSE 0.8987 0.6447 0.8189 0.6783

DM Test versus AF-SV -- 4.2112 1.6507 4.8494
DM Test versus NA-SV -4.2112 -- -4.5825 -1.3306

Notes: We compute the average weekly RMSE for each model during the 1993 to 1995 period. 
Using the Diebold and Mariano (1995) test we compare the average weekly RMSE of each of the 
two SV models to all the other models. We allow for autocorrelation of up to four weeks in the test.

Table 4: RMSE In and Out of Sample

Panel A. RMSE In Sample

Panel B. RMSE Out of Sample

Notes: Using the parameter estimates from Table 3, we compute RMSEs for all four models, for 
each of the three in-sample and out-of-sample periods. RMSE refers to the square root of the mean-
squared valuation errors.  

Table 5: Diebold-Mariano Test on Average Weekly RMSE

Panel B. RMSE Out of Sample

Panel A. RMSE In Sample



DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 0.4419 0.8693 0.8587 1.0598 0.9327

0.975<S/X<1 0.7366 1.1045 0.9845 0.9633 1.0212
1<S/X<1.025 0.6869 0.9981 0.9626 0.9489 0.9514

1.025<S/X<1.05 0.6263 0.9313 0.9059 1.0048 0.9139
1.05<S/X<1.075 0.8439 0.8730 0.9560 1.1290 0.9427

S/X>1.075 0.8417 0.9728 1.0010 1.3594 1.0649
All 0.7648 0.9631 0.9456 1.1374 0.9875

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 0.3604 0.5089 0.5778 0.8110 0.6453

0.975<S/X<1 0.5515 0.7089 0.6607 0.9098 0.7246
1<S/X<1.025 0.6375 0.7386 0.6490 0.8099 0.7220

1.025<S/X<1.05 0.6050 0.7015 0.5937 0.8350 0.6955
1.05<S/X<1.075 0.5749 0.6733 0.5997 0.9123 0.6985

S/X>1.075 0.8061 0.7290 0.6634 1.1419 0.8260
All 0.6753 0.6847 0.6271 0.9389 0.7354

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 0.6214 0.7399 0.7101 0.9949 0.8253

0.975<S/X<1 1.0279 1.0521 0.8322 1.0501 1.0011
1<S/X<1.025 0.9180 0.9869 0.7580 0.9116 0.9126

1.025<S/X<1.05 0.6336 0.8422 0.6306 0.9633 0.8022
1.05<S/X<1.075 0.8824 0.7171 0.5752 1.1122 0.7932

S/X>1.075 0.8022 0.8393 0.8197 1.2265 0.9282
All 0.8491 0.8658 0.7470 1.0720 0.8865

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 0.4916 0.6447 0.6865 0.9670 0.7792

0.975<S/X<1 0.6729 0.8080 0.7347 1.0142 0.8202
1<S/X<1.025 0.7118 0.7797 0.6818 0.8825 0.7712

1.025<S/X<1.05 0.6295 0.7108 0.6067 0.9010 0.7197
1.05<S/X<1.075 0.5731 0.6631 0.6123 1.0015 0.7186

S/X>1.075 0.8052 0.7203 0.6550 1.1884 0.8349
All 0.7089 0.7221 0.6667 1.0297 0.7881

Table 6: RMSE by Moneyness and Maturity. 1993-1995. In Sample

Panel A. AF-SV

Panel C. AF-GARCH

Notes: We use the NLS estimates from Table 3 to compute the root mean squared option valuation error 
(RMSE) for various moneyness and maturity bins for the four models. The option prices used in the table 
are for the 1993-1995 in-sample period, which consists of Wednesday option prices. 

Panel B. NA-SV

Panel D. NA-GARCH



DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 0.5150 0.8711 0.9006 1.1122 0.9653

0.975<S/X<1 0.7278 1.1917 1.0774 1.0482 1.1028
1<S/X<1.025 0.6754 1.0168 1.0055 0.9105 0.9653

1.025<S/X<1.05 0.5227 0.8882 0.8474 0.8678 0.8446
1.05<S/X<1.075 0.7840 0.7974 0.8520 0.9915 0.8362

S/X>1.075 0.5492 0.8749 1.0257 1.1069 0.9232
All 0.6507 0.9561 0.9506 1.0422 0.9540

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 0.3311 0.5046 0.6140 0.8399 0.6661

0.975<S/X<1 0.5483 0.7736 0.7550 0.9336 0.7806
1<S/X<1.025 0.6177 0.7483 0.7536 0.8314 0.7534

1.025<S/X<1.05 0.5210 0.6882 0.6476 0.6979 0.6648
1.05<S/X<1.075 0.4553 0.6465 0.6189 0.7772 0.6406

S/X>1.075 0.5084 0.6197 0.6367 0.6367 0.6154
All 0.5345 0.6666 0.6675 0.8166 0.6920

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 0.6796 0.7347 0.7636 1.0784 0.8726

0.975<S/X<1 1.0162 1.1190 0.9471 1.1366 1.0710
1<S/X<1.025 0.9447 1.0352 0.8791 0.9650 0.9764

1.025<S/X<1.05 0.5747 0.8611 0.7037 0.8861 0.8039
1.05<S/X<1.075 0.8066 0.6691 0.6081 0.8397 0.6918

S/X>1.075 0.5757 0.7001 0.6747 0.9396 0.7210
All 0.8083 0.8786 0.7813 1.0238 0.8811

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 0.4552 0.6134 0.7019 0.9907 0.7842

0.975<S/X<1 0.6343 0.8474 0.8056 1.0137 0.8503
1<S/X<1.025 0.6806 0.7576 0.7592 0.8658 0.7715

1.025<S/X<1.05 0.5378 0.6825 0.6278 0.7587 0.6694
1.05<S/X<1.075 0.4620 0.6262 0.5677 0.7937 0.6204

S/X>1.075 0.5103 0.6056 0.5885 0.6384 0.5965
All 0.5767 0.6975 0.6931 0.9125 0.7383

Table 7: RMSE by Moneyness and Maturity. 1993-1995. Out of Sample

Panel C. AF-GARCH

Panel A. AF-SV

Panel D. NA-GARCH

Notes: We use the NLS estimates from Table 3 to compute the root mean squared option valuation error 
(RMSE) for various moneyness and maturity bins for the four models. The option prices used in the table 
are for the 1993-1995 out-of-sample period, which consists of Thursday option prices. 

Panel B. NA-SV



DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 -0.1929 -0.1947 -0.1819 -0.0545 -0.1434

0.975<S/X<1 0.1159 -0.2876 -0.2338 -0.0374 -0.1916
1<S/X<1.025 0.1648 -0.0349 0.0452 0.0377 0.0201

1.025<S/X<1.05 0.3746 0.3643 0.2477 0.2227 0.3108
1.05<S/X<1.075 0.7274 0.5065 0.4701 0.4212 0.5041

S/X>1.075 0.5178 0.7417 0.6268 0.5921 0.6577
All 0.3891 0.2544 0.2023 0.2141 0.2414

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 0.0528 0.1193 0.0858 -0.1507 0.0173

0.975<S/X<1 0.0862 -0.0376 0.0300 0.0580 0.0074
1<S/X<1.025 0.1916 -0.0349 0.0449 -0.0824 -0.0004

1.025<S/X<1.05 0.3851 0.0535 0.0200 -0.0173 0.0652
1.05<S/X<1.075 0.4198 0.1149 0.0643 0.0145 0.1147

S/X>1.075 0.5589 0.3452 0.0670 -0.0029 0.2123
All 0.3661 0.1354 0.0600 -0.0526 0.0900

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 -0.0503 0.2278 -0.0341 -0.2576 -0.0218

0.975<S/X<1 0.2631 -0.2754 -0.4201 0.0796 -0.1953
1<S/X<1.025 -0.0962 -0.4349 -0.2984 0.1483 -0.2522

1.025<S/X<1.05 0.1812 -0.1304 -0.1686 0.3712 -0.0158
1.05<S/X<1.075 0.6991 -0.0315 0.0569 0.5275 0.1665

S/X>1.075 0.4835 0.4848 0.2601 0.6664 0.4612
All 0.3232 0.0666 -0.0199 0.2180 0.0971

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 0.0123 0.0262 -0.0763 -0.3148 -0.1217

0.975<S/X<1 0.2425 0.0044 -0.0122 0.0712 0.0352
1<S/X<1.025 0.3219 0.0473 0.0480 -0.0034 0.0665

1.025<S/X<1.05 0.4273 0.0869 0.0185 0.0902 0.1047
1.05<S/X<1.075 0.4246 0.1012 0.0741 0.1672 0.1393

S/X>1.075 0.5582 0.3130 0.0547 0.1846 0.2355
All 0.4196 0.1298 0.0111 -0.0166 0.0866

Panel D. NA-GARCH

Notes: We use the NLS estimates from Table 3 to compute the bias for various moneyness and maturity bins 
for the four models. The option prices used in the table are for the 1993-1995 in-sample period, which 
consists of Wednesday option prices.

Table 8: Bias by Moneyness and Maturity. 1993-1995. In Sample

Panel A. AF-SV

Panel B. NA-SV

Panel C. AF-GARCH



DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 -0.2725 -0.2497 -0.3017 -0.1617 -0.2372

0.975<S/X<1 -0.0318 -0.4691 -0.3933 -0.1822 -0.3604
1<S/X<1.025 0.0166 -0.2366 -0.1447 0.0323 -0.1388

1.025<S/X<1.05 0.2639 0.2030 0.1795 0.2722 0.2146
1.05<S/X<1.075 0.6815 0.4605 0.4535 0.3657 0.4692

S/X>1.075 0.3388 0.6779 0.7273 0.8129 0.6725
All 0.2088 0.0158 -0.0218 0.0362 0.0242

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 0.0543 0.0543 -0.0072 -0.1906 -0.0474

0.975<S/X<1 -0.0628 -0.1916 -0.1148 -0.0657 -0.1386
1<S/X<1.025 -0.0113 -0.2012 -0.0903 -0.1249 -0.1403

1.025<S/X<1.05 0.2644 -0.0828 -0.0863 -0.1145 -0.0536
1.05<S/X<1.075 0.3233 0.0315 -0.0695 -0.3235 -0.0087

S/X>1.075 0.4278 0.2151 -0.0006 -0.1938 0.1260
All 0.1692 -0.0350 -0.0529 -0.1645 -0.0514

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 -0.2124 0.1924 -0.0460 -0.2080 -0.0214

0.975<S/X<1 0.0983 -0.3799 -0.4476 0.0533 -0.2796
1<S/X<1.025 -0.2952 -0.5686 -0.3273 0.1685 -0.3463

1.025<S/X<1.05 0.0452 -0.2410 -0.1990 0.2876 -0.1159
1.05<S/X<1.075 0.6456 -0.0498 0.0016 0.1908 0.0617

S/X>1.075 0.2694 0.4003 0.2517 0.6181 0.3796
All 0.1051 -0.1118 -0.1299 0.0394 -0.0692

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All
S/X<0.975 -0.0557 -0.0463 -0.1753 -0.3635 -0.1940

0.975<S/X<1 0.0974 -0.1672 -0.1746 -0.0760 -0.1290
1<S/X<1.025 0.1396 -0.1527 -0.1142 -0.0761 -0.0992

1.025<S/X<1.05 0.2935 -0.0669 -0.0863 -0.0103 -0.0259
1.05<S/X<1.075 0.3361 0.0255 -0.0677 -0.2161 0.0029

S/X>1.075 0.4307 0.1634 -0.0354 0.0337 0.1242
All 0.2414 -0.0493 -0.1256 -0.1970 -0.0789

Panel D. NA-GARCH

Notes: We use the NLS estimates from Table 3 to compute the bias for various moneyness and maturity 
bins for the four models. The option prices used in the table are for the 1993-1995 out-of-sample period, 
which consists of Thursday option prices. 

Table 9: Bias by Moneyness and Maturity. 1993-1995. Out of Sample

Panel A. AF-SV

Panel B. NA-SV

Panel C. AF-GARCH



μ κ θ σ ρ ln(L) Objective
5.55E-04 0.0198 0.1342 1.06E-03 -0.5393 17,226.0

μ κ θ σ ρ ln(L) Objective
6.62E-03 0.0066 0.1322 2.73E-01 -0.4751 17,613.3

p κ θ a c ln(L) Objective
4.29E+00 0.0497 0.1496 4.42E-06 95.0 16,743.3

p κ θ σ ρ ln(L) Objective
7.32E-02 0.0181 0.1566 1.26E-01 -0.6308 16,803.6

AF-GARCH

NA-GARCH

Notes: Using a normal likelihood objective function we estimate the four models on daily 
S&P500 returns from January 1, 1980 through December 31, 1999. For the SV models, the 
spot volatility is computed using the auxiliary particle filter.

Table 10: Parameter Estimates on Daily S&P500 Returns. 1980 - 1999

NA-SV

AF-SV


