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INTRODUCTION :Higgs Overview

• Responsible for breaking of electroweak gauge symmetry
• Gives mass to SM particles
• Mass bound: mh > 114.4 GeV (LEP)
• Dominant decay modes, depending on mh :

• Experimentally, nothing currently known about Higgs 
sector

,  , ,H bb WW ZZ tt→
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ATLAS TDR for Higgs Search at LHC
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Two Higgs Doublet Model

• Both doublets couple to all the fermions → serious 
FCNC problems

• One doublet couples to up-type fermions, the other to 
down-type fermions (Motivated by SUSY)

• Only one doublet couples to fermions, but both have 
VEV

• Only one doublet couples to fermions, and only that 
doublet has VEV, Other doublet is innert. Motivation: 
Heavy Higgs, Higgs dark matter (Barbieri, Hall, and 
Rychkov)
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Our new Model

• What’s new?
• One doublet gives mass to all SM fermions except 

neutrinos
• Other doublet gives mass only to neutrinos 
• Gives an alternative explanation of small neutrino 

masses
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• Symmetry SU(3) x SU(2) x U(1) x Z2

• Right-handed neutrinos NR and two Higgs doublets χ, φ
• SM fermions, χ even under Z2

• NR, φ odd under Z2

• Vφ~10-2 eV, and Vχ ~ 250 GeV → large fine tuning Vφ/Vχ
~ 10-13 similar to mh/MPL in SM

• Lepton Yukawa interactions:

• → Neutrinos get tiny mass from breaking of Z2 symmetry
• Neutrinos are Dirac particles→ No neutrino-less double 

beta decay

Model

. ., ( , )
l

l l l
L L L ll R R Ly l y N h c lνχ φ νΨ + Ψ + Ψ =�
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Higgs Potential:

Physical Higgs Particles
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Model

• Charged Higgs H±

• Neutral pseudoscalar ρ
• Two neutral scalars h, σ
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In Unitary Gauge:

2 2 2V V Vχ φ= +

Model
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Very light scalar
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Mass Eigenstates of h, σ:

where,

This leads to very small mixing

Note: h behaves essentially like the SM Higgs in interactions 
with fermions and gauge bosons

0 0
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Model
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Light Scalar σ:
Possible decay modes:

→ σ only observable at colliders as missing energy

Couplings of σ to quarks and charged leptons are highly 
suppressed                                                     

8 5
20

4

, 2
( )

10
q

if m m
one loop

e m yrs
m

σ ν

σ

σ νν
σ γγ

τ

→ >
→

Γ ⇒∼ ∼

Phenomenological Implications
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ZZσ coupling is proportional to VΦ, so

are suppressed by a factor of (VΦ/mZ)2

However, ZZσσ coupling is unsuppressed:

Total Z width = 2.4952 ± 0.0023 GeV (PDG)
At LEP1, ≈ 1.7×107 Z’s → ≈ 2 such events

* *

*

7

,  and 
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f

e e Z Z Z Z f f
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Phenomenological Implications
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Coupling of σ to neutrinos is relatively large, so 

can be significant

For Σyν2 ~ 1, this is <1.5 MeV

Invisible Z width = 499 ± 1.5 MeV (PDG)

Phenomenological Implications

( )( )2( ) 0.64

Z

Z MeV yν
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Pseudoscalar ρ:
Assume ρ has no strong coupling, so

Note: Couplings of ρ to quarks and charged leptons are 
VEV suppressed

If mρ < mZ, then ρ→νν will be the dominant decay mode, 
and Z→ρσ will be invisible

Invisible Z width = 499 ± 1.5 MeV (PDG)

2
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Phenomenological Implications
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For mρ > mZ, we have

At LEP2, with √s ~ 200 GeV and ~ 3000 pb-1 of data, < 1 
event is expected for mρ > 95 GeV   

*e e Z ρσ+ − → →
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Further Implications
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Essentially SM Higgs

Invisible decay mode h→σσ:
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Invisible Higgs Decay
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Invisible Higgs Decay

For a wide range of λ*, the invisible mode is dominant 
for mh < 160 GeV

Current limit for invisible Higgs: mh > 112.3 GeV (L3)
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At LHC, invisibly decaying Higgs is observable through 
WBF:

Signal: Two q’s with high pT + invisible

This signal can be observed at 95% C.L. with >10 fb-1 of 
data if B(h→invisible) > 30% and mh < 400 GeV (Eboli and 
Zeppenfeld)

Difficult to identify invisible particle as Higgs

Invisible Higgs Signal at LHC

,qq qqWW qqh qq qqZZ qqh→ → → →
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Implications for Charged Higgs
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Charged Higgs essentially resides in φ

Its coupling with quarks is highly suppressed 
(Chromophobic charged Higgs)

Coupling with neutrinos and charged leptons not
suppressed
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Implications for Charged Higgs

HWσ, HWρ : usual gauge interaction
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Thus the leptonic decay mode will be determined by  the 
neutrino mass hierarchy

Main Decay Modes of H±
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τν

μν
eν τν
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Normal Hierarchy Inverted Hierarchy

H τν τ± → ( ),  ,  H eν μ± → =AA A

Neutrino Mass Hierarchy
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• Usual production of 
charged Higgs via:
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Branching Ratios of H± (inverted hierarchy)
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Higgs Potential:

Physical Higgs Particles:

Charged Higgs H±

Neutral pseudoscalar ρ
Two neutral scalars h, σ
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• Signal:

• Background:

• H± has a large BR to e or μ
compared to W±

• Missing ET reduces the 
background since mH± > mW
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Collider Signals of H±
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• For 5σ significance:

• With L=10 fb-1 we can discover H± with a  mass up to 
200 GeV

• With L=100 fb-1 we can discover H± with a  mass up to 
250 GeV

Reach for H± at LHC
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• Signal is same as e,μ case
• Background is reduced by factor of 4
• However, tau’s must decay which reduces the effective 

signal

missing Tpp H H Eτ τ+ − + −→ → +

Case for Normal Hierarchy
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Cosmological Implications
• Neutrino star formation
The interaction of the almost massless scalar, sigma, with 

the neutrinos are strong  
neutrino star formation

.  Effect on supernova explosion
Strong interaction with sigma will affect the
neutrino emission during supernova explosion     

will affect SN explosion dynamics

.  Effect on big bang nucleosynthesis
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Big Bang Nucleosynthesis
• Predicted light element abundances depend on the 

number g* of light spin degrees of freedom in thermal 
equilibrium at T ~ 1 MeV

• In the standard scenario (SBBN), this includes γ, e±, ν’s:

• In our model, relatively strong interactions between left-
and right-handed neutrinos and the light scalar σ will 
keep them in thermal equilibrium

7
* 8b fg g g= +

7 7
* 8 8( ) 2 (4) (6) 10.75SBBNg = + + =

7
* * 8( ) 1 (6) 17SBBNg g= + + =
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•Reactions that interconvert protons and neutrons: 

•For T >> Δm = mn – mp = 1.293 MeV, Γp↔n >> H, and 
these reactions are in thermal equilibrium

•We know μe/T ~ 10-10. Assume also that μν/T ≈ 0

Big Bang Nucleosynthesis
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•The reactions that interconvert protons and neutrons 
freeze out when Γp↔n ~ H.

•In SBBN (with g* ≈ 10.75), this give TF ≈ 0.8 MeV
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•By the time nucleosynthesis begins at T ≈ 0.3 MeV, 
neutron decays have reduced n/p to ≈1/7
•→ To a good approximation, all neutrons end up in He-4. 
The mass fraction of He-4 is

•Observed value: YP = 0.249 ± 0.009 (PDG)

4 4( 2) 2( / ) 0.25
1 ( / )

He n
P

N p n

n n n pY
n n n n p

= = =
+ +

�

Big Bang Nucleosynthesis
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•Larger g* implies larger TF

•For low temperature, Γp↔n ~ T5

•For g* = 17, TF ≈ 0.86 MeV
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Big Bang Nucleosynthesis
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•Since relic neutrinos haven’t been detected, μν is 
unknown

•g* is consistent with BBN for μν ≈ 0.15 MeV
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Possible Solution: Large Neutrino Density
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•The energetic decay products of a massive particle (m > 
a few GeV) that decays during or after nucleosynthesis 
can cause nuclear reactions among background nuclei, 
altering light element abundances

•Non-BBN Bounds on Number of Neutrinos:

•WMAP: 0.8 < Nν < 7.6 (Ichikawa, Kawasaki, Takahashi, 
Nov. 2006)
•Seljak, Sloshar, McDonald (WMAP + several other 
astrophysical data sources) claim that more than 3 
neutrinos is required (Sep. 2006) 

Another Possible Solution:
Late Decaying Particles



6/19/2008 S.Nandi, talk at Fermilab

•Proposed new two Higgs doublet model based on SM×Z2

•Z2 broken at ~ 10-2 eV

•Gives new mechanism for tiny neutrino mass

•Neutrinos are Dirac particles,    no neutrinoless double beta decay

•Higgs: H±, h, ρ → mass at EW scale, σ→ extremely light

•h like SM, but possibly dominant invisible decay mode h → σσ

•Alters Higgs signals at LHC, but observable through WBF

•Unusual signal for H±:  e and μ in the final state at the LHC.

• cosmological implications: neutrino star, supernova and BBN 

Conclusions
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