A New Two Higgs Doublet Model

S. Nandi Oklahoma State University Oklahoma Center for High Energy Physics

(In collaboration with S. Gabriel, B. Mukhopadhyaya and S. K. Rai)

S. Gabriel and S. Nandi, Phys. Lett. B655:141 (2007); S. Gabriel, B. Mukhopadhyaya, S. Nandi and S. K. Rai, E-Print: arXiv:0804.1112 [hep-ph].

OUTLINE

- 1. Introduction
 - : overview of Higgs models
- 2. Our new model
- 3. Phenomenological Implications
 - : Lepton Colliders
 - : Hadron colliders
- 4. Cosmological implications
- 5. Conclusions

INTRODUCTION :Higgs Overview

- Responsible for breaking of electroweak gauge symmetry
- Gives mass to SM particles
- Mass bound: *m_h* > 114.4 GeV (LEP)
- Dominant decay modes, depending on m_h :

$H \rightarrow b\bar{b}, WW, ZZ, t\bar{t}$

Experimentally, nothing currently known about Higgs sector

ATLAS TDR for Higgs Search at LHC

S.Nandi, talk at Fermilab

ioma Center for High Energy

Two Higgs Doublet Model

- Both doublets couple to all the fermions \rightarrow serious FCNC problems
- One doublet couples to up-type fermions, the other to down-type fermions (Motivated by SUSY)
- Only one doublet couples to fermions, but both have VEV
- Only one doublet couples to fermions, and only that doublet has VEV, Other doublet is innert. Motivation: Heavy Higgs, Higgs dark matter (Barbieri, Hall, and Rychkov)

Our new Model

- What's new?
- One doublet gives mass to all SM fermions except neutrinos
- Other doublet gives mass only to neutrinos
- Gives an alternative explanation of small neutrino masses

- Symmetry *SU*(3) *x SU*(2) *x U*(1) *x Z*₂
- Right-handed neutrinos N_R and two Higgs doublets χ , φ
- SM fermions, χ even under Z_2
- N_R , φ odd under Z_2
- $V_{\varphi} \sim 10^{-2} \text{ eV}$, and $V_{\chi} \sim 250 \text{ GeV} \rightarrow \text{large fine tuning } V_{\varphi}/V_{\chi} \sim 10^{-13} \text{ similar to } m_h/M_{PL} \text{ in SM}$
- Lepton Yukawa interactions:

$$y_{l}\overline{\Psi}^{l}{}_{L}l_{R}\chi + y_{\nu_{l}}\overline{\Psi}^{l}{}_{L}N_{R}\tilde{\phi} + h.c., \quad \overline{\Psi}^{l}{}_{L} = (\overline{\nu}_{l},\overline{l})_{L}$$

- \rightarrow Neutrinos get tiny mass from breaking of Z_2 symmetry
- Neutrinos are Dirac particles→ No neutrino-less double beta decay

6/19/2008

Higgs Potential:

$$V = -\mu_1^2 \chi^{\dagger} \chi - \mu_2^2 \phi^{\dagger} \phi + \lambda_1 (\chi^{\dagger} \chi)^2 + \lambda_2 (\phi^{\dagger} \phi)^2 + \lambda_3 (\chi^{\dagger} \chi) (\phi^{\dagger} \phi) - \lambda_4 |\chi^{\dagger} \phi|^2 - \frac{1}{2} \lambda_5 \left[\left(\chi^{\dagger} \phi \right)^2 + \left(\phi^{\dagger} \chi \right)^2 \right]$$

Physical Higgs Particles

- Charged Higgs *H*[±]
- Neutral pseudoscalar ρ
- Two neutral scalars *h*, σ

In Unitary Gauge:

 $V^2 = V_{\gamma}^2 + V_{\phi}^2$

6/19/2008

$$m_{H}^{2} = \frac{1}{2} (\lambda_{4} + \lambda_{5}) V^{2}, \quad m_{\rho}^{2} = \lambda_{5} V^{2}$$

$$m_{h,\sigma}^{2} = (\lambda_{1} V_{\chi}^{2} + \lambda_{2} V_{\phi}^{2})$$

$$\pm \sqrt{(\lambda_{1} V_{\chi}^{2} - \lambda_{2} V_{\phi}^{2})^{2} + (\lambda_{3} - \lambda_{4} - \lambda_{5}) V_{\chi}^{2} V_{\phi}^{2}}$$

or, more simply:

$$m_{\sigma}^{2} = 2\lambda_{2}V_{\phi}^{2} + O(V_{\phi}^{2}/V_{\chi}^{2}) \quad \text{Very light scalar}$$

$$m_{h}^{2} = 2\lambda_{1}V_{\chi}^{2} + O(V_{\phi}^{2}/V_{\chi}^{2})$$

Mass Eigenstates of h, σ :

$$h_0 = ch + s\sigma, \quad \sigma_0 = -sh + c\sigma$$

where,

$$c = 1 + O(V_{\phi}^{2} / V_{\chi}^{2}), \ s = -\frac{\lambda_{3} - \lambda_{4} - \lambda_{5}}{2\lambda_{1}}(V_{\phi} / V_{\chi}) + O(V_{\phi}^{2} / V_{\chi}^{2})$$

This leads to very small mixing

Note: *h* behaves essentially like the SM Higgs in interactions with fermions and gauge bosons

6/19/2008

Light Scalar *σ*: Possible decay modes:

$$\sigma \to v \overline{v}, \quad if \quad m_{\sigma} > 2m_{v}$$

$$\sigma \to \gamma \gamma \quad (one \ loop)$$

$$\Gamma \sim \frac{e^{8} m_{\sigma}^{5}}{m_{q}^{4}} \implies \tau \sim 10^{20} \ yrs$$

 $\rightarrow \sigma$ only observable at colliders as missing energy

Couplings of σ to quarks and charged leptons are highly suppressed

 $ZZ\sigma$ coupling is proportional to V_{ϕ} , so

$$e^+e^- \to Z^* \to Z\sigma$$
, and $Z \to Z^*\sigma \to f\overline{f}\sigma$

are suppressed by a factor of $(V_{\phi}/m_Z)^2$

However, $ZZ\sigma\sigma$ coupling is unsuppressed:

$$Z \to Z^* \sigma \sigma \to f \overline{f} \sigma \sigma$$
$$\sum_{f} \Gamma(Z \to f \overline{f} \sigma \overline{\sigma}) \simeq 2.5 \times 10^{-7} \, GeV$$

Total Z width = 2.4952 ± 0.0023 GeV (PDG) At LEP1, $\approx 1.7 \times 10^7$ Z's $\rightarrow \approx 2$ such events

Coupling of σ to neutrinos is relatively large, so

 $Z \rightarrow v \bar{v} \sigma$

can be significant

$$\Gamma(Z \rightarrow v \overline{v} \sigma) \simeq (0.64 \, MeV) \left(\sum y_v^2\right)$$

For $\Sigma y_v^2 \sim 1$, this is <1.5 MeV

Invisible Z width = 499 ± 1.5 MeV (PDG)

6/19/2008

Pseudoscalar *p*:

Assume ρ has no strong coupling, so

$$\frac{\lambda_5^2}{4\pi} \le 1 \implies m_{\rho} \le 470 \, GeV$$
$$Z \to \rho \sigma, \quad Z \to \rho^* \sigma \to v v \sigma$$

Note: Couplings of ρ to quarks and charged leptons are VEV suppressed

If $m_{\rho} < m_Z$, then $\rho \rightarrow vv$ will be the dominant decay mode, and $Z \rightarrow \rho\sigma$ will be invisible

Invisible Z width = 499 ± 1.5 MeV (PDG)

6/19/2008

Further Implications

$$\Gamma(Z \to \rho \sigma) = \frac{G_F m_Z^3}{24\sqrt{2}\pi} \left(1 - \frac{m_\rho^2}{m_Z^2} \right)^3 < 1.5 \ MeV \Rightarrow m_\rho > 78 \ \text{GeV}$$

For $m_{p} > m_{Z}$, we have

$$e^+e^- \rightarrow Z^* \rightarrow \rho\sigma$$

$$\sigma = \frac{G_F m_Z^4 (g_V^2 + g_A^2) s}{24\pi} \left(\frac{1}{s - m_Z^2}\right)^2 \left(1 - \frac{m_\rho^2}{s}\right)^3$$

At LEP2, with $\sqrt{s} \sim 200$ GeV and ~ 3000 pb⁻¹ of data, < 1 event is expected for m_o > 95 GeV

6/19/2008

Heavy Scalar h

Essentially SM Higgs

Invisible decay mode $h \rightarrow \sigma \sigma$:

$$\Gamma(h \to \sigma\sigma) = \frac{\left(\lambda_3 + \lambda_4 + \lambda_5\right)^2 V_{\chi}^2}{32\pi m_h}$$
$$m_h^2 = 2\lambda_1 V_{\chi}^2 + O\left(V_{\phi}^2 / V_{\chi}^2\right)$$
$$\Gamma(h \to \sigma\sigma) = \frac{\left(\lambda_3 + \lambda_4 + \lambda_5\right)^2 m_h}{64\pi\lambda_1} \equiv \frac{\lambda^* m_h}{64\pi}$$

Invisible Higgs Decay

For a wide range of λ^* , the invisible mode is dominant for $m_h < 160 \text{ GeV}$

Current limit for invisible Higgs: $m_h > 112.3 \text{ GeV} (L3)$

Invisible Higgs Signal at LHC

At LHC, invisibly decaying Higgs is observable through WBF:

$$qq \rightarrow qqWW \rightarrow qqh, \quad qq \rightarrow qqZZ \rightarrow qqh$$

Signal: Two q's with high p_{τ} + invisible

This signal can be observed at 95% C.L. with >10 fb^{-1} of data if B(h→invisible) > 30% and m_h < 400 GeV (Eboli and Zeppenfeld)

Difficult to identify invisible particle as Higgs

Implications for Charged Higgs

$$V^{2} = V_{\chi}^{2} + V_{\phi}^{2}, \quad V_{\chi} \sim V, \quad V_{\phi} \sim 10^{-2} \text{ eV}$$

Charged Higgs essentially resides in φ

Its coupling with quarks is highly suppressed (Chromophobic charged Higgs)

Coupling with neutrinos and charged leptons *not* suppressed

6/19/2008

Implications for Charged Higgs

$$L_{Y} = -\sqrt{2} \left(\frac{m_{\nu}}{V_{\varphi}} \right) r_{\chi} \left[\overline{\ell}_{L} \nu_{R} H^{-} + \overline{\nu}_{L} \ell_{R} H^{+} + h.c. \right]$$

$$+\sqrt{2}r_{\varphi}\left[\left(\frac{m_{d}}{V_{\chi}}\right)\overline{u}_{L}d_{R}H^{+}-\left(\frac{m_{u}}{V_{\chi}}\right)\overline{d}_{L}u_{R}H^{-}+h.c.\right]$$

where, $r_{\chi} = V_{\chi} / V$, and $r_{\varphi} = V_{\varphi} / V$

 \Rightarrow coupling with neutrinos \propto neutrino masses

HW σ , *HW* ρ : usual gauge interaction

Thus the leptonic decay mode will be determined by the neutrino mass hierarchy

Neutrino Mass Hierarchy

6/19/2008

Collider Signals of H[±]

 Usual production of charged Higgs via:

$$bg \to tH^-$$
, or $\overline{b}g \to \overline{t}H^+$

is **not** available

 In our model via Drell-Yan:

$$pp \text{ (or } p\overline{p}) \longrightarrow H^+H^-$$

6/19/2008

Branching Ratios of H[±] (inverted hierarchy)

6/19/2008

Higgs Potential:

$$V = -\mu_1^2 \chi^{\dagger} \chi - \mu_2^2 \phi^{\dagger} \phi + \lambda_1 (\chi^{\dagger} \chi)^2 + \lambda_2 (\phi^{\dagger} \phi)^2 + \lambda_3 (\chi^{\dagger} \chi) (\phi^{\dagger} \phi) - \lambda_4 |\chi^{\dagger} \phi|^2 - \frac{1}{2} \lambda_5 \left[\left(\chi^{\dagger} \phi \right)^2 + \left(\phi^{\dagger} \chi \right)^2 \right]$$

Physical Higgs Particles:

Charged Higgs H[±] Neutral pseudoscalar ρ Two neutral scalars *h*, σ

Collider Signals of H[±]

• Signal:

 $pp \rightarrow H^+H^- \rightarrow \ell^+\ell'^- + \text{missing } E_T$

• Background: $pp \rightarrow W^+W^- \rightarrow \ell^+\ell'^- + \text{missing } E_T$ $pp \rightarrow Z^0Z^0 \rightarrow \ell^+\ell^- + \text{missing } E_T$

$$\ell = e, \mu$$

- H[±] has a large BR to e or μ compared to W[±]
- Missing E_T reduces the background since m_{H±} > m_W ^{6/19/2008} S.Nandi, talk at Fermilab

Signal vs. Background with Cuts

at LHC with $L = 30 fb^{-1}$, with cuts:

 $p_{T}^{\ell} > 25 \text{ GeV}, |\eta_{\ell}| < 2.5, \Delta R_{\ell\ell} \ge 0.4$ $M_{\ell\ell}^{\text{inv}} > 100 \text{ GeV}, \underset{\text{S.Nandi, talk at Fermilab}}{\text{Hermilab}} T > 100 \text{ GeV}$

6/19/2008

Signal vs. Background with Cuts

at LHC with $L = 30 fb^{-1}$, with cuts: $p_T^{\ell} > 25 \text{ GeV}, |\eta_{\ell}| < 2.5, \Delta R_{\ell \ell} \ge 0.4$ $M_{\ell \ell}^{\text{inv}} > 100 \text{ GeV}, \text{missing } E_T > 100 \text{ GeV}$ S.Nandi, talk at Fermilab

6/19/2008

Reach for *H*[±] at LHC

• For 5σ significance:

 With L=10 fb⁻¹ we can discover H[±] with a mass up to 200 GeV

 With L=100 fb⁻¹ we can discover H[±] with a mass up to 250 GeV

Case for Normal Hierarchy

$$pp \rightarrow H^+H^- \rightarrow \tau^+\tau^- + \text{missing } E_T$$

- Signal is same as e,µ case
- Background is reduced by factor of 4
- However, tau's must decay which reduces the effective signal

Cosmological Implications

Neutrino star formation

The interaction of the almost massless scalar, sigma, with the neutrinos are strong

→ neutrino star formation

. Effect on supernova explosion

Strong interaction with sigma will affect the neutrino emission during supernova explosion → will affect SN explosion dynamics

. Effect on big bang nucleosynthesis

 Predicted light element abundances depend on the number g* of light spin degrees of freedom in thermal equilibrium at T ~ 1 MeV

$$g_* = g_b + \frac{7}{8}g_f$$

- In the standard scenario (SBBN), this includes γ , e^{\pm} , v's: $(g_*)_{SBBN} = 2 + \frac{7}{8}(4) + \frac{7}{8}(6) = 10.75$
- In our model, relatively strong interactions between leftand right-handed neutrinos and the light scalar σ will keep them in thermal equilibrium

$$g_* = (g_*)_{SBBN} + 1 + \frac{7}{8}(6) = 17$$

Oklahoma Center for High Energy Physics

6/19/2008

•Reactions that interconvert protons and neutrons:

$$n \leftrightarrow p + e^- + \overline{\nu}, \quad \nu + n \leftrightarrow p + e^-, \ e^+ + n \leftrightarrow p + \overline{\nu}$$

•For T >> $\Delta m = m_n - m_p = 1.293$ MeV, $\Gamma_{p\leftrightarrow n} >>$ H, and these reactions are in thermal equilibrium

$$\Rightarrow \frac{n}{p} = e^{-\frac{\Delta m}{T}} e^{\frac{\mu_e - \mu_v}{T}}$$

•We know $\mu_e/T \sim 10^{-10}$. Assume also that $\mu_v/T \approx 0$

$$\Rightarrow \frac{n}{p} = e^{-\frac{\Delta m}{T}}$$

Oklahoma Center for High Energy Physics

6/19/2008

•The reactions that interconvert protons and neutrons freeze out when $\Gamma_{p\leftrightarrow n} \sim H$.

$$H = 1.66\sqrt{g_*} \frac{T^2}{M_{PL}}$$

$$\Gamma_{pe \to vn} = \frac{1}{1.636\tau_n} \int_{\Delta m/m_e}^{\infty} d\varepsilon \frac{\varepsilon (\varepsilon - \Delta m/m_e)^2 \sqrt{\varepsilon^2 - 1}}{[1 + \exp(\varepsilon \Delta m/T)][1 + \exp([\Delta m - \varepsilon m_e]/T)]}$$

•In SBBN (with $g_* \approx 10.75$), this give $T_F \approx 0.8$ MeV

$$\Rightarrow \frac{n}{p} = e^{-\frac{\Delta m}{T_F}} \simeq \frac{1}{6}$$

6/19/2008

•By the time nucleosynthesis begins at T \approx 0.3 MeV, neutron decays have reduced n/p to \approx 1/7

• \rightarrow To a good approximation, all neutrons end up in He-4. The mass fraction of He-4 is

$$Y_{p} = \frac{4n_{He}}{n_{N}} \simeq \frac{4(n_{n}/2)}{n_{p} + n_{n}} = \frac{2(n/p)}{1 + (n/p)} = 0.25$$

•Observed value: $Y_{P} = 0.249 \pm 0.009$ (PDG)

•Larger g_∗ implies larger T_F

•For low temperature, $\Gamma_{p\leftrightarrow n} \sim T^5$

$$\Rightarrow \frac{\Gamma_{p \leftrightarrow n}}{H} \sim \frac{T^3}{\sqrt{g_*}} \qquad \Rightarrow \ T_F \sim g_*^{1/6}$$

•For g_{*} = 17, T_F ≈ 0.86 MeV

$$\Rightarrow \frac{n}{p} = e^{\Delta m \left(\frac{1}{0.8 \, MeV} - \frac{1}{0.86 \, MeV}\right)} \left(\frac{n}{p}\right)_{SBBN} \simeq 1.2 \left(\frac{n}{p}\right)_{SBBN}$$

$$\Rightarrow Y_P \simeq 0.30$$

6/19/2008

Possible Solution: Large Neutrino Density

•Since relic neutrinos haven't been detected, μ_v is unknown

$$\frac{n}{p} = e^{-\frac{\mu_v}{T}} \left(\frac{n}{p}\right)_{\mu_v = 0}$$

$$\mu_{\nu} \simeq 0.15 \, MeV \implies e^{-\frac{\mu_{\nu}}{T}} \simeq \frac{1}{1.2}$$

• g_* is consistent with BBN for $\mu_v \approx 0.15$ MeV

Another Possible Solution: Late Decaying Particles

•The energetic decay products of a massive particle (m > a few GeV) that decays during or after nucleosynthesis can cause nuclear reactions among background nuclei, altering light element abundances

•Non-BBN Bounds on Number of Neutrinos:

•WMAP: 0.8 < N_v < 7.6 (Ichikawa, Kawasaki, Takahashi, Nov. 2006)

•Seljak, Sloshar, McDonald (WMAP + several other astrophysical data sources) claim that more than 3 neutrinos is required (Sep. 2006)

Conclusions

- •Proposed new two Higgs doublet model based on SM×Z₂
- •Z₂ broken at ~ 10^{-2} eV
- •Gives new mechanism for tiny neutrino mass
- •Neutrinos are Dirac particles, →no neutrinoless double beta decay
- •Higgs: H^{\pm} , h, $\rho \rightarrow$ mass at EW scale, $\sigma \rightarrow$ extremely light
- •h like SM, but possibly dominant invisible decay mode $h \to \sigma \sigma$
- •Alters Higgs signals at LHC, but observable through WBF
- •Unusual signal for H^{\pm} : *e* and μ in the final state at the LHC.
- cosmological implications: neutrino star, supernova and BBN
 S.Nandi, talk at Fermilab

6/19/2008